1
|
Kang L, Li C, Qin A, Liu Z, Li X, Zeng L, Yu H, Wang Y, Song J, Chen R. Identification and Expression Analysis of the Nucleotidyl Transferase Protein (NTP) Family in Soybean ( Glycine max) under Various Abiotic Stresses. Int J Mol Sci 2024; 25:1115. [PMID: 38256188 PMCID: PMC10816777 DOI: 10.3390/ijms25021115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/16/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Nucleotidyl transferases (NTPs) are common transferases in eukaryotes and play a crucial role in nucleotide modifications at the 3' end of RNA. In plants, NTPs can regulate RNA stability by influencing 3' end modifications, which in turn affect plant growth, development, stress responses, and disease resistance. Although the functions of NTP family members have been extensively studied in Arabidopsis, rice, and maize, there is limited knowledge about NTP genes in soybeans. In this study, we identified 16 members of the NTP family in soybeans, including two subfamilies (G1 and G2) with distinct secondary structures, conserved motifs, and domain distributions at the protein level. Evolutionary analysis of genes in the NTP family across multiple species and gene collinearity analysis revealed a relatively conserved evolutionary pattern. Analysis of the tertiary structure of the proteins showed that NTPs have three conserved aspartic acids that bind together to form a possible active site. Tissue-specific expression analysis indicated that some NTP genes exhibit tissue-specific expression, likely due to their specific functions. Stress expression analysis showed significant differences in the expression levels of NTP genes under high salt, drought, and cold stress. Additionally, RNA-seq analysis of soybean plants subjected to salt and drought stress further confirmed the association of soybean NTP genes with abiotic stress responses. Subcellular localization experiments revealed that GmNTP2 and GmNTP14, which likely have similar functions to HESO1 and URT1, are located in the nucleus. These research findings provide a foundation for further investigations into the functions of NTP family genes in soybeans.
Collapse
Affiliation(s)
- Liqing Kang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (L.K.); (C.L.); (A.Q.); (Z.L.); (X.L.); (L.Z.); (H.Y.); (Y.W.)
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Changgen Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (L.K.); (C.L.); (A.Q.); (Z.L.); (X.L.); (L.Z.); (H.Y.); (Y.W.)
| | - Aokang Qin
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (L.K.); (C.L.); (A.Q.); (Z.L.); (X.L.); (L.Z.); (H.Y.); (Y.W.)
| | - Zehui Liu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (L.K.); (C.L.); (A.Q.); (Z.L.); (X.L.); (L.Z.); (H.Y.); (Y.W.)
| | - Xuanyue Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (L.K.); (C.L.); (A.Q.); (Z.L.); (X.L.); (L.Z.); (H.Y.); (Y.W.)
| | - Liming Zeng
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (L.K.); (C.L.); (A.Q.); (Z.L.); (X.L.); (L.Z.); (H.Y.); (Y.W.)
| | - Hongyang Yu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (L.K.); (C.L.); (A.Q.); (Z.L.); (X.L.); (L.Z.); (H.Y.); (Y.W.)
| | - Yihua Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (L.K.); (C.L.); (A.Q.); (Z.L.); (X.L.); (L.Z.); (H.Y.); (Y.W.)
| | - Jianbo Song
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (L.K.); (C.L.); (A.Q.); (Z.L.); (X.L.); (L.Z.); (H.Y.); (Y.W.)
| | - Rongrong Chen
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (L.K.); (C.L.); (A.Q.); (Z.L.); (X.L.); (L.Z.); (H.Y.); (Y.W.)
| |
Collapse
|
2
|
Jeena GS, Singh N, Shukla RK. An insight into microRNA biogenesis and its regulatory role in plant secondary metabolism. PLANT CELL REPORTS 2022; 41:1651-1671. [PMID: 35579713 DOI: 10.1007/s00299-022-02877-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
The present review highlights the regulatory roles of microRNAs in plant secondary metabolism and focuses on different bioengineering strategies to modulate secondary metabolite content in plants. MicroRNAs (miRNAs) are the class of small endogenous, essential, non-coding RNAs that riboregulate the gene expression involved in various biological processes in most eukaryotes. MiRNAs has emerged as important regulators in plants that function by silencing target genes through cleavage or translational inhibition. These miRNAs plays an important role in a wide range of plant biological and metabolic processes, including plant development and various environmental response controls. Several important plant secondary metabolites like alkaloids, terpenoids, and phenolics are well studied for their function in plant defense against different types of pests and herbivores. Due to the presence of a wide range of biological and pharmaceutical properties of plant secondary metabolites, it is important to study the regulation of their biosynthetic pathways. The contribution of miRNAs in regulating plant secondary metabolism is not well explored. Recent advancements in molecular techniques have improved our knowledge in understanding the molecular function of genes, proteins, enzymes, and small RNAs involved in different steps of secondary metabolic pathways. In the present review, we have discussed the recent progress made on miRNA biogenesis, its regulation, and highlighted the current research developed in the field of identification, analysis, and characterizations of various miRNAs that regulate plant secondary metabolism. We have also discussed how different bioengineering strategies such as artificial miRNA (amiRNA), endogenous target mimicry, and CRISPR/Cas9 could be utilized to enhance the secondary metabolite production in plants.
Collapse
Affiliation(s)
- Gajendra Singh Jeena
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Neeti Singh
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Rakesh Kumar Shukla
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow, 226015, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
3
|
Werry N, Russell SJ, Gillis DJ, Miller S, Hickey K, Larmer S, Lohuis M, Librach C, LaMarre J. Characteristics of miRNAs Present in Bovine Sperm and Associations With Differences in Fertility. Front Endocrinol (Lausanne) 2022; 13:874371. [PMID: 35663333 PMCID: PMC9160602 DOI: 10.3389/fendo.2022.874371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/14/2022] [Indexed: 12/23/2022] Open
Abstract
Small non-coding RNAs have been linked to different phenotypes in bovine sperm, however attempts to identify sperm-borne molecular biomarkers of male fertility have thus far failed to identify a robust profile of expressed miRNAs related to fertility. We hypothesized that some differences in bull fertility may be reflected in the levels of different miRNAs in sperm. To explore such differences in fertility that are not due to differences in visible metrics of sperm quality, we employed Next Generation Sequencing to compare the miRNA populations in Bos taurus sperm from bulls with comparable motility and morphology but varying Sire Conception Rates. We identified the most abundant miRNAs in both populations (miRs -34b-3p; -100-5p; -191-5p; -30d-4p; -21-5p) and evaluated differences in the overall levels and specific patterns of isomiR expression. We also explored correlations between specific pairs of miRNAs in each population and identified 10 distinct pairs of miRNAs that were positively correlated in bulls with higher fertility and negatively correlated in comparatively less fertile individuals. Furthermore, 8 additional miRNA pairs demonstrated the opposite trend; negatively correlated in high fertility animals and positively correlated in less fertile bulls. Finally, we performed pathway analysis to identify potential roles of miRNAs present in bull sperm in the regulation of specific genes that impact spermatogenesis and embryo development. Together, these results present a comprehensive picture of the bovine sperm miRNAome that suggests multiple potential roles in fertility.
Collapse
Affiliation(s)
- Nicholas Werry
- Department of Biomedical Sciences, The University of Guelph, Guelph, ON, Canada
| | | | - Daniel J. Gillis
- School of Computer Science, The University of Guelph, Guelph, ON, Canada
| | | | | | | | | | - Clifford Librach
- CReATe Fertility Centre, Toronto, ON, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Jonathan LaMarre
- Department of Biomedical Sciences, The University of Guelph, Guelph, ON, Canada
| |
Collapse
|
4
|
Hajieghrari B, Farrokhi N. Plant RNA-mediated gene regulatory network. Genomics 2021; 114:409-442. [PMID: 34954000 DOI: 10.1016/j.ygeno.2021.12.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/21/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022]
Abstract
Not all transcribed RNAs are protein-coding RNAs. Many of them are non-protein-coding RNAs in diverse eukaryotes. However, some of them seem to be non-functional and are resulted from spurious transcription. A lot of non-protein-coding transcripts have a significant function in the translation process. Gene expressions depend on complex networks of diverse gene regulatory pathways. Several non-protein-coding RNAs regulate gene expression in a sequence-specific system either at the transcriptional level or post-transcriptional level. They include a significant part of the gene expression regulatory network. RNA-mediated gene regulation machinery is evolutionarily ancient. They well-evolved during the evolutionary time and are becoming much more complex than had been expected. In this review, we are trying to summarizing the current knowledge in the field of RNA-mediated gene silencing.
Collapse
Affiliation(s)
- Behzad Hajieghrari
- Department of Agricultural Biotechnology, College of Agriculture, Jahrom University, Jahrom, Iran.
| | - Naser Farrokhi
- Department of Cell, Molecular Biology Faculty of Life Sciences, Biotechnology, Shahid Beheshti University, G. C Evin, Tehran, Iran.
| |
Collapse
|
5
|
Li N, Ren G. Systematic Characterization of MicroRNA Processing Modes in Plants With Parallel Amplification of RNA Ends. FRONTIERS IN PLANT SCIENCE 2021; 12:793549. [PMID: 34950175 PMCID: PMC8688358 DOI: 10.3389/fpls.2021.793549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/19/2021] [Indexed: 05/30/2023]
Abstract
In plants, the RNase III-type enzyme Dicer-like 1 (DCL1) processes most microRNAs (miRNAs) from their primary transcripts called pri-miRNAs. Four distinct processing modes (i.e., short base to loop, sequential base to loop, short loop to base, and sequential loop to base) have been characterized in Arabidopsis, mainly by the Specific Parallel Amplification of RNA Ends (SPARE) approach. However, SPARE is a targeted cloning method which requires optimization of cloning efficiency and specificity for each target. PARE (Parallel Amplification of RNA Ends) is an untargeted method per se and is widely used to identify miRNA mediated target slicing events. A major concern with PARE in characterizing miRNA processing modes is the potential contamination of mature miRNAs. Here, we provide a method to estimate miRNA contamination levels and showed that most publicly available PARE libraries have negligible miRNA contamination. Both the numbers and processing modes detected by PARE were similar to those identified by SPARE in Arabidopsis. PARE also determined the processing modes of 36 Arabidopsis miRNAs that were unexplored by SPARE, suggesting that it can complement the SPARE approach. Using publicly available PARE datasets, we identified the processing modes of 36, 91, 90, and 54 miRNAs in maize, rice, soybean, and tomato, respectively, and demonstrated that the processing mode was conserved overall within each miRNA family. Through its power of tracking miRNA processing remnants, PARE also facilitated miRNA characterization and annotation.
