1
|
Salman B, Bon E, Delers P, Cottin S, Pasho E, Ciura S, Sapaly D, Lefebvre S. Understanding the Role of the SMN Complex Component GEMIN5 and Its Functional Relationship with Demethylase KDM6B in the Flunarizine-Mediated Neuroprotection of Motor Neuron Disease Spinal Muscular Atrophy. Int J Mol Sci 2024; 25:10039. [PMID: 39337533 PMCID: PMC11431868 DOI: 10.3390/ijms251810039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Dysregulated RNA metabolism caused by SMN deficiency leads to motor neuron disease spinal muscular atrophy (SMA). Current therapies improve patient outcomes but achieve no definite cure, prompting renewed efforts to better understand disease mechanisms. The calcium channel blocker flunarizine improves motor function in Smn-deficient mice and can help uncover neuroprotective pathways. Murine motor neuron-like NSC34 cells were used to study the molecular cell-autonomous mechanism. Following RNA and protein extraction, RT-qPCR and immunodetection experiments were performed. The relationship between flunarizine mRNA targets and RNA-binding protein GEMIN5 was explored by RNA-immunoprecipitation. Flunarizine increases demethylase Kdm6b transcripts across cell cultures and mouse models. It causes, in NSC34 cells, a temporal expression of GEMIN5 and KDM6B. GEMIN5 binds to flunarizine-modulated mRNAs, including Kdm6b transcripts. Gemin5 depletion reduces Kdm6b mRNA and protein levels and hampers responses to flunarizine, including neurite extension in NSC34 cells. Moreover, flunarizine increases the axonal extension of motor neurons derived from SMA patient-induced pluripotent stem cells. Finally, immunofluorescence studies of spinal cord motor neurons in Smn-deficient mice reveal that flunarizine modulates the expression of KDM6B and its target, the motor neuron-specific transcription factor HB9, driving motor neuron maturation. Our study reveals GEMIN5 regulates Kdm6b expression with implications for motor neuron diseases and therapy.
Collapse
Affiliation(s)
- Badih Salman
- T3S, INSERM UMR1124, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Cité, F-75006 Paris, France
| | - Emeline Bon
- T3S, INSERM UMR1124, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Cité, F-75006 Paris, France
| | - Perrine Delers
- T3S, INSERM UMR1124, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Cité, F-75006 Paris, France
| | - Steve Cottin
- T3S, INSERM UMR1124, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Cité, F-75006 Paris, France
| | - Elena Pasho
- INSERM UMR1163, Institut Imagine, Université Paris Cité, F-75015 Paris, France
| | - Sorana Ciura
- INSERM UMR1163, Institut Imagine, Université Paris Cité, F-75015 Paris, France
| | - Delphine Sapaly
- T3S, INSERM UMR1124, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Cité, F-75006 Paris, France
| | - Suzie Lefebvre
- T3S, INSERM UMR1124, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Cité, F-75006 Paris, France
| |
Collapse
|
2
|
Francisco-Velilla R, Abellan S, Embarc-Buh A, Martinez-Salas E. Oligomerization regulates the interaction of Gemin5 with members of the SMN complex and the translation machinery. Cell Death Discov 2024; 10:306. [PMID: 38942768 PMCID: PMC11213948 DOI: 10.1038/s41420-024-02057-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/30/2024] Open
Abstract
RNA-binding proteins are multifunctional molecules impacting on multiple steps of gene regulation. Gemin5 was initially identified as a member of the survival of motor neurons (SMN) complex. The protein is organized in structural and functional domains, including a WD40 repeats domain at the N-terminal region, a tetratricopeptide repeat (TPR) dimerization module at the central region, and a non-canonical RNA-binding site at the C-terminal end. The TPR module allows the recruitment of the endogenous Gemin5 protein in living cells and the assembly of a dimer in vitro. However, the biological relevance of Gemin5 oligomerization is not known. Here we interrogated the Gemin5 interactome focusing on oligomerization-dependent or independent regions. We show that the interactors associated with oligomerization-proficient domains were primarily annotated to ribosome, splicing, translation regulation, SMN complex, and RNA stability. The presence of distinct Gemin5 protein regions in polysomes highlighted differences in translation regulation based on their oligomerization capacity. Furthermore, the association with native ribosomes and negative regulation of translation was strictly dependent on both the WD40 repeats domain and the TPR dimerization moiety, while binding with the majority of the interacting proteins, including SMN, Gemin2, and Gemin4, was determined by the dimerization module. The loss of oligomerization did not perturb the predominant cytoplasmic localization of Gemin5, reinforcing the cytoplasmic functions of this essential protein. Our work highlights a distinctive role of the Gemin5 domains for its functions in the interaction with members of the SMN complex, ribosome association, and RBP interactome.
Collapse
Affiliation(s)
| | - Salvador Abellan
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, 28049, Madrid, Spain
| | - Azman Embarc-Buh
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, 28049, Madrid, Spain
| | | |
Collapse
|
3
|
Francisco-Velilla R, Abellan S, Garcia-Martin JA, Oliveros JC, Martinez-Salas E. Alternative splicing events driven by altered levels of GEMIN5 undergo translation. RNA Biol 2024; 21:23-34. [PMID: 39194147 PMCID: PMC11364065 DOI: 10.1080/15476286.2024.2394755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/26/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
GEMIN5 is a multifunctional protein involved in various aspects of RNA biology, including biogenesis of snRNPs and translation control. Reduced levels of GEMIN5 confer a differential translation to selective groups of mRNAs, and biallelic variants reducing protein stability or inducing structural conformational changes are associated with neurological disorders. Here, we show that upregulation of GEMIN5 can be detrimental as it modifies the steady state of mRNAs and enhances alternative splicing (AS) events of genes involved in a broad range of cellular processes. RNA-Seq identification of the mRNAs associated with polysomes in cells with high levels of GEMIN5 revealed that a significant fraction of the differential AS events undergo translation. The association of mRNAs with polysomes was dependent on the type of AS event, being more frequent in the case of exon skipping. However, there were no major differences in the percentage of genes showing open-reading frame disruption. Importantly, differential AS events in mRNAs engaged in polysomes, eventually rendering non-functional proteins, encode factors controlling cell growth. The broad range of mRNAs comprising AS events engaged in polysomes upon GEMIN5 upregulation supports the notion that this multifunctional protein has evolved as a gene expression balancer, consistent with its dual role as a member of the SMN complex and as a modulator of protein synthesis, ultimately impinging on cell homoeostasis.
Collapse
Affiliation(s)
| | - Salvador Abellan
- Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | | | - Juan Carlos Oliveros
- Bioinformatics for Genomics and Proteomics Unit, Centro Nacional de Biotecnologia. CSIC, Madrid, Spain
| | | |
Collapse
|
4
|
Hayek H, Gross L, Alghoul F, Martin F, Eriani G, Allmang C. Immunoprecipitation Methods to Isolate Messenger Ribonucleoprotein Complexes (mRNP). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 3234:1-15. [PMID: 38507196 DOI: 10.1007/978-3-031-52193-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Throughout their life cycle, messenger RNAs (mRNAs) associate with proteins to form ribonucleoproteins (mRNPs). Each mRNA is part of multiple successive mRNP complexes that participate in their biogenesis, cellular localization, translation and decay. The dynamic composition of mRNP complexes and their structural remodelling play crucial roles in the control of gene expression. Studying the endogenous composition of different mRNP complexes is a major challenge. In this chapter, we describe the variety of protein-centric immunoprecipitation methods available for the identification of mRNP complexes and the requirements for their experimental settings.
Collapse
Affiliation(s)
- Hassan Hayek
- Architecture et Réactivité de l'ARN, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Lauriane Gross
- Architecture et Réactivité de l'ARN, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Fatima Alghoul
- Architecture et Réactivité de l'ARN, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Franck Martin
- Architecture et Réactivité de l'ARN, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Gilbert Eriani
- Architecture et Réactivité de l'ARN, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Christine Allmang
- Architecture et Réactivité de l'ARN, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
5
|
Takada Y, Fierro L, Sato K, Sanada T, Ishii A, Yamamoto T, Kotani T. Mature mRNA processing that deletes 3' end sequences directs translational activation and embryonic development. SCIENCE ADVANCES 2023; 9:eadg6532. [PMID: 38000026 PMCID: PMC10672166 DOI: 10.1126/sciadv.adg6532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023]
Abstract
Eggs accumulate thousands of translationally repressed mRNAs that are translated into proteins after fertilization to direct diverse developmental processes. However, molecular mechanisms underlying the translation of stored mRNAs after fertilization remain unclear. Here, we report a previously unknown RNA processing of 3' end sequences of mature mRNAs that activates the translation of stored mRNAs. Specifically, 9 to 72 nucleotides at the 3' ends of zebrafish pou5f3 and mouse Pou5f1 mRNAs were deleted in the early stages of development. Reporter assays illustrated the effective translation of the truncated forms of mRNAs. Moreover, promotion and inhibition of the shortening of 3' ends accelerated and attenuated Pou5f3 accumulation, respectively, resulting in defective development. Identification of proteins binding to unprocessed and/or processed mRNAs revealed that mRNA shortening acts as molecular switches. Comprehensive analysis revealed that >250 mRNAs underwent this processing. Therefore, our results provide a molecular principle that triggers the translational activation and directs development.
Collapse
Affiliation(s)
- Yuki Takada
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Ludivine Fierro
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Keisuke Sato
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takahiro Sanada
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Anna Ishii
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takehiro Yamamoto
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Tomoya Kotani
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
6
|
Ariza-Mateos A, Briones C, Perales C, Bayo-Jiménez MT, Domingo E, Gómez J. Viruses as archaeological tools for uncovering ancient molecular relationships. Ann N Y Acad Sci 2023; 1529:3-13. [PMID: 37801367 DOI: 10.1111/nyas.15071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
The entry of a virus into the host cell always implies the alteration of certain intracellular molecular relationships, some of which may involve the recovery of ancient cellular activities. In this sense, viruses are archaeological tools for identifying unexpressed activities in noninfected cells. Among these, activities that hinder virus propagation may represent cellular defense mechanisms, for example, activities that mutagenize the viral genome such as ADAR-1 or APOBEC activities. Instead, those that facilitate virus propagation can be interpreted as the result of viral adaptation to-or mimicking-cellular structures, enabling the virus to perform anthropomorphic activities, including hijacking, manipulating, and reorganizing cellular factors for their own benefit. The alternative we consider here is that some of these second set of cellular activities were already in the uninfected cell but silenced, under the negative control of the cell or lineage, and that they represent a necessary precondition for viral infection. For example, specifically loading an amino acid at the 3'-end of the mRNA of some plant viruses by aminoacyl-tRNA synthetases has proved essential for virus infection despite this reaction not occurring with cellular mRNAs. Other activities of this type are discussed here, together with the biological context in which they acquire a coherent meaning, that is, genetic latency and molecular conflict.
