1
|
Ast T, Itoh Y, Sadre S, McCoy JG, Namkoong G, Wengrod JC, Chicherin I, Joshi PR, Kamenski P, Suess DLM, Amunts A, Mootha VK. METTL17 is an Fe-S cluster checkpoint for mitochondrial translation. Mol Cell 2024; 84:359-374.e8. [PMID: 38199006 PMCID: PMC11046306 DOI: 10.1016/j.molcel.2023.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 08/13/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
Friedreich's ataxia (FA) is a debilitating, multisystemic disease caused by the depletion of frataxin (FXN), a mitochondrial iron-sulfur (Fe-S) cluster biogenesis factor. To understand the cellular pathogenesis of FA, we performed quantitative proteomics in FXN-deficient human cells. Nearly every annotated Fe-S cluster-containing protein was depleted, indicating that as a rule, cluster binding confers stability to Fe-S proteins. We also observed depletion of a small mitoribosomal assembly factor METTL17 and evidence of impaired mitochondrial translation. Using comparative sequence analysis, mutagenesis, biochemistry, and cryoelectron microscopy, we show that METTL17 binds to the mitoribosomal small subunit during late assembly and harbors a previously unrecognized [Fe4S4]2+ cluster required for its stability. METTL17 overexpression rescued the mitochondrial translation and bioenergetic defects, but not the cellular growth, of FXN-depleted cells. These findings suggest that METTL17 acts as an Fe-S cluster checkpoint, promoting translation of Fe-S cluster-rich oxidative phosphorylation (OXPHOS) proteins only when Fe-S cofactors are replete.
Collapse
Affiliation(s)
- Tslil Ast
- Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Yuzuru Itoh
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Shayan Sadre
- Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jason G McCoy
- Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Gil Namkoong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jordan C Wengrod
- Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ivan Chicherin
- Department of Biology, M.V.Lomonosov Moscow State University, Moscow 119234, Russia
| | - Pallavi R Joshi
- Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Piotr Kamenski
- Department of Biology, M.V.Lomonosov Moscow State University, Moscow 119234, Russia
| | - Daniel L M Suess
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alexey Amunts
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Vamsi K Mootha
- Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Pellerin D, Danzi MC, Renaud M, Houlden H, Synofzik M, Zuchner S, Brais B. Spinocerebellar ataxia 27B: A novel, frequent and potentially treatable ataxia. Clin Transl Med 2024; 14:e1504. [PMID: 38279833 PMCID: PMC10819088 DOI: 10.1002/ctm2.1504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/19/2023] [Accepted: 11/24/2023] [Indexed: 01/29/2024] Open
Abstract
Hereditary ataxias, especially when presenting sporadically in adulthood, present a particular diagnostic challenge owing to their great clinical and genetic heterogeneity. Currently, up to 75% of such patients remain without a genetic diagnosis. In an era of emerging disease-modifying gene-stratified therapies, the identification of causative alleles has become increasingly important. Over the past few years, the implementation of advanced bioinformatics tools and long-read sequencing has allowed the identification of a number of novel repeat expansion disorders, such as the recently described spinocerebellar ataxia 27B (SCA27B) caused by a (GAA)•(TTC) repeat expansion in intron 1 of the fibroblast growth factor 14 (FGF14) gene. SCA27B is rapidly gaining recognition as one of the most common forms of adult-onset hereditary ataxia, with several studies showing that it accounts for a substantial number (9-61%) of previously undiagnosed cases from different cohorts. First natural history studies and multiple reports have already outlined the progression and core phenotype of this novel disease, which consists of a late-onset slowly progressive pan-cerebellar syndrome that is frequently associated with cerebellar oculomotor signs, such as downbeat nystagmus, and episodic symptoms. Furthermore, preliminary studies in patients with SCA27B have shown promising symptomatic benefits of 4-aminopyridine, an already marketed drug. This review describes the current knowledge of the genetic and molecular basis, epidemiology, clinical features and prospective treatment strategies in SCA27B.
Collapse
Affiliation(s)
- David Pellerin
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and InstituteMcGill UniversityMontrealQuebecCanada
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and NeurosurgeryUniversity College LondonLondonUK
| | - Matt C. Danzi
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human GenomicsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Mathilde Renaud
- INSERM‐U1256 NGEREUniversité de LorraineNancyFrance
- Service de Neurologie, CHRU de NancyNancyFrance
- Service de Génétique Clinique, CHRU de NancyNancyFrance
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and NeurosurgeryUniversity College LondonLondonUK
| | - Matthis Synofzik
- Division of Translational Genomics of Neurodegenerative DiseasesHertie‐Institute for Clinical Brain Research and Center of Neurology, University of TübingenTübingenGermany
- German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human GenomicsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and InstituteMcGill UniversityMontrealQuebecCanada
- Department of Human GeneticsMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
3
|
Gambelli A, Ferrando A, Boncristiani C, Schoeftner S. Regulation and function of R-loops at repetitive elements. Biochimie 2023; 214:141-155. [PMID: 37619810 DOI: 10.1016/j.biochi.2023.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/13/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023]
Abstract
R-loops are atypical, three-stranded nucleic acid structures that contain a stretch of RNA:DNA hybrids and an unpaired, single stranded DNA loop. R-loops are physiological relevant and can act as regulators of gene expression, chromatin structure, DNA damage repair and DNA replication. However, unscheduled and persistent R-loops are mutagenic and can mediate replication-transcription conflicts, leading to DNA damage and genome instability if left unchecked. Detailed transcriptome analysis unveiled that 85% of the human genome, including repetitive regions, hold transcriptional activity. This anticipates that R-loops management plays a central role for the regulation and integrity of genomes. This function is expected to have a particular relevance for repetitive sequences that make up to 75% of the human genome. Here, we review the impact of R-loops on the function and stability of repetitive regions such as centromeres, telomeres, rDNA arrays, transposable elements and triplet repeat expansions and discuss their relevance for associated pathological conditions.
Collapse
Affiliation(s)
- Alice Gambelli
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Alessandro Ferrando
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Chiara Boncristiani
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Stefan Schoeftner
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy.
| |
Collapse
|
4
|
Rastokina A, Cebrián J, Mozafari N, Mandel NH, Smith CI, Lopes M, Zain R, Mirkin S. Large-scale expansions of Friedreich's ataxia GAA•TTC repeats in an experimental human system: role of DNA replication and prevention by LNA-DNA oligonucleotides and PNA oligomers. Nucleic Acids Res 2023; 51:8532-8549. [PMID: 37216608 PMCID: PMC10484681 DOI: 10.1093/nar/gkad441] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/02/2023] [Accepted: 05/20/2023] [Indexed: 05/24/2023] Open
Abstract
Friedreich's ataxia (FRDA) is caused by expansions of GAA•TTC repeats in the first intron of the human FXN gene that occur during both intergenerational transmissions and in somatic cells. Here we describe an experimental system to analyze large-scale repeat expansions in cultured human cells. It employs a shuttle plasmid that can replicate from the SV40 origin in human cells or be stably maintained in S. cerevisiae utilizing ARS4-CEN6. It also contains a selectable cassette allowing us to detect repeat expansions that accumulated in human cells upon plasmid transformation into yeast. We indeed observed massive expansions of GAA•TTC repeats, making it the first genetically tractable experimental system to study large-scale repeat expansions in human cells. Further, GAA•TTC repeats stall replication fork progression, while the frequency of repeat expansions appears to depend on proteins implicated in replication fork stalling, reversal, and restart. Locked nucleic acid (LNA)-DNA mixmer oligonucleotides and peptide nucleic acid (PNA) oligomers, which interfere with triplex formation at GAA•TTC repeats in vitro, prevented the expansion of these repeats in human cells. We hypothesize, therefore, that triplex formation by GAA•TTC repeats stall replication fork progression, ultimately leading to repeat expansions during replication fork restart.
Collapse
Affiliation(s)
| | - Jorge Cebrián
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Negin Mozafari
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Karolinska University Hospital, SE-171 77 Stockholm, Sweden
| | | | - C I Edvard Smith
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Karolinska University Hospital, SE-171 77 Stockholm, Sweden
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Zurich 8057, Switzerland
| | - Rula Zain
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Karolinska University Hospital, SE-171 77 Stockholm, Sweden
- Center for Rare Diseases, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
5
|
Yaméogo P, Gérard C, Majeau N, Tremblay JP. Removal of the GAA repeat in the heart of a Friedreich's ataxia mouse model using CjCas9. Gene Ther 2023; 30:612-619. [PMID: 36781946 DOI: 10.1038/s41434-023-00387-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/12/2023] [Accepted: 01/27/2023] [Indexed: 02/15/2023]
Abstract
Most Friedreich ataxia (FRDA) cases are caused by the elongation of the GAA repeat (GAAr) sequence in the first intron of the FXN gene, leading to a decrease of the frataxin protein expression. Deletion of this GAAr with CRISPR/Cas9 technology leads to an increase in frataxin expression in vitro. We are therefore aiming to develop FRDA treatment based on the deletion of GAAr with CRISPR/Cas9 technology using a single AAV expressing a small Cas9 (CjCas9) and two single guide RNAs (sgRNAs) targeting the FXN gene. This AAV was intraperitoneally administrated to YG8sR (250-300 GAAr) and to YG8-800 (800 GAAr) mice. DNA and RNA were extracted from different organs a month later. PCR amplification of part of intron 1 of the FXN gene detected some GAAr deletion in some cells in heart and liver of both mouse models, but the editing rate was not sufficient to cause an increase in frataxin mRNA in the heart. However, the correlation observed between the editing rate and the distribution of AAV suggests a possible therapy based on the removal of the GAAr with a better delivery tool of the CRISPR/Cas9 system.
Collapse
Affiliation(s)
- Pouiré Yaméogo
- Centre de Recherche du CHU de Québec-Université Laval, Québec city, QC, Canada
- Département de Médecine Moléculaire, Université Laval, Québec city, QC, Canada
| | - Catherine Gérard
- Centre de Recherche du CHU de Québec-Université Laval, Québec city, QC, Canada
- Département de Médecine Moléculaire, Université Laval, Québec city, QC, Canada
| | - Nathalie Majeau
- Centre de Recherche du CHU de Québec-Université Laval, Québec city, QC, Canada
- Département de Médecine Moléculaire, Université Laval, Québec city, QC, Canada
| | - Jacques P Tremblay
- Centre de Recherche du CHU de Québec-Université Laval, Québec city, QC, Canada.
- Département de Médecine Moléculaire, Université Laval, Québec city, QC, Canada.
| |
Collapse
|
6
|
Keita M, McIntyre K, Rodden LN, Schadt K, Lynch DR. Friedreich ataxia: clinical features and new developments. Neurodegener Dis Manag 2022; 12:267-283. [PMID: 35766110 PMCID: PMC9517959 DOI: 10.2217/nmt-2022-0011] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022] Open
Abstract
Friedreich's ataxia (FRDA), a neurodegenerative disease characterized by ataxia and other neurological features, affects 1 in 50,000-100,000 individuals in the USA. However, FRDA also includes cardiac, orthopedic and endocrine dysfunction, giving rise to many secondary disease characteristics. The multifaceted approach for clinical care has necessitated the development of disease-specific clinical care guidelines. New developments in FRDA include the advancement of clinical drug trials targeting the NRF2 pathway and frataxin restoration. Additionally, a novel understanding of gene silencing in FRDA, reflecting a variegated silencing pattern, will have applications to current and future therapeutic interventions. Finally, new perspectives on the neuroanatomy of FRDA and its developmental features will refine the time course and anatomical targeting of novel approaches.