Collapse
Affiliation(s)
| | - Guodong Ren
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Institute of Plant Biology, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Hsieh FM, Lai ST, Wu MF, Lin CC. Identification and Elucidation of the Protective isomiRs in Lung Cancer Patient Prognosis. Front Genet 2021; 12:702695. [PMID: 34589114 PMCID: PMC8474875 DOI: 10.3389/fgene.2021.702695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/16/2021] [Indexed: 11/24/2022] Open
Abstract
MicroRNAs (miRNAs) are approximately 20–22 nucleotides in length, which are well known to participate in the post-transcriptional modification. The mature miRNAs were observed to be varied on 5′ or 3′ that raise another term—the isoforms of mature miRNAs (isomiRs), which have been proven not the artifacts and discussed widely recently. In our research, we focused on studying the 5′ isomiRs in lung adenocarcinoma (LUAD) in The Cancer Genome Atlas (TCGA). We characterized 75 isomiRs significantly associated with better prognosis and 43 isomiRs with poor prognosis. The 75 protective isomiRs can successfully distinguish tumors from normal samples and are expressed differently between patients of early and late stages. We also found that most of the protective isomiRs tend to be with downstream shift and upregulated compared with those with upstream shift, implying that a possible selection occurs during cancer development. Among these protective isomiRs, we observed a highly positive and significant correlation, as well as in harmful isomiRs, suggesting cooperation within the group. However, between protective and harmful, there is no such a concordance but conversely more negative correlation, suggesting the possible antagonistic effect between protective and harmful isomiRs. We also identified that two isomiRs miR-181a-3p|-3 and miR-181a-3p|2, respectively, belong to the harmful and protective groups, suggesting a bidirectional regulation of their originated archetype—miR-181a-3p. Additionally, we found that the protective isomiRs of miR-21-5p, which is an oncomiR, may be evolved as the tumor suppressors through producing isomiRs to hinder metastasis. In summary, these results displayed the characteristics of the protective isomiRs and their potential for developing the treatment of lung cancer.
Collapse
Affiliation(s)
- Fu-Mei Hsieh
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Su-Ting Lai
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Fong Wu
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chen-Ching Lin
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
7
|
Zhang J, Zhang Y, Gao J, Wang M, Li X, Cui Z, Fu G. Long Noncoding RNA Tug1 Promotes Angiotensin II-Induced Renal Fibrosis by Binding to Mineralocorticoid Receptor and Negatively Regulating MicroR-29b-3p. Hypertension 2021; 78:693-705. [PMID: 34333990 DOI: 10.1161/hypertensionaha.120.16395] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Juhong Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China (J.Z., J.G., M.W., X.L., G.F.)
| | - Yuqing Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China (Y.Z.)
| | - Jing Gao
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China (J.Z., J.G., M.W., X.L., G.F.)
| | - Meihui Wang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China (J.Z., J.G., M.W., X.L., G.F.)
| | - Xiaoting Li
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China (J.Z., J.G., M.W., X.L., G.F.)
| | - Zhaoqiang Cui
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China (Z.C.)
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China (J.Z., J.G., M.W., X.L., G.F.)
| |
Collapse
|
8
|
Li C, Wang M, Qiu X, Zhou H, Lu S. Noncoding RNAs in Medicinal Plants and their Regulatory Roles in Bioactive Compound Production. Curr Pharm Biotechnol 2021; 22:341-359. [PMID: 32469697 DOI: 10.2174/1389201021666200529101942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/14/2020] [Accepted: 03/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), small interfering RNAs (siRNAs) and long noncoding RNAs (lncRNAs), play significant regulatory roles in plant development and secondary metabolism and are involved in plant response to biotic and abiotic stresses. They have been intensively studied in model systems and crops for approximately two decades and massive amount of information have been obtained. However, for medicinal plants, ncRNAs, particularly their regulatory roles in bioactive compound biosynthesis, are just emerging as a hot research field. OBJECTIVE This review aims to summarize current knowledge on herbal ncRNAs and their regulatory roles in bioactive compound production. RESULTS So far, scientists have identified thousands of miRNA candidates from over 50 medicinal plant species and 11794 lncRNAs from Salvia miltiorrhiza, Panax ginseng, and Digitalis purpurea. Among them, more than 30 miRNAs and five lncRNAs have been predicted to regulate bioactive compound production. CONCLUSION The regulation may achieve through various regulatory modules and pathways, such as the miR397-LAC module, the miR12112-PPO module, the miR156-SPL module, the miR828-MYB module, the miR858-MYB module, and other siRNA and lncRNA regulatory pathways. Further functional analysis of herbal ncRNAs will provide useful information for quality and quantity improvement of medicinal plants.
Collapse
Affiliation(s)
- Caili Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Meizhen Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xiaoxiao Qiu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Hong Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Shanfa Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| |
Collapse
|
9
|
Iranzad R, Motavalli R, Ghassabi A, Pourakbari R, Etemadi J, Yousefi M. Roles of microRNAs in renal disorders related to primary podocyte dysfunction. Life Sci 2021; 277:119463. [PMID: 33862110 DOI: 10.1016/j.lfs.2021.119463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/19/2021] [Accepted: 03/27/2021] [Indexed: 12/20/2022]
Abstract
Through the regulation of gene expression, microRNAs (miRNAs) are capable of modulating vital biological processes, such as proliferation, differentiation, and apoptosis. Several mechanisms control the function of miRNAs, including translational inhibition and targeted miRNA degradation. Through utilizing high-throughput screening methods, such as small RNA sequencing and microarray, alterations in miRNA expression of kidneys have recently been observed both in rodent models and humans throughout the development of chronic kidney disease (CKD) and acute kidney injury (AKI). The levels of miRNAs in urine supernatant, sediment, and exosomal fraction could predict novel biomarker candidates in different diseases of kidneys, including IgA nephropathy, lupus nephritis, and diabetic nephropathy. The therapeutic potential of administrating anti-miRNAs and miRNAs has also been reported recently. The present study is aimed at reviewing the state-of-the-art research with regards to miRNAs involved in renal disorders related to primary podocyte dysfunction by laying particular emphasis on Focal Segmental Glomerulosclerosis (FSGS), Minimal Change Disease (MCD) and Membranous Nephropathy (MN).
Collapse
Affiliation(s)
- Rahim Iranzad
- Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roza Motavalli
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Ghassabi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Pourakbari
- Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Etemadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Zhang J, Lin Y, Wu F, Zhang Y, Cheng L, Huang M, Tong Z. Profiling of MicroRNAs and Their Targets in Roots and Shoots Reveals a Potential MiRNA-Mediated Interaction Network in Response to Phosphate Deficiency in the Forestry Tree Betula luminifera. Front Genet 2021; 12:552454. [PMID: 33584823 PMCID: PMC7876418 DOI: 10.3389/fgene.2021.552454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 01/06/2021] [Indexed: 01/14/2023] Open
Abstract
Inorganic phosphate (Pi) is often lacking in natural and agro-climatic environments, which impedes the growth of economically important woody species. Plants have developed strategies to cope with low Pi (LP) availability. MicroRNAs (miRNAs) play important roles in responses to abiotic stresses, including nutrition stress, by regulating target gene expression. However, the miRNA-mediated regulation of these adaptive responses and their underlying coordinating signals are still poorly understood in forestry trees such as Betula luminifera. Transcriptomic libraries, small RNA (sRNA) libraries, and a mixed degradome cDNA library of B. luminifera roots and shoots treated under LP and normal conditions (CK) were constructed and sequenced using next-generation deep sequencing. A comprehensive B. luminifera transcriptome derived from its roots and shoots was constructed, and a total of 76,899 unigenes were generated. Analysis of the transcriptome identified 8,095 and 5,584 differentially expressed genes in roots and shoots, respectively, under LP conditions. sRNA sequencing analyses indicated that 66 and 60 miRNAs were differentially expressed in roots and shoots, respectively, under LP conditions. A total of 109 and 112 miRNA-target pairs were further validated in the roots and shoots, respectively, using degradome sequencing. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of differential miRNA targets indicated that the "ascorbate and aldarate metabolism" pathway responded to LP, suggesting miRNA-target pairs might participating in the removing of reactive oxidative species under LP stress. Moreover, a putative network of miRNA-target interactions involved in responses to LP stress in B. luminifera is proposed. Taken together, these findings provide useful information to decipher miRNA functions and establish a framework for exploring P signaling networks regulated by miRNAs in B. luminifera and other woody plants. It may provide new insights into the genetic engineering of high use efficiency of Pi in forestry trees.
Collapse
Affiliation(s)
- Junhong Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Bio-Technology, Zhejiang A&F University, Hangzhou, China
| | | | | | | | | | | | - Zaikang Tong
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Bio-Technology, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
11
|
|
12
|
Fard EM, Moradi S, Salekdeh NN, Bakhshi B, Ghaffari MR, Zeinalabedini M, Salekdeh GH. Plant isomiRs: origins, biogenesis, and biological functions. Genomics 2020; 112:3382-3395. [DOI: 10.1016/j.ygeno.2020.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/22/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
|
13
|
Xu Y, Zhang T, Li Y, Miao Z. Integrated Analysis of Large-Scale Omics Data Revealed Relationship Between Tissue Specificity and Evolutionary Dynamics of Small RNAs in Maize ( Zea mays). Front Genet 2020; 11:51. [PMID: 32117460 PMCID: PMC7026458 DOI: 10.3389/fgene.2020.00051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/16/2020] [Indexed: 01/15/2023] Open
Abstract
The evolutionary dynamics and tissue specificity of protein-coding genes are well documented in plants. However, the evolutionary consequences of small RNAs (sRNAs) on tissue-specific functions remain poorly understood. Here, we performed integrated analysis of 195 deeply sequenced sRNA libraries of maize B73, representing more than 10 tissues, and identified a comprehensive list of 419 maize microRNA (miRNA) genes, 271 of which were newly discovered in this study. We further characterized the evolutionary dynamics and tissue specificity of miRNA genes and corresponding miRNA isoforms (isomiRs). Our analysis revealed that tissue specificity of isomiR events tends to be associated with miRNA gene abundance and suggested that the frequencies of isomiR types are affected by the local genomic regions. Moreover, genome duplication (GD) events have dramatic effect on evolutionary dynamics of maize miRNA genes, and the abundance divergence for tissue-specific miRNA genes is associated with GD events. Further study indicated that duplicate miRNA genes with tissue-specific expression patterns, such as miR2275a, a phased siRNA (phasiRNA) trigger, contribute to phenotypic traits in maize. Additionally, our study revealed the expression preference of 21- and 24-nt phasiRNAs in relation to tissue specificity. This large-scale sRNAomic study depicted evolutionary implications of tissue-specific maize sRNAs, which coordinate genome duplication, isomiR modification, phenotypic traits and phasiRNAs differentiation.