Collapse
Affiliation(s)
- Ascensión Ariza-Mateos
- Laboratory of RNA Archaeology, Instituto de Parasitología y Biomedicina "López-Neyra" (CSIC), Granada, Spain
| | - Carlos Briones
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | - Celia Perales
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - María Teresa Bayo-Jiménez
- Laboratory of RNA Archaeology, Instituto de Parasitología y Biomedicina "López-Neyra" (CSIC), Granada, Spain
| | - Esteban Domingo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Jordi Gómez
- Laboratory of RNA Archaeology, Instituto de Parasitología y Biomedicina "López-Neyra" (CSIC), Granada, Spain
| |
Collapse
|
7
|
Abstract
Viruses lack the properties to replicate independently due to the limited resources encoded in their genome; therefore, they hijack the host cell machinery to replicate and survive. Picornaviruses get the prerequisite for effective protein synthesis through specific sequences known as internal ribosome entry sites (IRESs). In the past 2 decades, significant progress has been made in identifying different types of IRESs in picornaviruses. This review will discuss the past and current findings related to the five different types of IRESs and various internal ribosome entry site trans-acting factors (ITAFs) that either promote or suppress picornavirus translation and replication. Some IRESs are inefficient and thus require ITAFs. To achieve their full efficiency, they recruit various ITAFs, which enable them to translate more effectively and efficiently, except type IV IRES, which does not require any ITAFs. Although there are two kinds of ITAFs, one promotes viral IRES-dependent translation, and the second type restricts. Picornaviruses IRESs are classified into five types based on their use of sequence, ITAFs, and initiation factors. Some ITAFs regulate IRES activity by localizing to the viral replication factories in the cytoplasm. Also, some drugs, chemicals, and herbal extracts also regulate viral IRES-dependent translation and replication. Altogether, this review will elaborate on our understanding of the past and recent advancements in the IRES-dependent translation and replication of picornaviruses. IMPORTANCE The family Picornaviridae is divided into 68 genera and 158 species. The viruses belonging to this family range from public health importance, such as poliovirus, enterovirus A71, and hepatitis A virus, to animal viruses of great economic importance, such as foot-and-mouth disease virus. The genomes of picornaviruses contain 5' untranslated regions (5' UTRs), which possess crucial and highly structured stem-loops known as IRESs. IRES assemble the ribosomes and facilitate the cap-independent translation. Virus-host interaction is a hot spot for researchers, which warrants deep insight into understanding viral pathogenesis better and discovering new tools and ways for viral restriction to improve human and animal health. The cap-independent translation in the majority of picornaviruses is modulated by ITAFs, which bind to various IRES regions to initiate the translation. The discoveries of ITAFs substantially contributed to understanding viral replication behavior and enhanced our knowledge about virus-host interaction more effectively than ever before. This review discussed the various types of IRESs found in Picornaviridae, past and present discoveries regarding ITAFs, and their mechanism of action. The herbal extracts, drugs, and chemicals, which indicated their importance in controlling viruses, were also summarized. In addition, we discussed the movement of ITAFs from the nucleus to viral replication factories. We believe this review will stimulate researchers to search for more novel ITAFs, drugs, herbal extracts, and chemicals, enhancing the understanding of virus-host interaction.
Collapse
|
8
|
Faravelli I, Riboldi GM, Rinchetti P, Lotti F. The SMN Complex at the Crossroad between RNA Metabolism and Neurodegeneration. Int J Mol Sci 2023; 24:2247. [PMID: 36768569 PMCID: PMC9917330 DOI: 10.3390/ijms24032247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
In the cell, RNA exists and functions in a complex with RNA binding proteins (RBPs) that regulate each step of the RNA life cycle from transcription to degradation. Central to this regulation is the role of several molecular chaperones that ensure the correct interactions between RNA and proteins, while aiding the biogenesis of large RNA-protein complexes (ribonucleoproteins or RNPs). Accurate formation of RNPs is fundamentally important to cellular development and function, and its impairment often leads to disease. The survival motor neuron (SMN) protein exemplifies this biological paradigm. SMN is part of a multi-protein complex essential for the biogenesis of various RNPs that function in RNA metabolism. Mutations leading to SMN deficiency cause the neurodegenerative disease spinal muscular atrophy (SMA). A fundamental question in SMA biology is how selective motor system dysfunction results from reduced levels of the ubiquitously expressed SMN protein. Recent clarification of the central role of the SMN complex in RNA metabolism and a thorough characterization of animal models of SMA have significantly advanced our knowledge of the molecular basis of the disease. Here we review the expanding role of SMN in the regulation of gene expression through its multiple functions in RNP biogenesis. We discuss developments in our understanding of SMN activity as a molecular chaperone of RNPs and how disruption of SMN-dependent RNA pathways can contribute to the SMA phenotype.
Collapse
Affiliation(s)
- Irene Faravelli
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Motor Neuron Biology and Diseases, Departments of Pathology & Cell Biology, and Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Giulietta M. Riboldi
- Center for Motor Neuron Biology and Diseases, Departments of Pathology & Cell Biology, and Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
- The Marlene and Paolo Fresco Institute for Parkinson’s and Movement Disorders, NYU Langone Health, New York, NY 10017, USA
| | - Paola Rinchetti
- Center for Motor Neuron Biology and Diseases, Departments of Pathology & Cell Biology, and Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Francesco Lotti
- Center for Motor Neuron Biology and Diseases, Departments of Pathology & Cell Biology, and Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
9
|
Angulo J, Cáceres CJ, Contreras N, Fernández-García L, Chamond N, Ameur M, Sargueil B, López-Lastra M. Polypyrimidine-Tract-Binding Protein Isoforms Differentially Regulate the Hepatitis C Virus Internal Ribosome Entry Site. Viruses 2022; 15:8. [PMID: 36680049 PMCID: PMC9864772 DOI: 10.3390/v15010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/03/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Translation initiation of the hepatitis C virus (HCV) mRNA depends on an internal ribosome entry site (IRES) that encompasses most of the 5'UTR and includes nucleotides of the core coding region. This study shows that the polypyrimidine-tract-binding protein (PTB), an RNA-binding protein with four RNA recognition motifs (RRMs), binds to the HCV 5'UTR, stimulating its IRES activity. There are three isoforms of PTB: PTB1, PTB2, and PTB4. Our results show that PTB1 and PTB4, but not PTB2, stimulate HCV IRES activity in HuH-7 and HEK293T cells. In HuH-7 cells, PTB1 promotes HCV IRES-mediated initiation more strongly than PTB4. Mutations in PTB1, PTB4, RRM1/RRM2, or RRM3/RRM4, which disrupt the RRM's ability to bind RNA, abrogated the protein's capacity to stimulate HCV IRES activity in HuH-7 cells. In HEK293T cells, PTB1 and PTB4 stimulate HCV IRES activity to similar levels. In HEK293T cells, mutations in RRM1/RRM2 did not impact PTB1's ability to promote HCV IRES activity; and mutations in PTB1 RRM3/RRM4 domains reduced, but did not abolish, the protein's capacity to stimulate HCV IRES activity. In HEK293T cells, mutations in PTB4 RRM1/RRM2 abrogated the protein's ability to promote HCV IRES activity, and mutations in RRM3/RRM4 have no impact on PTB4 ability to enhance HCV IRES activity. Therefore, PTB1 and PTB4 differentially stimulate the IRES activity in a cell type-specific manner. We conclude that PTB1 and PTB4, but not PTB2, act as IRES transacting factors of the HCV IRES.
Collapse
Affiliation(s)
- Jenniffer Angulo
- Laboratorio de Virología Molecular, Centro de Investigaciones Médicas, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
- Facultad de Odontología, Universidad Finis Terrae, Santiago 7501015, Chile
| | - C. Joaquín Cáceres
- Laboratorio de Virología Molecular, Centro de Investigaciones Médicas, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Nataly Contreras
- Laboratorio de Virología Molecular, Centro de Investigaciones Médicas, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago 7500975, Chile
| | - Leandro Fernández-García
- Laboratorio de Virología Molecular, Centro de Investigaciones Médicas, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Nathalie Chamond
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8038, Laboratoire CiTCoM, Université Paris Cité, 75006 Paris, France
| | - Melissa Ameur
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8038, Laboratoire CiTCoM, Université Paris Cité, 75006 Paris, France
| | - Bruno Sargueil
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8038, Laboratoire CiTCoM, Université Paris Cité, 75006 Paris, France
| | - Marcelo López-Lastra
- Laboratorio de Virología Molecular, Centro de Investigaciones Médicas, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| |
Collapse
|
10
|
Francisco-Velilla R, Embarc-Buh A, Abellan S, del Caño-Ochoa F, Ramón-Maiques S, Martinez-Salas E. Phosphorylation of T897 in the dimerization domain of Gemin5 modulates protein interactions and translation regulation. Comput Struct Biotechnol J 2022; 20:6182-6191. [DOI: 10.1016/j.csbj.2022.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
|
11
|
Sadic M, Schneider WM, Katsara O, Medina GN, Fisher A, Mogulothu A, Yu Y, Gu M, de los Santos T, Schneider RJ, Dittmann M. DDX60 selectively reduces translation off viral type II internal ribosome entry sites. EMBO Rep 2022; 23:e55218. [PMID: 36256515 PMCID: PMC9724679 DOI: 10.15252/embr.202255218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/07/2022] [Accepted: 09/15/2022] [Indexed: 11/05/2022] Open
Abstract
Co-opting host cell protein synthesis is a hallmark of many virus infections. In response, certain host defense proteins limit mRNA translation globally, albeit at the cost of the host cell's own protein synthesis. Here, we describe an interferon-stimulated helicase, DDX60, that decreases translation from viral internal ribosome entry sites (IRESs). DDX60 acts selectively on type II IRESs of encephalomyocarditis virus (EMCV) and foot and mouth disease virus (FMDV), but not by other IRES types or by 5' cap. Correspondingly, DDX60 reduces EMCV and FMDV (type II IRES) replication, but not that of poliovirus or bovine enterovirus 1 (BEV-1; type I IRES). Furthermore, replacing the IRES of poliovirus with a type II IRES is sufficient for DDX60 to inhibit viral replication. Finally, DDX60 selectively modulates the amount of translating ribosomes on viral and in vitro transcribed type II IRES mRNAs, but not 5' capped mRNA. Our study identifies a novel facet in the repertoire of interferon-stimulated effector genes, the selective downregulation of translation from viral type II IRES elements.
Collapse
Affiliation(s)
| | | | | | - Gisselle N Medina
- Plum Island Animal Disease Center, ARSUSDAGreenportNYUSA,National Bio and Agro‐Defense Facility (NBAF), ARSUSDAManhattanKSUSA
| | | | - Aishwarya Mogulothu
- Plum Island Animal Disease Center, ARSUSDAGreenportNYUSA,Department of Pathobiology and Veterinary ScienceUniversity of ConnecticutStorrsCTUSA
| | - Yingpu Yu
- The Rockefeller UniversityNew YorkNYUSA
| | | | | | | | | |
Collapse
|
12
|
Structural basis for Gemin5 decamer-mediated mRNA binding. Nat Commun 2022; 13:5166. [PMID: 36056043 PMCID: PMC9440017 DOI: 10.1038/s41467-022-32883-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Gemin5 in the Survival Motor Neuron (SMN) complex serves as the RNA-binding protein to deliver small nuclear RNAs (snRNAs) to the small nuclear ribonucleoprotein Sm complex via its N-terminal WD40 domain. Additionally, the C-terminal region plays an important role in regulating RNA translation by directly binding to viral RNAs and cellular mRNAs. Here, we present the three-dimensional structure of the Gemin5 C-terminal region, which adopts a homodecamer architecture comprised of a dimer of pentamers. By structural analysis, mutagenesis, and RNA-binding assays, we find that the intact pentamer/decamer is critical for the Gemin5 C-terminal region to bind cognate RNA ligands and to regulate mRNA translation. The Gemin5 high-order architecture is assembled via pentamerization, allowing binding to RNA ligands in a coordinated manner. We propose a model depicting the regulatory role of Gemin5 in selective RNA binding and translation. Therefore, our work provides insights into the SMN complex-independent function of Gemin5. Structural biology, complemented by biochemistry experiments and RNA-binding assays show that the Gemin5 C-terminal region adopts a decamer architecture. Gemin5 decamerization is essential for its role in regulating mRNA translation.
Collapse
|
13
|
Embarc-Buh A, Francisco-Velilla R, Garcia-Martin JA, Abellan S, Ramajo J, Martinez-Salas E. Gemin5-dependent RNA association with polysomes enables selective translation of ribosomal and histone mRNAs. Cell Mol Life Sci 2022; 79:490. [PMID: 35987821 PMCID: PMC9392717 DOI: 10.1007/s00018-022-04519-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 11/03/2022]
Abstract
AbstractSelective translation allows to orchestrate the expression of specific proteins in response to different signals through the concerted action of cis-acting elements and RNA-binding proteins (RBPs). Gemin5 is a ubiquitous RBP involved in snRNP assembly. In addition, Gemin5 regulates translation of different mRNAs through apparently opposite mechanisms of action. Here, we investigated the differential function of Gemin5 in translation by identifying at a genome-wide scale the mRNAs associated with polysomes. Among the mRNAs showing Gemin5-dependent enrichment in polysomal fractions, we identified a selective enhancement of specific transcripts. Comparison of the targets previously identified by CLIP methodologies with the polysome-associated transcripts revealed that only a fraction of the targets was enriched in polysomes. Two different subsets of these mRNAs carry unique cis-acting regulatory elements, the 5’ terminal oligopyrimidine tracts (5’TOP) and the histone stem-loop (hSL) structure at the 3’ end, respectively, encoding ribosomal proteins and histones. RNA-immunoprecipitation (RIP) showed that ribosomal and histone mRNAs coprecipitate with Gemin5. Furthermore, disruption of the TOP motif impaired Gemin5-RNA interaction, and functional analysis showed that Gemin5 stimulates translation of mRNA reporters bearing an intact TOP motif. Likewise, Gemin5 enhanced hSL-dependent mRNA translation. Thus, Gemin5 promotes polysome association of only a subset of its targets, and as a consequence, it favors translation of the ribosomal and the histone mRNAs. Together, the results presented here unveil Gemin5 as a novel translation regulator of mRNA subsets encoding proteins involved in fundamental cellular processes.