Collapse
Affiliation(s)
- Medina Keita
- Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kellie McIntyre
- Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Layne N Rodden
- Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kim Schadt
- Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David R Lynch
- Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Masnovo C, Lobo AF, Mirkin SM. Replication dependent and independent mechanisms of GAA repeat instability. DNA Repair (Amst) 2022; 118:103385. [PMID: 35952488 PMCID: PMC9675320 DOI: 10.1016/j.dnarep.2022.103385] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/20/2022]
Abstract
Trinucleotide repeat instability is a driver of human disease. Large expansions of (GAA)n repeats in the first intron of the FXN gene are the cause Friedreich's ataxia (FRDA), a progressive degenerative disorder which cannot yet be prevented or treated. (GAA)n repeat instability arises during both replication-dependent processes, such as cell division and intergenerational transmission, as well as in terminally differentiated somatic tissues. Here, we provide a brief historical overview on the discovery of (GAA)n repeat expansions and their association to FRDA, followed by recent advances in the identification of triplex H-DNA formation and replication fork stalling. The main body of this review focuses on the last decade of progress in understanding the mechanism of (GAA)n repeat instability during DNA replication and/or DNA repair. We propose that the discovery of additional mechanisms of (GAA)n repeat instability can be achieved via both comparative approaches to other repeat expansion diseases and genome-wide association studies. Finally, we discuss the advances towards FRDA prevention or amelioration that specifically target (GAA)n repeat expansions.
Collapse
Affiliation(s)
- Chiara Masnovo
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Ayesha F Lobo
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
8
|
Rodden LN, Rummey C, Dong YN, Lagedrost S, Regner S, Brocht A, Bushara K, Delatycki MB, Gomez CM, Mathews K, Murray S, Perlman S, Ravina B, Subramony SH, Wilmot G, Zesiewicz T, Bolotta A, Domissy A, Jespersen C, Ji B, Soragni E, Gottesfeld JM, Lynch DR. A non-synonymous single nucleotide polymorphism in SIRT6 predicts neurological severity in Friedreich ataxia. Front Mol Biosci 2022; 9:933788. [PMID: 36133907 PMCID: PMC9483148 DOI: 10.3389/fmolb.2022.933788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction: Friedreich ataxia (FRDA) is a recessive neurodegenerative disease characterized by progressive ataxia, dyscoordination, and loss of vision. The variable length of the pathogenic GAA triplet repeat expansion in the FXN gene in part explains the interindividual variability in the severity of disease. The GAA repeat expansion leads to epigenetic silencing of FXN; therefore, variability in properties of epigenetic effector proteins could also regulate the severity of FRDA. Methods: In an exploratory analysis, DNA from 88 individuals with FRDA was analyzed to determine if any of five non-synonymous SNPs in HDACs/SIRTs predicted FRDA disease severity. Results suggested the need for a full analysis at the rs352493 locus in SIRT6 (p.Asn46Ser). In a cohort of 569 subjects with FRDA, disease features were compared between subjects homozygous for the common thymine SIRT6 variant (TT) and those with the less common cytosine variant on one allele and thymine on the other (CT). The biochemical properties of both variants of SIRT6 were analyzed and compared. Results: Linear regression in the exploratory cohort suggested that an SNP (rs352493) in SIRT6 correlated with neurological severity in FRDA. The follow-up analysis in a larger cohort agreed with the initial result that the genotype of SIRT6 at the locus rs352493 predicted the severity of disease features of FRDA. Those in the CT SIRT6 group performed better on measures of neurological and visual function over time than those in the more common TT SIRT6 group. The Asn to Ser amino acid change resulting from the SNP in SIRT6 did not alter the expression or enzymatic activity of SIRT6 or frataxin, but iPSC-derived neurons from people with FRDA in the CT SIRT6 group showed whole transcriptome differences compared to those in the TT SIRT6 group. Conclusion: People with FRDA in the CT SIRT6 group have less severe neurological and visual dysfunction than those in the TT SIRT6 group. Biochemical analyses indicate that the benefit conferred by T to C SNP in SIRT6 does not come from altered expression or enzymatic activity of SIRT6 or frataxin but is associated with changes in the transcriptome.
Collapse
Affiliation(s)
- Layne N. Rodden
- Departments of Pediatrics and Neurology, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Yi Na Dong
- Departments of Pediatrics and Neurology, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sarah Lagedrost
- Departments of Pediatrics and Neurology, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sean Regner
- Departments of Pediatrics and Neurology, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Alicia Brocht
- University of Rochester, Rochester, NY, United States
| | | | - Martin B. Delatycki
- Murdoch Children’s Research Institute, Victorian Clinical Genetics Services, Melbourne, VIC, Australia
| | | | - Katherine Mathews
- Departments of Pediatrics and Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Sarah Murray
- Department of Pathology, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Susan Perlman
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | | | - S. H. Subramony
- Department of Neurology, University of Florida, College of Medicine, Gainesville, FL, United States
| | - George Wilmot
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Theresa Zesiewicz
- Department of Neurology, University of South Florida, Tampa, FL, United States
| | | | - Alain Domissy
- The Scripps Research Institute, La Jolla, CA, United States
| | | | - Baohu Ji
- The Scripps Research Institute, La Jolla, CA, United States
| | | | | | - David R. Lynch
- Departments of Pediatrics and Neurology, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: David R. Lynch,
| |
Collapse
|
9
|
Rodden LN, Gilliam KM, Lam C, Rojsajjakul T, Mesaros C, Dionisi C, Pook M, Pandolfo M, Lynch DR, Blair IA, Bidichandani SI. DNA methylation in Friedreich ataxia silences expression of frataxin isoform E. Sci Rep 2022; 12:5031. [PMID: 35322126 PMCID: PMC8943190 DOI: 10.1038/s41598-022-09002-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/14/2022] [Indexed: 11/15/2022] Open
Abstract
Epigenetic silencing in Friedreich ataxia (FRDA), induced by an expanded GAA triplet-repeat in intron 1 of the FXN gene, results in deficiency of the mitochondrial protein, frataxin. A lesser known extramitochondrial isoform of frataxin detected in erythrocytes, frataxin-E, is encoded via an alternate transcript (FXN-E) originating in intron 1 that lacks a mitochondrial targeting sequence. We show that FXN-E is deficient in FRDA, including in patient-derived cell lines, iPS-derived proprioceptive neurons, and tissues from a humanized mouse model. In a series of FRDA patients, deficiency of frataxin-E protein correlated with the length of the expanded GAA triplet-repeat, and with repeat-induced DNA hypermethylation that occurs in close proximity to the intronic origin of FXN-E. CRISPR-induced epimodification to mimic DNA hypermethylation seen in FRDA reproduced FXN-E transcriptional deficiency. Deficiency of frataxin E is a consequence of FRDA-specific epigenetic silencing, and therapeutic strategies may need to address this deficiency.
Collapse
Affiliation(s)
- Layne N Rodden
- Department of Pediatrics, University of Oklahoma Health Sciences Center, OU Children's Physician Building, Suite 12100, 1200 Children's Avenue, Oklahoma City, OK, 73104, USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kaitlyn M Gilliam
- Department of Pediatrics, University of Oklahoma Health Sciences Center, OU Children's Physician Building, Suite 12100, 1200 Children's Avenue, Oklahoma City, OK, 73104, USA
| | - Christina Lam
- Department of Pediatrics, University of Oklahoma Health Sciences Center, OU Children's Physician Building, Suite 12100, 1200 Children's Avenue, Oklahoma City, OK, 73104, USA
| | - Teerapat Rojsajjakul
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Clementina Mesaros
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Mark Pook
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Massimo Pandolfo
- Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - David R Lynch
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ian A Blair
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sanjay I Bidichandani
- Department of Pediatrics, University of Oklahoma Health Sciences Center, OU Children's Physician Building, Suite 12100, 1200 Children's Avenue, Oklahoma City, OK, 73104, USA.
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
10
|
Schreiber AM, Li Y, Chen YH, Napierala JS, Napierala M. Selected Histone Deacetylase Inhibitors Reverse the Frataxin Transcriptional Defect in a Novel Friedreich's Ataxia Induced Pluripotent Stem Cell-Derived Neuronal Reporter System. Front Neurosci 2022; 16:836476. [PMID: 35281493 PMCID: PMC8904878 DOI: 10.3389/fnins.2022.836476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/12/2022] [Indexed: 11/23/2022] Open
Abstract
Friedreich's ataxia (FRDA) is a neurodegenerative disorder caused by the expansion of guanine-adenine-adenine repeats within the first intron of the frataxin (FXN) gene. The location and nature of the expansion have been proven to contribute to transcriptional repression of FXN by decreasing the rate of polymerase II (RNA polymerase II) progression and increasing the presence of histone modifications associated with a heterochromatin-like state. Targeting impaired FXN transcription appears as a feasible option for therapeutic intervention, while no cure currently exists. We created a novel reporter cell line containing an FXN-Nanoluciferase (FXN-NLuc) fusion in induced pluripotent stem cells (iPSCs) reprogrammed from the fibroblasts of patients with FRDA, thus allowing quantification of endogenous FXN expression. The use of iPSCs provides the opportunity to differentiate these cells into disease-relevant neural progenitor cells (NPCs). NPCs derived from the FXN-NLuc line responded to treatments with a known FXN inducer, RG109. Results were validated by quantitative PCR and Western blot in multiple FRDA NPC lines. We then screened a commercially available library of compounds consisting of molecules targeting various enzymes and pathways critical for silencing or activation of gene expression. Only selected histone deacetylase inhibitors were capable of partial reactivation of FXN expression. This endogenous, FRDA iPSC-derived reporter can be utilized for high-throughput campaigns performed in cells most relevant to disease pathology in search of FXN transcription activators.
Collapse
Affiliation(s)
- Anna M. Schreiber
- Department of Biochemistry and Molecular Genetics, Stem Cell Institute, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yanjie Li
- Department of Biochemistry and Molecular Genetics, Stem Cell Institute, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yi-Hsien Chen
- Genome Engineering and iPSC Center, Washington University, St. Louis, MO, United States
| | - Jill S. Napierala
- Department of Biochemistry and Molecular Genetics, Stem Cell Institute, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Marek Napierala
- Department of Biochemistry and Molecular Genetics, Stem Cell Institute, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
11
|
Rodden LN, Chutake YK, Gilliam K, Lam C, Soragni E, Hauser L, Gilliam M, Wiley G, Anderson MP, Gottesfeld JM, Lynch DR, Bidichandani SI. Methylated and unmethylated epialleles support variegated epigenetic silencing in Friedreich ataxia. Hum Mol Genet 2021; 29:3818-3829. [PMID: 33432325 PMCID: PMC7861014 DOI: 10.1093/hmg/ddaa267] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/01/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022] Open
Abstract
Friedreich ataxia (FRDA) is typically caused by homozygosity for an expanded GAA triplet-repeat in intron 1 of the FXN gene, which results in transcriptional deficiency via epigenetic silencing. Most patients are homozygous for alleles containing > 500 triplets, but a subset (~20%) have at least one expanded allele with < 500 triplets and a distinctly milder phenotype. We show that in FRDA DNA methylation spreads upstream from the expanded repeat, further than previously recognized, and establishes an FRDA-specific region of hypermethylation in intron 1 (~90% in FRDA versus < 10% in non-FRDA) as a novel epigenetic signature. The hypermethylation of this differentially methylated region (FRDA-DMR) was observed in a variety of patient-derived cells; it significantly correlated with FXN transcriptional deficiency and age of onset, and it reverted to the non-disease state in isogenically corrected induced pluripotent stem cell (iPSC)-derived neurons. Bisulfite deep sequencing of the FRDA-DMR in peripheral blood mononuclear cells from 73 FRDA patients revealed considerable intra-individual epiallelic variability, including fully methylated, partially methylated, and unmethylated epialleles. Although unmethylated epialleles were rare (median = 0.33%) in typical patients homozygous for long GAA alleles with > 500 triplets, a significantly higher prevalence of unmethylated epialleles (median = 9.8%) was observed in patients with at least one allele containing < 500 triplets, less severe FXN deficiency (>20%) and later onset (>15 years). The higher prevalence in mild FRDA of somatic FXN epialleles devoid of DNA methylation is consistent with variegated epigenetic silencing mediated by expanded triplet-repeats. The proportion of unsilenced somatic FXN genes is an unrecognized phenotypic determinant in FRDA and has implications for the deployment of effective therapies.
