1
|
Catalytic Antibodies: Design, Expression, and Their Applications in Medicine. Appl Biochem Biotechnol 2023; 195:1514-1540. [PMID: 36222989 PMCID: PMC9554387 DOI: 10.1007/s12010-022-04183-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 01/24/2023]
Abstract
Catalytic antibodies made it feasible to develop new catalysts, which had previously been the subject of research. Scientists have discovered natural antibodies that can hydrolyze substrates such as nucleic acids, proteins, and polysaccharides during decades of research, as well as several ways of producing antibodies with specialized characteristics and catalytic functions. These antibodies are widely used in chemistry, biology, and medicine. Catalytic antibodies can continue to play a role and even fully prevent the emergence of autoimmune disorders, especially in the field of infection and immunity, where the process of its occurrence and development often takes a long time. In this work, the development, design and evolution methodologies, and the expression systems and applications of catalytic antibodies, are discussed. Trial registration: not applicable.
Collapse
|
2
|
Ermakov EA, Nevinsky GA, Buneva VN. Immunoglobulins with Non-Canonical Functions in Inflammatory and Autoimmune Disease States. Int J Mol Sci 2020; 21:ijms21155392. [PMID: 32751323 PMCID: PMC7432551 DOI: 10.3390/ijms21155392] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
Immunoglobulins are known to combine various effector mechanisms of the adaptive and the innate immune system. Classical immunoglobulin functions are associated with antigen recognition and the initiation of innate immune responses. However, in addition to classical functions, antibodies exhibit a variety of non-canonical functions related to the destruction of various pathogens due to catalytic activity and cofactor effects, the action of antibodies as agonists/antagonists of various receptors, the control of bacterial diversity of the intestine, etc. Canonical and non-canonical functions reflect the extreme human antibody repertoire and the variety of antibody types generated in the organism: antigen-specific, natural, polyreactive, broadly neutralizing, homophilic, bispecific and catalytic. The therapeutic effects of intravenous immunoglobulins (IVIg) are associated with both the canonical and non-canonical functions of antibodies. In this review, catalytic antibodies will be considered in more detail, since their formation is associated with inflammatory and autoimmune diseases. We will systematically summarize the diversity of catalytic antibodies in normal and pathological conditions. Translational perspectives of knowledge about natural antibodies for IVIg therapy will be also discussed.
Collapse
MESH Headings
- Adaptive Immunity
- Antibodies, Bispecific/chemistry
- Antibodies, Bispecific/genetics
- Antibodies, Bispecific/metabolism
- Antibodies, Catalytic/chemistry
- Antibodies, Catalytic/genetics
- Antibodies, Catalytic/metabolism
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/metabolism
- Autoimmune Diseases/genetics
- Autoimmune Diseases/immunology
- Autoimmune Diseases/pathology
- Autoimmune Diseases/therapy
- Humans
- Immunity, Innate
- Immunoglobulin Fab Fragments/chemistry
- Immunoglobulin Fab Fragments/genetics
- Immunoglobulin Fab Fragments/metabolism
- Immunoglobulin Fc Fragments/chemistry
- Immunoglobulin Fc Fragments/genetics
- Immunoglobulin Fc Fragments/metabolism
- Immunoglobulin Isotypes/chemistry
- Immunoglobulin Isotypes/classification
- Immunoglobulin Isotypes/genetics
- Immunoglobulin Isotypes/metabolism
- Immunoglobulins, Intravenous/therapeutic use
- Immunologic Tests
- Neurodegenerative Diseases/genetics
- Neurodegenerative Diseases/immunology
- Neurodegenerative Diseases/pathology
- Neurodegenerative Diseases/therapy
Collapse
Affiliation(s)
- Evgeny A. Ermakov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.E.); (G.A.N.)
- Novosibirsk State University, Department of Natural Sciences, 630090 Novosibirsk, Russia
| | - Georgy A. Nevinsky
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.E.); (G.A.N.)