Collapse
|
14
|
Wang Z, Zhong Z, Jiang Z, Chen Z, Chen Y, Xu Y. A novel prognostic 7-methylguanosine signature reflects immune microenvironment and alternative splicing in glioma based on multi-omics analysis. Front Cell Dev Biol 2022; 10:902394. [PMID: 36036011 PMCID: PMC9399734 DOI: 10.3389/fcell.2022.902394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/15/2022] [Indexed: 02/05/2023] Open
Abstract
Glioma is the most common type of central nervous system tumor with increasing incidence. 7-methylguanosine (m7G) is one of the diverse RNA modifications that is known to regulate RNA metabolism and its dysregulation was associated with various cancers. However, the expression pattern of m7G regulators and their roles in regulating tumor immune microenvironments (TIMEs) as well as alternative splicing events (ASEs) in glioma has not been reported. In this study, we showed that m7G regulators displayed a close correlation with each other and most of them were differentially expressed between normal and glioma tissues. Two m7G signatures were then constructed to predict the overall survival of both GBM and LGG patients with moderate predictive performance. The risk score calculated from the regression coefficient and expression level of signature genes was proved to be an independent prognostic factor for patients with LGG, thus, a nomogram was established on the risk score and other independent clinical parameters to predict the survival probability of LGG patients. We also investigated the correlation of m7G signatures with TIMEs in terms of immune scores, expression levels of HLA and immune checkpoint genes, immune cell composition, and immune-related functions. While exploring the correlation between signature genes and the ASEs in glioma, we found that EIF4E1B was a key regulator and might play dual roles depending on glioma grade. By incorporating spatial transcriptomic data, we found a cluster of cells featured by high expression of PTN exhibited the highest m7G score and may communicate with adjacent cancer cells via SPP1 and PTN signaling pathways. In conclusion, our work brought novel insights into the roles of m7G modification in TIMEs and ASEs in glioma, suggesting that evaluation of m7G in glioma could predict prognosis. Moreover, our data suggested that blocking SPP1 and PTN pathways might be a strategy for combating glioma.
Collapse
Affiliation(s)
- Zihan Wang
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Shantou University Medical College, Shantou, China
| | - Zhiwei Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Shantou University Medical College, Shantou, China
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Zehua Jiang
- Shantou University Medical College, Shantou, China
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Zepeng Chen
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Shantou University Medical College, Shantou, China
| | - Yuequn Chen
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Shantou University Medical College, Shantou, China
| | - Yimin Xu
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
15
|
Francisco-Velilla R, Embarc-Buh A, Del Caño-Ochoa F, Abellan S, Vilar M, Alvarez S, Fernandez-Jaen A, Kour S, Rajan DS, Pandey UB, Ramón-Maiques S, Martinez-Salas E. Functional and structural deficiencies of Gemin5 variants associated with neurological disorders. Life Sci Alliance 2022; 5:5/7/e202201403. [PMID: 35393353 PMCID: PMC8989681 DOI: 10.26508/lsa.202201403] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/15/2022] Open
Abstract
Dysfunction of RNA-binding proteins is often linked to a wide range of human disease, particularly with neurological conditions. Gemin5 is a member of the survival of the motor neurons (SMN) complex, a ribosome-binding protein and a translation reprogramming factor. Recently, pathogenic mutations in Gemin5 have been reported, but the functional consequences of these variants remain elusive. Here, we report functional and structural deficiencies associated with compound heterozygosity variants within the Gemin5 gene found in patients with neurodevelopmental disorders. These clinical variants are located in key domains of Gemin5, the tetratricopeptide repeat (TPR)-like dimerization module and the noncanonical RNA-binding site 1 (RBS1). We show that the TPR-like variants disrupt protein dimerization, whereas the RBS1 variant confers protein instability. All mutants are defective in the interaction with protein networks involved in translation and RNA-driven pathways. Importantly, the TPR-like variants fail to associate with native ribosomes, hampering its involvement in translation control and establishing a functional difference with the wild-type protein. Our study provides insights into the molecular basis of disease associated with malfunction of the Gemin5 protein.
Collapse
Affiliation(s)
- Rosario Francisco-Velilla
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Cientificas - Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Azman Embarc-Buh
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Cientificas - Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Francisco Del Caño-Ochoa
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Salvador Abellan
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Cientificas - Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Marçal Vilar
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
| | - Sara Alvarez
- New Integrated Medical Genetics (NIMGENETICS), Madrid, Spain
| | - Alberto Fernandez-Jaen
- Neuropediatric Department, Hospital Universitario Quirónsalud, Madrid, Spain.,School of Medicine, Universidad Europea de Madrid, Madrid, Spain
| | - Sukhleen Kour
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Deepa S Rajan
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Udai Bhan Pandey
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Santiago Ramón-Maiques
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Encarnacion Martinez-Salas
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Cientificas - Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| |
Collapse
|
16
|
Rajan DS, Kour S, Fortuna TR, Cousin MA, Barnett SS, Niu Z, Babovic-Vuksanovic D, Klee EW, Kirmse B, Innes M, Rydning SL, Selmer KK, Vigeland MD, Erichsen AK, Nemeth AH, Millan F, DeVile C, Fawcett K, Legendre A, Sims D, Schnekenberg RP, Burglen L, Mercier S, Bakhtiari S, Francisco-Velilla R, Embarc-Buh A, Martinez-Salas E, Wigby K, Lenberg J, Friedman JR, Kruer MC, Pandey UB. Autosomal Recessive Cerebellar Atrophy and Spastic Ataxia in Patients With Pathogenic Biallelic Variants in GEMIN5. Front Cell Dev Biol 2022; 10:783762. [PMID: 35295849 PMCID: PMC8918504 DOI: 10.3389/fcell.2022.783762] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/17/2022] [Indexed: 01/01/2023] Open
Abstract
The hereditary ataxias are a heterogenous group of disorders with an increasing number of causative genes being described. Due to the clinical and genetic heterogeneity seen in these conditions, the majority of such individuals endure a diagnostic odyssey or remain undiagnosed. Defining the molecular etiology can bring insights into the responsible molecular pathways and eventually the identification of therapeutic targets. Here, we describe the identification of biallelic variants in the GEMIN5 gene among seven unrelated families with nine affected individuals presenting with spastic ataxia and cerebellar atrophy. GEMIN5, an RNA-binding protein, has been shown to regulate transcription and translation machinery. GEMIN5 is a component of small nuclear ribonucleoprotein (snRNP) complexes and helps in the assembly of the spliceosome complexes. We found that biallelic GEMIN5 variants cause structural abnormalities in the encoded protein and reduce expression of snRNP complex proteins in patient cells compared with unaffected controls. Finally, knocking out endogenous Gemin5 in mice caused early embryonic lethality, suggesting that Gemin5 expression is crucial for normal development. Our work further expands on the phenotypic spectrum associated with GEMIN5-related disease and implicates the role of GEMIN5 among patients with spastic ataxia, cerebellar atrophy, and motor predominant developmental delay.
Collapse
Affiliation(s)
- Deepa S. Rajan
- Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Sukhleen Kour
- Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Tyler R. Fortuna
- Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Margot A. Cousin
- Department of Center for Individualized Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| | - Sarah S. Barnett
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Zhiyv Niu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, United States
| | - Dusica Babovic-Vuksanovic
- Department of Center for Individualized Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, United States
| | - Eric W. Klee
- Department of Center for Individualized Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, United States
| | - Brian Kirmse
- Division of Genetics, University of Mississippi Medical Center, Jackson, MS, United States
| | - Micheil Innes
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Kaja K. Selmer
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital and the University of Oslo, Oslo, Norway
| | - Magnus Dehli Vigeland
- Department of Medical Genetics, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Andrea H. Nemeth
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | | | | | - Katherine Fawcett
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - Adrien Legendre
- Laboratoire de biologie médicale multisites Seqoia—FMG2025, Paris, France
| | - David Sims
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Lydie Burglen
- Centre de Référence des Malformations et Maladies Congénitales du Cervelet et Laboratoire de Neurogénétique Moléculaire, Département de Génétique, AP-HP. Sorbonne Université, Hôpital Trousseau, Paris, France
- Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Sandra Mercier
- CHU Nantes, Service de génétique médicale, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Nantes, France
- Nantes Université, CNRS, INSERM, l’institut du thorax, Nantes, France
| | - Somayeh Bakhtiari
- Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ, United States
- Departments of Child Health, Neurology, Cellular and Molecular Medicine and Program in Genetics, University of Arizona College of Medicine—Phoenix, Phoenix, AZ, United States
| | | | - Azman Embarc-Buh
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | | | - Kristen Wigby
- Department of Pediatrics, University of California San Diego, San Diego, CA, United States
- Rady Children’s Institute for Genomic Medicine, San Diego, CA, United States
| | - Jerica Lenberg
- Rady Children’s Institute for Genomic Medicine, San Diego, CA, United States
| | - Jennifer R. Friedman
- Department of Neurosciences, University of California San Diego, San Diego, CA, United States
- Department of Pediatrics, University of California San Diego, San Diego, CA, United States
- Rady Children’s Institute for Genomic Medicine, San Diego, CA, United States
| | - Michael C. Kruer
- Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ, United States
- Departments of Child Health, Neurology, Cellular and Molecular Medicine and Program in Genetics, University of Arizona College of Medicine—Phoenix, Phoenix, AZ, United States
| | - Udai Bhan Pandey
- Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- *Correspondence: Udai Bhan Pandey,
| |
Collapse
|
17
|
RNA-Binding Proteins as Regulators of Internal Initiation of Viral mRNA Translation. Viruses 2022; 14:v14020188. [PMID: 35215780 PMCID: PMC8879377 DOI: 10.3390/v14020188] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/03/2022] [Accepted: 01/14/2022] [Indexed: 12/17/2022] Open
Abstract
Viruses are obligate intracellular parasites that depend on the host’s protein synthesis machinery for translating their mRNAs. The viral mRNA (vRNA) competes with the host mRNA to recruit the translational machinery, including ribosomes, tRNAs, and the limited eukaryotic translation initiation factor (eIFs) pool. Many viruses utilize non-canonical strategies such as targeting host eIFs and RNA elements known as internal ribosome entry sites (IRESs) to reprogram cellular gene expression, ensuring preferential translation of vRNAs. In this review, we discuss vRNA IRES-mediated translation initiation, highlighting the role of RNA-binding proteins (RBPs), other than the canonical translation initiation factors, in regulating their activity.
Collapse
|
18
|
Embarc-Buh A, Francisco-Velilla R, Camero S, Pérez-Cañadillas JM, Martínez-Salas E. The RBS1 domain of Gemin5 is intrinsically unstructured and interacts with RNA through conserved Arg and aromatic residues. RNA Biol 2021; 18:496-506. [PMID: 34424823 PMCID: PMC8677033 DOI: 10.1080/15476286.2021.1962666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Gemin5 is a multifaceted RNA-binding protein that comprises distinct structural domains, including a WD40 and TPR-like for which the X-ray structure is known. In addition, the protein contains a non-canonical RNA-binding domain (RBS1) towards the C-terminus. To understand the RNA binding features of the RBS1 domain, we have characterized its structural characteristics by solution NMR linked to RNA-binding activity. Here we show that a short version of the RBS1 domain that retains the ability to interact with RNA is predominantly unfolded even in the presence of RNA. Furthermore, an exhaustive mutational analysis indicates the presence of an evolutionarily conserved motif enriched in R, S, W, and H residues, necessary to promote RNA-binding via π-π interactions. The combined results of NMR and RNA-binding on wild-type and mutant proteins highlight the importance of aromatic and arginine residues for RNA recognition by RBS1, revealing that the net charge and the π-amino acid density of this region of Gemin5 are key factors for RNA recognition.