Collapse
Affiliation(s)
- Yu Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Ting Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China.,Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Yuchen Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Zhenyan Miao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China.,Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
14
|
Wang J, Mei J, Ren G. Plant microRNAs: Biogenesis, Homeostasis, and Degradation. FRONTIERS IN PLANT SCIENCE 2019; 10:360. [PMID: 30972093 PMCID: PMC6445950 DOI: 10.3389/fpls.2019.00360] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 03/07/2019] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs), a class of endogenous, tiny, non-coding RNAs, are master regulators of gene expression among most eukaryotes. Intracellular miRNA abundance is regulated under multiple levels of control including transcription, processing, RNA modification, RNA-induced silencing complex (RISC) assembly, miRNA-target interaction, and turnover. In this review, we summarize our current understanding of the molecular components and mechanisms that influence miRNA biogenesis, homeostasis, and degradation in plants. We also make comparisons with findings from other organisms where necessary.
Collapse
Affiliation(s)
| | | | - Guodong Ren
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Lu S. De novo origination of MIRNAs through generation of short inverted repeats in target genes. RNA Biol 2019; 16:846-859. [PMID: 30870071 DOI: 10.1080/15476286.2019.1593744] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
MIRNA (MIR) gene origin and early evolutionary processes, such as hairpin precursor sequence origination, promoter activity acquirement and the sequence of these two processes, are fundamental and fascinating subjects. Three models, including inverted gene duplication, spontaneous evolution and transposon transposition, have been proposed for de novo origination of hairpin precursor sequence. However, these models still open to discussion. In addition, de novo origination of MIR gene promoters has not been well investigated. Here, I systematically investigated the origin of evolutionarily young polyphenol oxidase gene (PPO)-targeting MIRs, including MIR1444, MIR058 and MIR12112, and a genomic region termed AasPPO-as-hp, which contained a hairpin-forming sequence. I found that MIR058 precursors and the hairpin-forming sequence of AasPPO-as-hp originated in an ancient PPO gene through forming short inverted repeats. Palindromic-like sequences and imperfect inverted repeats in the ancient PPO gene contributed to initiate the generation of short inverted repeats probably by causing errors during DNA duplication. Analysis of MIR058 and AasPPO-as-hp promoters showed that they originated in the 3'-flanking region of the ancient PPO gene. Promoter activities were gained by insertion of a CAAT-box and multiple-copper-response element (CuRE)-containing miniature inverted-repeat transposable element (MITE) in the upstream of AT-rich TATA-box-like sequence. Gain of promoter activities occurred before hairpin-forming sequence origination. Sequence comparison of MIR1444, MIR058 and MIR12112 promoters showed frequent birth and death of CuREs, indicating copper could be vital for the origination and evolution of PPO-targeting MIRs. Based on the evidence obtained, a novel model for plant MIR origination and evolution is proposed.
Collapse
Affiliation(s)
- Shanfa Lu
- a Institute of Medicinal Plant Development , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing , China
| |
Collapse
|
16
|
Shukla S, Bjerke GA, Muhlrad D, Yi R, Parker R. The RNase PARN Controls the Levels of Specific miRNAs that Contribute to p53 Regulation. Mol Cell 2019; 73:1204-1216.e4. [PMID: 30770239 DOI: 10.1016/j.molcel.2019.01.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 11/08/2018] [Accepted: 01/07/2019] [Indexed: 12/14/2022]
Abstract
PARN loss-of-function mutations cause a severe form of the hereditary disease dyskeratosis congenita (DC). PARN deficiency affects the stability of non-coding RNAs such as human telomerase RNA (hTR), but these effects do not explain the severe disease in patients. We demonstrate that PARN deficiency affects the levels of numerous miRNAs in human cells. PARN regulates miRNA levels by stabilizing either mature or precursor miRNAs by removing oligo(A) tails added by the poly(A) polymerase PAPD5, which if remaining recruit the exonuclease DIS3L or DIS3L2 to degrade the miRNA. PARN knockdown destabilizes multiple miRNAs that repress p53 translation, which leads to an increase in p53 accumulation in a Dicer-dependent manner, thus explaining why PARN-defective patients show p53 accumulation. This work also reveals that DIS3L and DIS3L2 are critical 3' to 5' exonucleases that regulate miRNA stability, with the addition and removal of 3' end extensions controlling miRNA levels in the cell.
Collapse
Affiliation(s)
- Siddharth Shukla
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Glen A Bjerke
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80303, USA
| | - Denise Muhlrad
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Rui Yi
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80303, USA
| | - Roy Parker
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
17
|
Li YF, Zhao M, Wang M, Guo J, Wang L, Ji J, Qiu Z, Zheng Y, Sunkar R. An improved method of constructing degradome library suitable for sequencing using Illumina platform. PLANT METHODS 2019; 15:134. [PMID: 31832076 PMCID: PMC6859640 DOI: 10.1186/s13007-019-0524-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/09/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND Post-transcriptional gene regulation is one of the critical layers of overall gene expression programs and microRNAs (miRNAs) play an indispensable role in this process by guiding cleavage on the messenger RNA targets. The transcriptome-wide cleavages on the target transcripts can be identified by analyzing the degradome or PARE or GMUCT libraries. However, high-throughput sequencing of PARE or degradome libraries using Illumina platform, a widely used platform, is not so straightforward. Moreover, the currently used degradome or PARE methods utilize MmeI restriction site in the 5' RNA adapter and the resulting fragments are only 20-nt long, which often poses difficulty in distinguishing between the members of the same target gene family or distinguishing miRNA biogenesis intermediates from the primary miRNA transcripts belonging to the same miRNA family. Consequently, developing a method which can generate longer fragments from the PARE or degradome libraries which can also be sequenced easily using Illumina platform is ideal. RESULTS In this protocol, 3' end of the 5'RNA adaptor of TruSeq small RNA library is modified by introducing EcoP15I recognition site. Correspondingly, the double-strand DNA (dsDNA) adaptor sequence is also modified to suit with the ends generated by the restriction enzyme EcoP15I. These modifications allow amplification of the degradome library by primer pairs used for small RNA library preparation, thus amenable for sequencing using Illumina platform, like small RNA library. CONCLUSIONS Degradome library generated using this improved protocol can be sequenced easily using Illumina platform, and the resulting tag length is ~ 27-nt, which is longer than the MmeI generated fragment (20-nt) that can facilitate better accuracy in validating target transcripts belonging to the same gene family or distinguishing miRNA biogenesis intermediates of the same miRNA family. Furthermore, this improved method allows pooling and sequencing degradome libraries and small RNA libraries simultaneously using Illumina platform.
Collapse
Affiliation(s)
- Yong-Fang Li
- College of Life Sciences, Henan Normal University, Xinxiang, Henan People’s Republic of China
| | - Miao Zhao
- College of Life Sciences, Henan Normal University, Xinxiang, Henan People’s Republic of China
| | - Menglei Wang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan People’s Republic of China
| | - Junqiang Guo
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650500 Yunnan China
| | - Li Wang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan People’s Republic of China
| | - Jie Ji
- College of Life Sciences, Henan Normal University, Xinxiang, Henan People’s Republic of China
| | - Zongbo Qiu
- College of Life Sciences, Henan Normal University, Xinxiang, Henan People’s Republic of China
| | - Yun Zheng
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650500 Yunnan China
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500 China
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078 USA
| |
Collapse
|
18
|
Pegler JL, Grof CPL, Eamens AL. The Plant microRNA Pathway: The Production and Action Stages. Methods Mol Biol 2019; 1932:15-39. [PMID: 30701489 DOI: 10.1007/978-1-4939-9042-9_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Plant microRNAs are an endogenous class of small regulatory RNA central to the posttranscriptional regulation of gene expression in plant development and environmental stress adaptation or in response to pathogen challenge. The plant microRNA pathway is readily separated into two distinct stages: (1) the production stage, which is localized to the plant cell nucleus and where the microRNA small RNA is processed from a double-stranded RNA precursor transcript, and (2) the action stage, which is localized to the plant cell cytoplasm and where the mature microRNA small RNA is loaded into an effector complex and is used by the complex as a sequence specificity guide to direct expression repression of target genes harboring highly complementary microRNA target sequences. Historical research indicated that the plant microRNA pathway was a highly structured, almost linear pathway requiring a small set of core machinery proteins. However, contemporary research has demonstrated that the plant microRNA pathway is highly dynamic, and to allow for this flexibility, a large and highly functionally diverse set of machinery proteins is now known to be required. For example, recent research has shown that plant microRNAs can regulate target gene expression via a translational repression mechanism of RNA silencing in addition to the standard messenger RNA cleavage-based mechanism of RNA silencing: a mode of RNA silencing originally assigned to all plant microRNAs. Using Arabidopsis thaliana as our model system, here we report on both the core and auxiliary sets of machinery proteins now known to be required for both microRNA production and microRNA action in plants.
Collapse
Affiliation(s)
- Joseph L Pegler
- Faculty of Science, Centre for Plant Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Christopher P L Grof
- Faculty of Science, Centre for Plant Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Andrew L Eamens
- Faculty of Science, Centre for Plant Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
19
|
Ugolini I, Halic M. Fidelity in RNA-based recognition of transposable elements. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2018.0168. [PMID: 30397104 PMCID: PMC6232588 DOI: 10.1098/rstb.2018.0168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2018] [Indexed: 12/28/2022] Open
Abstract
Genomes are under constant threat of invasion by transposable elements and other genomic parasites. How can host genomes recognize these elements and target them for degradation? This requires a system that is highly adaptable, and at the same time highly specific. Current data suggest that perturbation of transcription patterns by transposon insertions could be detected by the RNAi surveillance pathway. Multiple transposon insertions might generate sufficient amounts of primal small RNAs to initiate generation of secondary small RNAs and silencing. At the same time primal small RNAs need to be constantly degraded to reduce the level of noise small RNAs below the threshold required for initiation of silencing. Failure in RNA degradation results in loss of fidelity of small RNA pathways and silencing of ectopic targets. This article is part of the theme issue ‘5′ and 3′ modifications controlling RNA degradation’.
