1
|
Dunn WG, McLoughlin MA, Vassiliou GS. Clonal hematopoiesis and hematological malignancy. J Clin Invest 2024; 134:e180065. [PMID: 39352393 PMCID: PMC11444162 DOI: 10.1172/jci180065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Abstract
Clonal hematopoiesis (CH), the expansion of hematopoietic stem cells and their progeny driven by somatic mutations in leukemia-associated genes, is a common phenomenon that rises in prevalence with advancing age to affect most people older than 70 years. CH remains subclinical in most carriers, but, in a minority, it progresses to a myeloid neoplasm, such as acute myeloid leukemia, myelodysplastic syndrome, or myeloproliferative neoplasm. Over the last decade, advances in our understanding of CH, its molecular landscape, and the risks associated with different driver gene mutations have culminated in recent developments that allow for a more precise estimation of myeloid neoplasia risk in CH carriers. In turn, this is leading to the development of translational and clinical programs to intercept and prevent CH from developing into myeloid neoplasia. Here, we give an overview of the spectrum of CH driver mutations, what is known about their pathophysiology, and how this informs the risk of incident myeloid malignancy.
Collapse
Affiliation(s)
- William G. Dunn
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom
| | - Matthew A. McLoughlin
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - George S. Vassiliou
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom
| |
Collapse
|
2
|
Serra F, Nieto-Aliseda A, Fanlo-Escudero L, Rovirosa L, Cabrera-Pasadas M, Lazarenkov A, Urmeneta B, Alcalde-Merino A, Nola EM, Okorokov AL, Fraser P, Graupera M, Castillo SD, Sardina JL, Valencia A, Javierre BM. p53 rapidly restructures 3D chromatin organization to trigger a transcriptional response. Nat Commun 2024; 15:2821. [PMID: 38561401 PMCID: PMC10984980 DOI: 10.1038/s41467-024-46666-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Activation of the p53 tumor suppressor triggers a transcriptional program to control cellular response to stress. However, the molecular mechanisms by which p53 controls gene transcription are not completely understood. Here, we uncover the critical role of spatio-temporal genome architecture in this process. We demonstrate that p53 drives direct and indirect changes in genome compartments, topologically associating domains, and DNA loops prior to one hour of its activation, which escort the p53 transcriptional program. Focusing on p53-bound enhancers, we report 340 genes directly regulated by p53 over a median distance of 116 kb, with 74% of these genes not previously identified. Finally, we showcase that p53 controls transcription of distal genes through newly formed and pre-existing enhancer-promoter loops in a cohesin dependent manner. Collectively, our findings demonstrate a previously unappreciated architectural role of p53 as regulator at distinct topological layers and provide a reliable set of new p53 direct target genes that may help designs of cancer therapies.
Collapse
Affiliation(s)
- François Serra
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | | | | | | | - Mónica Cabrera-Pasadas
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- Barcelona Supercomputing Center, Barcelona, Spain
| | | | - Blanca Urmeneta
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | | | - Emanuele M Nola
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Andrei L Okorokov
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Peter Fraser
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Mariona Graupera
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Jose L Sardina
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Alfonso Valencia
- Barcelona Supercomputing Center, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Biola M Javierre
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain.
- Institute for Health Science Research Germans Trias i Pujol, Barcelona, Spain.
| |
Collapse
|
3
|
Abstract
PURPOSE This article will briefly review the origins and evolution of functional genomics, first describing the experimental technology, and then some of the approaches applied to data analysis and visualization. It will emphasize application of functional genomics to radiation biology, using examples from the author's work to illustrate several key types of analysis. It concludes with a look at non-coding RNA, alternative reading of the genome, and single-cell transcriptomics, some of the innovative areas that may help to shape future research in radiation biology and oncology. CONCLUSIONS Transcriptomic approaches have provided insight into many areas of radiation biology and medicine, and innovations in technology and data analysis approaches promise continued contributions to radiation science in the future.
Collapse
|
4
|
High Expression of PPM1D Induces Tumors Phenotypically Similar to TP53 Loss-of-Function Mutations in Mice. Cancers (Basel) 2021; 13:cancers13215493. [PMID: 34771656 PMCID: PMC8582939 DOI: 10.3390/cancers13215493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Aberrant expression of the PPM1D gene which encodes a phosphatase called WIP1 is frequently observed in cancers of different origins. WIP1 is a negative regulator of the tumor suppressor p53. Improper inactivation of p53 results in genomic instability and can induce neoplastic transformation. We show that overexpression of PPM1D induces tumors in mice similar to cancers harboring p53 mutations. Our results suggest that PPM1D can act as an oncogenic driver by inducing genomic instability, impaired growth arrest, and apoptotic escape that can result in neoplastic transformation and malignant tumor development. Abstract PPM1D is a negative regulator of p53 and genomic aberrations resulting in increased activity of PPM1D have been observed in cancers of different origins, indicating that PPM1D has oncogenic properties. We established a transgenic mouse model overexpressing PPM1D and showed that these mice developed a wide variety of cancers. PPM1D-expressing mice developed tumors phenotypically and genetically similar to tumors in mice with dysfunctional p53. T-cell lymphoblastic lymphoma was the most frequent cancer observed in these mice (55%) followed by adenocarcinomas (24%), leukemia (12%) and other solid tumors including neuroblastoma. Characterization of T-cell lymphomas in mice overexpressing PPM1D demonstrates Pten-deletion and p53-accumulation similar to mice with p53 loss-of-function. Also, Notch1 mutations which are recurrently observed in T-cell acute lymphoblastic lymphoma (T-ALL) were frequently detected in PPM1D-transgenic mice. Hence, PPM1D acts as an oncogenic driver in connection with cellular stress, suggesting that the PPM1D gene status and expression levels should be investigated in TP53 wild-type tumors.
Collapse
|
5
|
Inhibition of the DNA damage response phosphatase PPM1D reprograms neutrophils to enhance anti-tumor immune responses. Nat Commun 2021; 12:3622. [PMID: 34131120 PMCID: PMC8206133 DOI: 10.1038/s41467-021-23330-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
PPM1D/Wip1 is a negative regulator of the tumor suppressor p53 and is overexpressed in several human solid tumors. Recent reports associate gain-of-function mutations of PPM1D in immune cells with worse outcomes for several human cancers. Here we show that mice with genetic knockout of Ppm1d or with conditional knockout of Ppm1d in the hematopoietic system, in myeloid cells, or in neutrophils all display significantly reduced growth of syngeneic melanoma or lung carcinoma tumors. Ppm1d knockout neutrophils infiltrate tumors extensively. Chemical inhibition of Wip1 in human or mouse neutrophils increases anti-tumor phenotypes, p53-dependent expression of co-stimulatory ligands, and proliferation of co-cultured cytotoxic T cells. These results suggest that inhibition of Wip1 in neutrophils enhances immune anti-tumor responses.
Collapse
|
6
|
Husby S, Hjermind Justesen E, Grønbæk K. Protein phosphatase, Mg 2+/Mn 2+-dependent 1D (PPM1D) mutations in haematological cancer. Br J Haematol 2020; 192:697-705. [PMID: 33616916 DOI: 10.1111/bjh.17120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/02/2020] [Indexed: 01/07/2023]
Abstract
Until recently, the protein phosphatase, Mg2+/Mn2+-dependent 1D (PPM1D) gene had not been examined in haematological cancer, but several studies have now explored the functional role of this gene and its aberrations. It is often mutated in the context of clonal haemopoiesis (including in patients with lymphoma, myeloproliferative neoplasms and myelodysplastic syndrome) and mutations have been associated with exposure to cytotoxic and radiation therapy, development of therapy-related neoplasms and inferior survival. The vast majority of PPM1D mutations found in haematopoietic cells are of the nonsense or frameshift type and located within terminal exon 6. These genetic defects are rarely found in the blood of healthy individuals. PPM1D encodes the PPM1D phosphatase [also named wild-type p53-induced phosphatase 1 (WIP1)], which negatively regulates signalling molecules within the DNA damage response pathway, including tumour suppressor p53. Clonal expansion of PPM1D mutant haematopoietic cells can potentially be prevented with inhibitors; however, human trials are awaited. In the present review, we provide a review of the literature regarding PPM1D and its role in haematological cancer.
Collapse
Affiliation(s)
- Simon Husby
- Department of Haematology, Rigshospitalet, Copenhagen, Denmark.,Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Emma Hjermind Justesen
- Department of Haematology, Rigshospitalet, Copenhagen, Denmark.,Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Kirsten Grønbæk
- Department of Haematology, Rigshospitalet, Copenhagen, Denmark.,Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Cruz-Garcia L, O’Brien G, Sipos B, Mayes S, Tichý A, Sirák I, Davídková M, Marková M, Turner DJ, Badie C. In Vivo Validation of Alternative FDXR Transcripts in Human Blood in Response to Ionizing Radiation. Int J Mol Sci 2020; 21:ijms21217851. [PMID: 33113898 PMCID: PMC7660203 DOI: 10.3390/ijms21217851] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
Following cell stress such as ionising radiation (IR) exposure, multiple cellular pathways are activated. We recently demonstrated that ferredoxin reductase (FDXR) has a remarkable IR-induced transcriptional responsiveness in blood. Here, we provided a first comprehensive FDXR variant profile following DNA damage. First, specific quantitative real-time polymerase chain reaction (qPCR) primers were designed to establish dose-responses for eight curated FDXR variants, all up-regulated after IR in a dose-dependent manner. The potential role of gender on the expression of these variants was tested, and neither the variants response to IR nor the background level of expression was profoundly affected; moreover, in vitro induction of inflammation temporarily counteracted IR response early after exposure. Importantly, transcriptional up-regulation of these variants was further confirmed in vivo in blood of radiotherapy patients. Full-length nanopore sequencing was performed to identify other FDXR variants and revealed the high responsiveness of FDXR-201 and FDXR-208. Moreover, FDXR-218 and FDXR-219 showed no detectable endogenous expression, but a clear detection after IR. Overall, we characterised 14 FDXR transcript variants and identified for the first time their response to DNA damage in vivo. Future studies are required to unravel the function of these splicing variants, but they already represent a new class of radiation exposure biomarkers.