Collapse
Affiliation(s)
| | | | - Sergio Camero
- Instituto de Química Física Rocasolano, CSIC, Madrid
| | | | | |
Collapse
|
19
|
Control of the eIF4E activity: structural insights and pharmacological implications. Cell Mol Life Sci 2021; 78:6869-6885. [PMID: 34541613 PMCID: PMC8558276 DOI: 10.1007/s00018-021-03938-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/28/2021] [Accepted: 09/08/2021] [Indexed: 12/17/2022]
Abstract
The central role of eukaryotic translation initiation factor 4E (eIF4E) in controlling mRNA translation has been clearly assessed in the last decades. eIF4E function is essential for numerous physiological processes, such as protein synthesis, cellular growth and differentiation; dysregulation of its activity has been linked to ageing, cancer onset and progression and neurodevelopmental disorders, such as autism spectrum disorder (ASD) and Fragile X Syndrome (FXS). The interaction between eIF4E and the eukaryotic initiation factor 4G (eIF4G) is crucial for the assembly of the translational machinery, the initial step of mRNA translation. A well-characterized group of proteins, named 4E-binding proteins (4E-BPs), inhibits the eIF4E–eIF4G interaction by competing for the same binding site on the eIF4E surface. 4E-BPs and eIF4G share a single canonical motif for the interaction with a conserved hydrophobic patch of eIF4E. However, a second non-canonical and not conserved binding motif was recently detected for eIF4G and several 4E-BPs. Here, we review the structural features of the interaction between eIF4E and its molecular partners eIF4G and 4E-BPs, focusing on the implications of the recent structural and biochemical evidence for the development of new therapeutic strategies. The design of novel eIF4E-targeting molecules that inhibit translation might provide new avenues for the treatment of several conditions.
Collapse
|
20
|
Abdullah SW, Wu J, Zhang Y, Bai M, Guan J, Liu X, Sun S, Guo H. DDX21, a Host Restriction Factor of FMDV IRES-Dependent Translation and Replication. Viruses 2021; 13:v13091765. [PMID: 34578346 PMCID: PMC8473184 DOI: 10.3390/v13091765] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022] Open
Abstract
In cells, the contributions of DEAD-box helicases (DDXs), without which cellular life is impossible, are of utmost importance. The extremely diverse roles of the nucleolar helicase DDX21, ranging from fundamental cellular processes such as cell growth, ribosome biogenesis, protein translation, protein–protein interaction, mediating and sensing transcription, and gene regulation to viral manipulation, drew our attention. We designed this project to study virus–host interactions and viral pathogenesis. A pulldown assay was used to investigate the association between foot-and-mouth disease virus (FMDV) and DDX21. Further insight into the DDX21–FMDV interaction was obtained through dual-luciferase, knockdown, overexpression, qPCR, and confocal microscopy assays. Our results highlight the antagonistic feature of DDX21 against FMDV, as it progressively inhibited FMDV internal ribosome entry site (IRES) -dependent translation through association with FMDV IRES domains 2, 3, and 4. To subvert this host helicase antagonism, FMDV degraded DDX21 through its non-structural proteins 2B, 2C, and 3C protease (3Cpro). Our results suggest that DDX21 is degraded during 2B and 2C overexpression and FMDV infection through the caspase pathway; however, DDX21 is degraded through the lysosomal pathway during 3Cpro overexpression. Further investigation showed that DDX21 enhanced interferon-beta and interleukin-8 production to restrict viral replication. Together, our results demonstrate that DDX21 is a novel FMDV IRES trans-acting factor, which negatively regulates FMDV IRES-dependent translation and replication.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shiqi Sun
- Correspondence: (S.S.); (H.G.); Tel.: +86-0931-8312213 (S.S. & H.G.)
| | - Huichen Guo
- Correspondence: (S.S.); (H.G.); Tel.: +86-0931-8312213 (S.S. & H.G.)
| |
Collapse
|
21
|
Blatnik AJ, McGovern VL, Burghes AHM. What Genetics Has Told Us and How It Can Inform Future Experiments for Spinal Muscular Atrophy, a Perspective. Int J Mol Sci 2021; 22:8494. [PMID: 34445199 PMCID: PMC8395208 DOI: 10.3390/ijms22168494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023] Open
Abstract
Proximal spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder characterized by motor neuron loss and subsequent atrophy of skeletal muscle. SMA is caused by deficiency of the essential survival motor neuron (SMN) protein, canonically responsible for the assembly of the spliceosomal small nuclear ribonucleoproteins (snRNPs). Therapeutics aimed at increasing SMN protein levels are efficacious in treating SMA. However, it remains unknown how deficiency of SMN results in motor neuron loss, resulting in many reported cellular functions of SMN and pathways affected in SMA. Herein is a perspective detailing what genetics and biochemistry have told us about SMA and SMN, from identifying the SMA determinant region of the genome, to the development of therapeutics. Furthermore, we will discuss how genetics and biochemistry have been used to understand SMN function and how we can determine which of these are critical to SMA moving forward.
Collapse
Affiliation(s)
| | | | - Arthur H. M. Burghes
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Rightmire Hall, Room 168, 1060 Carmack Road, Columbus, OH 43210, USA; (A.J.B.III); (V.L.M.)
| |
Collapse
|
22
|
Han S, Wang X, Guan J, Wu J, Zhang Y, Li P, Liu Z, Abdullah SW, Zhang Z, Jin Y, Sun S, Guo H. Nucleolin Promotes IRES-Driven Translation of Foot-and-Mouth Disease Virus by Supporting the Assembly of Translation Initiation Complexes. J Virol 2021; 95:e0023821. [PMID: 33853964 PMCID: PMC8315980 DOI: 10.1128/jvi.00238-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Nucleolin (NCL), a stress-responsive RNA-binding protein, has been implicated in the translation of internal ribosome entry site (IRES)-containing mRNAs, which encode proteins involved in cell proliferation, carcinogenesis, and viral infection (type I IRESs). However, the details of the mechanisms by which NCL participates in IRES-driven translation have not hitherto been described. Here, we identified NCL as a protein that interacts with the IRES of foot-and-mouth disease virus (FMDV), which is a type II IRES. We also mapped the interactive regions within FMDV IRES and NCL in vitro. We found that NCL serves as a substantial regulator of FMDV IRES-driven translation but not of bulk cellular or vesicular stomatitis virus cap-dependent translation. NCL also modulates the translation of and infection by Seneca Valley virus (type III-like IRES) and classical swine fever virus (type III IRES), which suggests that its function is conserved in unrelated IRES-containing viruses. We also show that NCL affects viral replication by directly regulating the production of viral proteins and indirectly regulating FMDV RNA synthesis. Importantly, we observed that the cytoplasmic relocalization of NCL during FMDV infection is a substantial step for viral IRES-driven translation and that NCL specifically promotes the initiation phase of the translation process by recruiting translation initiation complexes to viral IRES. Finally, the functional importance of NCL in FMDV pathogenicity was confirmed in vivo. Taken together, our findings demonstrate a specific function for NCL in selective mRNA translation and identify a target for the development of a broad-spectrum class of antiviral interventions. IMPORTANCE FMDV usurps the cellular translation machinery to initiate viral protein synthesis via a mechanism driven by IRES elements. It allows the virus to shut down bulk cellular translation, while providing an advantage for its own gene expression. With limited coding capacity in its own genome, FMDV has evolved a mechanism to hijack host proteins to promote the recruitment of the host translation machinery, a process that is still not well understood. Here, we identified nucleolin (NCL) as a positive regulator of the IRES-driven translation of FMDV. Our study supports a model in which NCL relocalizes from the nucleus to the cytoplasm during the course of FMDV infection, where the cytoplasmic NCL promotes FMDV IRES-driven translation by bridging the translation initiation complexes with viral IRES. Our study demonstrates a previously uncharacterized role of NCL in the translation initiation of IRES-containing viruses, with important implications for the development of broad antiviral interventions.
Collapse
Affiliation(s)
- Shichong Han
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing, People’s Republic of China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
| | - Xiaojia Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing, People’s Republic of China
| | - Junyong Guan
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Jinen Wu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Yun Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Pinghua Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Zaixin Liu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Sahibzada Waheed Abdullah
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Zhihui Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Ye Jin
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Shiqi Sun
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
- College of Animal Science, Yangtze University, Jingzhou, Hubei, People’s Republic of China
| |
Collapse
|
23
|
Embarc-Buh A, Francisco-Velilla R, Martinez-Salas E. RNA-Binding Proteins at the Host-Pathogen Interface Targeting Viral Regulatory Elements. Viruses 2021; 13:952. [PMID: 34064059 PMCID: PMC8224014 DOI: 10.3390/v13060952] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Viral RNAs contain the information needed to synthesize their own proteins, to replicate, and to spread to susceptible cells. However, due to their reduced coding capacity RNA viruses rely on host cells to complete their multiplication cycle. This is largely achieved by the concerted action of regulatory structural elements on viral RNAs and a subset of host proteins, whose dedicated function across all stages of the infection steps is critical to complete the viral cycle. Importantly, not only the RNA sequence but also the RNA architecture imposed by the presence of specific structural domains mediates the interaction with host RNA-binding proteins (RBPs), ultimately affecting virus multiplication and spreading. In marked difference with other biological systems, the genome of positive strand RNA viruses is also the mRNA. Here we focus on distinct types of positive strand RNA viruses that differ in the regulatory elements used to promote translation of the viral RNA, as well as in the mechanisms used to evade the series of events connected to antiviral response, including translation shutoff induced in infected cells, assembly of stress granules, and trafficking stress.
Collapse
Affiliation(s)
| | | | - Encarnacion Martinez-Salas
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, 28049 Madrid, Spain; (A.E.-B.); (R.F.-V.)
| |
Collapse
|
24
|
Kour S, Rajan DS, Fortuna TR, Anderson EN, Ward C, Lee Y, Lee S, Shin YB, Chae JH, Choi M, Siquier K, Cantagrel V, Amiel J, Stolerman ES, Barnett SS, Cousin MA, Castro D, McDonald K, Kirmse B, Nemeth AH, Rajasundaram D, Innes AM, Lynch D, Frosk P, Collins A, Gibbons M, Yang M, Desguerre I, Boddaert N, Gitiaux C, Rydning SL, Selmer KK, Urreizti R, Garcia-Oguiza A, Osorio AN, Verdura E, Pujol A, McCurry HR, Landers JE, Agnihotri S, Andriescu EC, Moody SB, Phornphutkul C, Sacoto MJG, Begtrup A, Houlden H, Kirschner J, Schorling D, Rudnik-Schöneborn S, Strom TM, Leiz S, Juliette K, Richardson R, Yang Y, Zhang Y, Wang M, Wang J, Wang X, Platzer K, Donkervoort S, Bönnemann CG, Wagner M, Issa MY, Elbendary HM, Stanley V, Maroofian R, Gleeson JG, Zaki MS, Senderek J, Pandey UB. Loss of function mutations in GEMIN5 cause a neurodevelopmental disorder. Nat Commun 2021; 12:2558. [PMID: 33963192 PMCID: PMC8105379 DOI: 10.1038/s41467-021-22627-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/19/2021] [Indexed: 02/01/2023] Open
Abstract
GEMIN5, an RNA-binding protein is essential for assembly of the survival motor neuron (SMN) protein complex and facilitates the formation of small nuclear ribonucleoproteins (snRNPs), the building blocks of spliceosomes. Here, we have identified 30 affected individuals from 22 unrelated families presenting with developmental delay, hypotonia, and cerebellar ataxia harboring biallelic variants in the GEMIN5 gene. Mutations in GEMIN5 perturb the subcellular distribution, stability, and expression of GEMIN5 protein and its interacting partners in patient iPSC-derived neurons, suggesting a potential loss-of-function mechanism. GEMIN5 mutations result in disruption of snRNP complex assembly formation in patient iPSC neurons. Furthermore, knock down of rigor mortis, the fly homolog of human GEMIN5, leads to developmental defects, motor dysfunction, and a reduced lifespan. Interestingly, we observed that GEMIN5 variants disrupt a distinct set of transcripts and pathways as compared to SMA patient neurons, suggesting different molecular pathomechanisms. These findings collectively provide evidence that pathogenic variants in GEMIN5 perturb physiological functions and result in a neurodevelopmental delay and ataxia syndrome.