Collapse
Affiliation(s)
- Ilaria Ugolini
- Department of Biochemistry and Gene Center, LMU Munich, 81377 Munich, Germany
| | - Mario Halic
- Department of Biochemistry and Gene Center, LMU Munich, 81377 Munich, Germany
| |
Collapse
|
20
|
de Almeida C, Scheer H, Gobert A, Fileccia V, Martinelli F, Zuber H, Gagliardi D. RNA uridylation and decay in plants. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2018.0163. [PMID: 30397100 DOI: 10.1098/rstb.2018.0163] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2018] [Indexed: 12/13/2022] Open
Abstract
RNA uridylation consists of the untemplated addition of uridines at the 3' extremity of an RNA molecule. RNA uridylation is catalysed by terminal uridylyltransferases (TUTases), which form a subgroup of the terminal nucleotidyltransferase family, to which poly(A) polymerases also belong. The key role of RNA uridylation is to regulate RNA degradation in a variety of eukaryotes, including fission yeast, plants and animals. In plants, RNA uridylation has been mostly studied in two model species, the green algae Chlamydomonas reinhardtii and the flowering plant Arabidopsis thaliana Plant TUTases target a variety of RNA substrates, differing in size and function. These RNA substrates include microRNAs (miRNAs), small interfering silencing RNAs (siRNAs), ribosomal RNAs (rRNAs), messenger RNAs (mRNAs) and mRNA fragments generated during post-transcriptional gene silencing. Viral RNAs can also get uridylated during plant infection. We describe here the evolutionary history of plant TUTases and we summarize the diverse molecular functions of uridylation during RNA degradation processes in plants. We also outline key points of future research.This article is part of the theme issue '5' and 3' modifications controlling RNA degradation'.
Collapse
Affiliation(s)
- Caroline de Almeida
- Institut de biologie moléculaire des plantes (IBMP), Centre national de la recherche scientifique (CNRS), Université de Strasbourg, 12 rue Zimmer, 67000 Strasbourg, France
| | - Hélène Scheer
- Institut de biologie moléculaire des plantes (IBMP), Centre national de la recherche scientifique (CNRS), Université de Strasbourg, 12 rue Zimmer, 67000 Strasbourg, France
| | - Anthony Gobert
- Institut de biologie moléculaire des plantes (IBMP), Centre national de la recherche scientifique (CNRS), Université de Strasbourg, 12 rue Zimmer, 67000 Strasbourg, France
| | - Veronica Fileccia
- Dipartimento di Scienze Agrarie Alimentari Forestali, Università degli Studi di Palermo, viale delle scienze ed. 4, Palermo 90128, Italy
| | - Federico Martinelli
- Dipartimento di Scienze Agrarie Alimentari Forestali, Università degli Studi di Palermo, viale delle scienze ed. 4, Palermo 90128, Italy
| | - Hélène Zuber
- Institut de biologie moléculaire des plantes (IBMP), Centre national de la recherche scientifique (CNRS), Université de Strasbourg, 12 rue Zimmer, 67000 Strasbourg, France
| | - Dominique Gagliardi
- Institut de biologie moléculaire des plantes (IBMP), Centre national de la recherche scientifique (CNRS), Université de Strasbourg, 12 rue Zimmer, 67000 Strasbourg, France
| |
Collapse
|
21
|
Fuchs Wightman F, Giono LE, Fededa JP, de la Mata M. Target RNAs Strike Back on MicroRNAs. Front Genet 2018; 9:435. [PMID: 30333855 PMCID: PMC6175985 DOI: 10.3389/fgene.2018.00435] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/13/2018] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs are extensively studied regulatory non-coding small RNAs that silence animal genes throughout most biological processes, typically doing so by binding to partially complementary sequences within target RNAs. A plethora of studies has described detailed mechanisms for microRNA biogenesis and function, as well as their temporal and spatial regulation during development. By inducing translational repression and/or degradation of their target RNAs, microRNAs can contribute to achieve highly specific cell- or tissue-specific gene expression, while their aberrant expression can lead to disease. Yet an unresolved aspect of microRNA biology is how such small RNA molecules are themselves cleared from the cell, especially under circumstances where fast microRNA turnover or specific degradation of individual microRNAs is required. In recent years, it was unexpectedly found that binding of specific target RNAs to microRNAs with extensive complementarity can reverse the outcome, triggering degradation of the bound microRNAs. This emerging pathway, named TDMD for Target RNA-Directed MicroRNA Degradation, leads to microRNA 3'-end tailing by the addition of A/U non-templated nucleotides, trimming or shortening from the 3' end, and highly specific microRNA loss, providing a new layer of microRNA regulation. Originally described in flies and known to be triggered by viral RNAs, novel endogenous instances of TDMD have been uncovered and are now starting to be understood. Here, we review our current knowledge of this pathway and its potential role in the control and diversification of microRNA expression patterns.
Collapse
Affiliation(s)
- Federico Fuchs Wightman
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires, Argentina
| | - Luciana E Giono
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires, Argentina
| | - Juan Pablo Fededa
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Manuel de la Mata
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires, Argentina
| |
Collapse
|
22
|
Identifying and characterizing functional 3' nucleotide addition in the miRNA pathway. Methods 2018; 152:23-30. [PMID: 30138674 DOI: 10.1016/j.ymeth.2018.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/02/2018] [Accepted: 08/14/2018] [Indexed: 02/07/2023] Open
Abstract
Over the past decade, modifications to microRNAs (miRNAs) via 3' end nucleotide addition have gone from a deep-sequencing curiosity to experimentally confirmed drivers of a range of regulatory activities. Here we overview the methods that have been deployed by researchers seeking to untangle these diverse functional roles and include characterizing not only the nucleotidyl transferases catalyzing the additions but also the nucleotides being added, and the timing of their addition during the miRNA pathway. These methods and their further development are key to clarifying the diverse and sometimes contradictory functional findings presently attributed to these nucleotide additions.
Collapse
|
23
|
Profiling and Bioinformatic Analyses Indicate Differential circRNA and miRNA/isomiR Expression and Interactions. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8518563. [PMID: 29682564 PMCID: PMC5845524 DOI: 10.1155/2018/8518563] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/28/2017] [Accepted: 01/01/2018] [Indexed: 11/23/2022]
Abstract
As a novel class of noncoding RNAs, circular RNAs (circRNAs) have been reported to play a role in various biological processes. Some circRNAs may serve as microRNA (miRNA) sponges, regulating transcription or splicing. Herein, we investigated the expression profiles and interactions of miRNAs/isomiRs and circRNAs in male patients with esophageal cancer. We found that some miRNA genes generated two deregulated miRNA products (miR-#-5p and miR-#-3p), and these products were consistently abnormally expressed. Some circRNAs were predicted to be miRNA sponges for specific miRNAs. Some of these typically showed opposing expression patterns in cancer tissues: one upregulated and the other downregulated. Although fewer miRNAs were predicted to interact with circRNAs, the number of predicted interactions would be substantially increased if detailed isomiRs were involved. High sequence similarity across multiple isomiRs suggested that they might interact with circRNAs, similar to the interaction of homologous miRNAs with circRNAs. At the isomiR level, due to the characteristics of the sequences and expression patterns involved, the cross-talk between different ncRNAs is complicated despite simplification of the isomiRs involved through clustering. We expect that our results may provide methods for further study of the cross-talk among ncRNAs and elucidate their biological roles in human diseases.
Collapse
|
24
|
Yu Y, Jia T, Chen X. The 'how' and 'where' of plant microRNAs. THE NEW PHYTOLOGIST 2017; 216:1002-1017. [PMID: 29048752 PMCID: PMC6040672 DOI: 10.1111/nph.14834] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/21/2017] [Indexed: 05/18/2023]
Abstract
Contents 1002 I. 1002 II. 1007 III. 1010 IV. 1013 1013 References 1013 SUMMARY: MicroRNAs (miRNAs) are small non-coding RNAs, of typically 20-24 nt, that regulate gene expression post-transcriptionally through sequence complementarity. Since the identification of the first miRNA, lin-4, in the nematode Caenorhabditis elegans in 1993, thousands of miRNAs have been discovered in animals and plants, and their regulatory roles in numerous biological processes have been uncovered. In plants, research efforts have established the major molecular framework of miRNA biogenesis and modes of action, and are beginning to elucidate the mechanisms of miRNA degradation. Studies have implicated restricted and surprising subcellular locations in which miRNA biogenesis or activity takes place. In this article, we summarize the current knowledge on how plant miRNAs are made and degraded, and how they repress target gene expression. We discuss not only the players involved in these processes, but also the subcellular sites in which these processes are known or implicated to take place. We hope to raise awareness that the cell biology of miRNAs holds the key to a full understanding of these enigmatic molecules.
Collapse
Affiliation(s)
- Yu Yu
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Tianran Jia
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
- Department of Botany and Plant Sciences, Howard Hughes Medical Institute, University of California, Riverside, CA 92521, USA
| |
Collapse
|
25
|
Muiwo P, Pandey P, Ahmad HM, Ramachandran SS, Bhattacharya A. IsomiR processing during differentiation of myelogenous leukemic cell line K562 by phorbol ester PMA. Gene 2017; 641:172-179. [PMID: 29051025 DOI: 10.1016/j.gene.2017.10.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/18/2017] [Accepted: 10/10/2017] [Indexed: 01/28/2023]
Abstract
Chronic myelocytic leukemia cell line K562 undergoes differentiation by phorbol esters to megakaryocytes and we have used this system to understand miRNA processing leading to isomiR generation. PMA treatment significantly altered the production of miRNA in K562 cells. Expression of 24.4% of miRNAs were found to be stimulated whereas expression of 10% miRNAs were inhibited by PMA treatment. Our results suggest that miRNA precursors are processed into isomiRs in a deterministic manner. The relative levels of different isomiRs of a miRNA remained mainly unchanged even after PMA treatment irrespective of overall changes in expression (either up-regulation or down-regulation). However, not all miRNAs behave in the same way, about 7% showed a variation of isomiR profiles after PMA treatment. Most of the later class of miRNAs were found to be oncogenic miRNAs. Further, it was also found that number of isomiRs was independent of abundance of a miRNA. Functional importance of different isomiRs was demonstrated using three different isomiRs of miR-22. Our results showed that different isomiRs could inhibit expression of targets genes with different efficiencies. Our study suggests that the heterogeneity of a miRNA population generated during processing is in general regulated and that variation in the generation of an isomiR can be a functionally important regulatory feature.