Collapse
Affiliation(s)
- Layne N Rodden
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yogesh K Chutake
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kaitlyn Gilliam
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Christina Lam
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Elisabetta Soragni
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Lauren Hauser
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Matthew Gilliam
- Department of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, USA
| | - Graham Wiley
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Michael P Anderson
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Joel M Gottesfeld
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - David R Lynch
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sanjay I Bidichandani
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
12
|
Vilema-Enríquez G, Quinlan R, Kilfeather P, Mazzone R, Saqlain S, Del Molino Del Barrio I, Donato A, Corda G, Li F, Vedadi M, Németh AH, Brennan PE, Wade-Martins R. Inhibition of the SUV4-20 H1 histone methyltransferase increases frataxin expression in Friedreich's ataxia patient cells. J Biol Chem 2020; 295:17973-17985. [PMID: 33028632 PMCID: PMC7939392 DOI: 10.1074/jbc.ra120.015533] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
The molecular mechanisms of reduced frataxin (FXN) expression in Friedreich's ataxia (FRDA) are linked to epigenetic modification of the FXN locus caused by the disease-associated GAA expansion. Here, we identify that SUV4-20 histone methyltransferases, specifically SUV4-20 H1, play an important role in the regulation of FXN expression and represent a novel therapeutic target. Using a human FXN-GAA-Luciferase repeat expansion genomic DNA reporter model of FRDA, we screened the Structural Genomics Consortium epigenetic probe collection. We found that pharmacological inhibition of the SUV4-20 methyltransferases by the tool compound A-196 increased the expression of FXN by ∼1.5-fold in the reporter cell line. In several FRDA cell lines and patient-derived primary peripheral blood mononuclear cells, A-196 increased FXN expression by up to 2-fold, an effect not seen in WT cells. SUV4-20 inhibition was accompanied by a reduction in H4K20me2 and H4K20me3 and an increase in H4K20me1, but only modest (1.4-7.8%) perturbation in genome-wide expression was observed. Finally, based on the structural activity relationship and crystal structure of A-196, novel small molecule A-196 analogs were synthesized and shown to give a 20-fold increase in potency for increasing FXN expression. Overall, our results suggest that histone methylation is important in the regulation of FXN expression and highlight SUV4-20 H1 as a potential novel therapeutic target for FRDA.
Collapse
Affiliation(s)
| | - Robert Quinlan
- Structural Genomics Consortium, University of Oxford, Oxford, United Kingdom; Alzheimer's Research UK Oxford Drug Discovery Institute, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Peter Kilfeather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Roberta Mazzone
- Structural Genomics Consortium, University of Oxford, Oxford, United Kingdom; Alzheimer's Research UK Oxford Drug Discovery Institute, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Saba Saqlain
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Annalidia Donato
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Gabriele Corda
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Andrea H Németh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Oxford Centre for Genomic Medicine, Oxford University Hospitals National Health Service Trust, Oxford, United Kingdom
| | - Paul E Brennan
- Structural Genomics Consortium, University of Oxford, Oxford, United Kingdom; Alzheimer's Research UK Oxford Drug Discovery Institute, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
13
|
Li J, Li Y, Pawlik KM, Napierala JS, Napierala M. A CRISPR-Cas9, Cre- lox, and Flp- FRT Cascade Strategy for the Precise and Efficient Integration of Exogenous DNA into Cellular Genomes. CRISPR J 2020; 3:470-486. [PMID: 33146562 DOI: 10.1089/crispr.2020.0042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We describe a protocol for the precise integration of exogenous DNA into user-defined genomic loci in cultured cells. This strategy first introduces a promoter and a lox site to a specific location via a Cas9-induced double-strand break. Second, a gene of interest (GOI) is inserted into the lox site via Cre-lox recombination. Upon correct insertion, a cis-linked antibiotic resistance gene will be expressed from a promoter introduced into the genome in the first step assuring selection for correct integrants. Last, the selection cassette is excised via a Flp-FRT recombination event, leaving a precisely targeted GOI. This method is broadly applicable to any exogenous DNA to be integrated, choice of integration site, and choice of cell type. The most remarkable aspect of this versatile approach, termed "CasPi" (cascaded precise integration), is that it allows for precise genome targeting with large, frequently complex, and repetitive DNA sequences that do not integrate efficiently or at all with current genome targeting methods.
Collapse
Affiliation(s)
- Jixue Li
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yanjie Li
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kevin M Pawlik
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jill S Napierala
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Marek Napierala
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
14
|
Khristich AN, Mirkin SM. On the wrong DNA track: Molecular mechanisms of repeat-mediated genome instability. J Biol Chem 2020; 295:4134-4170. [PMID: 32060097 PMCID: PMC7105313 DOI: 10.1074/jbc.rev119.007678] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Expansions of simple tandem repeats are responsible for almost 50 human diseases, the majority of which are severe, degenerative, and not currently treatable or preventable. In this review, we first describe the molecular mechanisms of repeat-induced toxicity, which is the connecting link between repeat expansions and pathology. We then survey alternative DNA structures that are formed by expandable repeats and review the evidence that formation of these structures is at the core of repeat instability. Next, we describe the consequences of the presence of long structure-forming repeats at the molecular level: somatic and intergenerational instability, fragility, and repeat-induced mutagenesis. We discuss the reasons for gender bias in intergenerational repeat instability and the tissue specificity of somatic repeat instability. We also review the known pathways in which DNA replication, transcription, DNA repair, and chromatin state interact and thereby promote repeat instability. We then discuss possible reasons for the persistence of disease-causing DNA repeats in the genome. We describe evidence suggesting that these repeats are a payoff for the advantages of having abundant simple-sequence repeats for eukaryotic genome function and evolvability. Finally, we discuss two unresolved fundamental questions: (i) why does repeat behavior differ between model systems and human pedigrees, and (ii) can we use current knowledge on repeat instability mechanisms to cure repeat expansion diseases?
Collapse
Affiliation(s)
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, Massachusetts 02155.
| |
Collapse
|
15
|
Clay A, Hearle P, Schadt K, Lynch DR. New developments in pharmacotherapy for Friedreich ataxia. Expert Opin Pharmacother 2019; 20:1855-1867. [PMID: 31311349 DOI: 10.1080/14656566.2019.1639671] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Friedreich ataxia (FRDA), a rare disease caused by the deficiency of the mitochondrial matrix protein frataxin, affects roughly 1 in 50,000 individuals worldwide. Current and emerging therapies focus on reversing the deleterious effects of such deficiency including mitochondrial augmentation and increasing frataxin levels, providing the possibility of treatment options for this physiologically complex, multisystem disorder. Areas covered: In this review article, the authors discuss the current and prior in vivo and in vitro research studies related to the treatment of FRDA, with a particular interest in future implications of each therapy. Expert opinion: Since the discovery of FXN in 1996, multiple clinical trials have occurred or are currently occurring; at a rapid pace for a rare disease. These trials have been directed at the augmentation of mitochondrial function and/or alleviation of symptoms and are not regarded as potential cures in FRDA. Either a combination of therapies or a drug that replaces or increases the pathologically low levels of frataxin better represent potential cures in FRDA.
Collapse
Affiliation(s)
- Alexandra Clay
- Division of Neurology, Children's Hospital of Philadelphia , Philadelphia , PA , USA
| | - Patrick Hearle
- Division of Neurology, Children's Hospital of Philadelphia , Philadelphia , PA , USA
| | - Kim Schadt
- Division of Neurology, Children's Hospital of Philadelphia , Philadelphia , PA , USA
| | - David R Lynch
- Division of Neurology, Children's Hospital of Philadelphia , Philadelphia , PA , USA
| |
Collapse
|
16
|
Neil AJ, Liang MU, Khristich AN, Shah KA, Mirkin SM. RNA-DNA hybrids promote the expansion of Friedreich's ataxia (GAA)n repeats via break-induced replication. Nucleic Acids Res 2019; 46:3487-3497. [PMID: 29447396 PMCID: PMC5909440 DOI: 10.1093/nar/gky099] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/05/2018] [Indexed: 12/21/2022] Open
Abstract
Expansion of simple DNA repeats is responsible for numerous hereditary diseases in humans. The role of DNA replication, repair and transcription in the expansion process has been well documented. Here we analyzed, in a yeast experimental system, the role of RNA–DNA hybrids in genetic instability of long (GAA)n repeats, which cause Friedreich’s ataxia. Knocking out both yeast RNase H enzymes, which counteract the formation of RNA–DNA hybrids, increased (GAA)n repeat expansion and contraction rates when the repetitive sequence was transcribed. Unexpectedly, we observed a similar increase in repeat instability in RNase H-deficient cells when we either changed the direction of transcription-replication collisions, or flipped the repeat sequence such that the (UUC)n run occurred in the transcript. The increase in repeat expansions in RNase H-deficient strains was dependent on Rad52 and Pol32 proteins, suggesting that break-induced replication (BIR) is responsible for this effect. We conclude that expansions of (GAA)n repeats are induced by the formation of RNA–DNA hybrids that trigger BIR. Since this stimulation is independent of which strand of the repeat (homopurine or homopyrimidine) is in the RNA transcript, we hypothesize that triplex H-DNA structures stabilized by an RNA–DNA hybrid (H-loops), rather than conventional R-loops, could be responsible.
Collapse
Affiliation(s)
- Alexander J Neil
- Department of Biology, Tufts University, Medford, MA 02155, USA.,Genetics Program, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Miranda U Liang
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | | | - Kartik A Shah
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
17
|
Abstract
Friedreich's ataxia (FRDA) is a degenerative disease that affects both the central and the peripheral nervous systems and non-neural tissues including, mainly, heart, and endocrine pancreas. It is an autosomal recessive disease caused by a GAA triplet-repeat localized within an Alu sequence element in intron 1 of frataxin (FXN) gene, which encodes a mitochondrial protein FXN. This protein is essential for mitochondrial function by the involvement of iron-sulfur cluster biogenesis. The effects of its deficiency also include disruption of cellular, particularly mitochondrial, iron homeostasis, i.e., relatively more iron accumulated in mitochondria and less iron presented in cytosol. Though iron toxicity is commonly thought to be mediated via Fenton reaction, oxidative stress seems not to be the main problem to result in detrimental effects on cell survival, particularly neuron survival. Therefore, the basic research on FXN function is urgently demanded to understand the disease. This chapter focuses on the outcome of FXN expression, regulation, and function in cellular or animal models of FRDA and on iron pathophysiology in the affected tissues. Finally, therapeutic strategies based on the control of iron toxicity and iron cellular redistribution are considered. The combination of multiple therapeutic targets including iron, oxidative stress, mitochondrial function, and FXN regulation is also proposed.
Collapse
Affiliation(s)
- Kuanyu Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, People's Republic of China.
| |
Collapse
|
18
|
Mikaeili H, Sandi M, Bayot A, Al-Mahdawi S, Pook MA. FAST-1 antisense RNA epigenetically alters FXN expression. Sci Rep 2018; 8:17217. [PMID: 30464193 PMCID: PMC6249312 DOI: 10.1038/s41598-018-35639-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/06/2018] [Indexed: 12/13/2022] Open
Abstract
Friedreich ataxia (FRDA) is a multisystem genetic disorder caused by GAA repeat expansion mutations within the FXN gene, resulting in heterochromatin formation and deficiency of frataxin protein. Elevated levels of the FXN antisense transcript (FAST-1) have previously been detected in FRDA. To investigate the effects of FAST-1 on the FXN gene expression, we first stably overexpressed FAST-1 in non-FRDA cell lines and then we knocked down FAST-1 in FRDA fibroblast cells. We observed decreased FXN expression in each FAST-1 overexpressing cell type compared to control cells. We also found that FAST-1 overexpression is associated with both CCCTC-Binding Factor (CTCF) depletion and heterochromatin formation at the 5'UTR of the FXN gene. We further showed that knocking down FAST-1 in FRDA fibroblast cells significantly increased FXN expression. Our results indicate that FAST-1 can act in trans in a similar manner to the cis-acting FAST-1 overexpression that has previously been identified in FRDA fibroblasts. The effects of stably transfected FAST-1 expression on CTCF occupancy and heterochromatin formation at the FXN locus suggest a direct role for FAST-1 in the FRDA molecular disease mechanism. Our findings also support the hypothesis that inhibition of FAST-1 may be a potential approach for FRDA therapy.