Collapse
Affiliation(s)
- Sukhleen Kour
- Department of Pediatrics, Childrens Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Deepa S Rajan
- Department of Pediatrics, Childrens Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Tyler R Fortuna
- Department of Pediatrics, Childrens Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Eric N Anderson
- Department of Pediatrics, Childrens Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Caroline Ward
- Department of Pediatrics, Childrens Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Youngha Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sangmoon Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yong Beom Shin
- Department of Rehabilitative Medicine, Pusan National University School of Medicine, Pusan, Republic of Korea
| | - Jong-Hee Chae
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Karine Siquier
- Developmental Brain Disorders Laboratory, Paris University, Imagine Institute, INSERM UMR, Paris, France
| | - Vincent Cantagrel
- Developmental Brain Disorders Laboratory, Paris University, Imagine Institute, INSERM UMR, Paris, France
| | - Jeanne Amiel
- Department of Genetics, AP-HP, Necker Enfants Malades Hospital, Paris University, Imagine Institute, Paris, France
| | | | - Sarah S Barnett
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Margot A Cousin
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Diana Castro
- Department of Pediatrics and Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Brian Kirmse
- Division of Genetics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Andrea H Nemeth
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Centre for Genomic Medicine, Oxford University Hospitals National Health Service Foundation Trust, Oxford, UK
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Division of Health Informatics, Childrens Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - A Micheil Innes
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Danielle Lynch
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Patrick Frosk
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Abigail Collins
- Department of Pediatrics and Neurology, Children's Hospital of Colorado, University of Colorado School of Medicine, Aurora, CO, USA
| | - Melissa Gibbons
- Department of Pediatrics and Neurology, Children's Hospital of Colorado, University of Colorado School of Medicine, Aurora, CO, USA
| | - Michele Yang
- Department of Pediatrics and Neurology, Children's Hospital of Colorado, University of Colorado School of Medicine, Aurora, CO, USA
| | - Isabelle Desguerre
- Department of Pediatric Neurology, AP-HP, Necker Enfants Malades Hospital, Paris University Imagine Institute, Paris, France
| | - Nathalie Boddaert
- Department of Pediatric Radiology, AP-HP, Necker Enfants Malades Hospital, Paris University Imagine Institute, Paris, France
| | - Cyril Gitiaux
- Department of Pediatric Neurophysiology AP-HP, Necker Enfants Malades Hospital, Paris University, Paris, France
| | | | - Kaja K Selmer
- Department of Research and Development, Division of Neuroscience, Oslo University Hospital and the University of Oslo, Oslo, Norway
| | - Roser Urreizti
- Department of Clinical Biochemistry, Institut de Recerca Sant Joan de Déu and CIBERER, Barcelona, Spain
| | | | | | - Edgard Verdura
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Aurora Pujol
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Hannah R McCurry
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - John E Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sameer Agnihotri
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - E Corina Andriescu
- Department of Pediatrics, University of Texas Health Science Center, Houston, TX, USA
| | - Shade B Moody
- Department of Pediatrics, University of Texas Health Science Center, Houston, TX, USA
| | - Chanika Phornphutkul
- Department of Pediatrics, Division of Human Genetics, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA
| | | | | | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Janbernd Kirschner
- Department of Neuropediatrics and Muscle Disorders, Medical Center,, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - David Schorling
- Department of Neuropediatrics and Muscle Disorders, Medical Center,, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Tim M Strom
- Institute of Human Genetics, Faculty of Medicine, Technical University Munich, Munich, Germany
| | - Steffen Leiz
- Clinic for Children and Adolescents Dritter Orden, Divison of Neuropediatrics, Munchen, Germany
| | - Kali Juliette
- Department of Neurology, Gillette Children's Specialty Healthcare, St Paul, MN, USA
| | - Randal Richardson
- Department of Neurology, Gillette Children's Specialty Healthcare, St Paul, MN, USA
| | - Ying Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yuehua Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Minghui Wang
- The First People's Hospital of Changde City, Hunan, China
| | | | | | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Matias Wagner
- Institute of Human Genetics, Klinikum rechts der IsarTechnical, University of Munich, Munich, Germany
| | - Mahmoud Y Issa
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Hasnaa M Elbendary
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Valentina Stanley
- Departments of Neurosciences and Pediatrics, Rady Children's Institute for Genomic Medicine, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, USA
| | - Reza Maroofian
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Joseph G Gleeson
- Departments of Neurosciences and Pediatrics, Rady Children's Institute for Genomic Medicine, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, USA
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Jan Senderek
- Department of Neurology, Friedrich-Baur-Institute, University Hospital, LMU Munich, Munich, Germany
| | - Udai Bhan Pandey
- Department of Pediatrics, Childrens Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
- Children's Neuroscience Institute, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
25
|
Saiz M, Martinez-Salas E. Uncovering targets of the Leader protease: Linking RNA-mediated pathways and antiviral defense. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1645. [PMID: 33605051 PMCID: PMC8244099 DOI: 10.1002/wrna.1645] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022]
Abstract
RNA viruses have developed specialized mechanisms to subvert host RNA‐binding proteins (RBPs) favoring their own gene expression. The Leader (L) protein of foot‐and‐mouth disease virus, a member of the Picornaviridae family, is a papain‐like cysteine protease that self‐cleaves from the polyprotein. Early in infection, the L protease cleaves the translation initiation factors eIF4GI and eIF4GII, inducing the shutdown of cap‐dependent translation. However, the cleavage sites on the viral polyprotein, eIF4GI, and eIF4GII differ in sequence, challenging the definition of a consensus site for L targets. Identification of Gemin5 and Daxx proteolytic products in infected cells unveiled a motif centered on the RKAR sequence. The RBP Gemin5 is a member of the survival of motor neurons complex, a ribosome interacting protein, and a translation downregulator. Likewise, the Fas‐ligand Daxx is a multifunctional adaptor that plays key roles in transcription control, apoptosis, and innate immune antiviral response. Remarkably, the cleavage site on the RNA helicases MDA5 and LGP2, two relevant immune sensors of the retinoic acid‐inducible gene‐I (RIG‐I)‐like receptors family, resembles the L target site of Gemin5 and Daxx, and similar cleavage sites have been reported in ISG15 and TBK1, two proteins involved in type I interferon response and signaling pathway, respectively. In this review we dissect the features of the L cleavage sites in essential RBPs, eventually helping in the discovery of novel L targets. This article is categorized under:RNA in Disease and Development > RNA in Disease Translation > Translation Regulation
Collapse
Affiliation(s)
- Margarita Saiz
- Department of Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa, Madrid, Spain
| | | |
Collapse
|
26
|
Abdullah SW, Han S, Wu J, Zhang Y, Bai M, Jin Y, Zhi X, Guan J, Sun S, Guo H. The DDX23 Negatively Regulates Translation and Replication of Foot-and-Mouth Disease Virus and Is Degraded by 3C Proteinase. Viruses 2020; 12:E1348. [PMID: 33255534 PMCID: PMC7760909 DOI: 10.3390/v12121348] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
DEAD-box helicase 23 (DDX23) is a host nuclear helicase, which is a part of the spliceosomal complex and involved in pre-mRNA splicing. To investigate whether DDX23, an internal ribosomal entry sites transacting factor (ITAF) affects foot-and-mouth disease virus (FMDV) replication and translation through internal ribosome entry site (IRES)-dependent manner. For this, we utilized a pull-down assay, Western blotting, quantitative real-time PCR, confocal microscopy, overexpression and small interfering RNA knockdown, as well as the median tissue culture infective dose. Our findings showed that FMDV infection inhibited DDX23 expression and the overexpression of DDX23 reduced viral replication, however, CRISPR Cas9 knockout/small interfering RNA knockdown increased FMDV replication. FMDV IRES domain III and IV interacted with DDX23, whereas DDX23 interacted with FMDV 3C proteinase and significantly degraded. The enzymatic activity of FMDV 3C proteinase degraded DDX23, whereas FMDV degraded DDX23 via the lysosomal pathway. Additionally, IRES-driven translation was suppressed in DDX23-overexpressing cells, and was enhanced in DDX23 knocked down. Collectively, our results demonstrated that DDX23 negatively affects FMDV IRES-dependent translation, which could be a useful target for the design of antiviral drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shiqi Sun
- State Key Laboratory of Veterinary Etiological Biology, O.I.E./China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (S.W.A.); (S.H.); (J.W.); (Y.Z.); (M.B.); (Y.J.); (X.Z.); (J.G.)
| | - Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology, O.I.E./China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (S.W.A.); (S.H.); (J.W.); (Y.Z.); (M.B.); (Y.J.); (X.Z.); (J.G.)
| |
Collapse
|
27
|
Abstract
The stage at which ribosomes are recruited to messenger RNAs (mRNAs) is an elaborate and highly regulated phase of protein synthesis. Upon completion of this step, a ribosome is positioned at an appropriate initiation codon and primed to synthesize the encoded polypeptide product. In most circumstances, this step commits the ribosome to translate the mRNA. We summarize the knowledge regarding the initiation factors implicated in this activity as well as review different mechanisms by which this process is conducted.
Collapse
Affiliation(s)
- Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada; , .,Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Quebec H3A 1A3, Canada.,Department of Oncology, McGill University, Montreal, Quebec H4A 3T2, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada; , .,Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Quebec H3A 1A3, Canada
| |
Collapse
|
28
|
Francisco-Velilla R, Embarc-Buh A, Rangel-Guerrero S, Basu S, Kundu S, Martinez-Salas E. RNA-protein coevolution study of Gemin5 uncovers the role of the PXSS motif of RBS1 domain for RNA binding. RNA Biol 2020; 17:1331-1341. [PMID: 32476560 DOI: 10.1080/15476286.2020.1762054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Regulation of protein synthesis is an essential step of gene expression. This process is under the control of cis-acting RNA elements and trans-acting factors. Gemin5 is a multifunctional RNA-binding protein organized in distinct domains. The protein bears a non-canonical RNA-binding site, designated RBS1, at the C-terminal end. Among other cellular RNAs, the RBS1 region recognizes a sequence located within the coding region of Gemin5 mRNA, termed H12. Expression of RBS1 stimulates translation of RNA reporters carrying the H12 sequence, counteracting the negative effect of Gemin5 on global protein synthesis. A computational analysis of RBS1 protein and H12 RNA variability across the evolutionary scale predicts coevolving pairs of amino acids and nucleotides. RBS1 footprint and gel-shift assays indicated a positive correlation between the identified coevolving pairs and RNA-protein interaction. The coevolving residues of RBS1 contribute to the recognition of stem-loop SL1, an RNA structural element of H12 that contains the coevolving nucleotides. Indeed, RBS1 proteins carrying substitutions on the coevolving residues P1297 or S1299S1300, drastically reduced SL1-binding. Unlike the wild type RBS1 protein, expression of these mutant proteins in cells failed to enhance translation stimulation of mRNA reporters carrying the H12 sequence. Therefore, the PXSS motif within the RBS1 domain of Gemin5 and the RNA structural motif SL1 of its mRNA appears to play a key role in fine-tuning the expression level of this essential protein.
Collapse
Affiliation(s)
| | - Azman Embarc-Buh
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM , Madrid, Spain
| | - Sergio Rangel-Guerrero
- Laboratorio de Terapia Génica, Centro de Investigación y de Estudios Avanzados del I.P.N ., Ciudad de México, Mexico
| | - Sudipto Basu
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta , Kolkata, India.,Center of Excellence in Systems Biology and Biomedical Engineering, TEQIP Phase-III, University of Calcutta , Kolkata, India
| | - Sudip Kundu
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta , Kolkata, India.,Center of Excellence in Systems Biology and Biomedical Engineering, TEQIP Phase-III, University of Calcutta , Kolkata, India
| | | |
Collapse
|
29
|
Emerging Roles of Gemin5: From snRNPs Assembly to Translation Control. Int J Mol Sci 2020; 21:ijms21113868. [PMID: 32485878 PMCID: PMC7311978 DOI: 10.3390/ijms21113868] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023] Open
Abstract
RNA-binding proteins (RBPs) play a pivotal role in the lifespan of RNAs. The disfunction of RBPs is frequently the cause of cell disorders which are incompatible with life. Furthermore, the ordered assembly of RBPs and RNAs in ribonucleoprotein (RNP) particles determines the function of biological complexes, as illustrated by the survival of the motor neuron (SMN) complex. Defects in the SMN complex assembly causes spinal muscular atrophy (SMA), an infant invalidating disease. This multi-subunit chaperone controls the assembly of small nuclear ribonucleoproteins (snRNPs), which are the critical components of the splicing machinery. However, the functional and structural characterization of individual members of the SMN complex, such as SMN, Gemin3, and Gemin5, have accumulated evidence for the additional roles of these proteins, unveiling their participation in other RNA-mediated events. In particular, Gemin5 is a multidomain protein that comprises tryptophan-aspartic acid (WD) repeat motifs at the N-terminal region, a dimerization domain at the middle region, and a non-canonical RNA-binding domain at the C-terminal end of the protein. Beyond small nuclear RNA (snRNA) recognition, Gemin5 interacts with a selective group of mRNA targets in the cell environment and plays a key role in reprogramming translation depending on the RNA partner and the cellular conditions. Here, we review recent studies on the SMN complex, with emphasis on the individual components regarding their involvement in cellular processes critical for cell survival.