Collapse
Affiliation(s)
- Lourdes Cruz-Garcia
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical & Environmental Hazards, Public Health England, Chilton, Oxfordshire OX11 0RQ, UK; (L.C.-G.); (G.O.)
| | - Grainne O’Brien
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical & Environmental Hazards, Public Health England, Chilton, Oxfordshire OX11 0RQ, UK; (L.C.-G.); (G.O.)
| | - Botond Sipos
- Oxford Nanopore Technologies, Gosling Building, Edmund Halley Way, Oxford OX4 4DQ, UK; (B.S.); (S.M.); (D.J.T.)
| | - Simon Mayes
- Oxford Nanopore Technologies, Gosling Building, Edmund Halley Way, Oxford OX4 4DQ, UK; (B.S.); (S.M.); (D.J.T.)
| | - Aleš Tichý
- Department of Radiobiology, Faculty of Military Health Sciences in Hradec Králové, University of Defence in Brno, 500 01 Hradec Králové, Czech Republic;
- Biomedical Research Centre, Hradec Králové University Hospital, 500 01 Hradec Králové, Czech Republic
| | - Igor Sirák
- Department of Oncology and Radiotherapy and 4th Department of Internal Medicine—Hematology, University Hospital, 500 05 Hradec Králové, Czech Republic;
| | - Marie Davídková
- Department of Radiation Dosimetry, Nuclear Physics Institute of the Czech Academy of Sciences, 180 00 Prague 8, Czech Republic;
| | - Markéta Marková
- Institute of Hematology and Blood Transfusion, 128 00 Praha 2, Czech Republic;
| | - Daniel J. Turner
- Oxford Nanopore Technologies, Gosling Building, Edmund Halley Way, Oxford OX4 4DQ, UK; (B.S.); (S.M.); (D.J.T.)
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical & Environmental Hazards, Public Health England, Chilton, Oxfordshire OX11 0RQ, UK; (L.C.-G.); (G.O.)
- Correspondence: ; Tel.: +44-(0)1235-825-088; Fax: +44-(0)1235-833-891
| |
Collapse
|
8
|
Shi L, Tian Q, Feng C, Zhang P, Zhao Y. The biological function and the regulatory roles of wild-type p53-induced phosphatase 1 in immune system. Int Rev Immunol 2020; 39:280-291. [PMID: 32696682 DOI: 10.1080/08830185.2020.1795153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Wild-type p53-induced phosphatase 1 (WIP1) belongs to the protein phosphatase 2C (PP2C) family and is a mammalian serine/threonine specific protein phosphatase to dephosphorylate numerous signaling molecules. Mammalian WIP1 regulates a wide array of targeting molecules and plays key regulatory roles in many cell processes such as DNA damage and repair, cell proliferation, differentiation, apoptosis, and senescence. WIP1 promotes the formation and development of tumors as an oncogene and a negative regulator of p53. It is also involved in the regulation of aging, neurological diseases and immune diseases. Recent studies demonstrated the critical roles of WIP1 in the differentiation and function of immune cells including T cells, neutrophils and macrophages. In the present manuscript, we briefly summarized the expression patterns, biological function and the target molecules and signal pathways of WIP1 and mainly discussed the latest advances on the regulatory effects of WIP1 in the immune system. WIP1 may be a potential target molecule to treat cancers and immune diseases such as allergic asthma.
Collapse
Affiliation(s)
- Lu Shi
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qianchuan Tian
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chang Feng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Peng Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Yang YQ, Zheng YH, Zhang CT, Liang WW, Wang SY, Wang XD, Wang Y, Wang TH, Jiang HQ, Feng HL. Wild-type p53-induced phosphatase 1 down-regulation promotes apoptosis by activating the DNA damage-response pathway in amyotrophic lateral sclerosis. Neurobiol Dis 2019; 134:104648. [PMID: 31676238 DOI: 10.1016/j.nbd.2019.104648] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 09/23/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022] Open
Abstract
Accumulation of DNA damage has been detected in the spinal cord of patients as well as in the G93A mouse model of amyotrophic lateral sclerosis (ALS). Wild-type p53-induced phosphatase 1 (Wip1) is a p53-inducible serine/threonine phosphatase that terminates DNA-damage responses via dephosphorylation of DNA-damage response proteins, namely ataxia-telangiectasia mutated (ATM) kinase, checkpoint kinase 2, and p53, thus enhancing cell proliferation. However, the role of Wip1, DNA-damage responses, and their interaction in ALS development remains to be elucidated. Here, we showed that Wip1 expression levels were substantially decreased in ALS motor neurons compared with wild-type controls both in vivo and in vitro. The DNA-damage response was activated in superoxide dismutase 1 (SOD1) G93A-transfected cells. However, increased expression of Wip1 improved cell viability and inhibited the DNA-damage response in mutated SOD1G93A cells. Further studies demonstrated that decreased Wip1 expression reduced cell viability and further activated the DNA-damage response in chronic H2O2-treated NSC34 cells. In contrast, Wip1 promoted cell survival and suppressed DNA damage-induced apoptosis during persistent DNA damage conditions. Over-expression of Wip1 in the central nervous system (CNS) can delay the onset of disease symptoms, extended the survival, decreased MN loss improved motor function and inhibit the DNA-damage response in SOD1 G93A mice. Furthermore, homeodomain-interacting protein kinase 2 (HIPK2) promoted the degradation of Wip1 via the ubiquitin-proteasome system during chronic stress. These findings indicate that persistent accumulation of DNA damage and subsequent chronic activation of the downstream DNA damage-response ATM and p53 pro-apoptotic signaling pathways may trigger neuronal dysfunction and neuronal death in ALS. Wip1 may play a protective role by targeting the DNA-damage response in ALS motor neurons. Importantly, these findings provide a novel direction for therapeutic options for patients with ALS.
Collapse
Affiliation(s)
- Yue-Qing Yang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Yong-Hui Zheng
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Chun-Ting Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Wei-Wei Liang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Shu-Yu Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Xu-Dong Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Ying Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Tian-Hang Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Hong-Quan Jiang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Hong-Lin Feng
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China.
| |
Collapse
|
10
|
Guo X, Wang J, Zhu Z, Zhang M, Li H, Liu J, Ling L. A colorimetric method for the sequence-specific recognition of double-stranded DNA on the surface of a silver-coated glass slide. CAN J CHEM 2018. [DOI: 10.1139/cjc-2017-0544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, a colorimetric method for sequence-specific recognition of double-stranded DNA (dsDNA) was established on the surface of a silver-coated glass slide. Oligo-1 was assembled on the surface of a silver-coated glass slide through an Ag–S bond, and Oligo-2 as reporter was used to bind with streptavidin-horseradish peroxidase (SA–HRP). They could bind with target dsDNA that was composed of Oligo-3 and Oligo-4 on the surface of a silver-coated glass slide through triplex formation. The bound HRP could be moved into the solution by DNase I and catalyze the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB). Therefore, the concentration of target dsDNA could be determined with the colour change of TMB. Under the optimum conditions, the absorbance was proportional to the concentration of target dsDNA over the range of 100 pmol/L to 2.0 nmol/L, with a detection limit of 13 pmol/L. In addition, this method showed good sequence selectivity, enabling it to be further developed for the detection of other polymerase chain reaction (PCR) products.
Collapse
Affiliation(s)
- Xiaoting Guo
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Jing Wang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Zhifang Zhu
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Manjun Zhang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Haigang Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Jianmin Liu
- Department of Neurosurgery, the First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou 510405, P. R. China
| | - Liansheng Ling
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
11
|
Abstract
Cells undergoing oncogenic transformation frequently inactivate tumor suppressor pathways that could prevent their uncontrolled growth. Among those pathways p53 and p38MAPK pathways play a critical role in regulation of cell cycle, senescence and cell death in response to activation of oncogenes, stress and DNA damage. Consequently, these two pathways are important in determining the sensitivity of tumor cells to anti-cancer treatment. Wild type p53-induced phosphatase, Wip1, is involved in governance of both pathways. Recently, strategies directed to manipulation with Wip1 activity proposed to advance current day anticancer treatment and novel chemical compounds synthesized to improve specificity of manipulation with Wip1 activity. Here we reviewed the history of Wip1 studies in vitro and in vivo, in genetically modified animal models that support Wip1 role in tumorigenesis through regulation of p53 and p38MAPK pathways. Based on our knowledge we propose several recommendations for future more accurate studies of Wip1 interactions with other pathways involved in tumorigenesis using recently developed tools and for adoption of Wip1 manipulation strategies in anti-cancer therapy.