Collapse
Affiliation(s)
- Hajar Mikaeili
- Division of Biosciences, Department of Life Sciences, College of Health & Life Sciences, and Synthetic Biology Theme, Institute of Environment, Health & Societies, Brunel University London, Uxbridge, United Kingdom
| | - Madhavi Sandi
- Division of Biosciences, Department of Life Sciences, College of Health & Life Sciences, and Synthetic Biology Theme, Institute of Environment, Health & Societies, Brunel University London, Uxbridge, United Kingdom
| | - Aurélien Bayot
- Division of Biosciences, Department of Life Sciences, College of Health & Life Sciences, and Synthetic Biology Theme, Institute of Environment, Health & Societies, Brunel University London, Uxbridge, United Kingdom
- Mitochondrial Biology Group, CNRS UMR 3691, Departement of Cell Biology and Infection, Institut Pasteur, Paris, France
| | - Sahar Al-Mahdawi
- Division of Biosciences, Department of Life Sciences, College of Health & Life Sciences, and Synthetic Biology Theme, Institute of Environment, Health & Societies, Brunel University London, Uxbridge, United Kingdom
| | - Mark A Pook
- Division of Biosciences, Department of Life Sciences, College of Health & Life Sciences, and Synthetic Biology Theme, Institute of Environment, Health & Societies, Brunel University London, Uxbridge, United Kingdom.
| |
Collapse
|
19
|
Carr CE, Ganugula R, Shikiya R, Soto AM, Marky LA. Effect of dC → d(m 5C) substitutions on the folding of intramolecular triplexes with mixed TAT and C +GC base triplets. Biochimie 2018; 146:156-165. [PMID: 29277568 PMCID: PMC5811340 DOI: 10.1016/j.biochi.2017.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/19/2017] [Indexed: 12/31/2022]
Abstract
Oligonucleotide-directed triple helix formation has been recognized as a potential tool for targeting genes with high specificity. Cystosine methylation in the 5' position is both ubiquitous and a stable regulatory modification, which could potentially stabilize triple helix formation. In this work, we have used a combination of calorimetric and spectroscopic techniques to study the intramolecular unfolding of four triplexes and two duplexes. We used the following triplex control sequence, named Control Tri, d(AGAGAC5TCTCTC5TCTCT), where C5 are loops of five cytosines. From this sequence, we studied three other sequences with dC → d(m5C) substitutions on the Hoogsteen strand (2MeH), Crick strand (2MeC) and both strands (4MeHC). Calorimetric studies determined that methylation does increase the thermal and enthalpic stability, leading to an overall favorable free energy, and that this increased stability is cumulative, i.e. methylation on both the Hoogsteen and Crick strands yields the largest favorable free energy. The differential uptake of protons, counterions and water was determined. It was found that methylation increases cytosine protonation by shifting the apparent pKa value to a higher pH; this increase in proton uptake coincides with a release of counterions during folding of the triplex, likely due to repulsion from the increased positive charge from the protonated cytosines. The immobilization of water was not affected for triplexes with methylated cytosines on their Hoogsteen or Crick strands, but was seen for the triplex where both strands are methylated. This may be due to the alignment in the major groove of the methyl groups on the cytosines with the methyl groups on the thymines which causes an increase in structural water along the spine of the triplex.
Collapse
Affiliation(s)
- Carolyn E Carr
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE, 68198-6025, USA
| | - Rajkumar Ganugula
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE, 68198-6025, USA
| | - Ronald Shikiya
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE, 68198-6025, USA
| | - Ana Maria Soto
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE, 68198-6025, USA
| | - Luis A Marky
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE, 68198-6025, USA.
| |
Collapse
|
20
|
The Mapping of Predicted Triplex DNA:RNA in the Drosophila Genome Reveals a Prominent Location in Development- and Morphogenesis-Related Genes. G3-GENES GENOMES GENETICS 2017; 7:2295-2304. [PMID: 28515050 PMCID: PMC5499136 DOI: 10.1534/g3.117.042911] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Double-stranded DNA is able to form triple-helical structures by accommodating a third nucleotide strand. A nucleic acid triplex occurs according to Hoogsteen rules that predict the stability and affinity of the third strand bound to the Watson–Crick duplex. The “triplex-forming oligonucleotide” (TFO) can be a short sequence of RNA that binds to the major groove of the targeted duplex only when this duplex presents a sequence of purine or pyrimidine bases in one of the DNA strands. Many nuclear proteins are known to bind triplex DNA or DNA:RNA, but their biological functions are unexplored. We identified sequences that are capable of engaging as the “triplex-forming oligonucleotide” in both the pre-lncRNA and pre-mRNA collections of Drosophila melanogaster. These motifs were matched against the Drosophila genome in order to identify putative sequences of triplex formation in intergenic regions, promoters, and introns/exons. Most of the identified TFOs appear to be located in the intronic region of the analyzed genes. Computational prediction of the most targeted genes by TFOs originating from pre-lncRNAs and pre-mRNAs revealed that they are restrictively associated with development- and morphogenesis-related gene networks. The refined analysis by Gene Ontology enrichment demonstrates that some individual TFOs present genome-wide scale matches that are located in numerous genes and regulatory sequences. The triplex DNA:RNA computational mapping at the genome-wide scale suggests broad interference in the regulatory process of the gene networks orchestrated by TFO RNAs acting in association simultaneously at multiple sites.
Collapse
|
21
|
Polak U, Li Y, Butler JS, Napierala M. Alleviating GAA Repeat Induced Transcriptional Silencing of the Friedreich's Ataxia Gene During Somatic Cell Reprogramming. Stem Cells Dev 2016; 25:1788-1800. [PMID: 27615158 PMCID: PMC5155629 DOI: 10.1089/scd.2016.0147] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/09/2016] [Indexed: 12/13/2022] Open
Abstract
Friedreich's ataxia (FRDA) is the most common autosomal recessive ataxia. This severe neurodegenerative disease is caused by an expansion of guanine-adenine-adenine (GAA) repeats located in the first intron of the frataxin (FXN) gene, which represses its transcription. Although transcriptional silencing is associated with heterochromatin-like changes in the vicinity of the expanded GAAs, the exact mechanism and pathways involved in transcriptional inhibition are largely unknown. As major remodeling of the epigenome is associated with somatic cell reprogramming, modulating chromatin modification pathways during the cellular transition from a somatic to a pluripotent state is likely to generate permanent changes to the epigenetic landscape. We hypothesize that the epigenetic modifications in the vicinity of the GAA repeats can be reversed by pharmacological modulation during somatic cell reprogramming. We reprogrammed FRDA fibroblasts into induced pluripotent stem cells (iPSCs) in the presence of various small molecules that target DNA methylation and histone acetylation and methylation. Treatment of FRDA iPSCs with two compounds, sodium butyrate (NaB) and Parnate, led to an increase in FXN expression and correction of repressive marks at the FXN locus, which persisted for several passages. However, prolonged culture of the epigenetically modified FRDA iPSCs led to progressive expansions of the GAA repeats and a corresponding decrease in FXN expression. Furthermore, we uncovered that differentiation of these iPSCs into neurons also results in resilencing of the FXN gene. Taken together, these results demonstrate that transcriptional repression caused by long GAA repeat tracts can be partially or transiently reversed by altering particular epigenetic modifications, thus revealing possibilities for detailed analyses of silencing mechanism and development of new therapeutic approaches for FRDA.
Collapse
Affiliation(s)
- Urszula Polak
- Department of Molecular Carcinogenesis, Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Yanjie Li
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jill Sergesketter Butler
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham, Birmingham, Alabama
| | - Marek Napierala
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
22
|
Soriano S, Calap-Quintana P, Llorens JV, Al-Ramahi I, Gutiérrez L, Martínez-Sebastián MJ, Botas J, Moltó MD. Metal Homeostasis Regulators Suppress FRDA Phenotypes in a Drosophila Model of the Disease. PLoS One 2016; 11:e0159209. [PMID: 27433942 PMCID: PMC4951068 DOI: 10.1371/journal.pone.0159209] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/28/2016] [Indexed: 11/19/2022] Open
Abstract
Friedreich's ataxia (FRDA), the most commonly inherited ataxia in populations of European origin, is a neurodegenerative disorder caused by a decrease in frataxin levels. One of the hallmarks of the disease is the accumulation of iron in several tissues including the brain, and frataxin has been proposed to play a key role in iron homeostasis. We found that the levels of zinc, copper, manganese and aluminum were also increased in a Drosophila model of FRDA, and that copper and zinc chelation improve their impaired motor performance. By means of a candidate genetic screen, we identified that genes implicated in iron, zinc and copper transport and metal detoxification can restore frataxin deficiency-induced phenotypes. Taken together, these results demonstrate that the metal dysregulation in FRDA includes other metals besides iron, therefore providing a new set of potential therapeutic targets.
Collapse
Affiliation(s)
- Sirena Soriano
- Department of Genetics, University of Valencia, Burjassot, Valencia, Spain
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | | | | | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lucía Gutiérrez
- Department of Biomaterials and Bioinspired Materials, Instituto de Ciencia de Materiales de Madrid/CSIC, Madrid, Spain
| | | | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - María Dolores Moltó
- Department of Genetics, University of Valencia, Burjassot, Valencia, Spain
- CIBERSAM, INCLIVA, Valencia, Spain
| |
Collapse
|
23
|
Engineered Nucleases and Trinucleotide Repeat Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016. [DOI: 10.1007/978-1-4939-3509-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Li Y, Lu Y, Polak U, Lin K, Shen J, Farmer J, Seyer L, Bhalla AD, Rozwadowska N, Lynch DR, Butler JS, Napierala M. Expanded GAA repeats impede transcription elongation through the FXN gene and induce transcriptional silencing that is restricted to the FXN locus. Hum Mol Genet 2015; 24:6932-43. [PMID: 26401053 PMCID: PMC4654050 DOI: 10.1093/hmg/ddv397] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/21/2015] [Indexed: 11/13/2022] Open
Abstract
Friedreich's ataxia (FRDA) is a severe neurodegenerative disease caused by homozygous expansion of the guanine-adenine-adenine (GAA) repeats in intron 1 of the FXN gene leading to transcriptional repression of frataxin expression. Post-translational histone modifications that typify heterochromatin are enriched in the vicinity of the repeats, whereas active chromatin marks in this region are underrepresented in FRDA samples. Yet, the immediate effect of the expanded repeats on transcription progression through FXN and their long-range effect on the surrounding genomic context are two critical questions that remain unanswered in the molecular pathogenesis of FRDA. To address these questions, we conducted next-generation RNA sequencing of a large cohort of FRDA and control primary fibroblasts. This comprehensive analysis revealed that the GAA-induced silencing effect does not influence expression of neighboring genes upstream or downstream of FXN. Furthermore, no long-range silencing effects were detected across a large portion of chromosome 9. Additionally, results of chromatin immunoprecipitation studies confirmed that histone modifications associated with repressed transcription are confined to the FXN locus. Finally, deep sequencing of FXN pre-mRNA molecules revealed a pronounced defect in the transcription elongation rate in FRDA cells when compared with controls. These results indicate that approaches aimed to reactivate frataxin expression should simultaneously address deficits in transcription initiation and elongation at the FXN locus.