Collapse
|
30
|
Barrera A, Olguín V, Vera-Otarola J, López-Lastra M. Cap-independent translation initiation of the unspliced RNA of retroviruses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194583. [PMID: 32450258 DOI: 10.1016/j.bbagrm.2020.194583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
Retroviruses are a unique family of RNA viruses that utilize a virally encoded reverse transcriptase (RT) to replicate their genomic RNA (gRNA) through a proviral DNA intermediate. The provirus is permanently integrated into the host cell chromosome and is expressed by the host cell transcription, RNA processing, and translation machinery. Retroviral messenger RNAs (mRNAs) entirely resemble a cellular mRNA as they have a 5'cap structure, 5'untranslated region (UTR), an open reading frame (ORF), 3'UTR, and a 3'poly(A) tail. The primary transcription product interacts with the cellular RNA processing machinery and is spliced, exported to the cytoplasm, and translated. However, a proportion of the pre-mRNA subverts typical RNA processing giving rise to the full-length RNA. In the cytoplasm, the full-length retroviral RNA fulfills a dual role acting as mRNA and as the gRNA. Simple retroviruses generate two pools of full-length RNA, one for each purpose. However, complex retroviruses have a single pool of full-length RNA, which is destined for translation or encapsidation. As for eukaryotic mRNAs, translational control of retroviral protein synthesis is mostly exerted at the step of initiation. Interestingly, some retroviral mRNAs, both simple and complex, use a dual mechanism to initiate protein synthesis, a cap-dependent initiation mechanism, or via internal initiation using an internal ribosome entry site (IRES). In this review, we describe and discuss data regarding the molecular mechanism driving the canonical cap-dependent and IRES-mediated translation initiation for retroviral mRNA, focusing the discussion mainly on the most studied retroviral mRNA, the HIV-1 mRNA.
Collapse
Affiliation(s)
- Aldo Barrera
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Valeria Olguín
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Jorge Vera-Otarola
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Marcelo López-Lastra
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile.
| |
Collapse
|
31
|
Heterogeneous Nuclear Ribonucleoprotein L Negatively Regulates Foot-and-Mouth Disease Virus Replication through Inhibition of Viral RNA Synthesis by Interacting with the Internal Ribosome Entry Site in the 5' Untranslated Region. J Virol 2020; 94:JVI.00282-20. [PMID: 32161169 DOI: 10.1128/jvi.00282-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 02/08/2023] Open
Abstract
Upon infection, the highly structured 5' untranslated region (5' UTR) of picornavirus is involved in viral protein translation and RNA synthesis. As a critical element in the 5' UTR, the internal ribosome entry site (IRES) binds to various cellular proteins to function in the processes of picornavirus replication. Foot-and-mouth disease virus (FMDV) is an important member in the family Picornaviridae, and its 5' UTR contains a functional IRES element. In this study, the cellular heterogeneous nuclear ribonucleoprotein L (hnRNP L) was identified as an IRES-binding protein for FMDV by biotinylated RNA pulldown assays, mass spectrometry (MS) analysis, and determination of hnRNP L-IRES interaction regions. Further, we found that hnRNP L inhibited the growth of FMDV through binding to the viral IRES and that the inhibitory effect of hnRNP L on FMDV growth was not due to FMDV IRES-mediated translation, but to influence on viral RNA synthesis. Finally, hnRNP L was demonstrated to coimmunoprecipitate with RNA-dependent RNA polymerase (3Dpol) in an FMDV RNA-dependent manner in the infected cells. Thus, our results suggest that hnRNP L, as a critical IRES-binding protein, negatively regulates FMDV replication by inhibiting viral RNA synthesis, possibly by remaining in the replication complex.IMPORTANCE Picornaviruses, as a large family of human and animal pathogens, cause a bewildering array of disease syndromes. Many host factors are implicated in the pathogenesis of these viruses, and some proteins interact with the viral IRES elements to affect function. Here, we report for the first time that cellular hnRNP L specifically interacts with the IRES of the picornavirus FMDV and negatively regulates FMDV replication through inhibiting viral RNA synthesis. Further, our results showed that hnRNP L coimmunoprecipitates with FMDV 3Dpol in a viral RNA-dependent manner, suggesting that it may remain in the replication complex to function. The data presented here would facilitate further understanding of virus-host interactions and the pathogenesis of picornavirus infections.
Collapse
|
32
|
Moreno-Morcillo M, Francisco-Velilla R, Embarc-Buh A, Fernández-Chamorro J, Ramón-Maiques S, Martinez-Salas E. Structural basis for the dimerization of Gemin5 and its role in protein recruitment and translation control. Nucleic Acids Res 2020; 48:788-801. [PMID: 31799608 PMCID: PMC6954437 DOI: 10.1093/nar/gkz1126] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 12/21/2022] Open
Abstract
In all organisms, a selected type of proteins accomplishes critical roles in cellular processes that govern gene expression. The multifunctional protein Gemin5 cooperates in translation control and ribosome binding, besides acting as the RNA-binding protein of the survival of motor neuron (SMN) complex. While these functions reside on distinct domains located at each end of the protein, the structure and function of the middle region remained unknown. Here, we solved the crystal structure of an extended tetratricopeptide (TPR)-like domain in human Gemin5 that self-assembles into a previously unknown canoe-shaped dimer. We further show that the dimerization module is functional in living cells driving the interaction between the viral-induced cleavage fragment p85 and the full-length Gemin5, which anchors splicing and translation members. Disruption of the dimerization surface by a point mutation in the TPR-like domain prevents this interaction and also abrogates translation enhancement induced by p85. The characterization of this unanticipated dimerization domain provides the structural basis for a role of the middle region of Gemin5 as a central hub for protein-protein interactions.
Collapse
Affiliation(s)
- María Moreno-Morcillo
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, 28049 Madrid, Spain
| | | | - Azman Embarc-Buh
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, 28049 Madrid, Spain
| | | | - Santiago Ramón-Maiques
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, 28049 Madrid, Spain.,Group 739, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)- Instituto de Salud Carlos III, Valencia, Spain
| | | |
Collapse
|
33
|
Francisco-Velilla R, Azman EB, Martinez-Salas E. Impact of RNA-Protein Interaction Modes on Translation Control: The Versatile Multidomain Protein Gemin5. Bioessays 2019; 41:e1800241. [PMID: 30919488 DOI: 10.1002/bies.201800241] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/04/2019] [Indexed: 12/12/2022]
Abstract
The fate of cellular RNAs is largely dependent on their structural conformation, which determines the assembly of ribonucleoprotein (RNP) complexes. Consequently, RNA-binding proteins (RBPs) play a pivotal role in the lifespan of RNAs. The advent of highly sensitive in cellulo approaches for studying RNPs reveals the presence of unprecedented RNA-binding domains (RBDs). Likewise, the diversity of the RNA targets associated with a given RBP increases the code of RNA-protein interactions. Increasing evidence highlights the biological relevance of RNA conformation for recognition by specific RBPs and how this mutual interaction affects translation control. In particular, noncanonical RBDs present in proteins such as Gemin5, Roquin-1, Staufen, and eIF3 eventually determine translation of selective targets. Collectively, recent studies on RBPs interacting with RNA in a structure-dependent manner unveil new pathways for gene expression regulation, reinforcing the pivotal role of RNP complexes in genome decoding.
Collapse
Affiliation(s)
- Rosario Francisco-Velilla
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049, Madrid, Spain
| | - Embarc-Buh Azman
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049, Madrid, Spain
| | - Encarnacion Martinez-Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049, Madrid, Spain
| |
Collapse
|
34
|
Francisco-Velilla R, Fernandez-Chamorro J, Dotu I, Martinez-Salas E. The landscape of the non-canonical RNA-binding site of Gemin5 unveils a feedback loop counteracting the negative effect on translation. Nucleic Acids Res 2019; 46:7339-7353. [PMID: 29771365 PMCID: PMC6101553 DOI: 10.1093/nar/gky361] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 05/08/2018] [Indexed: 01/01/2023] Open
Abstract
Gemin5 is a predominantly cytoplasmic protein that downregulates translation, beyond controlling snRNPs assembly. The C-terminal region harbors a non-canonical RNA-binding site consisting of two domains, RBS1 and RBS2, which differ in RNA-binding capacity and the ability to modulate translation. Here, we show that these domains recognize distinct RNA targets in living cells. Interestingly, the most abundant and exclusive RNA target of the RBS1 domain was Gemin5 mRNA. Biochemical and functional characterization of this target demonstrated that RBS1 polypeptide physically interacts with a predicted thermodynamically stable stem–loop upregulating mRNA translation, thereby counteracting the negative effect of Gemin5 protein on global protein synthesis. In support of this result, destabilization of the stem–loop impairs the stimulatory effect on translation. Moreover, RBS1 stimulates translation of the endogenous Gemin5 mRNA. Hence, although the RBS1 domain downregulates global translation, it positively enhances translation of RNA targets carrying thermodynamically stable secondary structure motifs. This mechanism allows fine-tuning the availability of Gemin5 to play its multiple roles in gene expression control.
Collapse
Affiliation(s)
| | | | - Ivan Dotu
- Pompeu Fabra University (UPF), 08003 Barcelona, Spain.,IMIM - Hospital del Mar Medical Research Institute, 08003 Barcelona, Spain
| | | |
Collapse
|
35
|
Godet AC, David F, Hantelys F, Tatin F, Lacazette E, Garmy-Susini B, Prats AC. IRES Trans-Acting Factors, Key Actors of the Stress Response. Int J Mol Sci 2019; 20:ijms20040924. [PMID: 30791615 PMCID: PMC6412753 DOI: 10.3390/ijms20040924] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 12/16/2022] Open
Abstract
The cellular stress response corresponds to the molecular changes that a cell undergoes in response to various environmental stimuli. It induces drastic changes in the regulation of gene expression at transcriptional and posttranscriptional levels. Actually, translation is strongly affected with a blockade of the classical cap-dependent mechanism, whereas alternative mechanisms are activated to support the translation of specific mRNAs. A major mechanism involved in stress-activated translation is the internal ribosome entry site (IRES)-driven initiation. IRESs, first discovered in viral mRNAs, are present in cellular mRNAs coding for master regulators of cell responses, whose expression must be tightly controlled. IRESs allow the translation of these mRNAs in response to different stresses, including DNA damage, amino-acid starvation, hypoxia or endoplasmic reticulum stress, as well as to physiological stimuli such as cell differentiation or synapse network formation. Most IRESs are regulated by IRES trans-acting factor (ITAFs), exerting their action by at least nine different mechanisms. This review presents the history of viral and cellular IRES discovery as well as an update of the reported ITAFs regulating cellular mRNA translation and of their different mechanisms of action. The impact of ITAFs on the coordinated expression of mRNA families and consequences in cell physiology and diseases are also highlighted.