Collapse
|
12
|
Fischer M. Census and evaluation of p53 target genes. Oncogene 2017; 36:3943-3956. [PMID: 28288132 PMCID: PMC5511239 DOI: 10.1038/onc.2016.502] [Citation(s) in RCA: 642] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/23/2016] [Accepted: 11/29/2016] [Indexed: 12/17/2022]
Abstract
The tumor suppressor p53 functions primarily as a transcription factor. Mutation of the TP53 gene alters its response pathway, and is central to the development of many cancers. The discovery of a large number of p53 target genes, which confer p53's tumor suppressor function, has led to increasingly complex models of p53 function. Recent meta-analysis approaches, however, are simplifying our understanding of how p53 functions as a transcription factor. In the survey presented here, a total set of 3661 direct p53 target genes is identified that comprise 3509 potential targets from 13 high-throughput studies, and 346 target genes from individual gene analyses. Comparison of the p53 target genes reported in individual studies with those identified in 13 high-throughput studies reveals limited consistency. Here, p53 target genes have been evaluated based on the meta-analysis data, and the results show that high-confidence p53 target genes are involved in multiple cellular responses, including cell cycle arrest, DNA repair, apoptosis, metabolism, autophagy, mRNA translation and feedback mechanisms. However, many p53 target genes are identified only in a small number of studies and have a higher likelihood of being false positives. While numerous mechanisms have been proposed for mediating gene regulation in response to p53, recent advances in our understanding of p53 function show that p53 itself is solely an activator of transcription, and gene downregulation by p53 is indirect and requires p21. Taking into account the function of p53 as an activator of transcription, recent results point to an unsophisticated means of regulation.
Collapse
Affiliation(s)
- M Fischer
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Oghabi Bakhshaiesh T, Majidzadeh-A K, Esmaeili R. Wip1: A candidate phosphatase for cancer diagnosis and treatment. DNA Repair (Amst) 2017; 54:63-66. [PMID: 28385459 DOI: 10.1016/j.dnarep.2017.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 03/17/2017] [Accepted: 03/18/2017] [Indexed: 12/28/2022]
Abstract
The critical regulatory mechanisms in numerous cellular pathways including cell survival and DNA damage response mostly depend on phosphorylation and dephosphorylation of proteins. The serine/threonine phosphatase wild-type p53-induced phosphatase 1 (Wip1) is a growth-promoting phosphatase and its numerous downstream targets are important tumor suppressors. Here, we review the Wip1 activity and its relevance to cancer as an oncoprotein. Consecutive investigations about Wip1 and its relation to cancer is critical, as these studies ultimately contribute to the etiology of cancer. A number of innovative studies have recently investigated the importance of Wip1 as a new candidate for cancer diagnosis and prognosis. Accordingly, we discuss the present challenges of using Wip1 as a target for cancer treatment.
Collapse
Affiliation(s)
| | - Keivan Majidzadeh-A
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Rezvan Esmaeili
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
14
|
Zhang Q, Zhang C, Chang F, Liang K, Yin X, Li X, Zhao K, Niu Q, Tian Z. Wip 1 inhibits intestinal inflammation in inflammatory bowel disease. Cell Immunol 2016; 310:63-70. [DOI: 10.1016/j.cellimm.2016.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 07/23/2016] [Accepted: 07/24/2016] [Indexed: 12/19/2022]
|
15
|
Jonak K, Kurpas M, Szoltysek K, Janus P, Abramowicz A, Puszynski K. A novel mathematical model of ATM/p53/NF- κB pathways points to the importance of the DDR switch-off mechanisms. BMC SYSTEMS BIOLOGY 2016; 10:75. [PMID: 27526774 PMCID: PMC4986247 DOI: 10.1186/s12918-016-0293-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 06/27/2016] [Indexed: 12/20/2022]
Abstract
Background Ataxia telangiectasia mutated (ATM) is a detector of double-strand breaks (DSBs) and a crucial component of the DNA damage response (DDR) along with p53 and NF- κB transcription factors and Wip1 phosphatase. Despite the recent advances in studying the DDR, the mechanisms of cell fate determination after DNA damage induction is still poorly understood. Results To investigate the importance of various DDR elements with particular emphasis on Wip1, we developed a novel mathematical model of ATM/p53/NF- κB pathways. Our results from in silico and in vitro experiments performed on U2-OS cells with Wip1 silenced to 25 % (Wip1-RNAi) revealed a strong dependence of cellular response to DNA damages on this phosphatase. Notably, Wip1-RNAi cells exhibited lower resistance to ionizing radiation (IR) resulting in smaller clonogenicity and higher apoptotic fraction. Conclusions In this article, we demonstrated that Wip1 plays a role as a gatekeeper of apoptosis and influences the pro-survival behaviour of cells – the level of Wip1 increases to block the apoptotic decision when DNA repair is successful. Moreover, we were able to verify the dynamics of proteins and transcripts, apoptotic fractions and cells viability obtained from stochastic simulations using in vitro approaches. Taken together, we demonstrated that the model can be successfully used in prediction of cellular behaviour after exposure to IR. Thus, our studies may provide further insights into key elements involved in the underlying mechanisms of the DDR. Electronic supplementary material The online version of this article (doi:10.1186/s12918-016-0293-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katarzyna Jonak
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka, Gliwice, 16, 44-100, Poland
| | - Monika Kurpas
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka, Gliwice, 16, 44-100, Poland
| | - Katarzyna Szoltysek
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Wybrzeze Armii Krajowej, Gliwice, 15, 44-400, Poland
| | - Patryk Janus
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Wybrzeze Armii Krajowej, Gliwice, 15, 44-400, Poland
| | - Agata Abramowicz
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Wybrzeze Armii Krajowej, Gliwice, 15, 44-400, Poland
| | - Krzysztof Puszynski
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka, Gliwice, 16, 44-100, Poland.
| |
Collapse
|
16
|
Tang YL, Liu X, Gao SY, Feng H, Jiang YP, Wang SS, Yang J, Jiang J, Ma XR, Tang YJ, Chen Y, Liang XH. WIP1 stimulates migration and invasion of salivary adenoid cystic carcinoma by inducing MMP-9 and VEGF-C. Oncotarget 2016; 6:9031-44. [PMID: 25797250 PMCID: PMC4496200 DOI: 10.18632/oncotarget.3320] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/08/2015] [Indexed: 02/05/2023] Open
Abstract
The wild-type p53 induced phosphatase 1 (WIP1) is an oncogene overexpressed in a variety of human cancers. Here, we demonstrated that WIP1 silencing reduced MMP-9 and VEGF-C expression as well as migration and invasion of salivary adenoid cystic carcinoma (ACC) cells. Overexpression of MMP-9 or VEGF-C restored migration and invasion in WIP1 knockdown cells, indicating that MMP-9 and VEGF-C are downstream targets of WIP1 signaling. Levels of cyclin D1 and c-Myc, targets of Wnt/β-catenin pathway, were significantly decreased by WIP1 silencing. In addition, WIP1 expression was positively associated with metastasis and prognosis of ACC patients as well as with MMP-9 or VEGF-C in ACC tissues.
Collapse
Affiliation(s)
- Ya-ling Tang
- Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan 610041, People's Republic of China.,State Key Laboratory of Oral Diseases West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan 610041, People's Republic of China
| | - Xin Liu
- State Key Laboratory of Oral Diseases West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan 610041, People's Republic of China
| | - Shi-yu Gao
- State Key Laboratory of Oral Diseases West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan 610041, People's Republic of China
| | - Hao Feng
- State Key Laboratory of Oral Diseases West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan 610041, People's Republic of China
| | - Ya-ping Jiang
- State Key Laboratory of Oral Diseases West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan 610041, People's Republic of China
| | - Sha-sha Wang
- State Key Laboratory of Oral Diseases West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan 610041, People's Republic of China
| | - Jing Yang
- State Key Laboratory of Oral Diseases West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan 610041, People's Republic of China
| | - Jian Jiang
- State Key Laboratory of Oral Diseases West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan 610041, People's Republic of China
| | - Xiang-rui Ma
- State Key Laboratory of Oral Diseases West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan 610041, People's Republic of China
| | - Ya-jie Tang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Yu Chen
- Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan 610041, People's Republic of China
| | - Xin-hua Liang
- State Key Laboratory of Oral Diseases West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan 610041, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan 610041, People's Republic of China
| |
Collapse
|
17
|
Hat B, Kochańczyk M, Bogdał MN, Lipniacki T. Feedbacks, Bifurcations, and Cell Fate Decision-Making in the p53 System. PLoS Comput Biol 2016; 12:e1004787. [PMID: 26928575 PMCID: PMC4771203 DOI: 10.1371/journal.pcbi.1004787] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/03/2016] [Indexed: 01/07/2023] Open
Abstract
The p53 transcription factor is a regulator of key cellular processes including DNA repair, cell cycle arrest, and apoptosis. In this theoretical study, we investigate how the complex circuitry of the p53 network allows for stochastic yet unambiguous cell fate decision-making. The proposed Markov chain model consists of the regulatory core and two subordinated bistable modules responsible for cell cycle arrest and apoptosis. The regulatory core is controlled by two negative feedback loops (regulated by Mdm2 and Wip1) responsible for oscillations, and two antagonistic positive feedback loops (regulated by phosphatases Wip1 and PTEN) responsible for bistability. By means of bifurcation analysis of the deterministic approximation we capture the recurrent solutions (i.e., steady states and limit cycles) that delineate temporal responses of the stochastic system. Direct switching from the limit-cycle oscillations to the “apoptotic” steady state is enabled by the existence of a subcritical Neimark—Sacker bifurcation in which the limit cycle loses its stability by merging with an unstable invariant torus. Our analysis provides an explanation why cancer cell lines known to have vastly diverse expression levels of Wip1 and PTEN exhibit a broad spectrum of responses to DNA damage: from a fast transition to a high level of p53 killer (a p53 phosphoform which promotes commitment to apoptosis) in cells characterized by high PTEN and low Wip1 levels to long-lasting p53 level oscillations in cells having PTEN promoter methylated (as in, e.g., MCF-7 cell line). Cancers are diseases of signaling networks. Transcription factor p53 is a pivotal node of a network that integrates a variety of stress signals and governs critical processes of DNA repair, cell cycle arrest, and apoptosis. Somewhat paradoxically, despite the fact that carcinogenesis is prevalently caused by p53 network malfunction, most of our knowledge about p53 signaling is based on cancer or immortalized cell lines. In this paper, we construct a mathematical model of intact p53 network to understand dynamics of non-cancerous cells and then dynamics of cancerous cells by introducing perturbations to the regulatory system. Cell fate decisions are enabled by the presence of interlinked feedback loops which give rise to a rich repertoire of behaviors. We explain and analyze by means of numerical simulations how the dynamical structure of the regulatory system allows for generating unambiguous single-cell fate decisions, also in the case when the cell population splits into an apoptotic and a surviving subpopulation. Perturbation analysis provides an explanation why cancer cell lines known to have vastly diverse expression levels of p53 regulators can exhibit a broad spectrum of responses to DNA damage.