Collapse
Affiliation(s)
- Yanjie Li
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA
| | - Urszula Polak
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA, Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, Poznan 60-806, Poland
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA
| | - Jennifer Farmer
- Division of Neurology and Pediatrics, Children's Hospital of Philadelphia, Abramson Research Center Room 502, Philadelphia, PA 19104, USA
| | - Lauren Seyer
- Division of Neurology and Pediatrics, Children's Hospital of Philadelphia, Abramson Research Center Room 502, Philadelphia, PA 19104, USA
| | - Angela D Bhalla
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA
| | - Natalia Rozwadowska
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA, Institute of Human Genetics, Polish Academy of Science, Strzeszynska 32, Poznan 60-479, Poland
| | - David R Lynch
- Division of Neurology and Pediatrics, Children's Hospital of Philadelphia, Abramson Research Center Room 502, Philadelphia, PA 19104, USA
| | - Jill Sergesketter Butler
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA,
| | - Marek Napierala
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA, Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland and
| |
Collapse
|
25
|
Kumari D, Hayward B, Nakamura AJ, Bonner WM, Usdin K. Evidence for chromosome fragility at the frataxin locus in Friedreich ataxia. Mutat Res 2015; 781:14-21. [PMID: 26379101 PMCID: PMC4631761 DOI: 10.1016/j.mrfmmm.2015.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/14/2015] [Accepted: 08/27/2015] [Indexed: 11/18/2022]
Abstract
Friedreich ataxia (FRDA) is a member of the Repeat Expansion Diseases, a group of genetic conditions resulting from an increase/expansion in the size of a specific tandem array. FRDA results from expansion of a GAA/TTC-tract in the first intron of the frataxin gene (FXN). The disease-associated tandem repeats all form secondary structures that are thought to contribute to the propensity of the repeat to expand. The subset of these diseases that result from a CGG/CCG-repeat expansion, such as Fragile X syndrome, also express a folate-sensitive fragile site coincident with the repeat on the affected chromosome. This chromosome fragility involves the generation of chromosome/chromatid gaps or breaks, or the high frequency loss of one or both copies of the affected gene when cells are grown under folate stress or as we showed previously, in the presence of an inhibitor of the ATM checkpoint kinase. Whether Repeat Expansion Disease loci containing different repeats form similar fragile sites was not known. We show here that the region of chromosome 9 that contains the FXN locus is intrinsically prone to breakage in vivo even in control cells. However, like FXS alleles, FRDA alleles show significantly elevated levels of chromosome abnormalities in the presence of an ATM inhibitor, consistent with the formation of a fragile site.
Collapse
Affiliation(s)
- Daman Kumari
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bruce Hayward
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Asako J Nakamura
- Laboratory of Molecular Pharmacology, CCR, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - William M Bonner
- Laboratory of Molecular Pharmacology, CCR, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
26
|
Butler JS, Napierala M. Friedreich's ataxia--a case of aberrant transcription termination? Transcription 2015; 6:33-6. [PMID: 25831023 PMCID: PMC4581357 DOI: 10.1080/21541264.2015.1026538] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/02/2015] [Indexed: 11/02/2022] Open
Abstract
Reduced expression of the mitochondrial protein Frataxin (FXN) is the underlying cause of Friedreich's ataxia. We propose a model of premature termination of FXN transcription induced by pathogenic expanded GAA repeats that links R-loop structures, antisense transcription, and heterochromatin formation as a novel mechanism of transcriptional repression in Friedreich's ataxia.
Collapse
Affiliation(s)
- Jill Sergesketter Butler
- University of Alabama at Birmingham; Department of Biochemistry and Molecular Genetics; UAB Stem Cell Institute; Birmingham, AL USA
| | - Marek Napierala
- University of Alabama at Birmingham; Department of Biochemistry and Molecular Genetics; UAB Stem Cell Institute; Birmingham, AL USA
- Department of Molecular Biomedicine; Institute of Bioorganic Chemistry; Polish Academy of Sciences; Poznan, Poland
| |
Collapse
|
27
|
Li Y, Polak U, Bhalla AD, Rozwadowska N, Butler JS, Lynch DR, Dent SYR, Napierala M. Excision of Expanded GAA Repeats Alleviates the Molecular Phenotype of Friedreich's Ataxia. Mol Ther 2015; 23:1055-1065. [PMID: 25758173 DOI: 10.1038/mt.2015.41] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 03/03/2015] [Indexed: 12/21/2022] Open
Abstract
Friedreich's ataxia (FRDA) is an autosomal recessive neurological disease caused by expansions of guanine-adenine-adenine (GAA) repeats in intron 1 of the frataxin (FXN) gene. The expansion results in significantly decreased frataxin expression. We report that human FRDA cells can be corrected by zinc finger nuclease-mediated excision of the expanded GAA repeats. Editing of a single expanded GAA allele created heterozygous, FRDA carrier-like cells and significantly increased frataxin expression. This correction persisted during reprogramming of zinc finger nuclease-edited fibroblasts to induced pluripotent stem cells and subsequent differentiation into neurons. The expression of FRDA biomarkers was normalized in corrected patient cells and disease-associated phenotypes, such as decreases in aconitase activity and intracellular ATP levels, were reversed in zinc finger nuclease corrected neuronal cells. Genetically and phenotypically corrected patient cells represent not only a preferred disease-relevant model system to study pathogenic mechanisms, but also a critical step towards development of cell replacement therapy.
Collapse
Affiliation(s)
- Yanjie Li
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Urszula Polak
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Science Park, Smithville, Texas, USA; Department of Cell Biology, Poznan University of Medical Sciences, Poznan, Poland
| | - Angela D Bhalla
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Natalia Rozwadowska
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA; Institute of Human Genetics, Polish Academy of Science, Poznan, Poland
| | - Jill Sergesketter Butler
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David R Lynch
- Division of Neurology and Pediatrics, Children's Hospital of Philadelphia, Abramson Research Center, Philadelphia, Pennsylvania, USA
| | - Sharon Y R Dent
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Science Park, Smithville, Texas, USA
| | - Marek Napierala
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.
| |
Collapse
|
28
|
Soragni E, Chou CJ, Rusche JR, Gottesfeld JM. Mechanism of Action of 2-Aminobenzamide HDAC Inhibitors in Reversing Gene Silencing in Friedreich's Ataxia. Front Neurol 2015; 6:44. [PMID: 25798128 PMCID: PMC4350406 DOI: 10.3389/fneur.2015.00044] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/19/2015] [Indexed: 11/13/2022] Open
Abstract
The genetic defect in Friedreich’s ataxia (FRDA) is the hyperexpansion of a GAA•TTC triplet in the first intron of the FXN gene, encoding the essential mitochondrial protein frataxin. Histone post-translational modifications near the expanded repeats are consistent with heterochromatin formation and consequent FXN gene silencing. Using a newly developed human neuronal cell model, derived from patient-induced pluripotent stem cells, we find that 2-aminobenzamide histone deacetylase (HDAC) inhibitors increase FXN mRNA levels and frataxin protein in FRDA neuronal cells. However, only compounds targeting the class I HDACs 1 and 3 are active in increasing FXN mRNA in these cells. Structural analogs of the active HDAC inhibitors that selectively target either HDAC1 or HDAC3 do not show similar increases in FXN mRNA levels. To understand the mechanism of action of these compounds, we probed the kinetic properties of the active and inactive inhibitors, and found that only compounds that target HDACs 1 and 3 exhibited a slow-on/slow-off mechanism of action for the HDAC enzymes. HDAC1- and HDAC3-selective compounds did not show this activity. Using siRNA methods in the FRDA neuronal cells, we show increases in FXN mRNA upon silencing of either HDACs 1 or 3, suggesting the possibility that inhibition of each of these class I HDACs is necessary for activation of FXN mRNA synthesis, as there appears to be redundancy in the silencing mechanism caused by the GAA•TTC repeats. Moreover, inhibitors must have a long residence time on their target enzymes for this activity. By interrogating microarray data from neuronal cells treated with inhibitors of different specificity, we selected two genes encoding histone macroH2A (H2AFY2) and Polycomb group ring finger 2 (PCGF2) that were specifically down-regulated by the inhibitors targeting HDACs1 and 3 versus the more selective inhibitors for further investigation. Both genes are involved in transcriptional repression and we speculate their involvement in FXN gene silencing. Our results shed light on the mechanism whereby HDAC inhibitors increase FXN mRNA levels in FRDA neuronal cells.
Collapse
Affiliation(s)
- Elisabetta Soragni
- Department of Cell and Molecular Biology, The Scripps Research Institute , La Jolla, CA , USA
| | - C James Chou
- Department of Cell and Molecular Biology, The Scripps Research Institute , La Jolla, CA , USA
| | | | - Joel M Gottesfeld
- Department of Cell and Molecular Biology, The Scripps Research Institute , La Jolla, CA , USA
| |
Collapse
|
29
|
Villaseñor R, Miraglia L, Romero A, Tu B, Punga T, Knuckles P, Duss S, Orth T, Bühler M. Genome-Engineering Tools to Establish Accurate Reporter Cell Lines That Enable Identification of Therapeutic Strategies to Treat Friedreich's Ataxia. JOURNAL OF BIOMOLECULAR SCREENING 2015; 20:760-7. [PMID: 25616511 DOI: 10.1177/1087057114568071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/18/2014] [Indexed: 11/15/2022]
Abstract
Friedreich's ataxia is a neurodegenerative disease caused by deficiency of the mitochondrial protein frataxin. This deficiency results from expansion of a trinucleotide repeat in the first intron of the frataxin gene. Because this repeat expansion resides in an intron and hence does not alter the amino acid sequence of the frataxin protein, gene reactivation could be of therapeutic benefit. High-throughput screening for frataxin activators has so far met with limited success because current cellular models may not accurately assess endogenous frataxin gene regulation. Here we report the design and validation of genome-engineering tools that enable the generation of human cell lines that express the frataxin gene fused to a luciferase reporter gene from its endogenous locus. Performing a pilot high-throughput genomic screen in a newly established reporter cell line, we uncovered novel negative regulators of frataxin expression. Rational design of small-molecule inhibitors of the identified frataxin repressors and/or high-throughput screening of large siRNA or compound libraries with our system may yield treatments for Friedreich's ataxia.
Collapse
Affiliation(s)
- Rodrigo Villaseñor
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland University of Basel, Basel, Switzerland
| | - Loren Miraglia
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Angelica Romero
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Buu Tu
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Tanel Punga
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland University of Basel, Basel, Switzerland Uppsala University, Department of Medical Biochemistry and Microbiology, BMC Uppsala, Sweden
| | - Philip Knuckles
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland University of Basel, Basel, Switzerland
| | - Stephan Duss
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland University of Basel, Basel, Switzerland
| | - Tony Orth
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland University of Basel, Basel, Switzerland
| |
Collapse
|
30
|
Subramony S, Moscovich M, Ashizawa T. Genetics and Clinical Features of Inherited Ataxias. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00062-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
31
|
Soragni E, Miao W, Iudicello M, Jacoby D, De Mercanti S, Clerico M, Longo F, Piga A, Ku S, Campau E, Du J, Penalver P, Rai M, Madara JC, Nazor K, O'Connor M, Maximov A, Loring JF, Pandolfo M, Durelli L, Gottesfeld JM, Rusche JR. Epigenetic therapy for Friedreich ataxia. Ann Neurol 2014; 76:489-508. [PMID: 25159818 PMCID: PMC4361037 DOI: 10.1002/ana.24260] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate whether a histone deacetylase inhibitor (HDACi) would be effective in an in vitro model for the neurodegenerative disease Friedreich ataxia (FRDA) and to evaluate safety and surrogate markers of efficacy in a phase I clinical trial in patients. METHODS We used a human FRDA neuronal cell model, derived from patient induced pluripotent stem cells, to determine the efficacy of a 2-aminobenzamide HDACi (109) as a modulator of FXN gene expression and chromatin histone modifications. FRDA patients were dosed in 4 cohorts, ranging from 30mg/day to 240mg/day of the formulated drug product of HDACi 109, RG2833. Patients were monitored for adverse effects as well as for increases in FXN mRNA, frataxin protein, and chromatin modification in blood cells. RESULTS In the neuronal cell model, HDACi 109/RG2833 increases FXN mRNA levels and frataxin protein, with concomitant changes in the epigenetic state of the gene. Chromatin signatures indicate that histone H3 lysine 9 is a key residue for gene silencing through methylation and reactivation through acetylation, mediated by the HDACi. Drug treatment in FRDA patients demonstrated increased FXN mRNA and H3 lysine 9 acetylation in peripheral blood mononuclear cells. No safety issues were encountered. INTERPRETATION Drug exposure inducing epigenetic changes in neurons in vitro is comparable to the exposure required in patients to see epigenetic changes in circulating lymphoid cells and increases in gene expression. These findings provide a proof of concept for the development of an epigenetic therapy for this fatal neurological disease.