Collapse
Affiliation(s)
- Anne-Claire Godet
- UMR 1048-I2MC, Inserm, Université de Toulouse, UT3, 31432 Toulouse cedex 4, France.
| | - Florian David
- UMR 1048-I2MC, Inserm, Université de Toulouse, UT3, 31432 Toulouse cedex 4, France.
| | - Fransky Hantelys
- UMR 1048-I2MC, Inserm, Université de Toulouse, UT3, 31432 Toulouse cedex 4, France.
| | - Florence Tatin
- UMR 1048-I2MC, Inserm, Université de Toulouse, UT3, 31432 Toulouse cedex 4, France.
| | - Eric Lacazette
- UMR 1048-I2MC, Inserm, Université de Toulouse, UT3, 31432 Toulouse cedex 4, France.
| | - Barbara Garmy-Susini
- UMR 1048-I2MC, Inserm, Université de Toulouse, UT3, 31432 Toulouse cedex 4, France.
| | - Anne-Catherine Prats
- UMR 1048-I2MC, Inserm, Université de Toulouse, UT3, 31432 Toulouse cedex 4, France.
| |
Collapse
|
36
|
Medina GN, Segundo FDS, Stenfeldt C, Arzt J, de Los Santos T. The Different Tactics of Foot-and-Mouth Disease Virus to Evade Innate Immunity. Front Microbiol 2018; 9:2644. [PMID: 30483224 PMCID: PMC6241212 DOI: 10.3389/fmicb.2018.02644] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/17/2018] [Indexed: 12/18/2022] Open
Abstract
Like all pathogens, foot-and-mouth disease virus (FMDV) is recognized by the immune system inducing a heightened immune response mainly mediated by type I and type III IFNs. To overcome the strong antiviral response induced by these cytokines, FMDV has evolved many strategies exploiting each region of its small RNA genome. These include: (a) inhibition of IFN induction at the transcriptional and translational level, (b) inhibition of protein trafficking; (c) blockage of specific post-translational modifications in proteins that regulate innate immune signaling; (d) modulation of autophagy; (e) inhibition of stress granule formation; and (f) in vivo modulation of immune cell function. Here, we summarize and discuss FMDV virulence factors and the host immune footprint that characterize infection in cell culture and in the natural hosts.
Collapse
Affiliation(s)
- Gisselle N Medina
- Plum Island Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Orient, NY, United States.,Codagenix Inc., Farmingdale, NY, United States
| | - Fayna Díaz-San Segundo
- Plum Island Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Orient, NY, United States.,Animal and Plant Health Inspection Service, Plum Island Animal Disease Center, United States Department of Agriculture, Orient, NY, United States
| | - Carolina Stenfeldt
- Plum Island Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Orient, NY, United States.,Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, United States
| | - Jonathan Arzt
- Plum Island Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Orient, NY, United States
| | - Teresa de Los Santos
- Plum Island Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Orient, NY, United States
| |
Collapse
|
37
|
Lampe S, Kunze M, Scholz A, Brauß TF, Winslow S, Simm S, Keller M, Heidler J, Wittig I, Brüne B, Schmid T. Identification of the TXNIP IRES and characterization of the impact of regulatory IRES trans-acting factors. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:147-157. [PMID: 29378331 DOI: 10.1016/j.bbagrm.2018.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/10/2018] [Accepted: 01/14/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Sebastian Lampe
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Michael Kunze
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Anica Scholz
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Thilo F Brauß
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Sofia Winslow
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Stefan Simm
- Department of Molecular Cell Biology of Plants, Faculty of Biosciences, Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Mario Keller
- Department of Molecular Cell Biology of Plants, Faculty of Biosciences, Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Juliana Heidler
- Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Ilka Wittig
- Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Tobias Schmid
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany.
| |
Collapse
|
38
|
Martinez-Salas E, Francisco-Velilla R, Fernandez-Chamorro J, Embarek AM. Insights into Structural and Mechanistic Features of Viral IRES Elements. Front Microbiol 2018; 8:2629. [PMID: 29354113 PMCID: PMC5759354 DOI: 10.3389/fmicb.2017.02629] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/15/2017] [Indexed: 01/19/2023] Open
Abstract
Internal ribosome entry site (IRES) elements are cis-acting RNA regions that promote internal initiation of protein synthesis using cap-independent mechanisms. However, distinct types of IRES elements present in the genome of various RNA viruses perform the same function despite lacking conservation of sequence and secondary RNA structure. Likewise, IRES elements differ in host factor requirement to recruit the ribosomal subunits. In spite of this diversity, evolutionarily conserved motifs in each family of RNA viruses preserve sequences impacting on RNA structure and RNA–protein interactions important for IRES activity. Indeed, IRES elements adopting remarkable different structural organizations contain RNA structural motifs that play an essential role in recruiting ribosomes, initiation factors and/or RNA-binding proteins using different mechanisms. Therefore, given that a universal IRES motif remains elusive, it is critical to understand how diverse structural motifs deliver functions relevant for IRES activity. This will be useful for understanding the molecular mechanisms beyond cap-independent translation, as well as the evolutionary history of these regulatory elements. Moreover, it could improve the accuracy to predict IRES-like motifs hidden in genome sequences. This review summarizes recent advances on the diversity and biological relevance of RNA structural motifs for viral IRES elements.
Collapse
Affiliation(s)
- Encarnacion Martinez-Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Madrid, Spain
| | - Rosario Francisco-Velilla
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Madrid, Spain
| | - Javier Fernandez-Chamorro
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Madrid, Spain
| | - Azman M Embarek
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
39
|
Nikonov OS, Nemchinova MS, Klyashtornii VG, Nikonova EY, Garber MB. Model of the Complex of the Human Glycyl-tRNA Synthetase Anticodon-Binding Domain with IRES I Fragment. Mol Biol 2018. [DOI: 10.1134/s0026893318010144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Galan A, Lozano G, Piñeiro D, Martinez-Salas E. G3BP1 interacts directly with the FMDV IRES and negatively regulates translation. FEBS J 2017; 284:3202-3217. [PMID: 28755480 DOI: 10.1111/febs.14184] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 07/13/2017] [Accepted: 07/25/2017] [Indexed: 01/05/2023]
Abstract
RNA-protein interactions play a pivotal role in the function of picornavirus internal ribosome entry site (IRES) elements. Here we analysed the impact of Ras GTPase SH3 domain binding protein 1 (G3BP1) in the IRES activity of foot-and-mouth disease virus (FMDV). We found that G3BP1 interacts directly with three distinct sequences of the IRES element using RNA electrophoretic mobility-shift assays. Analysis of the interaction with domain 5 indicated that the G3BP1 binding-site is placed at the single-stranded region although it allows large sequence heterogeneity and the hairpin located upstream of this region enhances retarded complex formation. In addition, G3BP1 interacts directly with the polypyrimidine tract-binding protein and the translation initiation factor 4B (eIF4B) through the C-terminal region. Moreover, G3BP1 is cleaved during FMDV infection yielding two fragments, Ct-G3BP1 and Nt-G3BP1. Both fragments inhibit cap- and IRES-dependent translation, but the Ct-G3BP1 fragment shows a stronger effect on IRES-dependent translation. Assembly of complexes with G3BP1 results in a significantly reduced local flexibility of the IRES element, consistent with the negative effect of this protein. Our results highlight the IRES-binding capacity of G3BP1 and illustrate its function as a translation inhibitor.
Collapse
Affiliation(s)
- Alfonso Galan
- Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Universidad Autonoma de Madrid, Spain
| | - Gloria Lozano
- Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Universidad Autonoma de Madrid, Spain
| | - David Piñeiro
- Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Universidad Autonoma de Madrid, Spain
| | - Encarnacion Martinez-Salas
- Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Universidad Autonoma de Madrid, Spain
| |
Collapse
|
41
|
Regulation Mechanisms of Viral IRES-Driven Translation. Trends Microbiol 2017; 25:546-561. [PMID: 28242053 DOI: 10.1016/j.tim.2017.01.010] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/10/2017] [Accepted: 01/30/2017] [Indexed: 02/06/2023]
Abstract
Internal ribosome entry sites (IRESs) can be found in the mRNA of many viruses as well as in cellular genes involved in the stress response, cell cycle, and apoptosis. IRES-mediated translation can occur when dominant cap-dependent translation is inhibited, and viruses can take advantage of this to subvert host translation machinery. In this review, we focus on the four major types of IRES identified in RNA viruses, and outline their distinct structural properties and requirements of translational factors. We further discuss auxiliary host factors known as IRES trans-acting factors (ITAFs), which are involved in the modulation of optimal IRES activity. Currently known strategies employed by viruses to harness ITAFs and regulate IRES activity are also highlighted.
Collapse
|
42
|
Medina GN, Knudsen GM, Greninger AL, Kloc A, Díaz-San Segundo F, Rieder E, Grubman MJ, DeRisi JL, de Los Santos T. Interaction between FMDV L pro and transcription factor ADNP is required for optimal viral replication. Virology 2017; 505:12-22. [PMID: 28219017 DOI: 10.1016/j.virol.2017.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 02/12/2017] [Accepted: 02/13/2017] [Indexed: 10/20/2022]
Abstract
The foot-and-mouth disease virus (FMDV) leader protease (Lpro) inhibits host translation and transcription affecting the expression of several factors involved in innate immunity. In this study, we have identified the host transcription factor ADNP (activity dependent neuroprotective protein) as an Lpro interacting protein by mass spectrometry. We show that Lpro can bind to ADNP in vitro and in cell culture. RNAi of ADNP negatively affected virus replication and higher levels of interferon (IFN) and IFN-stimulated gene expression were detected. Importantly, infection with FMDV wild type but not with a virus lacking Lpro (leaderless), induced recruitment of ADNP to IFN-α promoter sites early during infection. Furthermore, we found that Lpro and ADNP are in a protein complex with the ubiquitous chromatin remodeling factor Brg-1. Our results uncover a novel role of FMDV Lpro in targeting ADNP and modulation of its transcription repressive function to decrease the expression of IFN and ISGs.
Collapse
Affiliation(s)
- Gisselle N Medina
- Plum Island Animal Disease Center (PIADC), North Atlantic Area, Agricultural Research Service US Department of Agriculture, Greenport, NY 11944, USA
| | - Giselle M Knudsen
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Alexander L Greninger
- Howard Hughes Medical Institute and the Department of Biochemistry & Biophysics, University of California, San Francisco, CA 94158, USA
| | - Anna Kloc
- Plum Island Animal Disease Center (PIADC), North Atlantic Area, Agricultural Research Service US Department of Agriculture, Greenport, NY 11944, USA; Oak Ridge Institute for Science and Education, PIADC Research Participation Program, Oak Ridge, TN 37831, USA
| | - Fayna Díaz-San Segundo
- Plum Island Animal Disease Center (PIADC), North Atlantic Area, Agricultural Research Service US Department of Agriculture, Greenport, NY 11944, USA
| | - Elizabeth Rieder
- Plum Island Animal Disease Center (PIADC), North Atlantic Area, Agricultural Research Service US Department of Agriculture, Greenport, NY 11944, USA
| | - Marvin J Grubman
- Plum Island Animal Disease Center (PIADC), North Atlantic Area, Agricultural Research Service US Department of Agriculture, Greenport, NY 11944, USA
| | - Joseph L DeRisi
- Howard Hughes Medical Institute and the Department of Biochemistry & Biophysics, University of California, San Francisco, CA 94158, USA
| | - Teresa de Los Santos
- Plum Island Animal Disease Center (PIADC), North Atlantic Area, Agricultural Research Service US Department of Agriculture, Greenport, NY 11944, USA.
| |
Collapse
|
43
|
Xu C, Ishikawa H, Izumikawa K, Li L, He H, Nobe Y, Yamauchi Y, Shahjee HM, Wu XH, Yu YT, Isobe T, Takahashi N, Min J. Structural insights into Gemin5-guided selection of pre-snRNAs for snRNP assembly. Genes Dev 2016; 30:2376-2390. [PMID: 27881600 PMCID: PMC5131778 DOI: 10.1101/gad.288340.116] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/26/2016] [Indexed: 12/26/2022]
Abstract
Xu et al. show that the WD40 domain of Gemin5 is both necessary and sufficient for binding the Sm site of pre-snRNAs. They also determined the crystal structures of the WD40 domain of Gemin5 in complex with the Sm site or m7G cap of pre-snRNA. In cytoplasm, the survival of motor neuron (SMN) complex delivers pre-small nuclear RNAs (pre-snRNAs) to the heptameric Sm ring for the assembly of the ring complex on pre-snRNAs at the conserved Sm site [A(U)4–6G]. Gemin5, a WD40 protein component of the SMN complex, is responsible for recognizing pre-snRNAs. In addition, Gemin5 has been reported to specifically bind to the m7G cap. In this study, we show that the WD40 domain of Gemin5 is both necessary and sufficient for binding the Sm site of pre-snRNAs by isothermal titration calorimetry (ITC) and mutagenesis assays. We further determined the crystal structures of the WD40 domain of Gemin5 in complex with the Sm site or m7G cap of pre-snRNA, which reveal that the WD40 domain of Gemin5 recognizes the Sm site and m7G cap of pre-snRNAs via two distinct binding sites by respective base-specific interactions. In addition, we also uncovered a novel role of Gemin5 in escorting the truncated forms of U1 pre-snRNAs for proper disposal. Overall, the elucidated Gemin5 structures will contribute to a better understanding of Gemin5 in small nuclear ribonucleic protein (snRNP) biogenesis as well as, potentially, other cellular activities.