Collapse
Affiliation(s)
- Beata Hat
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Marek Kochańczyk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Marta N. Bogdał
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Lipniacki
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
- Department of Statistics, Rice University, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
18
|
Wu B, Guo BM, Kang J, Deng XZ, Fan YB, Zhang XP, Ai KX. PPM1D exerts its oncogenic properties in human pancreatic cancer through multiple mechanisms. Apoptosis 2015; 21:365-78. [DOI: 10.1007/s10495-015-1211-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
19
|
Bakhshaiesh TO, Armat M, Shanehbandi D, Sharifi S, Baradaran B, Hejazi MS, Samadi N. Arsenic Trioxide Promotes Paclitaxel Cytotoxicity in Resistant Breast Cancer Cells. Asian Pac J Cancer Prev 2015. [DOI: 10.7314/apjcp.2015.16.13.5191] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
20
|
Wook Choi D, Yong Choi C. HIPK2 modification code for cell death and survival. Mol Cell Oncol 2014; 1:e955999. [PMID: 27308327 PMCID: PMC4905192 DOI: 10.1080/23723548.2014.955999] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 11/03/2022]
Abstract
Homeodomain-interacting protein kinase 2 (HIPK2) is a serine/threonine protein kinase that participates in the regulation of diverse cellular activities as a transcriptional cofactor and signal transducer. HIPK2 senses various signaling cues that in turn phosphorylate downstream substrates to coordinate developmental processes, cell cycle regulation, cell proliferation, differentiation, and the DNA damage response. HIPK2 functions are affected by its catalytic activity, stability, and subcellular localization, which in turn are dynamically regulated by diverse post-translational modifications such as polyubiquitination, SUMOylation, phosphorylation, and acetylation. HIPK2 is not modified with small molecules and/or peptides individually or independently, but in a combinatorial manner that is referred to as the “HIPK2 modification code.” HIPK2 integrates various signaling cues and senses different doses of DNA damage and ROS stimuli, which are reflected by unique patterns of HIPK2 modification. Hence, the HIPK2 modification code differentially contributes to cellular homeostasis and determination of cell fate depending on cellular context.
Collapse
Affiliation(s)
- Dong Wook Choi
- Department of Biological Sciences; Sungkyunkwan University ; Suwon, Republic of Korea
| | - Cheol Yong Choi
- Department of Biological Sciences; Sungkyunkwan University ; Suwon, Republic of Korea
| |
Collapse
|
21
|
Wang W, Zhu H, Zhang H, Zhang L, Ding Q, Jiang H. Targeting PPM1D by lentivirus-mediated RNA interference inhibits the tumorigenicity of bladder cancer cells. ACTA ACUST UNITED AC 2014; 47:1044-9. [PMID: 25387670 PMCID: PMC4244669 DOI: 10.1590/1414-431x20143645] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 07/21/2014] [Indexed: 01/07/2023]
Abstract
Protein phosphatase magnesium/manganese-dependent 1D (PPM1D) is a
p53-induced phosphatase that functions as a negative regulator of stress response
pathways and has oncogenic properties. However, the functional role of
PPM1D in bladder cancer (BC) remains largely unknown. In the
present study, lentivirus vectors carrying small hairpin RNA (shRNA) targeting
PPM1D were used to explore the effects of PPM1D
knockdown on BC cell proliferation and tumorigenesis. shRNA-mediated knockdown of
PPM1D significantly inhibited cell growth and colony forming
ability in the BC cell lines 5637 and T24. Flow cytometric analysis showed that
PPM1D silencing increased the proportion of cells in the G0/G1
phase. Downregulation of PPM1D also inhibited 5637 cell
tumorigenicity in nude mice. The results of the present study suggest that
PPM1D plays a potentially important role in BC tumorigenicity,
and lentivirus-mediated delivery of shRNA against PPM1D might be a
promising therapeutic strategy for the treatment of BC.
Collapse
Affiliation(s)
- W Wang
- Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - H Zhu
- Department of the Intensive Care Unit, Huashan Hospital, Fudan University, Shanghai, China
| | - H Zhang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - L Zhang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Q Ding
- Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - H Jiang
- Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Ali AY, Kim JY, Pelletier JF, Vanderhyden BC, Bachvarov DR, Tsang BK. Akt confers cisplatin chemoresistance in human gynecological carcinoma cells by modulating PPM1D stability. Mol Carcinog 2014; 54:1301-14. [PMID: 25154814 DOI: 10.1002/mc.22205] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/11/2014] [Accepted: 06/18/2014] [Indexed: 12/18/2022]
Abstract
Ovarian cancer (OVCA) and cervical cancer (CECA) are lethal gynecological malignancies. Cisplatin (CDDP) and platinum derivatives are first line chemotherapeutics and their resistance impedes successful treatment. Understanding the molecular dysregulation underlying chemoresistance is important in developing rational therapeutic strategies. We have established that Protein Phosphatase Magnesium-dependent 1 D (PPM1D) confers CDDP resistance in gynecological cancer cells by deactivating p53. However, whether CDDP regulates intra-cellular PPM1D localization and whether this regulation is different between chemosensitive and chemoresistant cancer cells is unknown. Moreover, whether Akt regulates PPM1D in the context of CDDP resistance has not been studied. To illustrate the role of PPM1D in gynecological cancer cell chemoresistance and its regulation by Akt we have demonstrated that: (a) CDDP induced PPM1D down-regulation through proteasomal degradation in sensitive CECA cells; (b) CDDP induced PPM1D nuclear localization in resistant CECA cells, and nuclear exclusion in sensitive CECA cells and OVCA xenografts; (c) Over-expression of active Akt in sensitive CECA cells stabilized PPM1D content through inhibition of CDDP-induced PPM1D down-regulation; (d) Inhibition of Akt activity in resistant OVCA cells leads to decreased PPM1D stability and CDDP-induced down-regulation in resistant CECA cells; and (e) PPM1D is highly expressed in human ovarian tumor subtypes and in a tissue microarray panel of human ovarian tumors. In conclusion, we have established that PPM1D plays an important role in promoting CDDP resistance and as a novel downstream target of Akt, PPM1D mediates its action in conferring CDDP resistance in gynecological cancer cells.
Collapse
Affiliation(s)
- Ahmed Y Ali
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Ji-Young Kim
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Jean-François Pelletier
- Département de Médecine Moleculaire, Faculté de Médecine, Université Laval, Québec City, Québec, Canada.,Centre de Recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec City, Québec, Canada
| | - Barbara C Vanderhyden
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Department of Obstetrics & Gynecology, University of Ottawa, Ottawa, Ontario, Canada.,Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Dimcho R Bachvarov
- Département de Médecine Moleculaire, Faculté de Médecine, Université Laval, Québec City, Québec, Canada.,Centre de Recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec City, Québec, Canada
| | - Benjamin K Tsang
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Obstetrics & Gynecology, University of Ottawa, Ottawa, Ontario, Canada.,Department of Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada.,World Class University (WCU) Biomodulation Major, Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
23
|
Park JH, Hale TK, Smith RJ, Yang T. PPM1B depletion induces premature senescence in human IMR-90 fibroblasts. Mech Ageing Dev 2014; 138:45-52. [DOI: 10.1016/j.mad.2014.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 03/10/2014] [Accepted: 03/15/2014] [Indexed: 01/23/2023]
|
24
|
Fischer M, Steiner L, Engeland K. The transcription factor p53: not a repressor, solely an activator. Cell Cycle 2014; 13:3037-58. [PMID: 25486564 PMCID: PMC4612452 DOI: 10.4161/15384101.2014.949083] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/10/2014] [Indexed: 12/12/2022] Open
Abstract
The predominant function of the tumor suppressor p53 is transcriptional regulation. It is generally accepted that p53-dependent transcriptional activation occurs by binding to a specific recognition site in promoters of target genes. Additionally, several models for p53-dependent transcriptional repression have been postulated. Here, we evaluate these models based on a computational meta-analysis of genome-wide data. Surprisingly, several major models of p53-dependent gene regulation are implausible. Meta-analysis of large-scale data is unable to confirm reports on directly repressed p53 target genes and falsifies models of direct repression. This notion is supported by experimental re-analysis of representative genes reported as directly repressed by p53. Therefore, p53 is not a direct repressor of transcription, but solely activates its target genes. Moreover, models based on interference of p53 with activating transcription factors as well as models based on the function of ncRNAs are also not supported by the meta-analysis. As an alternative to models of direct repression, the meta-analysis leads to the conclusion that p53 represses transcription indirectly by activation of the p53-p21-DREAM/RB pathway.