Collapse
Affiliation(s)
- Elisabetta Soragni
- Departments of Cell and Molecular Biology, Scripps Research Institute, La Jolla, CA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sandi C, Sandi M, Anjomani Virmouni S, Al-Mahdawi S, Pook MA. Epigenetic-based therapies for Friedreich ataxia. Front Genet 2014; 5:165. [PMID: 24917884 PMCID: PMC4042889 DOI: 10.3389/fgene.2014.00165] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/19/2014] [Indexed: 11/29/2022] Open
Abstract
Friedreich ataxia (FRDA) is a lethal autosomal recessive neurodegenerative disorder caused primarily by a homozygous GAA repeat expansion mutation within the first intron of the FXN gene, leading to inhibition of FXN transcription and thus reduced frataxin protein expression. Recent studies have shown that epigenetic marks, comprising chemical modifications of DNA and histones, are associated with FXN gene silencing. Such epigenetic marks can be reversed, making them suitable targets for epigenetic-based therapy. Furthermore, since FRDA is caused by insufficient, but functional, frataxin protein, epigenetic-based transcriptional re-activation of the FXN gene is an attractive therapeutic option. In this review we summarize our current understanding of the epigenetic basis of FXN gene silencing and we discuss current epigenetic-based FRDA therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | - Mark A. Pook
- Division of Biosciences, School of Health Sciences and Social Care, Brunel University LondonUxbridge, UK
| |
Collapse
|
33
|
Carletti B, Piermarini E, Tozzi G, Travaglini L, Torraco A, Pastore A, Sparaco M, Petrillo S, Carrozzo R, Bertini E, Piemonte F. Frataxin silencing inactivates mitochondrial Complex I in NSC34 motoneuronal cells and alters glutathione homeostasis. Int J Mol Sci 2014; 15:5789-806. [PMID: 24714088 PMCID: PMC4013596 DOI: 10.3390/ijms15045789] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/24/2014] [Accepted: 03/31/2014] [Indexed: 02/06/2023] Open
Abstract
Friedreich's ataxia (FRDA) is a hereditary neurodegenerative disease characterized by a reduced synthesis of the mitochondrial iron chaperon protein frataxin as a result of a large GAA triplet-repeat expansion within the first intron of the frataxin gene. Despite neurodegeneration being the prominent feature of this pathology involving both the central and the peripheral nervous system, information on the impact of frataxin deficiency in neurons is scant. Here, we describe a neuronal model displaying some major biochemical and morphological features of FRDA. By silencing the mouse NSC34 motor neurons for the frataxin gene with shRNA lentiviral vectors, we generated two cell lines with 40% and 70% residual amounts of frataxin, respectively. Frataxin-deficient cells showed a specific inhibition of mitochondrial Complex I (CI) activity already at 70% residual frataxin levels, whereas the glutathione imbalance progressively increased after silencing. These biochemical defects were associated with the inhibition of cell proliferation and morphological changes at the axonal compartment, both depending on the frataxin amount. Interestingly, at 70% residual frataxin levels, the in vivo treatment with the reduced glutathione revealed a partial rescue of cell proliferation. Thus, NSC34 frataxin silenced cells could be a suitable model to study the effect of frataxin deficiency in neurons and highlight glutathione as a potential beneficial therapeutic target for FRDA.
Collapse
Affiliation(s)
- Barbara Carletti
- Unit for Neuromuscular and Neurodegenerative Diseases, Children's Hospital and Research Institute "Bambino Gesù", Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Emanuela Piermarini
- Unit for Neuromuscular and Neurodegenerative Diseases, Children's Hospital and Research Institute "Bambino Gesù", Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Giulia Tozzi
- Unit for Neuromuscular and Neurodegenerative Diseases, Children's Hospital and Research Institute "Bambino Gesù", Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Lorena Travaglini
- Unit for Neuromuscular and Neurodegenerative Diseases, Children's Hospital and Research Institute "Bambino Gesù", Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Alessandra Torraco
- Unit for Neuromuscular and Neurodegenerative Diseases, Children's Hospital and Research Institute "Bambino Gesù", Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Anna Pastore
- Biochemistry Laboratory, Children's Hospital and Research Institute "Bambino Gesù", Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Marco Sparaco
- Division of Neurology, Department of Neurosciences, Azienda Ospedaliera, "G. Rummo", Via Pacevecchia 53, 82100 Benevento, Italy.
| | - Sara Petrillo
- Unit for Neuromuscular and Neurodegenerative Diseases, Children's Hospital and Research Institute "Bambino Gesù", Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Rosalba Carrozzo
- Unit for Neuromuscular and Neurodegenerative Diseases, Children's Hospital and Research Institute "Bambino Gesù", Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Enrico Bertini
- Unit for Neuromuscular and Neurodegenerative Diseases, Children's Hospital and Research Institute "Bambino Gesù", Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Fiorella Piemonte
- Unit for Neuromuscular and Neurodegenerative Diseases, Children's Hospital and Research Institute "Bambino Gesù", Piazza S. Onofrio 4, 00165 Rome, Italy.
| |
Collapse
|
34
|
Lai Y, Beaver JM, Lorente K, Melo J, Ramjagsingh S, Agoulnik IU, Zhang Z, Liu Y. Base excision repair of chemotherapeutically-induced alkylated DNA damage predominantly causes contractions of expanded GAA repeats associated with Friedreich's ataxia. PLoS One 2014; 9:e93464. [PMID: 24691413 PMCID: PMC3972099 DOI: 10.1371/journal.pone.0093464] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 03/06/2014] [Indexed: 11/18/2022] Open
Abstract
Expansion of GAA·TTC repeats within the first intron of the frataxin gene is the cause of Friedreich's ataxia (FRDA), an autosomal recessive neurodegenerative disorder. However, no effective treatment for the disease has been developed as yet. In this study, we explored a possibility of shortening expanded GAA repeats associated with FRDA through chemotherapeutically-induced DNA base lesions and subsequent base excision repair (BER). We provide the first evidence that alkylated DNA damage induced by temozolomide, a chemotherapeutic DNA damaging agent can induce massive GAA repeat contractions/deletions, but only limited expansions in FRDA patient lymphoblasts. We showed that temozolomide-induced GAA repeat instability was mediated by BER. Further characterization of BER of an abasic site in the context of (GAA)20 repeats indicates that the lesion mainly resulted in a large deletion of 8 repeats along with small expansions. This was because temozolomide-induced single-stranded breaks initially led to DNA slippage and the formation of a small GAA repeat loop in the upstream region of the damaged strand and a small TTC loop on the template strand. This allowed limited pol β DNA synthesis and the formation of a short 5'-GAA repeat flap that was cleaved by FEN1, thereby leading to small repeat expansions. At a later stage of BER, the small template loop expanded into a large template loop that resulted in the formation of a long 5'-GAA repeat flap. Pol β then performed limited DNA synthesis to bypass the loop, and FEN1 removed the long repeat flap ultimately causing a large repeat deletion. Our study indicates that chemotherapeutically-induced alkylated DNA damage can induce large contractions/deletions of expanded GAA repeats through BER in FRDA patient cells. This further suggests the potential of developing chemotherapeutic alkylating agents to shorten expanded GAA repeats for treatment of FRDA.
Collapse
Affiliation(s)
- Yanhao Lai
- Department of Environmental Health, Sichuan University West China School of Public Health, Chengdu, Sichuan, P. R. China
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Jill M. Beaver
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Karla Lorente
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Jonathan Melo
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Shyama Ramjagsingh
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Irina U. Agoulnik
- Department of Cellular Biology and Pharmacology, Florida International University, Miami, Florida, United States of America
| | - Zunzhen Zhang
- Department of Environmental Health, Sichuan University West China School of Public Health, Chengdu, Sichuan, P. R. China
- * E-mail: (ZZ); (YL)
| | - Yuan Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, United States of America
- * E-mail: (ZZ); (YL)
| |
Collapse
|
35
|
Matilla-Dueñas A, Ashizawa T, Brice A, Magri S, McFarland KN, Pandolfo M, Pulst SM, Riess O, Rubinsztein DC, Schmidt J, Schmidt T, Scoles DR, Stevanin G, Taroni F, Underwood BR, Sánchez I. Consensus paper: pathological mechanisms underlying neurodegeneration in spinocerebellar ataxias. CEREBELLUM (LONDON, ENGLAND) 2014; 13:269-302. [PMID: 24307138 PMCID: PMC3943639 DOI: 10.1007/s12311-013-0539-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Intensive scientific research devoted in the recent years to understand the molecular mechanisms or neurodegeneration in spinocerebellar ataxias (SCAs) are identifying new pathways and targets providing new insights and a better understanding of the molecular pathogenesis in these diseases. In this consensus manuscript, the authors discuss their current views on the identified molecular processes causing or modulating the neurodegenerative phenotype in spinocerebellar ataxias with the common opinion of translating the new knowledge acquired into candidate targets for therapy. The following topics are discussed: transcription dysregulation, protein aggregation, autophagy, ion channels, the role of mitochondria, RNA toxicity, modulators of neurodegeneration and current therapeutic approaches. Overall point of consensus includes the common vision of neurodegeneration in SCAs as a multifactorial, progressive and reversible process, at least in early stages. Specific points of consensus include the role of the dysregulation of protein folding, transcription, bioenergetics, calcium handling and eventual cell death with apoptotic features of neurons during SCA disease progression. Unresolved questions include how the dysregulation of these pathways triggers the onset of symptoms and mediates disease progression since this understanding may allow effective treatments of SCAs within the window of reversibility to prevent early neuronal damage. Common opinions also include the need for clinical detection of early neuronal dysfunction, for more basic research to decipher the early neurodegenerative process in SCAs in order to give rise to new concepts for treatment strategies and for the translation of the results to preclinical studies and, thereafter, in clinical practice.
Collapse
Affiliation(s)
- A Matilla-Dueñas
- Health Sciences Research Institute Germans Trias i Pujol (IGTP), Ctra. de Can Ruti, Camí de les Escoles s/n, Badalona, Barcelona, Spain,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lufino MM, Silva AM, Németh AH, Alegre-Abarrategui J, Russell AJ, Wade-Martins R. A GAA repeat expansion reporter model of Friedreich's ataxia recapitulates the genomic context and allows rapid screening of therapeutic compounds. Hum Mol Genet 2013; 22:5173-87. [PMID: 23943791 PMCID: PMC3842177 DOI: 10.1093/hmg/ddt370] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/15/2013] [Accepted: 07/26/2013] [Indexed: 01/19/2023] Open
Abstract
Friedreich's ataxia (FRDA) is caused by large GAA expansions in intron 1 of the frataxin gene (FXN), which lead to reduced FXN expression through a mechanism not fully understood. Understanding such mechanism is essential for the identification of novel therapies for FRDA and this can be accelerated by the development of cell models which recapitulate the genomic context of the FXN locus and allow direct comparison of normal and expanded FXN loci with rapid detection of frataxin levels. Here we describe the development of the first GAA-expanded FXN genomic DNA reporter model of FRDA. We modified BAC vectors carrying the whole FXN genomic DNA locus by inserting the luciferase gene in exon 5a of the FXN gene (pBAC-FXN-Luc) and replacing the six GAA repeats present in the vector with an ∼310 GAA repeat expansion (pBAC-FXN-GAA-Luc). We generated human clonal cell lines carrying the two vectors using site-specific integration to allow direct comparison of normal and expanded FXN loci. We demonstrate that the presence of expanded GAA repeats recapitulates the epigenetic modifications and repression of gene expression seen in FRDA. We applied the GAA-expanded reporter model to the screening of a library of novel small molecules and identified one molecule which up-regulates FXN expression in FRDA patient primary cells and restores normal histone acetylation around the GAA repeats. These results suggest the potential use of genomic reporter cell models for the study of FRDA and the identification of novel therapies, combining physiologically relevant expression with the advantages of quantitative reporter gene expression.