Collapse
Affiliation(s)
- Chao Xu
- Hefei National Laboratory for Physical Sciences at Microscale, Hefei Science Center of CAS, Chinese Academy of Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China.,Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China.,Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Hideaki Ishikawa
- Department of Applied Biological Science, Graduate School of Agriculture and Global Innovation Research Organization, Tokyo University of Agriculture and Technology, Fuchu-Shi, Tokyo 183-8509, Japan
| | - Keiichi Izumikawa
- Department of Applied Biological Science, Graduate School of Agriculture and Global Innovation Research Organization, Tokyo University of Agriculture and Technology, Fuchu-Shi, Tokyo 183-8509, Japan
| | - Li Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Hao He
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Yuko Nobe
- Department of Chemistry, Tokyo Metropolitan University, Hachiouji-shi, Tokyo 192-0397, Japan
| | - Yoshio Yamauchi
- Department of Chemistry, Tokyo Metropolitan University, Hachiouji-shi, Tokyo 192-0397, Japan
| | - Hanief M Shahjee
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Xian-Hui Wu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Toshiaki Isobe
- Department of Chemistry, Tokyo Metropolitan University, Hachiouji-shi, Tokyo 192-0397, Japan
| | - Nobuhiro Takahashi
- Department of Applied Biological Science, Graduate School of Agriculture and Global Innovation Research Organization, Tokyo University of Agriculture and Technology, Fuchu-Shi, Tokyo 183-8509, Japan
| | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
44
|
Francisco-Velilla R, Fernandez-Chamorro J, Ramajo J, Martinez-Salas E. The RNA-binding protein Gemin5 binds directly to the ribosome and regulates global translation. Nucleic Acids Res 2016; 44:8335-51. [PMID: 27507887 PMCID: PMC5041490 DOI: 10.1093/nar/gkw702] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/31/2016] [Indexed: 12/21/2022] Open
Abstract
RNA-binding proteins (RBPs) play crucial roles in all organisms. The protein Gemin5 harbors two functional domains. The N-terminal domain binds to snRNAs targeting them for snRNPs assembly, while the C-terminal domain binds to IRES elements through a non-canonical RNA-binding site. Here we report a comprehensive view of the Gemin5 interactome; most partners copurified with the N-terminal domain via RNA bridges. Notably, Gemin5 sediments with the subcellular ribosome fraction, and His-Gemin5 binds to ribosome particles via its N-terminal domain. The interaction with the ribosome was lost in F381A and Y474A Gemin5 mutants, but not in W14A and Y15A. Moreover, the ribosomal proteins L3 and L4 bind directly with Gemin5, and conversely, Gemin5 mutants impairing the binding to the ribosome are defective in the interaction with L3 and L4. The overall polysome profile was affected by Gemin5 depletion or overexpression, concomitant to an increase or a decrease, respectively, of global protein synthesis. Gemin5, and G5-Nter as well, were detected on the polysome fractions. These results reveal the ribosome-binding capacity of the N-ter moiety, enabling Gemin5 to control global protein synthesis. Our study uncovers a crosstalk between this protein and the ribosome, and provides support for the view that Gemin5 may control translation elongation.
Collapse
Affiliation(s)
| | | | - Jorge Ramajo
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, 28049-Madrid, Spain
| | | |
Collapse
|
45
|
Lozano G, Trapote A, Ramajo J, Elduque X, Grandas A, Robles J, Pedroso E, Martínez-Salas E. Local RNA flexibility perturbation of the IRES element induced by a novel ligand inhibits viral RNA translation. RNA Biol 2016; 12:555-68. [PMID: 25775053 PMCID: PMC4615676 DOI: 10.1080/15476286.2015.1025190] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The internal ribosome entry site (IRES) element located at the 5'untranslated genomic region of various RNA viruses mediates cap-independent initiation of translation. Picornavirus IRES activity is highly dependent on both its structural organization and its interaction with host factors. Small molecules able to interfere with RNA function are valuable candidates for antiviral agents. Here we show that a small molecule based on benzimidazole (IRAB) inhibited foot-and-mouth disease virus (FMDV) IRES-dependent protein synthesis in cells transfected with infectious RNA leading to a decrease of the virus titer, which was higher than that induced by a structurally related benzimidazole derivative. Interestingly, IRAB preferentially inhibited IRES-dependent translation in cell free systems in a dose-dependent manner. RNA structural analysis by SHAPE demonstrated an increased local flexibility of the IRES structure upon incubation with IRAB, which affected 3 stem-loops (SL) of domain 3. Fluorescence binding assays conducted with individual aminopurine-labeled oligoribonucleotides indicated that the SL3A binds IRAB (EC50 18 μM). Taken together, the results derived from SHAPE reactivity and fluorescence binding assays suggested that the target site of IRAB within the FMDV IRES might be a folded RNA structure that involves the entire apical region of domain 3. Our data suggest that the conformational changes induced by this compound on a specific region of the IRES structure which is essential for its activity is, at least in part, responsible for the reduced IRES efficiency observed in cell free lysates and, particularly, in RNA-transfected cells.
Collapse
Affiliation(s)
- Gloria Lozano
- a Centro de Biología Molecular Severo Ochoa; CSIC-UAM; Madrid , Spain
| | | | | | | | | | | | | | | |
Collapse
|
46
|
RNA–protein interaction methods to study viral IRES elements. Methods 2015; 91:3-12. [DOI: 10.1016/j.ymeth.2015.06.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/25/2015] [Accepted: 06/30/2015] [Indexed: 12/30/2022] Open
|
47
|
Liu Y, Zhu Z, Zhang M, Zheng H. Multifunctional roles of leader protein of foot-and-mouth disease viruses in suppressing host antiviral responses. Vet Res 2015; 46:127. [PMID: 26511922 PMCID: PMC4625562 DOI: 10.1186/s13567-015-0273-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/07/2015] [Indexed: 12/17/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) leader protein (Lpro) is a papain-like proteinase, which plays an important role in FMDV pathogenesis. Lpro exists as two forms, Lab and Lb, due to translation being initiated from two different start codons separated by 84 nucleotides. Lpro self-cleaves from the nascent viral polyprotein precursor as the first mature viral protein. In addition to its role as a viral proteinase, Lpro also has the ability to antagonize host antiviral effects. To promote FMDV replication, Lpro can suppress host antiviral responses by three different mechanisms: (1) cleavage of eukaryotic translation initiation factor 4 γ (eIF4G) to shut off host protein synthesis; (2) inhibition of host innate immune responses through restriction of interferon-α/β production; and (3) Lpro can also act as a deubiquitinase and catalyze deubiquitination of innate immune signaling molecules. In the light of recent functional and biochemical findings regarding Lpro, this review introduces the basic properties of Lpro and the mechanisms by which it antagonizes host antiviral responses.
Collapse
Affiliation(s)
- Yingqi Liu
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China. .,College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China.
| | - Miaotao Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China.
| |
Collapse
|
48
|
Workman E, Kalda C, Patel A, Battle DJ. Gemin5 Binds to the Survival Motor Neuron mRNA to Regulate SMN Expression. J Biol Chem 2015; 290:15662-15669. [PMID: 25911097 PMCID: PMC4505476 DOI: 10.1074/jbc.m115.646257] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/22/2015] [Indexed: 12/21/2022] Open
Abstract
Reduced expression of SMN causes spinal muscular atrophy, a severe neurodegenerative disease. Despite the importance of maintaining SMN levels, relatively little is known about the mechanisms by which SMN levels are regulated. We show here that Gemin5, the snRNA-binding protein of the SMN complex, binds directly to the SMN mRNA and regulates SMN expression. Gemin5 binds with high specificity, both in vitro and in vivo, to sequence and structural elements in the SMN mRNA 3'-untranslated region that are reminiscent of the snRNP code to which Gemin5 binds on snRNAs. Reduction of Gemin5 redistributes the SMN mRNA from heavy polysomes to lighter polysomes and monosomes, suggesting that Gemin5 functions as an activator of SMN translation. SMN protein is not stoichiometrically present on the SMN mRNA with Gemin5, but the mRNA-binding activity of Gemin5 is dependent on SMN levels, providing a feedback mechanism for SMN to regulate its own expression via Gemin5. This work both reveals a new autoregulatory pathway governing SMN expression, and identifies a new mechanism through which SMN can modulate specific mRNA expression via Gemin5.
Collapse
Affiliation(s)
- Eileen Workman
- Department of Molecular and Cellular Biochemistry, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| | - Caitlin Kalda
- Department of Molecular and Cellular Biochemistry, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| | - Aalapi Patel
- Department of Molecular and Cellular Biochemistry, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| | - Daniel J Battle
- Department of Molecular and Cellular Biochemistry, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210; Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210.
| |
Collapse
|
49
|
Lozano G, Martínez-Salas E. Structural insights into viral IRES-dependent translation mechanisms. Curr Opin Virol 2015; 12:113-20. [PMID: 26004307 DOI: 10.1016/j.coviro.2015.04.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 01/10/2023]
Abstract
A diverse group of viruses subvert the host translational machinery to promote viral genome translation. This process often involves altering canonical translation initiation factors to repress cellular protein synthesis while viral proteins are efficiently synthesized. The discovery of this strategy in picornaviruses, which is based on the use of internal ribosome entry site (IRES) elements, opened new avenues to study alternative translational control mechanisms evolved in different groups of RNA viruses. IRESs are cis-acting RNA sequences that adopt three-dimensional structures and recruit the translation machinery assisted by a subset of translation initiation factors and various RNA binding proteins. However, IRESs present in the genome of different RNA viruses perform the same function despite lacking conservation of primary sequence and secondary RNA structure, and differing in host factor requirement to recruit the translation machinery. Evolutionary conserved motifs tend to preserve sequences impacting on RNA structure and RNA-protein interactions important for IRES function. While some motifs are found in various picornavirus IRESs, others occur only in one type reflecting specialized factor requirements. This review is focused to describe recent advances on the principles and RNA structure features of picornavirus IRESs.
Collapse
Affiliation(s)
- Gloria Lozano
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Nicolas Cabrera 1, 28049 Madrid, Spain
| | - Encarnación Martínez-Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Nicolas Cabrera 1, 28049 Madrid, Spain.
| |
Collapse
|
50
|
Piñeiro D, Fernandez-Chamorro J, Francisco-Velilla R, Martinez-Salas E. Gemin5: A Multitasking RNA-Binding Protein Involved in Translation Control. Biomolecules 2015; 5:528-44. [PMID: 25898402 PMCID: PMC4496684 DOI: 10.3390/biom5020528] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 04/01/2015] [Accepted: 04/09/2015] [Indexed: 12/31/2022] Open
Abstract
Gemin5 is a RNA-binding protein (RBP) that was first identified as a peripheral component of the survival of motor neurons (SMN) complex. This predominantly cytoplasmic protein recognises the small nuclear RNAs (snRNAs) through its WD repeat domains, allowing assembly of the SMN complex into small nuclear ribonucleoproteins (snRNPs). Additionally, the amino-terminal end of the protein has been reported to possess cap-binding capacity and to interact with the eukaryotic initiation factor 4E (eIF4E). Gemin5 was also shown to downregulate translation, to be a substrate of the picornavirus L protease and to interact with viral internal ribosome entry site (IRES) elements via a bipartite non-canonical RNA-binding site located at its carboxy-terminal end. These features link Gemin5 with translation control events. Thus, beyond its role in snRNPs biogenesis, Gemin5 appears to be a multitasking protein cooperating in various RNA-guided processes. In this review, we will summarise current knowledge of Gemin5 functions. We will discuss the involvement of the protein on translation control and propose a model to explain how the proteolysis fragments of this RBP in picornavirus-infected cells could modulate protein synthesis.
Collapse
Affiliation(s)
- David Piñeiro
- Medical Research Council Toxicology Unit, Lancaster Rd, Leicester LE1 9HN, UK.
| | - Javier Fernandez-Chamorro
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolas Cabrera 1, Madrid 28049, Spain.
| | - Rosario Francisco-Velilla
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolas Cabrera 1, Madrid 28049, Spain.
| | - Encarna Martinez-Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolas Cabrera 1, Madrid 28049, Spain.
| |
Collapse
|