Collapse
Affiliation(s)
- Pamchui Muiwo
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| | - Priyatama Pandey
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India.
| | - Hafiz M Ahmad
- Department of Molecular Cell and Cancer Biology, Umass Medical School, Worcester, MA, USA.
| | | | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India; School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
26
|
Comprehensive miRNA expression profiling in human T-cell acute lymphoblastic leukemia by small RNA-sequencing. Sci Rep 2017; 7:7901. [PMID: 28801656 PMCID: PMC5554241 DOI: 10.1038/s41598-017-08148-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/05/2017] [Indexed: 12/21/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a genetically heterogeneous disease that can be classified into different molecular genetic subtypes according to their mRNA gene expression profile. In this study, we applied RNA sequencing to investigate the full spectrum of miRNA expression in primary T-ALL patient samples, T-ALL leukemia cell lines and healthy donor thymocytes. Notably, this analysis revealed that genetic subtypes of human T-ALL also display unique miRNA expression signatures, which are largely conserved in human T-ALL cell lines with corresponding genetic background. Furthermore, small RNA-sequencing also unraveled the variety of isoforms that are expressed for each miRNA in T-ALL and showed that a significant number of miRNAs are actually represented by an alternative isomiR. Finally, comparison of CD34+ and CD4+CD8+ healthy donor thymocytes and T-ALL miRNA profiles allowed identifying several novel miRNAs with putative oncogenic or tumor suppressor functions in T-ALL. Altogether, this study provides a comprehensive overview of miRNA expression in normal and malignant T-cells and sets the stage for functional evaluation of novel miRNAs in T-ALL disease biology.
Collapse
|
27
|
Gutiérrez-Vázquez C, Enright AJ, Rodríguez-Galán A, Pérez-García A, Collier P, Jones MR, Benes V, Mizgerd JP, Mittelbrunn M, Ramiro AR, Sánchez-Madrid F. 3' Uridylation controls mature microRNA turnover during CD4 T-cell activation. RNA (NEW YORK, N.Y.) 2017; 23:882-891. [PMID: 28351886 PMCID: PMC5435861 DOI: 10.1261/rna.060095.116] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/23/2017] [Indexed: 05/23/2023]
Abstract
Activation of T lymphocytes requires a tight regulation of microRNA (miRNA) expression. Terminal uridyltransferases (TUTases) catalyze 3' nontemplated nucleotide addition (3'NTA) to miRNAs, which may influence miRNA stability and function. Here, we investigated 3'NTA to mature miRNA in CD4 T lymphocytes by deep sequencing. Upon T-cell activation, miRNA sequences bearing terminal uridines are specifically decreased, concomitantly with down-regulation of TUT4 and TUT7 enzymes. Analyzing TUT4-deficient T lymphocytes, we proved that this terminal uridyltransferase is essential for the maintenance of miRNA uridylation in the steady state of T lymphocytes. Analysis of synthetic uridylated miRNAs shows that 3' addition of uridine promotes degradation of these uridylated miRNAs after T-cell activation. Our data underline post-transcriptional uridylation as a mechanism to fine-tune miRNA levels during T-cell activation.
Collapse
Affiliation(s)
- Cristina Gutiérrez-Vázquez
- Instituto de Investigación Sanitaria Princesa, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid 28006, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Anton J Enright
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Ana Rodríguez-Galán
- Instituto de Investigación Sanitaria Princesa, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid 28006, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Arantxa Pérez-García
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Paul Collier
- European Molecular Biology Laboratory (EMBL), Core Facilities and Services, Heidelberg 69117, Germany
| | - Matthew R Jones
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Vladimir Benes
- European Molecular Biology Laboratory (EMBL), Core Facilities and Services, Heidelberg 69117, Germany
| | - Joseph P Mizgerd
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - María Mittelbrunn
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Almudena R Ramiro
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Francisco Sánchez-Madrid
- Instituto de Investigación Sanitaria Princesa, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid 28006, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
- CIBER: Centro Investigación en Red Cardiovascular, Madrid 28029, Spain
| |
Collapse
|
28
|
Tailing and degradation of Argonaute-bound small RNAs protect the genome from uncontrolled RNAi. Nat Commun 2017; 8:15332. [PMID: 28541282 PMCID: PMC5458512 DOI: 10.1038/ncomms15332] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/21/2017] [Indexed: 12/30/2022] Open
Abstract
RNAi is a conserved mechanism in which small RNAs induce silencing of complementary targets. How Argonaute-bound small RNAs are targeted for degradation is not well understood. We show that the adenyl-transferase Cid14, a member of the TRAMP complex, and the uridyl-transferase Cid16 add non-templated nucleotides to Argonaute-bound small RNAs in fission yeast. The tailing of Argonaute-bound small RNAs recruits the 3'-5' exonuclease Rrp6 to degrade small RNAs. Failure in degradation of Argonaute-bound small RNAs results in accumulation of 'noise' small RNAs on Argonaute and targeting of diverse euchromatic genes by RNAi. To protect themselves from uncontrolled RNAi, cid14Δ cells exploit the RNAi machinery and silence genes essential for RNAi itself, which is required for their viability. Our data indicate that surveillance of Argonaute-bound small RNAs by Cid14/Cid16 and the exosome protects the genome from uncontrolled RNAi and reveal a rapid RNAi-based adaptation to stress conditions.
Collapse
|
29
|
Chakraborty K, Veetil AT, Jaffrey SR, Krishnan Y. Nucleic Acid-Based Nanodevices in Biological Imaging. Annu Rev Biochem 2017; 85:349-73. [PMID: 27294440 DOI: 10.1146/annurev-biochem-060815-014244] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The nanoscale engineering of nucleic acids has led to exciting molecular technologies for high-end biological imaging. The predictable base pairing, high programmability, and superior new chemical and biological methods used to access nucleic acids with diverse lengths and in high purity, coupled with computational tools for their design, have allowed the creation of a stunning diversity of nucleic acid-based nanodevices. Given their biological origin, such synthetic devices have a tremendous capacity to interface with the biological world, and this capacity lies at the heart of several nucleic acid-based technologies that are finding applications in biological systems. We discuss these diverse applications and emphasize the advantage, in terms of physicochemical properties, that the nucleic acid scaffold brings to these contexts. As our ability to engineer this versatile scaffold increases, its applications in structural, cellular, and organismal biology are clearly poised to massively expand.
Collapse
Affiliation(s)
- Kasturi Chakraborty
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637; , ,
| | - Aneesh T Veetil
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637; , ,
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Medical College of Cornell University, New York, New York 10065;
| | - Yamuna Krishnan
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637; , , .,Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
30
|
Lampe L, Levashina EA. The role of microRNAs inAnophelesbiology-an emerging research field. Parasite Immunol 2017; 39. [DOI: 10.1111/pim.12405] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/21/2016] [Indexed: 12/21/2022]
Affiliation(s)
- L. Lampe
- Vector Biology Unit; Max Planck Institute for Infection Biology; Berlin Germany
| | - E. A. Levashina
- Vector Biology Unit; Max Planck Institute for Infection Biology; Berlin Germany
| |
Collapse
|
31
|
Zhang P, Li Z, Wang H, Zhuo Y, Yuan R, Chai Y. DNA nanomachine-based regenerated sensing platform: a novel electrochemiluminescence resonance energy transfer strategy for ultra-high sensitive detection of microRNA from cancer cells. NANOSCALE 2017; 9:2310-2316. [PMID: 28134381 DOI: 10.1039/c6nr08631d] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The construction of DNA nanomachines holds great significance in the development of DNA nanostructures; however, the real application of nanomachines is still in its early stage. Moreover, one-step regenerated sensing platforms for the detection of biomarkers in the current research remain a practical challenge. Herein, a novel electrochemiluminescence resonance energy transfer (ERET) strategy between Alexa Flour 488 (AF 488), which is a type of small molecule dye, as the donor and CdSe@ZnS quantum dots (QDs) as the acceptor, which easily enter the cells, has been reported and was applied for the construction of a DNA nanomachine-based regenerated biosensor for the ultra-high sensitive determination of cancer cells without any enzyme. First, a dual amplification strategy, including target recycling and signal transformation, was employed to achieve the conversion of a small number of miRNAs into a large amount of universal DNA reporters. Initially, the DNA tweezer was kept in the "off" state with two arms labeled with QDs and AF488, respectively. Second, in the presence of DNA reporters, the tweezer transformed to the "on" state through the hybridization of the reporter DNA and exposed the arms of the tweezer. Simultaneously, QDs and AF488 on the two arms were close enough to generate ERET, which remarkably increased the ECL intensity of the QDs. Impressively, the sensor could be regenerated by a one-step strand displacement and could be cycled for more than seven times. Owing to the dual amplification strategy and the high efficiency of the ERET between the QDs and AF488, the proposed biosensor performs in the linear range from 10 pM to 0.1 fM with a detection limit of 0.03 fM for miRNA determination, and the monitoring of different cancer cells was also achieved. Moreover, the elaborated biosensor can also realize the sensitive detection of Pb2+, which indicates that it can be potentially used for field environmental analysis and monitoring, thus offering a new modular platform for the construction of functional DNA nanomachines in the ultra-high sensitive analysis of promising biomarkers and toxic metals.
Collapse
Affiliation(s)
- Pu Zhang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China.
| | - Zhaoyang Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China.
| | - Haijun Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China.
| | - Ying Zhuo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China.