Collapse
Affiliation(s)
- Michele M.P. Lufino
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, OxfordOX1 3QX, UK
| | - Ana M. Silva
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, OxfordOX1 3QX, UK
- Faculdade de Medicina, Universidade de Lisboa, Lisboa1649-028, Portugal
| | - Andrea H. Németh
- Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DU, UK
- Department of Clinical Genetics, Churchill Hospital, Oxford University Hospitals NHS Trust, OxfordOX3 7LE, UK
| | - Javier Alegre-Abarrategui
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, OxfordOX1 3QX, UK
- Oxford Parkinson's Disease Centre, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford OX1 3QX, UK
| | - Angela J. Russell
- Department of Chemistry, Chemistry Research Laboratory and
- Department of Pharmacology, University of Oxford, Mansfield Road, OxfordOX1 3QT, UK
| | - Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, OxfordOX1 3QX, UK
- Oxford Parkinson's Disease Centre, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford OX1 3QX, UK
| |
Collapse
|
37
|
Cao MD, Tasker E, Willadsen K, Imelfort M, Vishwanathan S, Sureshkumar S, Balasubramanian S, Bodén M. Inferring short tandem repeat variation from paired-end short reads. Nucleic Acids Res 2013; 42:e16. [PMID: 24353318 PMCID: PMC3919575 DOI: 10.1093/nar/gkt1313] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The advances of high-throughput sequencing offer an unprecedented opportunity to study genetic variation. This is challenged by the difficulty of resolving variant calls in repetitive DNA regions. We present a Bayesian method to estimate repeat-length variation from paired-end sequence read data. The method makes variant calls based on deviations in sequence fragment sizes, allowing the analysis of repeats at lengths of relevance to a range of phenotypes. We demonstrate the method’s ability to detect and quantify changes in repeat lengths from short read genomic sequence data across genotypes. We use the method to estimate repeat variation among 12 strains of Arabidopsis thaliana and demonstrate experimentally that our method compares favourably against existing methods. Using this method, we have identified all repeats across the genome, which are likely to be polymorphic. In addition, our predicted polymorphic repeats also included the only known repeat expansion in A. thaliana, suggesting an ability to discover potential unstable repeats.
Collapse
Affiliation(s)
- Minh Duc Cao
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, St Lucia QLD 4072, Australia, Clayton School of Information Technology, Monash University, Clayton, VIC 3800, Australia, School of Biological Sciences, Monash University, Melbourne, Australia and Advanced Water Management Centre, The University of Queensland, Queensland, Australia
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Yandim C, Natisvili T, Festenstein R. Gene regulation and epigenetics in Friedreich's ataxia. J Neurochem 2013; 126 Suppl 1:21-42. [PMID: 23859339 DOI: 10.1111/jnc.12254] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/05/2013] [Accepted: 03/06/2013] [Indexed: 12/20/2022]
Abstract
This is an exciting time in the study of Friedreich's ataxia. Over the last 10 years much progress has been made in uncovering the mechanisms, whereby the Frataxin gene is silenced by (GAA)n repeat expansions and several of the findings are now ripe for testing in the clinic. The discovery that the Frataxin gene is heterochromatinised and that this can be antagonised in vivo has led to the tantalizing possibility that the disease might be amenable to a more radical therapeutic approach involving epigenetic modifiers. Here, we set out to review progress in the understanding of the fundamental mechanisms whereby genes are regulated at this level and how these findings have been applied to achieve a deeper understanding of the dysregulation that occurs as the primary genetic lesion in Friedreich's ataxia.
Collapse
Affiliation(s)
- Cihangir Yandim
- Gene Control Mechanisms and Disease, Department of Medicine and MRC Clinical Sciences Centre, Imperial College London, London, UK
| | | | | |
Collapse
|
39
|
Epigenetics in Friedreich's Ataxia: Challenges and Opportunities for Therapy. GENETICS RESEARCH INTERNATIONAL 2013; 2013:852080. [PMID: 23533785 PMCID: PMC3590757 DOI: 10.1155/2013/852080] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/10/2013] [Indexed: 11/17/2022]
Abstract
Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by homozygous expansion of a GAA·TTC trinucleotide repeat within the first intron of the FXN gene, leading to reduced FXN transcription and decreased levels of frataxin protein. Recent advances in FRDA research have revealed the presence of several epigenetic modifications that are either directly or indirectly involved in this FXN gene silencing. Although epigenetic marks may be inherited from one generation to the next, modifications of DNA and histones can be reversed, indicating that they are suitable targets for epigenetic-based therapy. Unlike other trinucleotide repeat disorders, such as Huntington disease, the large expansions of GAA·TTC repeats in FRDA do not produce a change in the frataxin amino acid sequence, but they produce reduced levels of normal frataxin. Therefore, transcriptional reactivation of the FXN gene provides a good therapeutic option. The present paper will initially focus on the epigenetic changes seen in FRDA patients and their role in the silencing of FXN gene and will be concluded by considering the potential epigenetic therapies.
Collapse
|
40
|
Bourn RL, De Biase I, Pinto RM, Sandi C, Al-Mahdawi S, Pook MA, Bidichandani SI. Pms2 suppresses large expansions of the (GAA·TTC)n sequence in neuronal tissues. PLoS One 2012; 7:e47085. [PMID: 23071719 PMCID: PMC3469490 DOI: 10.1371/journal.pone.0047085] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 09/12/2012] [Indexed: 11/21/2022] Open
Abstract
Expanded trinucleotide repeat sequences are the cause of several inherited neurodegenerative diseases. Disease pathogenesis is correlated with several features of somatic instability of these sequences, including further large expansions in postmitotic tissues. The presence of somatic expansions in postmitotic tissues is consistent with DNA repair being a major determinant of somatic instability. Indeed, proteins in the mismatch repair (MMR) pathway are required for instability of the expanded (CAG·CTG)(n) sequence, likely via recognition of intrastrand hairpins by MutSβ. It is not clear if or how MMR would affect instability of disease-causing expanded trinucleotide repeat sequences that adopt secondary structures other than hairpins, such as the triplex/R-loop forming (GAA·TTC)(n) sequence that causes Friedreich ataxia. We analyzed somatic instability in transgenic mice that carry an expanded (GAA·TTC)(n) sequence in the context of the human FXN locus and lack the individual MMR proteins Msh2, Msh6 or Pms2. The absence of Msh2 or Msh6 resulted in a dramatic reduction in somatic mutations, indicating that mammalian MMR promotes instability of the (GAA·TTC)(n) sequence via MutSα. The absence of Pms2 resulted in increased accumulation of large expansions in the nervous system (cerebellum, cerebrum, and dorsal root ganglia) but not in non-neuronal tissues (heart and kidney), without affecting the prevalence of contractions. Pms2 suppressed large expansions specifically in tissues showing MutSα-dependent somatic instability, suggesting that they may act on the same lesion or structure associated with the expanded (GAA·TTC)(n) sequence. We conclude that Pms2 specifically suppresses large expansions of a pathogenic trinucleotide repeat sequence in neuronal tissues, possibly acting independently of the canonical MMR pathway.
Collapse
Affiliation(s)
- Rebecka L. Bourn
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Irene De Biase
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Ricardo Mouro Pinto
- Biosciences Division, School of Health Sciences and Social Care, Brunel University, Uxbridge, United Kingdom
| | - Chiranjeevi Sandi
- Biosciences Division, School of Health Sciences and Social Care, Brunel University, Uxbridge, United Kingdom
| | - Sahar Al-Mahdawi
- Biosciences Division, School of Health Sciences and Social Care, Brunel University, Uxbridge, United Kingdom
| | - Mark A. Pook
- Biosciences Division, School of Health Sciences and Social Care, Brunel University, Uxbridge, United Kingdom
| | - Sanjay I. Bidichandani
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
41
|
Zhang Y, Shishkin AA, Nishida Y, Marcinkowski-Desmond D, Saini N, Volkov KV, Mirkin SM, Lobachev KS. Genome-wide screen identifies pathways that govern GAA/TTC repeat fragility and expansions in dividing and nondividing yeast cells. Mol Cell 2012; 48:254-65. [PMID: 22959270 DOI: 10.1016/j.molcel.2012.08.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 07/06/2012] [Accepted: 08/02/2012] [Indexed: 12/20/2022]
Abstract
Triplex structure-forming GAA/TTC repeats pose a dual threat to the eukaryotic genome integrity. Their potential to expand can lead to gene inactivation, the cause of Friedreich's ataxia disease in humans. In model systems, long GAA/TTC tracts also act as chromosomal fragile sites that can trigger gross chromosomal rearrangements. The mechanisms that regulate the metabolism of GAA/TTC repeats are poorly understood. We have developed an experimental system in the yeast Saccharomyces cerevisiae that allows us to systematically identify genes crucial for maintaining the repeat stability. Two major groups of mutants defective in DNA replication or transcription initiation are found to be prone to fragility and large-scale expansions. We demonstrate that problems imposed by the repeats during DNA replication in actively dividing cells and during transcription initiation in nondividing cells can culminate in genome instability. We propose that similar mechanisms can mediate detrimental metabolism of GAA/TTC tracts in human cells.
Collapse
Affiliation(s)
- Yu Zhang
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Chandok GS, Patel MP, Mirkin SM, Krasilnikova MM. Effects of Friedreich's ataxia GAA repeats on DNA replication in mammalian cells. Nucleic Acids Res 2012; 40:3964-74. [PMID: 22262734 PMCID: PMC3351192 DOI: 10.1093/nar/gks021] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 12/20/2011] [Accepted: 01/04/2012] [Indexed: 11/18/2022] Open
Abstract
Friedreich's ataxia (FRDA) is a common hereditary degenerative neuro-muscular disorder caused by expansions of the (GAA)n repeat in the first intron of the frataxin gene. The expanded repeats from parents frequently undergo further significant length changes as they are passed on to progeny. Expanded repeats also show an age-dependent instability in somatic cells, albeit on a smaller scale than during intergenerational transmissions. Here we studied the effects of (GAA)n repeats of varying lengths and orientations on the episomal DNA replication in mammalian cells. We have recently shown that the very first round of the transfected DNA replication occurs in the lack of the mature chromatin, does not depend on the episomal replication origin and initiates at multiple single-stranded regions of plasmid DNA. We now found that expanded GAA repeats severely block this first replication round post plasmid transfection, while the subsequent replication cycles are only mildly affected. The fact that GAA repeats affect various replication modes in a different way might shed light on their differential expansions characteristic for FRDA.
Collapse
Affiliation(s)
- Gurangad S. Chandok
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA 16802 and Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Mayank P. Patel
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA 16802 and Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Sergei M. Mirkin
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA 16802 and Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Maria M. Krasilnikova
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA 16802 and Department of Biology, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
43
|
Evans-Galea MV, Carrodus N, Rowley SM, Corben LA, Tai G, Saffery R, Galati JC, Wong NC, Craig JM, Lynch DR, Regner SR, Brocht AFD, Perlman SL, Bushara KO, Gomez CM, Wilmot GR, Li L, Varley E, Delatycki MB, Sarsero JP. FXN methylation predicts expression and clinical outcome in Friedreich ataxia. Ann Neurol 2012; 71:487-97. [PMID: 22522441 DOI: 10.1002/ana.22671] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Friedreich ataxia (FA) is the most common ataxia and results from an expanded GAA repeat in the first intron of FXN. This leads to epigenetic modifications and reduced frataxin. We investigated the relationships between genetic, epigenetic, and clinical parameters in a large case-control study of FA. METHODS Clinical data and samples were obtained from individuals with FA during annual visits to our dedicated FA clinic. GAA expansions were evaluated by polymerase chain reaction (PCR) and restriction endonuclease digest. DNA methylation was measured using bisulfite-based EpiTYPER MassARRAY (Sequenom, San Diego, CA). FXN expression was determined using real-time reverse transcriptase PCR. Significant correlations between the different parameters were examined using the nonparametric Spearman rank correlation coefficient, as well as univariate and multivariate regression modeling. RESULTS Characteristic DNA methylation was identified upstream and downstream of the expansion, and validated in an independent FA cohort. Univariate and multivariate analyses showed significant inverse correlations between upstream methylation and FXN expression, and variation in downstream methylation and age of onset. FXN expression also inversely correlated with the Friedreich Ataxia Rating Scale score, an indicator of disease severity. INTERPRETATION These novel findings provide compelling evidence for the link between the GAA expansion, the DNA methylation profile, FXN expression, and clinical outcome in FA. Epigenetic profiling of FXN could be used to gain greater insight into disease onset and progression, but also as a biomarker to learn more about specific treatment responses and pharmacological mechanism(s). This work also highlights the potential for developing therapies aimed at increasing frataxin levels to treat this debilitating disease.