Collapse
Key Words
- CDE, cell cycle-dependent element
- CDKN1A
- CHR, cell cycle genes homology region
- ChIP, chromatin immunoprecipitation
- DREAM complex
- DREAM, DP, RB-like, E2F4, and MuvB complex
- E2F/RB complex
- HPV, human papilloma virus
- NF-Y, Nuclear factor Y
- cdk, cyclin-dependent kinase
- genome-wide meta-analysis
- p53
Collapse
Affiliation(s)
- Martin Fischer
- Molecular Oncology; Medical School; University of Leipzig; Leipzig, Germany
| | - Lydia Steiner
- Center for Complexity & Collective Computation; Wisconsin Institute for Discovery; Madison, WI USA
- Computational EvoDevo Group & Bioinformatics Group; Department of Computer Science and Interdisciplinary Center for Bioinformatics; University of Leipzig; Leipzig, Germany
| | - Kurt Engeland
- Molecular Oncology; Medical School; University of Leipzig; Leipzig, Germany
| |
Collapse
|
25
|
Wip1 suppresses apoptotic cell death through direct dephosphorylation of BAX in response to γ-radiation. Cell Death Dis 2013; 4:e744. [PMID: 23907458 PMCID: PMC3763429 DOI: 10.1038/cddis.2013.252] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/01/2013] [Accepted: 06/06/2013] [Indexed: 12/13/2022]
Abstract
Wild-type p53-induced phosphatase 1 (Wip1) is a p53-inducible serine/threonine phosphatase that switches off DNA damage checkpoint responses by the dephosphorylation of certain proteins (i.e. p38 mitogen-activated protein kinase, p53, checkpoint kinase 1, checkpoint kinase 2, and uracil DNA glycosylase) involved in DNA repair and the cell cycle checkpoint. Emerging data indicate that Wip1 is amplified or overexpressed in various human tumors, and its detection implies a poor prognosis. In this study, we show that Wip1 interacts with and dephosphorylates BAX to suppress BAX-mediated apoptosis in response to γ-irradiation in prostate cancer cells. Radiation-resistant LNCaP cells showed dramatic increases in Wip1 levels and impaired BAX movement to the mitochondria after γ-irradiation, and these effects were reverted by a Wip1 inhibitor. These results show that Wip1 directly interacts with and dephosphorylates BAX. Dephosphorylation occurs at threonines 172, 174 and 186, and BAX proteins with mutations at these sites fail to translocate efficiently to the mitochondria following cellular γ-irradiation. Overexpression of Wip1 and BAX, but not phosphatase-dead Wip1, in BAX-deficient cells strongly reduces apoptosis. Our results suggest that BAX dephosphorylation of Wip1 phosphatase is an important regulator of resistance to anticancer therapy. This study is the first to report the downregulation of BAX activity by a protein phosphatase.
Collapse
|
26
|
Choi DW, Na W, Kabir MH, Yi E, Kwon S, Yeom J, Ahn JW, Choi HH, Lee Y, Seo KW, Shin MK, Park SH, Yoo HY, Isono KI, Koseki H, Kim ST, Lee C, Kwon YK, Choi CY. WIP1, a homeostatic regulator of the DNA damage response, is targeted by HIPK2 for phosphorylation and degradation. Mol Cell 2013; 51:374-85. [PMID: 23871434 DOI: 10.1016/j.molcel.2013.06.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 04/28/2013] [Accepted: 06/11/2013] [Indexed: 12/25/2022]
Abstract
WIP1 (wild-type p53-induced phosphatase 1) functions as a homeostatic regulator of the ataxia telangiectasia mutated (ATM)-mediated signaling pathway in response to ionizing radiation (IR). Here we identify homeodomain-interacting protein kinase 2 (HIPK2) as a protein kinase that targets WIP1 for phosphorylation and proteasomal degradation. In unstressed cells, WIP1 is constitutively phosphorylated by HIPK2 and maintained at a low level by proteasomal degradation. In response to IR, ATM-dependent AMPKα2-mediated HIPK2 phosphorylation promotes inhibition of WIP1 phosphorylation through dissociation of WIP1 from HIPK2, followed by stabilization of WIP1 for termination of the ATM-mediated double-strand break (DSB) signaling cascade. Notably, HIPK2 depletion impairs IR-induced γ-H2AX foci formation, cell-cycle checkpoint activation, and DNA repair signaling, and the survival rate of hipk2+/- mice upon γ-irradiation is markedly reduced compared to wild-type mice. Taken together, HIPK2 plays a critical role in the initiation of DSB repair signaling by controlling WIP1 levels in response to IR.
Collapse
Affiliation(s)
- Dong Wook Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Dayaram T, Lemoine FJ, Donehower LA, Marriott SJ. Activation of WIP1 phosphatase by HTLV-1 Tax mitigates the cellular response to DNA damage. PLoS One 2013; 8:e55989. [PMID: 23405243 PMCID: PMC3566092 DOI: 10.1371/journal.pone.0055989] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 01/08/2013] [Indexed: 12/21/2022] Open
Abstract
Genomic instability stemming from dysregulation of cell cycle checkpoints and DNA damage response (DDR) is a common feature of many cancers. The cancer adult T cell leukemia (ATL) can occur in individuals infected with human T cell leukemia virus type 1 (HTLV-1), and ATL cells contain extensive chromosomal abnormalities, suggesting that they have defects in the recognition or repair of DNA damage. Since Tax is the transforming protein encoded by HTLV-1, we asked whether Tax can affect cell cycle checkpoints and the DDR. Using a combination of flow cytometry and DNA repair assays we showed that Tax-expressing cells exit G1 phase and initiate DNA replication prematurely following damage. Reduced phosphorylation of H2AX (γH2AX) and RPA2, phosphoproteins that are essential to properly initiate the DDR, was also observed in Tax-expressing cells. To determine the cause of decreased DDR protein phosphorylation in Tax-expressing cells, we examined the cellular phosphatase, WIP1, which is known to dephosphorylate γH2AX. We found that Tax can interact with Wip1 in vivo and in vitro, and that Tax-expressing cells display elevated levels of Wip1 mRNA. In vitro phosphatase assays showed that Tax can enhance Wip1 activity on a γH2AX peptide target by 2-fold. Thus, loss of γH2AX in vivo could be due, in part, to increased expression and activity of WIP1 in the presence of Tax. siRNA knockdown of WIP1 in Tax-expressing cells rescued γH2AX in response to damage, confirming the role of WIP1 in the DDR. These studies demonstrate that Tax can disengage the G1/S checkpoint by enhancing WIP1 activity, resulting in reduced DDR. Premature G1 exit of Tax-expressing cells in the presence of DNA lesions creates an environment that tolerates incorporation of random mutations into the host genome.
Collapse
Affiliation(s)
- Tajhal Dayaram
- Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Francene J. Lemoine
- Department of Biological Sciences, Northwestern State University of Louisiana, Natchitoches, Louisiana, United States of America
| | - Lawrence A. Donehower
- Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Susan J. Marriott
- Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
28
|
Ali AY, Farrand L, Kim JY, Byun S, Suh JY, Lee HJ, Tsang BK. Molecular determinants of ovarian cancer chemoresistance: new insights into an old conundrum. Ann N Y Acad Sci 2013; 1271:58-67. [PMID: 23050965 PMCID: PMC3499654 DOI: 10.1111/j.1749-6632.2012.06734.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ovarian cancer is the most lethal gynecological malignancy. Cisplatin and its derivatives are first-line chemotherapeutics, and their resistance is a major hurdle in successful ovarian cancer treatment. Understanding the molecular dysregulation underlying chemoresistance is important for enhancing therapeutic outcome. Here, we review two established pathways in cancer chemoresistance. p53 is a major tumor suppressor regulating proliferation and apoptosis, and its mutation is a frequent event in human malignancies. The PI3K/Akt axis is a key oncogenic pathway regulating survival and tumorigenesis by controlling several tumor suppressors, including p53. The interplay between these pathways is well established, although the oncogenic phosphatase PPM1D adds a new layer to this intricate relationship and provides new insights into the processes determining cell fate. Inhibition of the PI3K/Akt pathway by functional food compounds as an adjunct to chemotherapeutics may tip the balance in favor of apoptosis rather than survival, enhancing therapeutic efficacy, and reducing side effects.