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China.
| | - Yaqin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China.
| |
Collapse
|
32
|
Guo L, Liang T. MicroRNAs and their variants in an RNA world: implications for complex interactions and diverse roles in an RNA regulatory network. Brief Bioinform 2016; 19:245-253. [DOI: 10.1093/bib/bbw124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Indexed: 01/09/2023] Open
|
33
|
Wang F, Johnson NR, Coruh C, Axtell MJ. Genome-wide analysis of single non-templated nucleotides in plant endogenous siRNAs and miRNAs. Nucleic Acids Res 2016; 44:7395-405. [PMID: 27207877 PMCID: PMC5009732 DOI: 10.1093/nar/gkw457] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 04/26/2016] [Accepted: 05/11/2016] [Indexed: 11/15/2022] Open
Abstract
Plant small RNAs are subject to various modifications. Previous reports revealed widespread 3' modifications (truncations and non-templated tailing) of plant miRNAs when the 2'-O-methyltransferase HEN1 is absent. However, non-templated nucleotides in plant heterochromatic siRNAs have not been deeply studied, especially in wild-type plants. We systematically studied non-templated nucleotide patterns in plant small RNAs by analyzing small RNA sequencing libraries from Arabidopsis, tomato, Medicago, rice, maize and Physcomitrella Elevated rates of non-templated nucleotides were observed at the 3' ends of both miRNAs and endogenous siRNAs from wild-type specimens of all species. 'Off-sized' small RNAs, such as 25 and 23 nt siRNAs arising from loci dominated by 24 nt siRNAs, often had very high rates of 3'-non-templated nucleotides. The same pattern was observed in all species that we studied. Further analysis of 24 nt siRNA clusters in Arabidopsis revealed distinct patterns of 3'-non-templated nucleotides of 23 nt siRNAs arising from heterochromatic siRNA loci. This pattern of non-templated 3' nucleotides on 23 nt siRNAs is not affected by loss of known small RNA 3'-end modifying enzymes, and may result from modifications added to longer heterochromatic siRNA precursors.
Collapse
Affiliation(s)
- Feng Wang
- Intercollege Plant Biology PhD Program, Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Nathan R Johnson
- Intercollege Plant Biology PhD Program, Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Ceyda Coruh
- Intercollege Plant Biology PhD Program, Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Michael J Axtell
- Intercollege Plant Biology PhD Program, Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA Department of Biology, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
34
|
Guo L, Liang T, Yu J, Zou Q. A Comprehensive Analysis of miRNA/isomiR Expression with Gender Difference. PLoS One 2016; 11:e0154955. [PMID: 27167065 PMCID: PMC4864079 DOI: 10.1371/journal.pone.0154955] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/21/2016] [Indexed: 01/09/2023] Open
Abstract
Although microRNAs (miRNAs) have been widely studied as epigenetic regulation molecules, fewer studies focus on the gender difference at the miRNA and isomiR expression levels. In this study, we aim to understand the potential relationships between gender difference and miRNA/isomiR expression through a comprehensive analysis of small RNA-sequencing datasets based on different human diseases and tissues. Based on specific samples from males and females, we determined that some miRNAs may be diversely expressed between different tissues and genders. Thus, these miRNAs may exhibit inconsistent and even opposite expression between males and females. According to deregulated miRNA expression profiles, some dominantly expressed miRNA loci were selected to analyze isomiR expression patterns using rates of dominant isomiRs. In some miRNA loci, isomiRs showed statistical significance between tumor and normal samples and between males and females samples, suggesting that isomiR expression patterns are not always invariable but may vary between males and females, as well as among different tissues, tumors, and normal samples. The divergence implicates the fluctuation in the expression of miRNA and its detailed expression at the isomiR levels. The divergence also indicates that gender difference may be an important factor that affects the screening of disease-associated miRNAs and isomiRs. This study suggests that miRNA/isomiR expression and gender difference may be more complex than previously assumed and should be further studied according to specific samples from males or females.
Collapse
Affiliation(s)
- Li Guo
- Department of Bioinformatics, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, China
- * E-mail: (LG); (QZ)
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Jiafeng Yu
- Shandong Provincial Key Laboratory of Functional Macromolecular Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Quan Zou
- School of Computer Science and Technology, Tianjin University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, NanKai University, Tianjin, China
- * E-mail: (LG); (QZ)
| |
Collapse
|
35
|
Xu B, Zhang YW, Zheng SX, Tong XH, Liu YS. Expression Profile of microRNAs and Their Targeted Pathways in Human Ovaries Detected by Next-Generation Small RNA Sequencing. DNA Cell Biol 2016; 35:226-34. [PMID: 26828676 DOI: 10.1089/dna.2015.3176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Bo Xu
- Center for Reproductive Medicine, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Yuan-Wei Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Sheng-Xia Zheng
- Center for Reproductive Medicine, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Xian-Hong Tong
- Center for Reproductive Medicine, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Yu-Sheng Liu
- Center for Reproductive Medicine, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| |
Collapse
|
36
|
Fang Z, Xu C, Li Y, Cai X, Ren S, Liu H, Wang Y, Wang F, Chen R, Qu M, Wang Y, Zhu Y, Zhang W, Shi X, Yao J, Gao X, Hou J, Xu C, Sun Y. A feed-forward regulatory loop between androgen receptor and PlncRNA-1 promotes prostate cancer progression. Cancer Lett 2016; 374:62-74. [PMID: 26808578 DOI: 10.1016/j.canlet.2016.01.033] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/01/2016] [Accepted: 01/18/2016] [Indexed: 12/22/2022]
Abstract
We previously reported that PlncRNA-1, a long non-coding RNA that is up-regulated in prostate cancer (PCa), affects the proliferation and apoptosis of PCa cells. However, the molecular mechanisms underlying these effects remain largely unknown. In this study, we demonstrated that long non-coding RNA PlncRNA-1, whose expression is promoted by Androgen Receptor (AR), protects AR from microRNA-mediated suppression in PCa cells. PlncRNA-1 knockdown resulted in the up-regulation of a series of AR-targeting microRNAs, among which miR-34c and miR-297 were found to regulate both AR and PlncRNA-1 expression at the post-transcriptional level. Functional analysis revealed that miR-34c and miR-297 overexpression down-regulated AR expression and inhibited the expression of downstream AR targets and that PlncRNA-1 overexpression rescued these effects. The association of PlncRNA-1 with tumor progression was also evaluated in mouse xenograft models, PCa tissues (16 paired samples), and blood samples (35 biopsy-negative and 37 biopsy-positive). Together, the data generated in this study indicate that PlncRNA-1 sponges AR-targeting microRNAs to protect AR from microRNA-mediated down-regulation and that these events form a regulatory feed-forward loop in the development of PCa. These findings suggest that PlncRNA-1 might potentially serve as a novel biomarker in PCa and that PlncRNA-1 might warrant further investigation to determine its potential role as a promising therapeutic target in PCa.
Collapse
Affiliation(s)
- Ziyu Fang
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Chen Xu
- Department of Spinal Surgery, Changzheng Hospital Affiliated to Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, China
| | - Yaoming Li
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Xiaobing Cai
- Health Division of Guard Bureau, General Staff Department of Chinese People's Liberation Army, Beijing, China
| | - Shancheng Ren
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Houqi Liu
- Research Center of Developmental Biology, Second Military Medical University, 800th Xiangyin Road, Shanghai, 200433, China; Translational Medicine Center, Second Military Medical University, 800th Xiangyin Road, Shanghai, China
| | - Yue Wang
- Research Center of Developmental Biology, Second Military Medical University, 800th Xiangyin Road, Shanghai, 200433, China; Translational Medicine Center, Second Military Medical University, 800th Xiangyin Road, Shanghai, China
| | - Fubo Wang
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Rui Chen
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Min Qu
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Yang Wang
- Department of Pathology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Yasheng Zhu
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Wei Zhang
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Xiaolei Shi
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Jingjing Yao
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Xu Gao
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Jianguo Hou
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Chuanliang Xu
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Yinghao Sun
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
37
|
Lü MH, Tang B, Zeng S, Hu CJ, Xie R, Wu YY, Wang SM, He FT, Yang SM. Long noncoding RNA BC032469, a novel competing endogenous RNA, upregulates hTERT expression by sponging miR-1207-5p and promotes proliferation in gastric cancer. Oncogene 2015; 35:3524-34. [PMID: 26549025 DOI: 10.1038/onc.2015.413] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 08/18/2015] [Accepted: 09/28/2015] [Indexed: 12/14/2022]
Abstract
Long noncoding RNAs (lncRNAs) are emerging as new players in gene regulation and are associated with the development of cancers. To investigate the important role and mechanism of lncRNAs in the progression of gastric cancer, we screened lncRNAs in gastric cancer tissues and corresponding adjacent tissues, and assessed the effects on gastric cancer. Here, we report that BC032469, a novel lncRNA, expressed highly in gastric cancer tissues, and the upregulation was clinically associated with larger tumor size, poor differentiation and shorter survival of gastric cancer patients. Downregulation of BC032469 resulted in a significant inhibition of proliferation in vitro and in vivo. Mechanistically, BC032469 could directly bind to miR-1207-5p and effectively functioned as a sponge for miR-1207-5p to modulate the derepression of hTERT. Thus, BC032469 may function as a ceRNA to impair miR-1207-5p-dependent hTERT downregulation, suggesting that it may be clinically valuable as a poor prognostic biomarker of gastric cancer.
Collapse
Affiliation(s)
- M-H Lü
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Department of Gastroenterology, The Affiliated Hospital of Luzhou Medical College, Luzhou, China
| | - B Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - S Zeng
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - C-J Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - R Xie
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Y-Y Wu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - S-M Wang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - F-T He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - S-M Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
38
|
Ahmed F, Senthil-Kumar M, Lee S, Dai X, Mysore KS, Zhao PX. Comprehensive analysis of small RNA-seq data reveals that combination of miRNA with its isomiRs increase the accuracy of target prediction in Arabidopsis thaliana. RNA Biol 2015; 11:1414-29. [PMID: 25629686 PMCID: PMC4615835 DOI: 10.1080/15476286.2014.996474] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Along with the canonical miRNA, distinct miRNA-like sequences called sibling miRNAs (sib-miRs) are generated from the same pre-miRNA. Among them, isomeric sequences featuring slight variations at the terminals, relative to the canonical miRNA, constitute a pool of isomeric sibling miRNAs (isomiRs). Despite the high prevalence of isomiRs in eukaryotes, their features and relevance remain elusive. In this study, we performed a comprehensive analysis of mature precursor miRNA (pre-miRNA) sequences from Arabidopsis to understand their features and regulatory targets. The influence of isomiR terminal heterogeneity in target binding was examined comprehensively. Our comprehensive analyses suggested a novel computational strategy that utilizes miRNA and its isomiRs to enhance the accuracy of their regulatory target prediction in Arabidopsis. A few targets are shared by several members of isomiRs; however, this phenomenon was not typical. Gene Ontology (GO) enrichment analysis showed that commonly targeted mRNAs were enriched for certain GO terms. Moreover, comparison of these commonly targeted genes with validated targets from published data demonstrated that the validated targets are bound by most isomiRs and not only the canonical miRNA. Furthermore, the biological role of isomiRs in target cleavage was supported by degradome data. Incorporating this finding, we predicted potential target genes of several miRNAs and confirmed them by experimental assays. This study proposes a novel strategy to improve the accuracy of predicting miRNA targets through combined use of miRNA with its isomiRs.