Collapse
Affiliation(s)
- Marguerite V Evans-Galea
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Childrens Research Institute, Parkville, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Transgenesis is an essential tool for assessing gene function in any organism, and it is especially crucial for parasitic nematodes given the dwindling armamentarium of effective anthelmintics and the consequent need to validate essential molecular targets for new drugs and vaccines. Two of the major routes of gene delivery evaluated to date in parasitic nematodes, bombardment with DNA-coated microparticles and intragonadal microinjection of DNA constructs, draw upon experience with the free-living nematode Caenorhabditis elegans. Bombardment has been used to transiently transfect Ascaris suum, Brugia malayi and Litomosoides sigmodontis with both RNA and DNA. Microinjection has been used to achieve heritable transgenesis in Strongyloides stercoralis, S. ratti and Parastrongyloides trichosuri and for additional transient expression studies in B. malayi. A third route of gene delivery revisits a classic method involving DNA transfer facilitated by calcium-mediated permeabilization of recipient cells in developing B. malayi larvae and results in transgene inheritance through host and vector passage. Assembly of microinjected transgenes into multi-copy episomal arrays likely results in their transcriptional silencing in some parasitic nematodes. Methods such as transposon-mediated transgenesis that favour low-copy number chromosomal integration may remedy this impediment to establishing stable transgenic lines. In the future, stable transgenesis in parasitic nematodes could enable loss-of-function approaches by insertional mutagenesis, in situ expression of inhibitory double-stranded RNA or boosting RNAi susceptibility through heterologous expression of dsRNA processing and transport proteins.
Collapse
Affiliation(s)
- James B Lok
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
45
|
Martelli A, Napierala M, Puccio H. Understanding the genetic and molecular pathogenesis of Friedreich's ataxia through animal and cellular models. Dis Model Mech 2012; 5:165-76. [PMID: 22382366 PMCID: PMC3291638 DOI: 10.1242/dmm.008706] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In 1996, a link was identified between Friedreich's ataxia (FRDA), the most common inherited ataxia in men, and alterations in the gene encoding frataxin (FXN). Initial studies revealed that the disease is caused by a unique, most frequently biallelic, expansion of the GAA sequence in intron 1 of FXN. Since the identification of this link, there has been tremendous progress in understanding frataxin function and the mechanism of FRDA pathology, as well as in developing diagnostics and therapeutic approaches for the disease. These advances were the subject of the 4th International Friedreich's Ataxia Conference held on 5th-7th May in the Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France. More than 200 scientists gathered from all over the world to present the results of research spanning all areas of investigation into FRDA (including clinical aspects, FRDA pathogenesis, genetics and epigenetics of the disease, development of new models of FRDA, and drug discovery). This review provides an update on the understanding of frataxin function, developments of animal and cellular models of the disease, and recent advances in trying to uncover potential molecules for therapy.
Collapse
Affiliation(s)
- Alain Martelli
- Translational Medicine and Neurogenetics, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), 67404, Illkirch, France
- Inserm, U596, 67400, Illkirch, France
- CNRS, UMR7104, 67400, Illkirch, France
- Université de Strasbourg, 67000, Strasbourg, France
- Collège de France, Chaire de génétique humaine, 67400, Illkirch, France
| | - Marek Napierala
- The Department of Molecular Carcinogenesis, Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center Science Park, Smithville, TX, USA
| | - Hélène Puccio
- Translational Medicine and Neurogenetics, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), 67404, Illkirch, France
- Inserm, U596, 67400, Illkirch, France
- CNRS, UMR7104, 67400, Illkirch, France
- Université de Strasbourg, 67000, Strasbourg, France
- Collège de France, Chaire de génétique humaine, 67400, Illkirch, France
| |
Collapse
|
46
|
Kumari D, Usdin K. Is Friedreich ataxia an epigenetic disorder? Clin Epigenetics 2012; 4:2. [PMID: 22414340 PMCID: PMC3305337 DOI: 10.1186/1868-7083-4-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 01/30/2012] [Indexed: 12/16/2022] Open
Abstract
Friedreich ataxia (FRDA) is a debilitating and frequently fatal neurological disorder that is recessively inherited. It belongs to the group of genetic disorders known as the Repeat Expansion Diseases, in which pathology arises from the deleterious consequences of the inheritance of a tandem repeat array whose repeat number exceeds a critical threshold. In the case of FRDA, the repeat unit is the triplet GAA•TTC and the tandem array is located in the first intron of the frataxin (FXN) gene. Pathology arises because expanded alleles make lower than normal levels of mature FXN mRNA and thus reduced levels of frataxin, the FXN gene product. The repeats form a variety of unusual DNA structures that have the potential to affect gene expression in a number of ways. For example, triplex formation in vitro and in bacteria leads to the formation of persistent RNA:DNA hybrids that block transcription. In addition, these repeats have been shown to affect splicing in model systems. More recently, it has been shown that the region flanking the repeats in the FXN gene is enriched for epigenetic marks characteristic of transcriptionally repressed regions of the genome. However, exactly how repeats in an intron cause the FXN mRNA deficit in FRDA has been the subject of much debate. Identifying the mechanism or mechanisms responsible for the FXN mRNA deficit in FRDA is important for the development of treatments for this currently incurable disorder. This review discusses evidence for and against different models for the repeat-mediated mRNA deficit.
Collapse
Affiliation(s)
- Daman Kumari
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA.
| | | |
Collapse
|
47
|
Kim E, Napierala M, Dent SYR. Hyperexpansion of GAA repeats affects post-initiation steps of FXN transcription in Friedreich's ataxia. Nucleic Acids Res 2011; 39:8366-77. [PMID: 21745819 PMCID: PMC3201871 DOI: 10.1093/nar/gkr542] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 06/12/2011] [Accepted: 06/13/2011] [Indexed: 12/19/2022] Open
Abstract
Friedreich's ataxia (FRDA) is caused by biallelic expansion of GAA repeats leading to the transcriptional silencing of the frataxin (FXN) gene. The exact molecular mechanism of inhibition of FXN expression is unclear. Herein, we analyze the effects of hyperexpanded GAA repeats on transcription status and chromatin modifications proximal and distal to the GAA repeats. Using chromatin immunoprecipitation and quantitative PCR we detected significant changes in the chromatin landscape in FRDA cells relative to control cells downstream of the promoter, especially in the vicinity of the GAA tract. In this region, hyperexpanded GAAs induced a particular constellation of histone modifications typically associated with heterochromatin-like structures. Similar epigenetic changes were observed in GFP reporter construct containing 560 GAA repeats. Furthermore, we observed similar levels of FXN pre-mRNA at a region upstream of hyperexpanded GAA repeats in FRDA and control cells, indicating similar efficiency of transcription initiation. We also demonstrated that histone modifications associated with hyperexpanded GAA repeats are independent of initiation and progression of transcription. Our data provide strong evidence that FXN deficiency in FRDA patients results from a block of transition from initiation to a productive elongation of FXN transcription due to heterochromatin-like structures formed in the proximity of the hyperexpanded GAAs.
Collapse
Affiliation(s)
- Eunah Kim
- The Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center Science Park, Smithville, Texas 78957 and The Genes and Development Program, Graduate School of Biomedical Sciences and the Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Marek Napierala
- The Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center Science Park, Smithville, Texas 78957 and The Genes and Development Program, Graduate School of Biomedical Sciences and the Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Sharon Y. R. Dent
- The Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center Science Park, Smithville, Texas 78957 and The Genes and Development Program, Graduate School of Biomedical Sciences and the Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
48
|
Hubert L, Lin Y, Dion V, Wilson JH. Xpa deficiency reduces CAG trinucleotide repeat instability in neuronal tissues in a mouse model of SCA1. Hum Mol Genet 2011; 20:4822-30. [PMID: 21926083 DOI: 10.1093/hmg/ddr421] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Expansion of trinucleotide repeats (TNRs) is responsible for a number of human neurodegenerative disorders. The molecular mechanisms that underlie TNR instability in humans are not clear. Based on results from model systems, several mechanisms for instability have been proposed, all of which focus on the ability of TNRs to form alternative structures during normal DNA transactions, including replication, DNA repair and transcription. These abnormal structures are thought to trigger changes in TNR length. We have previously shown that transcription-induced TNR instability in cultured human cells depends on several genes known to be involved in transcription-coupled nucleotide excision repair (NER). We hypothesized that NER normally functions to destabilize expanded TNRs. To test this hypothesis, we bred an Xpa null allele, which eliminates NER, into the TNR mouse model for spinocerebellar ataxia type 1 (SCA1), which carries an expanded CAG repeat tract at the endogenous mouse Sca1 locus. We find that Xpa deficiency does not substantially affect TNR instability in either the male or female germline; however, it dramatically reduces CAG repeat instability in neuronal tissues-striatum, hippocampus and cerebral cortex-but does not alter CAG instability in kidney or liver. The tissue-specific effect of Xpa deficiency represents a novel finding; it suggests that tissue-to-tissue variation in CAG repeat instability arises, in part, by different underlying mechanisms. These results validate our original findings in cultured human cells and suggest that transcription may induce NER-dependent TNR instability in neuronal tissues in humans.
Collapse
Affiliation(s)
- Leroy Hubert
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
49
|
Buske FA, Mattick JS, Bailey TL. Potential in vivo roles of nucleic acid triple-helices. RNA Biol 2011; 8:427-39. [PMID: 21525785 DOI: 10.4161/rna.8.3.14999] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The ability of double-stranded DNA to form a triple-helical structure by hydrogen bonding with a third strand is well established, but the biological functions of these structures remain largely unknown. There is considerable albeit circumstantial evidence for the existence of nucleic triplexes in vivo and their potential participation in a variety of biological processes including chromatin organization, DNA repair, transcriptional regulation, and RNA processing has been investigated in a number of studies to date. There is also a range of possible mechanisms to regulate triplex formation through differential expression of triplex-forming RNAs, alteration of chromatin accessibility, sequence unwinding and nucleotide modifications. With the advent of next generation sequencing technology combined with targeted approaches to isolate triplexes, it is now possible to survey triplex formation with respect to their genomic context, abundance and dynamical changes during differentiation and development, which may open up new vistas in understanding genome biology and gene regulation.
Collapse
Affiliation(s)
- Fabian A Buske
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD Australia
| | | | | |
Collapse
|
50
|
Sandi C, Pinto RM, Al-Mahdawi S, Ezzatizadeh V, Barnes G, Jones S, Rusche JR, Gottesfeld JM, Pook MA. Prolonged treatment with pimelic o-aminobenzamide HDAC inhibitors ameliorates the disease phenotype of a Friedreich ataxia mouse model. Neurobiol Dis 2011; 42:496-505. [PMID: 21397024 PMCID: PMC3107941 DOI: 10.1016/j.nbd.2011.02.016] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/09/2011] [Accepted: 02/27/2011] [Indexed: 12/11/2022] Open
Abstract
Friedreich ataxia (FRDA) is an inherited neurodegenerative disorder caused by GAA repeat expansion within the FXN gene, leading to epigenetic changes and heterochromatin-mediated gene silencing that result in a frataxin protein deficit. Histone deacetylase (HDAC) inhibitors, including pimelic o-aminobenzamide compounds 106, 109 and 136, have previously been shown to reverse FXN gene silencing in short-term studies of FRDA patient cells and a knock-in mouse model, but the functional consequences of such therapeutic intervention have thus far not been described. We have now investigated the long-term therapeutic effects of 106, 109 and 136 in our GAA repeat expansion mutation-containing YG8R FRDA mouse model. We show that there is no overt toxicity up to 5 months of treatment and there is amelioration of the FRDA-like disease phenotype. Thus, while the neurological deficits of this model are mild, 109 and 106 both produced an improvement of motor coordination, whereas 109 and 136 produced increased locomotor activity. All three compounds increased global histone H3 and H4 acetylation of brain tissue, but only 109 significantly increased acetylation of specific histone residues at the FXN locus. Effects on FXN mRNA expression in CNS tissues were modest, but 109 significantly increased frataxin protein expression in brain tissue. 109 also produced significant increases in brain aconitase enzyme activity, together with reduction of neuronal pathology of the dorsal root ganglia (DRG). Overall, these results support further assessment of HDAC inhibitors for treatment of Friedreich ataxia.
Collapse
Affiliation(s)
- Chiranjeevi Sandi
- Division of Biosciences, School of Health Sciences and Social Care, Brunel University, Uxbridge UB8 3PH, UK
| | | | | | | | | | | | | | | | | |
Collapse
|