Collapse
Affiliation(s)
- Ahmed Y Ali
- Department of Cellular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
29
|
Xu W, Zhu Q, Wu Z, Guo H, Wu F, Mashausi DS, Zheng C, Li D. A Novel Evolutionarily Conserved Element Is a General Transcriptional Repressor of p21WAF1/CIP1. Cancer Res 2012; 72:6236-46. [DOI: 10.1158/0008-5472.can-12-1236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Oh JH, Wong HP, Wang X, Deasy JO. A bioinformatics filtering strategy for identifying radiation response biomarker candidates. PLoS One 2012; 7:e38870. [PMID: 22768051 PMCID: PMC3387230 DOI: 10.1371/journal.pone.0038870] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/15/2012] [Indexed: 02/06/2023] Open
Abstract
The number of biomarker candidates is often much larger than the number of clinical patient data points available, which motivates the use of a rational candidate variable filtering methodology. The goal of this paper is to apply such a bioinformatics filtering process to isolate a modest number (<10) of key interacting genes and their associated single nucleotide polymorphisms involved in radiation response, and to ultimately serve as a basis for using clinical datasets to identify new biomarkers. In step 1, we surveyed the literature on genetic and protein correlates to radiation response, in vivo or in vitro, across cellular, animal, and human studies. In step 2, we analyzed two publicly available microarray datasets and identified genes in which mRNA expression changed in response to radiation. Combining results from Step 1 and Step 2, we identified 20 genes that were common to all three sources. As a final step, a curated database of protein interactions was used to generate the most statistically reliable protein interaction network among any subset of the 20 genes resulting from Steps 1 and 2, resulting in identification of a small, tightly interacting network with 7 out of 20 input genes. We further ranked the genes in terms of likely importance, based on their location within the network using a graph-based scoring function. The resulting core interacting network provides an attractive set of genes likely to be important to radiation response.
Collapse
Affiliation(s)
- Jung Hun Oh
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Harry P. Wong
- Department of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Xiaowei Wang
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Joseph O. Deasy
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| |
Collapse
|
31
|
Goloudina AR, Mazur SJ, Appella E, Garrido C, Demidov ON. Wip1 sensitizes p53-negative tumors to apoptosis by regulating the Bax/Bcl-xL ratio. Cell Cycle 2012; 11:1883-7. [PMID: 22544321 DOI: 10.4161/cc.19901] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Wip1 is a stress-response phosphatase that negatively regulates several tumor suppressors, including p53. In a sizeable fraction of tumors, overexpression or amplification of Wip1 compromises p53 functions; inhibition of Wip1 activity is an attractive strategy for improving treatment of these tumors. However, over half of human tumors contain mutations in the p53 gene or have lost both alleles. Recently, we observed that in cancer cells lacking wild type p53, reduction of Wip1 expression was ineffective, whereas, surprisingly, overexpression of Wip1 increased anticancer drug sensitivity. The increased sensitivity resulted from activation of the intrinsic pathway of apoptosis through increased levels of the pro-apoptotic protein Bax and decreased levels of the anti-apoptotic protein Bcl-xL. We showed that interaction of Wip1 and the transcription factor RUNX2, specifically through dephosphorylation of RUNX2 phospho-S432, resulted in increased expression of Bax. Interestingly, overexpression of Wip1 increased drug sensitivity only in the p53-negative tumor cells while protecting the wild type p53-containing normal cells from drug-induced collateral injury. Here, we provide evidence that Wip1 overexpression decreases expression of Bcl-xL through negative regulation of NFκB activity. Thus, Wip1 overexpression increases the sensitivity of p53-negative cancer cells to anticancer drugs by separately affecting Bax and Bcl-xL protein levels.
Collapse
Affiliation(s)
- Anastasia R Goloudina
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 866, University of Burgundy; Dijon, France
| | | | | | | | | |
Collapse
|
32
|
Liang C, Guo E, Lu S, Wang S, Kang C, Chang L, Liu L, Zhang G, Wu Z, Zhao Z, Ma S, Wang L, Jiao BH. Over-expression of Wild-type p53-induced phosphatase 1 confers poor prognosis of patients with gliomas. Brain Res 2012; 1444:65-75. [DOI: 10.1016/j.brainres.2011.12.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 11/30/2011] [Accepted: 12/27/2011] [Indexed: 01/07/2023]
|
33
|
Park JY, Song JY, Kim HM, Han HS, Seol HS, Jang SJ, Choi J. p53-Independent expression of wild-type p53-induced phosphatase 1 (Wip1) in methylmethane sulfonate-treated cancer cell lines and human tumors. Int J Biochem Cell Biol 2012; 44:896-904. [PMID: 22405851 DOI: 10.1016/j.biocel.2012.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 02/08/2012] [Accepted: 02/15/2012] [Indexed: 01/03/2023]
Abstract
Wild-type p53-induced phosphatase 1 (Wip1, PPM1D) is induced by p53 in response to various stressors and dephosphorylates cellular target proteins involved in DNA repair and cell cycle checkpoint pathways. The Wip1 gene is frequently amplified or overexpressed in human cancers, promoting tumor growth by switching off major checkpoint kinases and p53. To explore wild-type p53-independent Wip1 induction, Wip1 promoter activity and its transcript level were evaluated by luciferase assay and real-time PCR, after methylmethane sulfonate (MMS) treatment in breast cancer cell lines and p53-null cell lines. Wip1 promoter activities in response to UV irradiation and various anti-cancer agents were compared between wild-type and a p53-response element (p53RE) mutated construct. Wip1 expression and its effects were examined in primary non-small cell lung cancer (NSCLC) and colon tumor cells by using Wip1-specific siRNA. MMS induced Wip1 promoter activity in Hs578T, MDA-MB-231, and SK-BR-3 cells expressing DNA binding-deficient p53 mutants. A549-E6 and HCT116 (p53(-/-)) cells retained substantial Wip1 induction. Wip1 promoter activity was reduced, but not eliminated, in cells expressing a promoter containing a mutated p53-response element. Wip1 induction was not blocked by SB202190 or SP600125. MMS increased Wip1 expression in primary non-small cell lung cancer cells expressing a p53 R175H mutant. Our data indicate that Wip1 is induced in the absence of functional p53, like p38 MAPK and JNK, as a stress response terminator.
Collapse
Affiliation(s)
- Ji-Young Park
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical center, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
34
|
Lowe J, Cha H, Lee MO, Mazur SJ, Appella E, Fornace AJ. Regulation of the Wip1 phosphatase and its effects on the stress response. FRONT BIOSCI-LANDMRK 2012; 17:1480-98. [PMID: 22201816 PMCID: PMC3508688 DOI: 10.2741/3999] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Wip1 (PPM1D) is a stress responsive PP2C phosphatase that plays a key role in stress signaling. Although originally identified as a gene induced by p53 after genotoxic stress, we now know that Wip1 expression is additionally regulated by other mechanisms. Wip1 is not only a target of p53, but is also a target of other transcription factors, including Estrogen Receptor-alpha and NF-kappaB. Additionally, Wip1 expression is regulated by post-transcriptional mechanisms such as mRNA stabilization and alternative splicing. Upon induction, Wip1 dampens the stress response by dephosphorylating and inactivating proteins such as p53, p38 MAPK, and ATM, usually as part of a negative feedback loop. As a result, Wip1 functions to abrogate cell cycle checkpoints and inhibit senescence, apoptosis, DNA repair, and the production of inflammatory cytokines. Furthermore, Wip1 is overexpressed in several types of human cancers and has oncogenic functions. The regulation of Wip1, the role of Wip1 in stress signaling, and the cooperation of Wip1 with oncogenes in promoting tumorigenesis will be discussed in this review.
Collapse
Affiliation(s)
- Julie Lowe
- Chromosome Stability group, Laboratory of Molecular Genetics, The National Institute for Environmental and Health Sciences, Research Triangle Park, N.C., United States of America
| | - Hyukjin Cha
- Department of Life Sciences, Sogang University, Seoul, Korea
- Department of Biochemistry and Molecular and Cellular Biology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C., United States of America
| | - Mi-Ok Lee
- Department of Life Sciences, Sogang University, Seoul, Korea
| | - Sharlyn J. Mazur
- Laboratory of Cell Biology, CCR, National Cancer Institute, Bethesda, M.D., United States of America
| | - Ettore Appella
- Laboratory of Cell Biology, CCR, National Cancer Institute, Bethesda, M.D., United States of America
| | - Albert J. Fornace
- Department of Biochemistry and Molecular and Cellular Biology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C., United States of America
| |
Collapse
|
35
|
Ligorio M, Izzotti A, Pulliero A, Arrigo P. Mutagens interfere with microRNA maturation by inhibiting DICER. An in silico biology analysis. Mutat Res 2011; 717:116-128. [PMID: 21889945 DOI: 10.1016/j.mrfmmm.2011.07.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 07/25/2011] [Accepted: 07/30/2011] [Indexed: 05/31/2023]
Abstract
Exposure to environmental mutagens results in alteration of microRNA expression mainly oriented towards down-regulation, as typically observed in cigarette smoke. However, the molecular mechanism triggering this event is still unknown. To shed light on this issue, we developed an 'in silico' analysis testing 25 established environmental mutagens (polycyclic aromatic hydrocarbons, heterocyclic compounds, nitrosoamines, morpholine, ethylnitrosurea, benzene derivatives, hydroxyl amines, alkenes) for their potential to interfere with the function of DICER, the enzyme involved in the cytoplasmic phase of microRNA maturation. In order to analyse the binding affinity between DICER and each mutagen, the three-dimensional bioinformatic structures of DICER-RNase III domains and of mutagens have been constructed. The binding affinity of mutagens for each DICER's RNase III domain was estimated by calculating the global contact-energy and the number of intermolecular contacts. These two parameters reflect the stability of the DICER-mutagen complexes. All the 25 mutagens tested form stable complexes with DICER, 20 of which form a complex with DICER A domain, that is more stable than those formed by DICER with its natural substrate, i.e. double strand short RNAs. These mutagens are benzo(a)pyrene diol epoxide, nitroimidazoles, fluorenes, naphthalene, morpholine, stilbenes, hydroxylamines, fecapentenes. In the case of exposure to mutagen mixtures (benzo(a)pyrene-diolepoxide and 4-acetylaminostilbene), synergistic or less than addictive effects occur depending on the docking order of the compounds. A group of 8 mutagens with the highest ability to interfere with this DICER function, was identified by hierarchical cluster analysis. This group included 1-ethyl-1-nitrosourea and 4-nitrosomorpholine. Herein, presented data support the view that mutagens interfere with microRNA maturation by binding DICER. This finding sheds light on a new epigenetic mechanism exerted by environmental mutagens in inducing cell damage.