Collapse
Affiliation(s)
- Firoz Ahmed
- a Plant Biology Division; Samuel Roberts Noble Foundation ; Ardmore , OK USA
| | | | | | | | | | | |
Collapse
|
39
|
Saraf S, Sanan-Mishra N, Gursanscky NR, Carroll BJ, Gupta D, Mukherjee SK. 3' and 5' microRNA-end post-biogenesis modifications in plant transcriptomes: Evidences from small RNA next generation sequencing data analysis. Biochem Biophys Res Commun 2015; 467:892-9. [PMID: 26471296 DOI: 10.1016/j.bbrc.2015.10.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 11/29/2022]
Abstract
The processing of miRNA from its precursors is a precisely regulated process and after biogenesis, the miRNAs are amenable to different kinds of modifications by the addition or deletion of nucleotides at the terminal ends. However, the mechanism and functions of such modifications are not well studied in plants. In this study, we have specifically analysed the terminal end non-templated miRNA modifications, using NGS data of rice, tomato and Arabidopsis small RNA transcriptomes from different tissues and physiological conditions. Our analysis reveals template independent terminal end modifications in the mature as well as passenger strands of the miRNA duplex. Interestingly, it is also observed that miRNA sequences terminating with a cytosine (C) at the 3' end undergo a higher percentage of 5' end modifications. The terminal end modifications did not correlate with the miRNA abundances and are independent of tissue types, physiological conditions and plant species. Our analysis indicates that the addition of nucleotides at miRNA ends is not influenced by the absence of RNA dependent RNA polymerase 6. Moreover the terminal end modified miRNAs are also observed amongst AGO1 bound small RNAs and have potential to alter target, indicating its important functional role in repression of gene expression.
Collapse
Affiliation(s)
- Shradha Saraf
- Bioinformatics Laboratory, Structural and Computational Biology Group, ICGEB, New Delhi, India.
| | | | - Nial R Gursanscky
- School of Chemistry and Molecular Biosciences, The University of Queensland, Australia.
| | - Bernard J Carroll
- School of Chemistry and Molecular Biosciences, The University of Queensland, Australia.
| | - Dinesh Gupta
- Bioinformatics Laboratory, Structural and Computational Biology Group, ICGEB, New Delhi, India.
| | | |
Collapse
|
40
|
Kaushik A, Saraf S, Mukherjee SK, Gupta D. miRMOD: a tool for identification and analysis of 5' and 3' miRNA modifications in Next Generation Sequencing small RNA data. PeerJ 2015; 3:e1332. [PMID: 26623179 PMCID: PMC4662591 DOI: 10.7717/peerj.1332] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/27/2015] [Indexed: 12/27/2022] Open
Abstract
In the past decade, the microRNAs (miRNAs) have emerged to be important regulators of gene expression across various species. Several studies have confirmed different types of post-transcriptional modifications at terminal ends of miRNAs. The reports indicate that miRNA modifications are conserved and functionally significant as it may affect miRNA stability and ability to bind mRNA targets, hence affecting target gene repression. Next Generation Sequencing (NGS) of the small RNA (sRNA) provides an efficient and reliable method to explore miRNA modifications. The need for dedicated software, especially for users with little knowledge of computers, to determine and analyze miRNA modifications in sRNA NGS data, motivated us to develop miRMOD. miRMOD is a user-friendly, Microsoft Windows and Graphical User Interface (GUI) based tool for identification and analysis of 5′ and 3′ miRNA modifications (non-templated nucleotide additions and trimming) in sRNA NGS data. In addition to identification of miRNA modifications, the tool also predicts and compares the targets of query and modified miRNAs. In order to compare binding affinities for the same target, miRMOD utilizes minimum free energies of the miRNA:target and modified-miRNA:target interactions. Comparisons of the binding energies may guide experimental exploration of miRNA post-transcriptional modifications. The tool is available as a stand-alone package to overcome large data transfer problems commonly faced in web-based high-throughput (HT) sequencing data analysis tools. miRMOD package is freely available at http://bioinfo.icgeb.res.in/miRMOD.
Collapse
Affiliation(s)
- Abhinav Kaushik
- Bioinformatics Laboratory, SCB Group, International Centre for Genetic Engineering & Biotechnology, New Delhi, India
| | - Shradha Saraf
- Bioinformatics Laboratory, SCB Group, International Centre for Genetic Engineering & Biotechnology, New Delhi, India
| | - Sunil K Mukherjee
- Department of Genetics, University of Delhi, South Campus, Delhi, India
| | - Dinesh Gupta
- Bioinformatics Laboratory, SCB Group, International Centre for Genetic Engineering & Biotechnology, New Delhi, India
| |
Collapse
|
41
|
Sanei M, Chen X. Mechanisms of microRNA turnover. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:199-206. [PMID: 26342825 PMCID: PMC4618239 DOI: 10.1016/j.pbi.2015.07.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/14/2015] [Accepted: 07/17/2015] [Indexed: 05/20/2023]
Abstract
MicroRNAs (miRNAs) are 20-24 nucleotide (nt) RNAs that regulate gene expression by guiding Argonaute (AGO) proteins to specific target RNAs to cause their degradation or translational repression. The abundance of miRNAs is strictly controlled at the transcriptional or post-transcriptional levels. miRNA turnover is presumably a necessary means to regulate miRNA levels in response to physiological, developmental, and environmental changes. miRNA 3' end methylation, 3' end nucleotide addition, AGO and complementary target transcripts are known or probable processes/factors that affect miRNA stability and turnover. Here we discuss the mechanisms that control miRNA turnover in plants and, where applicable, make references to similarities and differences in these mechanisms between plants and animals.
Collapse
Affiliation(s)
- Maryam Sanei
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, United States
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, United States; Howard Hughes Medical Institute, University of California, Riverside, CA, United States.
| |
Collapse
|
42
|
Budak H, Bulut R, Kantar M, Alptekin B. MicroRNA nomenclature and the need for a revised naming prescription. Brief Funct Genomics 2015; 15:65-71. [PMID: 26148500 DOI: 10.1093/bfgp/elv026] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A central environment and interface for microRNA (miRNA) registry and repository and a general standardized framework for their systematic annotation was established over a decade ago. However, the numbers of experimentally and computationally identified miRNAs are swiftly accumulating, and new aspects of miRNA-mediated gene regulation are being revealed. Currently, it is of great significance that the annotation framework should be redefined to include newly discovered miRNA species such as the variants of mature miRNAs (isomiRNAs), and organellar miRNAs: cipomiRNAs and mitomiRNAs. It is also of great importance that key terminology referring to the novelty, evolutionary history or biogenesis of miRNAs, as well as the confidence of their identification are standardized in the literature and disseminated in a central miRNA registry. Here, we review the status of miRNA nomenclature, curation and critical points of need for a revision of miRNA nomenclature and terminology.
Collapse
|
43
|
Vitsios DM, Enright AJ. Chimira: analysis of small RNA sequencing data and microRNA modifications. Bioinformatics 2015; 31:3365-7. [PMID: 26093149 PMCID: PMC4595902 DOI: 10.1093/bioinformatics/btv380] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/16/2015] [Indexed: 01/01/2023] Open
Abstract
Summary: Chimira is a web-based system for microRNA (miRNA) analysis from small RNA-Seq data. Sequences are automatically cleaned, trimmed, size selected and mapped directly to miRNA hairpin sequences. This generates count-based miRNA expression data for subsequent statistical analysis. Moreover, it is capable of identifying epi-transcriptomic modifications in the input sequences. Supported modification types include multiple types of 3′-modifications (e.g. uridylation, adenylation), 5′-modifications and also internal modifications or variation (ADAR editing or single nucleotide polymorphisms). Besides cleaning and mapping of input sequences to miRNAs, Chimira provides a simple and intuitive set of tools for the analysis and interpretation of the results (see also Supplementary Material). These allow the visual study of the differential expression between two specific samples or sets of samples, the identification of the most highly expressed miRNAs within sample pairs (or sets of samples) and also the projection of the modification profile for specific miRNAs across all samples. Other tools have already been published in the past for various types of small RNA-Seq analysis, such as UEA workbench, seqBuster, MAGI, OASIS and CAP-miRSeq, CPSS for modifications identification. A comprehensive comparison of Chimira with each of these tools is provided in the Supplementary Material. Chimira outperforms all of these tools in total execution speed and aims to facilitate simple, fast and reliable analysis of small RNA-Seq data allowing also, for the first time, identification of global microRNA modification profiles in a simple intuitive interface. Availability and implementation: Chimira has been developed as a web application and it is accessible here: http://www.ebi.ac.uk/research/enright/software/chimira. Contact:aje@ebi.ac.uk Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Dimitrios M Vitsios
- European Molecular Biology Laboratory-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Anton J Enright
- European Molecular Biology Laboratory-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| |
Collapse
|
44
|
Budak H, Kantar M, Bulut R, Akpinar BA. Stress responsive miRNAs and isomiRs in cereals. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 235:1-13. [PMID: 25900561 DOI: 10.1016/j.plantsci.2015.02.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 05/18/2023]
Abstract
Abiotic and biotic stress conditions are vital determinants in the production of cereals, the major caloric source in human nutrition. Small RNAs, miRNAs and isomiRs are central to post-transcriptional regulation of gene expression in a variety of cellular processes including development and stress responses. Several miRNAs have been identified using new technologies and have roles in stress responses in plants, including cereals. The overall knowledge about the cereal miRNA repertoire, as well as an understanding of complex miRNA mediated mechanisms of target regulation in response to stress conditions, is far from complete. Ongoing efforts that add to our understanding of complex miRNA machinery have implications in plant response to stress conditions. Additionally, sequence variants of miRNAs (isomiRNAs or isomiRs), regulation of their expression through dissection of upstream regulatory elements, the role of Processing-bodies (P-bodies) in miRNA exerted gene regulation and yet unveiled organellar plant miRNAs are newly emerging topics, which will contribute to the elucidation of the miRNA machinery and its role in cereal tolerance against abiotic and biotic stresses.
Collapse
Affiliation(s)
- Hikmet Budak
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey.
| | - Melda Kantar
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey
| | - Reyyan Bulut
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey
| | - Bala Ani Akpinar
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey
| |
Collapse
|
45
|
Yuan Z, Ding S, Yan M, Zhu X, Liu L, Tan S, Jin Y, Sun Y, Li Y, Huang T. Variability of miRNA expression during the differentiation of human embryonic stem cells into retinal pigment epithelial cells. Gene 2015; 569:239-49. [PMID: 26028588 DOI: 10.1016/j.gene.2015.05.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/23/2015] [Accepted: 05/25/2015] [Indexed: 01/08/2023]
Abstract
Embryonic stem cells (ESCs) and induced pluripotent stem cells can be induced to differentiate into retinal pigment epithelium (RPE). MiRNAs have been characterized and found playing important roles in the differentiation process of ESCs, but their length and sequence heterogeneity (isomiRs), and their non-canonical forms of miRNAs are underestimated or ignored. In this report, we found some non-canonical miRNAs (dominant isomiRs) in all differentiation stages, and 27 statistically significant editing sites were identified in 24 different miRNAs. Moreover, we found marked major-to-minor arm-switching events in 14 pre-miRNAs during the hESC to RPE cell differentiation phases. Our study for the first time reports exploring the variability of miRNA expression during the differentiation of hESCs into RPE cells and the results show that miRNA variability is a ubiquitous phenomenon in the ESC differentiation.
Collapse
Affiliation(s)
- Zhidong Yuan
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, College of Hunan Province, Xiangtan 411201, China.
| | - Suping Ding
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Mingli Yan
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, College of Hunan Province, Xiangtan 411201, China
| | - Xiao Zhu
- Guangdong Province Key Laboratory of Medical Molecular Diagnosis, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan 523808, China
| | - Lili Liu
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, College of Hunan Province, Xiangtan 411201, China
| | - Shuhua Tan
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, College of Hunan Province, Xiangtan 411201, China
| | - Yuanchang Jin
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yuandong Sun
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, College of Hunan Province, Xiangtan 411201, China
| | - Yufeng Li
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Ting Huang
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
46
|
Liu J, Luo M, Sheng Y, Hong Q, Cheng H, Zhou R. Dynamic evolution and biogenesis of small RNAs during sex reversal. Sci Rep 2015; 5:9999. [PMID: 25944477 PMCID: PMC4421800 DOI: 10.1038/srep09999] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/24/2015] [Indexed: 12/31/2022] Open
Abstract
Understanding origin, evolution and functions of small RNA (sRNA) genes has been a great challenge in the past decade. Molecular mechanisms underlying sexual reversal in vertebrates, particularly sRNAs involved in this process, are largely unknown. By deep-sequencing of small RNA transcriptomes in combination with genomic analysis, we identified a large amount of piRNAs and miRNAs including over 1,000 novel miRNAs, which were differentially expressed during gonad reversal from ovary to testis via ovotesis. Biogenesis and expressions of miRNAs were dynamically changed during the reversal. Notably, phylogenetic analysis revealed dynamic expansions of miRNAs in vertebrates and an evolutionary trajectory of conserved miR-17-92 cluster in the Eukarya. We showed that the miR-17-92 cluster in vertebrates was generated through multiple duplications from ancestor miR-92 in invertebrates Tetranychus urticae and Daphnia pulex from the Chelicerata around 580 Mya. Moreover, we identified the sexual regulator Dmrt1 as a direct target of the members miR-19a and -19b in the cluster. These data suggested dynamic biogenesis and expressions of small RNAs during sex reversal and revealed multiple expansions and evolutionary trajectory of miRNAs from invertebrates to vertebrates, which implicate small RNAs in sexual reversal and provide new insight into evolutionary and molecular mechanisms underlying sexual reversal.
Collapse
Affiliation(s)
- Jie Liu
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Majing Luo
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yue Sheng
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Qiang Hong
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Hanhua Cheng
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Rongjia Zhou
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
47
|
Evolutionary and expression analysis of miR-#-5p and miR-#-3p at the miRNAs/isomiRs levels. BIOMED RESEARCH INTERNATIONAL 2015; 2015:168358. [PMID: 26075215 PMCID: PMC4436453 DOI: 10.1155/2015/168358] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/27/2014] [Accepted: 09/29/2014] [Indexed: 11/18/2022]
Abstract
We mainly discussed miR-#-5p and miR-#-3p under three aspects: (1) primary evolutionary analysis of human miRNAs; (2) evolutionary analysis of miRNAs from different arms across the typical 10 vertebrates; (3) expression pattern analysis of miRNAs at the miRNA/isomiR levels using public small RNA sequencing datasets. We found that no bias can be detected between the numbers of 5p-miRNA and 3p-miRNA, while miRNAs from miR-#-5p and miR-#-3p show variable nucleotide compositions. IsomiR expression profiles from the two arms are always stable, but isomiR expressions in diseased samples are prone to show larger degree of dispersion. miR-#-5p and miR-#-3p have relative independent evolution/expression patterns and datasets of target mRNAs, which might also contribute to the phenomena of arm selection and/or arm switching. Simultaneously, miRNA/isomiR expression profiles may be regulated via arm selection and/or arm switching, and the dynamic miRNAome and isomiRome will adapt to functional and/or evolutionary pressures. A comprehensive analysis and further experimental study at the miRNA/isomiR levels are quite necessary for miRNA study.
Collapse
|
48
|
MicroRNAs and their applications in kidney diseases. Pediatr Nephrol 2015; 30:727-40. [PMID: 24928414 PMCID: PMC4265577 DOI: 10.1007/s00467-014-2867-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/12/2014] [Accepted: 05/21/2014] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are short, non-coding RNAs that employ classic Watson-Crick base-pairing to identify their target genes, ultimately resulting in destabilization of their target mRNAs and/or inhibition of their translation. The role of miRNAs in a wide range of human diseases, including those afflicting the kidney, has been intensely investigated. However, there is still a vast dearth of knowledge regarding their specific mode of action and therapeutic effects in various kidney diseases. This review discusses the latest efforts to further our understanding of the basic biology of miRNAs, their impact on various kidney diseases and their potential as novel biomarkers and therapeutic agents. We initially provide an overview of miRNA biology and the canonical pathway implicated in their biogenesis. We then discuss commonly employed experimental strategies for miRNA research and highlight some of the newly described state-of-the-art technologies to identify miRNAs and their target genes. Finally, we carefully examine the emerging role of miRNAs in the pathogenesis of various kidney diseases.
Collapse
|
49
|
Xie F, Wang Q, Zhang B. Global microRNA modification in cotton (Gossypium hirsutum L.). PLANT BIOTECHNOLOGY JOURNAL 2015; 13:492-500. [PMID: 25393285 DOI: 10.1111/pbi.12271] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 08/21/2014] [Accepted: 08/28/2014] [Indexed: 05/15/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs participating in versatile biological processes via post-transcriptionally gene regulation. However, how miRNAs are modified or degraded remains unknown, despite years of studies have unravelled much details of miRNA biogenesis and function. Here, we systematically investigated miRNA modification using six small RNA sequencing libraries generated from cotton seedling as well as cotton fibre at five developmental stages. Our results show that 1-2-nt truncation and addition on both 5' and 3' ends of miRNAs are the major modification forms. The 5' and 3' end miRNA modification was almost equal in the six development stages. Truncation was more common than addition on both 5' and 3' end. Structure analysis of the 5' and 3' ends of miRNAs and isomiRs shows that uridine is the preferential nucleotide at the first position of both 5' and 3' ends. According to analysis of nucleotides truncated and tailed from miRNAs, both miRNAs and isomiRs share a similar positional structure distribution at their 5' and 3' ends, respectively. Furthermore, opposite to previous reports, cytodine is more frequently truncated and tailed from the two ends of isomiRs, implying existence of a complex cytodine balance in isomiRs. Comparison of isomiR expression shows differential miRNA modification amongst the six developmental stages in terms of selective modification form, development-dependent modification and differential expression abundance. Our results globally uncovered miRNA modification features in cotton, which could contribute us to understanding miRNA's postmature modification and its regulatory function.
Collapse
Affiliation(s)
- Fuliang Xie
- Department of Biology, East Carolina University, Greenville, NC, USA
| | | | | |
Collapse
|
50
|
Trumbo JL, Zhang B, Stewart CN. Manipulating microRNAs for improved biomass and biofuels from plant feedstocks. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:337-54. [PMID: 25707745 DOI: 10.1111/pbi.12319] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 11/25/2014] [Accepted: 11/29/2014] [Indexed: 05/22/2023]
Abstract
Petroleum-based fuels are nonrenewable and unsustainable. Renewable sources of energy, such as lignocellulosic biofuels and plant metabolite-based drop-in fuels, can offset fossil fuel use and reverse environmental degradation through carbon sequestration. Despite these benefits, the lignocellulosic biofuels industry still faces many challenges, including the availability of economically viable crop plants. Cell wall recalcitrance is a major economic barrier for lignocellulosic biofuels production from biomass crops. Sustainability and biomass yield are two additional, yet interrelated, foci for biomass crop improvement. Many scientists are searching for solutions to these problems within biomass crop genomes. MicroRNAs (miRNAs) are involved in almost all biological and metabolic process in plants including plant development, cell wall biosynthesis and plant stress responses. Because of the broad functions of their targets (e.g. auxin response factors), the alteration of plant miRNA expression often results in pleiotropic effects. A specific miRNA usually regulates a biologically relevant bioenergy trait. For example, relatively low miR156 overexpression leads to a transgenic feedstock with enhanced biomass and decreased recalcitrance. miRNAs have been overexpressed in dedicated bioenergy feedstocks such as poplar and switchgrass yielding promising results for lignin reduction, increased plant biomass, the timing of flowering and response to harsh environments. In this review, we present the status of miRNA-related research in several major biofuel crops and relevant model plants. We critically assess published research and suggest next steps for miRNA manipulation in feedstocks for increased biomass and sustainability for biofuels and bioproducts.
Collapse
Affiliation(s)
- Jennifer Lynn Trumbo
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, USA; Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | | | | |
Collapse
|