Collapse
Affiliation(s)
- Matteo Ligorio
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | | | | | | |
Collapse
|
36
|
Novel regulatory role for Kaposi’s sarcoma-associated herpesvirus-encoded vFLIP in chemosensitization to bleomycin. Biochem Biophys Res Commun 2011; 415:305-12. [DOI: 10.1016/j.bbrc.2011.10.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 10/08/2011] [Indexed: 12/17/2022]
|
37
|
Alternative transcript initiation and splicing as a response to DNA damage. PLoS One 2011; 6:e25758. [PMID: 22039421 PMCID: PMC3198437 DOI: 10.1371/journal.pone.0025758] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 09/11/2011] [Indexed: 12/22/2022] Open
Abstract
Humans are exposed to the DNA damaging agent, ionizing radiation (IR), from background radiation, medical treatments, occupational and accidental exposures. IR causes changes in transcription, but little is known about alternative transcription in response to IR on a genome-wide basis. These investigations examine the response to IR at the exon level in human cells, using exon arrays to comprehensively characterize radiation-induced transcriptional expression products. Previously uncharacterized alternative transcripts that preferentially occur following IR exposure have been discovered. A large number of genes showed alternative transcription initiation as a response to IR. Dose-response and time course kinetics have also been characterized. Interestingly, most genes showing alternative transcript induction maintained these isoforms over the dose range and times tested. Finally, clusters of co-ordinately up- and down-regulated radiation response genes were identified at specific chromosomal loci. These data provide the first genome-wide view of the transcriptional response to ionizing radiation at the exon level. This study provides novel insights into alternative transcripts as a mechanism for response to DNA damage and cell stress responses in general.
Collapse
|
38
|
Wang P, Rao J, Yang H, Zhao H, Yang L. Wip1 over-expression correlated with TP53/p14(ARF) pathway disruption in human astrocytomas. J Surg Oncol 2011; 104:679-84. [PMID: 21695702 DOI: 10.1002/jso.22004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 05/31/2011] [Indexed: 12/16/2022]
Abstract
PURPOSE Wip1 over-expression inhibits p53 function and reduces selection for TP53 mutations during cancer progression. To clarify the correlation of Wip1 with TP53/p14(ARF) pathway disruption in astyrocytomas, the expression of Wip1 and TP53/p14(ARF) pathway alterations have been investigated. METHODS Tumor samples of 52 patients of astrocytomas were examined for TP53 mutations, p14(ARF) expression, and Wip1 expression. Direct sequencing of region from exons 5 to 8 of the TP53 gene was performed on the genomic DNA in each sample. The DNA methylation states of the CpG islands of the p14(ARF) gene were determined by MSP. The expression of Wip1 was analyzed by real-time quantitative PCR, Western blot, and immunohistochemical staining. RESULTS Disruption of the TP53/p14ARF pathway was detected in 57.7% of samples. Among 22 cases without TP53 and p14ARF alterations, 11 (50%) had Wip1 mRNA over-expression. In tumors with wild-type TP53 and p14ARF, Wip1 mRNA was over-expressed only 1 case out of 30 (3.3%). Higher levels of Wip1 were associated with TP53 mutations but not with lower levels of expression of p14(ARF) or aberrant promoter hypermethylation of the p14(ARF) gene. CONCLUSION Wip1 is selectively over-expressed in astyrocytomas without alterations in TP53 or p14(ARF). Wip1 may inhibit the TP53/p14(ARF) pathway.
Collapse
Affiliation(s)
- Peng Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | | | | | | | | |
Collapse
|
39
|
|
40
|
Control of p53 and NF-κB signaling by WIP1 and MIF: role in cellular senescence and organismal aging. Cell Signal 2010; 23:747-52. [PMID: 20940041 DOI: 10.1016/j.cellsig.2010.10.012] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 10/01/2010] [Indexed: 11/22/2022]
Abstract
The stress-activated signaling pathways, p53 and NF-κB, have a major role in the regulation of cellular senescence and organismal aging. These ancient signaling networks display functional antagonism via negative autoregulatory circuits. WIP1 (wildtype p53-induced phosphatase 1) and MIF (macrophage migration inhibitory factor) are signaling molecules which link together the p53 and NF-κB pathways via positive and negative feedback loops. It seems that the efficiency of the p53 signaling pathway declines during aging whereas that of NF-κB is clearly enhanced. Moreover, p53 is an important trigger of cellular senescence while NF-κB signaling seems to be involved in the induction of the senescence-associated secretory phenotype (SASP). MIF is a pro-inflammatory cytokine which inhibits the function of p53 signaling whereas it is linked to NF-κB signaling via a positive feedback loop. MIF knockout mice are healthier and live longer than their wild-type counterparts. An increased level of MIF can support inflammatory responses via enhancing NF-κB signaling and repressing the function of p53. p53 is an inducer of the expression of WIP1 which can subsequently inhibit NF-κB signaling. Several observations indicate that the activity of WIP1 decreases during the aging process, this being probably attributable to the decline in p53 function. Decreased WIP1 activity potentiates the activity of p38MAPK and NF-κB signaling leading to premature cellular senescence as well as low-level chronic inflammation. We will review the findings linking WIP1 and MIF to specific signaling responses of p53 and NF-κB and discuss their role in the regulation of cellular senescence and organismal aging.
Collapse
|
41
|
Oh KS, Bustin M, Mazur SJ, Appella E, Kraemer KH. UV-induced histone H2AX phosphorylation and DNA damage related proteins accumulate and persist in nucleotide excision repair-deficient XP-B cells. DNA Repair (Amst) 2010; 10:5-15. [PMID: 20947453 DOI: 10.1016/j.dnarep.2010.09.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 09/03/2010] [Accepted: 09/13/2010] [Indexed: 10/19/2022]
Abstract
DNA double strand breaks (DSB) may be caused by ionizing radiation. In contrast, UV exposure forms dipyrimidine photoproducts and is not considered an inducer of DSB. We found that uniform or localized UV treatment induced phosphorylation of the DNA damage related (DDR) proteins H2AX, ATM and NBS1 and co-localization of γ-H2AX with the DDR proteins p-ATM, p-NBS1, Rad51 and FANCD2 that persisted for about 6h in normal human fibroblasts. This post-UV phosphorylation was observed in the absence of nucleotide excision repair (NER), since NER deficient XP-B cells (lacking functional XPB DNA repair helicase) and global genome repair-deficient rodent cells also showed phosphorylation and localization of these DDR proteins. Resolution of the DDR proteins was dependent on NER, since they persisted for 24h in the XP-B cells. In the normal and XP-B cells p53 and p21 was detected at 6h and 24h but Mdm2 was not induced in the XP-B cells. Post-UV induction of Wip1 phosphatase was detected in the normal cells but not in the XP-B cells. DNA DSB were detected with a neutral comet assay at 6h and 24h post-UV in the normal and XP-B cells. These results indicate that UV damage can activate the DDR pathway in the absence of NER. However, a later step in DNA damage processing involving induction of Wip1 and resolution of DDR proteins was not observed in the absence of NER.
Collapse
Affiliation(s)
- Kyu-Seon Oh
- DNA Repair Section, Dermatology Branch, CCR, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
42
|
Kim JJ, Lee JS, Moon BH, Lee MO, Song SH, Li H, Fornace AJ, Cha HJ. Wip1-expressing feeder cells retain pluripotency of co-cultured mouse embryonic stem cells under leukemia inhibitory factor-deprivated condition. Arch Pharm Res 2010; 33:1253-60. [PMID: 20803129 DOI: 10.1007/s12272-010-0816-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 06/16/2010] [Accepted: 06/18/2010] [Indexed: 01/07/2023]
Abstract
The optimization of in vitro culture conditions for embryonic stem cells (ESCs) is a matter of critical importance; a prompt supply of a sufficient population of cells that retain their pluripotency capabilities must be secured in order to make possible future cell therapies. Despite a number of reports asserting that a variety of cytokines, signaling ligands, and small molecules can help in maintaining the pluripotency of ESCs, mammalian feeder cells continue to be broadly accepted as the method of choice for ESC cultures. This appears to be because mammalian feeder cells seem to produce some as-yet-unidentified factor that makes them very effective as feeder cells. In this study, we investigated wild-type p53 inducible phosphatase (Wip1), the knockdown of which increases Wnt inhibitory factor-1 expression, in its feeder functions toward mouse embryonic stem cells, lowering the effect of Wnt, one of key signaling in maintaining stemness of ESCs. For this purpose, Wip1 was stably expressed in mouse embryonic fibroblast cell line (STO) using retro-viral gene delivery system and then the function as a feeder cell was monitored either with or without leukemia inhibitory factor (LIF) in culture medium. We demonstrated that mouse embryonic stem cells grown with Wip1 expressing STO showed higher alkaline phosphatase activity and sustained Oct-4 expression level even under LIF deprivation condition compared to both control and Wip1 phosphatase activity dead mutant expressing STO. These results imply that Wip1 phosphatase activity in feeder cells is important to retain pluripotency of mouse embryonic stem cells under LIF deprivation conditions. These results indicate that genetically engineered feeder cells such as Wip1 expressing cell lines, are alternative strategy for the optimization of maintenance and expansion of mouse embryonic stem cells.
Collapse
Affiliation(s)
- Jin-Ju Kim
- Department of Biomedical Science, College of Life Science, CHA University, Pochon, 487-010, Korea.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Zhang X, Wan G, Mlotshwa S, Vance V, Berger FG, Chen H, Lu X. Oncogenic Wip1 phosphatase is inhibited by miR-16 in the DNA damage signaling pathway. Cancer Res 2010; 70:7176-86. [PMID: 20668064 DOI: 10.1158/0008-5472.can-10-0697] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Wild-type p53-induced phosphatase 1 (Wip1) was identified as an oncogene amplified and overexpressed in several human cancers. Recent evidence suggested that Wip1 is a critical inhibitor in the ATM/ATR-p53 DNA damage signaling pathway. Wip1 dephosphorylates several key DNA damage-responsive proteins and reverses DNA damage-induced cell cycle checkpoints. Previous reports showed that Wip1 was transcriptionally induced by p53 at the early stage of the DNA damage response. To investigate the temporal and functional regulation of Wip1, we identified a microRNA, miR-16, that specifically targets the mRNA of Wip1 and thus negatively regulates the expression level of Wip1. miR-16 itself is induced immediately after DNA damage. Therefore, the increase in Wip1 protein level is significantly postponed compared with that of its mRNA level, preventing a premature inactivation of ATM/ATR signaling and allowing a functional completion of the early DNA damage response. To better understand miR-16 biological functions in the context of cancer cells, we examined its expression in mammary tumor stem cells and found it to be markedly downregulated in mammary tumor stem cells. Overexpression of miR-16 or inhibition of Wip1 suppresses the self-renewal and growth of mouse mammary tumor stem cells and sensitizes MCF-7 human breast cancer cells to the chemotherapeutic drug doxorubicin. Together, our results suggest an important role of miR-16 in the regulation of Wip1 phosphatase in the DNA damage response and mammary tumorigenesis.
Collapse
Affiliation(s)
- Xinna Zhang
- Department of Biological Sciences and Center for Colon Cancer Research, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The really interesting genes (RING)-finger-containing oncoprotein, Mdm2, is a promising drug target for cancer therapy. A key Mdm2 function is to promote ubiquitylation and proteasomal-dependent degradation of the tumor suppressor protein p53. Recent reports provide novel important insights into Mdm2-mediated regulation of p53 and how the physical and functional interactions between these two proteins are regulated. Moreover, a p53-independent role of Mdm2 has recently been confirmed by genetic data. These advances and their potential implications for the development of new cancer therapeutic strategies form the focus of this review.
Collapse
Affiliation(s)
- J-C Marine
- Laboratory For Molecular Cancer Biology, VIB-UGent, Ghent B-9052, Belgium.
| | | |
Collapse
|
45
|
Song JY, Han HS, Sabapathy K, Lee BM, Yu E, Choi J. Expression of a homeostatic regulator, Wip1 (wild-type p53-induced phosphatase), is temporally induced by c-Jun and p53 in response to UV irradiation. J Biol Chem 2010; 285:9067-76. [PMID: 20093361 DOI: 10.1074/jbc.m109.070003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Wild-type p53-induced phosphatase (Wip1) is induced by p53 in response to stress, which results in the dephosphorylation of proteins (i.e. p38 MAPK, p53, and uracil DNA glycosylase) involved in DNA repair and cell cycle checkpoint pathways. p38 MAPK-p53 signaling is a unique way to induce Wip1 in response to stress. Here, we show that c-Jun directly binds to and activates the Wip1 promoter in response to UV irradiation. The binding of p53 to the promoter occurs earlier than that of c-Jun. In experiments, mutation of the p53 response element (p53RE) or c-Jun consensus sites reduced promoter activity in both non-stressed and stressed A549 cells. Overexpression of p53 significantly decreased Wip1 expression in HCT116 p53(+/+) cells but increased it in HCT116 p53(-/-) cells. Adenovirus-mediated p53 overexpression greatly decreased JNK activity. Up-regulation of Wip1 via the p38 MAPK-p53 and JNK-c-Jun pathways is specific, as demonstrated by our findings that p38 MAPK and JNK inhibitors affected the expression of the Wip1 protein, whereas an ERK inhibitor did not. c-Jun activation occurred much more quickly, and to a greater extent, in A549-E6 cells than in A549 cells, with delayed but fully induced Wip1 expression. These data indicate that Wip1 is activated via both the JNK-c-Jun and p38 MAPK-p53 signaling pathways and that temporal induction of Wip1 depends largely on the balance between c-Jun and p53, which compete for JNK binding. Moreover, our results suggest that JNK-c-Jun-mediated Wip1 induction could serve as a major signaling pathway in human tumors in response to frequent p53 mutation.
Collapse
Affiliation(s)
- Ji-young Song
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Pungnap-2 dong, Songpa-gu, Seoul 138-736, Korea
| | | | | | | | | | | |
Collapse
|
46
|
Lowe JM, Cha H, Yang Q, Fornace AJ. Nuclear factor-kappaB (NF-kappaB) is a novel positive transcriptional regulator of the oncogenic Wip1 phosphatase. J Biol Chem 2009; 285:5249-57. [PMID: 20007970 DOI: 10.1074/jbc.m109.034579] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The nuclear factor-kappaB (NF-kappaB) family of transcription factors plays a key role in inflammation and augments the initiation, promotion, and progression of cancer. NF-kappaB activation generally leads to transcriptional enhancement of genes important in cell survival and cell growth, which is exploited in cancer cells. In this study, we identify an additional oncogene, PPM1D, which encodes for Wip1, as a transcriptional target of NF-kappaB in breast cancer cells. Inhibition of NF-kappaB or activation of NF-kappaB resulted in decreased or increased Wip1 expression, respectively, at both the mRNA and protein levels. PPM1D promoter activity was positively regulated by NF-kappaB, and this regulation was dependent on the presence of the conserved kappaB site in the PPM1D promoter region. Chromatin immunoprecipitation analysis showed basal binding of the p65 NF-kappaB subunit to the PPM1D promoter region encompassing the kappaB site, which is enhanced after NF-kappaB activation by tumor necrosis factor-alpha. Finally, we show that Wip1 expression is induced in lipopolysaccharide-stimulated mouse splenic B-cells and is required for maximum proliferation. Taken together, these data suggest an additional mechanism by which NF-kappaB may promote tumorigenesis, support the selective use of NF-kappaB inhibitors as chemotherapeutic agents for the treatment of human cancers, and further define a function for Wip1 in inflammation.
Collapse
Affiliation(s)
- Julie M Lowe
- Department of Biochemistry and Molecular and Cellular Biology, Lombardi Comprehensive Center, Georgetown University, Washington, DC 20057, USA
| | | | | | | |
Collapse
|
47
|
Le Guezennec X, Bulavin DV. WIP1 phosphatase at the crossroads of cancer and aging. Trends Biochem Sci 2009; 35:109-14. [PMID: 19879149 DOI: 10.1016/j.tibs.2009.09.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 09/10/2009] [Accepted: 09/10/2009] [Indexed: 01/07/2023]
Abstract
The PP2C family serine/threonine phosphatase WIP1 is characterized by distinctive oncogenic properties mediated by inhibitory functions on several tumor suppressor pathways, including ATM, CHK2, p38MAPK and p53. PPM1D, the gene encoding WIP1, is aberrantly amplified in different types of human primary cancers, and its deletion in mice results in a profound tumor-resistant phenotype. Numerous downstream targets of WIP1 have been identified, and genetic studies confirm that some play a part in tumorigenesis. Recent evidence highlights a new role for WIP1 in the regulation of a cell-autonomous decline in proliferation of certain self-renewing cell types, including pancreatic beta-cells, with advancing age. These emerging functions of WIP1 make it a potent therapeutic target against cancer and aging.
Collapse
Affiliation(s)
- Xavier Le Guezennec
- Institute of Molecular and Cell Biology, Cell Cycle Control and Tumorigenesis Group, 61 Biopolis Drive, Proteos, Singapore
| | | |
Collapse
|
48
|
Zhang X, Lin L, Guo H, Yang J, Jones SN, Jochemsen A, Lu X. Phosphorylation and degradation of MdmX is inhibited by Wip1 phosphatase in the DNA damage response. Cancer Res 2009; 69:7960-8. [PMID: 19808970 DOI: 10.1158/0008-5472.can-09-0634] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
MdmX and Mdm2 regulate p53 tumor suppressor functions by controlling p53 transcriptional activity and/or stability in cells exposed to DNA damage. Accumulating evidence indicates that ATM-mediated phosphorylation and degradation of Mdm2 and MdmX may be the initial driving force that induces p53 activity during the early phase of the DNA damage response. We have recently determined that a novel protein phosphatase, Wip1 (or PPM1D), contributes to p53 regulation by dephosphorylating Mdm2 to close the p53 activation loop initiated by the ATM/ATR kinases. In the present study, we determine that Wip1 directly dephosphorylates MdmX at the ATM-targeted Ser403 and indirectly suppresses phosphorylation of MdmX at Ser342 and Ser367. Wip1 inhibits the DNA damage-induced ubiquitination and degradation of MdmX, leading to the stabilization of MdmX and reduction of p53 activities. Our data suggest that Wip1 is an important component in the ATM-p53-MdmX regulatory loop.
Collapse
Affiliation(s)
- Xinna Zhang
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208, USA
| | | | | | | | | | | | | |
Collapse
|