- Novosibirsk State University, Department of Natural Sciences, 630090 Novosibirsk, Russia
| | - Valentina N. Buneva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.E.); (G.A.N.)
- Novosibirsk State University, Department of Natural Sciences, 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-(383)-363-51-27; Fax: +7-(383)-363-51-53
| |
Collapse
|
3
|
Goicochea NL, Garnovskaya M, Blanton MG, Chan G, Weisbart R, Lilly MB. Development of cell-penetrating bispecific antibodies targeting the N-terminal domain of androgen receptor for prostate cancer therapy†. Protein Eng Des Sel 2017; 30:785-793. [DOI: 10.1093/protein/gzx058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Nancy L Goicochea
- Department of Medicine, Division of Hematology/Oncology, Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas St., Charleston, SC 29425, USA
| | - Maria Garnovskaya
- Department of Medicine, Division of Hematology/Oncology, Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas St., Charleston, SC 29425, USA
| | - Mary G Blanton
- Department of Medicine, Division of Hematology/Oncology, Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas St., Charleston, SC 29425, USA
| | - Grace Chan
- Veterans Affairs Greater Los Angeles Health Care System, 16111 Plummer St., Sepulveda, CA 91343, USA
| | - Richard Weisbart
- Veterans Affairs Greater Los Angeles Health Care System, 16111 Plummer St., Sepulveda, CA 91343, USA
| | - Michael B Lilly
- Department of Medicine, Division of Hematology/Oncology, Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas St., Charleston, SC 29425, USA
| |
Collapse
|
4
|
Abstract
The existence of catalytic antibodies has been known for decades. Natural antibodies capable of cleaving nucleic acid, protein, and polysaccharide substrates have been described. Although the discovery of catalytic antibodies initially aroused great interest because of their promise for the development of new catalysts, their enzymatic performance has been disappointing due to low reaction rates. However, in the areas of infection and immunity, where processes often occur over much longer times and involve high antibody concentrations, even low catalytic rates have the potential to influence biological outcomes. In this regard, the presence of catalytic antibodies recognizing host antigens has been associated with several autoimmune diseases. Furthermore, naturally occurring catalytic antibodies to microbial determinants have been correlated with resistance to infection. Recently, there has been substantial interest in harnessing the power of antibody-mediated catalysis against microbial antigens for host defense. Additional work is needed, however, to better understand the prevalence, function, and structural basis of catalytic activity in antibodies. Here we review the available information and suggest that antibody-mediated catalysis is a fertile area for study with broad applications in infection and immunity.
Collapse
|
5
|
Böldicke T. Single domain antibodies for the knockdown of cytosolic and nuclear proteins. Protein Sci 2017; 26:925-945. [PMID: 28271570 PMCID: PMC5405437 DOI: 10.1002/pro.3154] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/03/2017] [Indexed: 12/12/2022]
Abstract
Single domain antibodies (sdAbs) from camels or sharks comprise only the variable heavy chain domain. Human sdAbs comprise the variable domain of the heavy chain (VH) or light chain (VL) and can be selected from human antibodies. SdAbs are stable, nonaggregating molecules in vitro and in vivo compared to complete antibodies and scFv fragments. They are excellent novel inhibitors of cytosolic/nuclear proteins because they are correctly folded inside the cytosol in contrast to scFv fragments. SdAbs are unique because of their excellent specificity and possibility to target posttranslational modifications such as phosphorylation sites, conformers or interaction regions of proteins that cannot be targeted with genetic knockout techniques and are impossible to knockdown with RNAi. The number of inhibiting cytosolic/nuclear sdAbs is increasing and usage of synthetic single pot single domain antibody libraries will boost the generation of these fascinating molecules without the need of immunization. The most frequently selected antigenic epitopes belong to viral and oncogenic proteins, followed by toxins, proteins of the nervous system as well as plant- and drosophila proteins. It is now possible to select functional sdAbs against virtually every cytosolic/nuclear protein and desired epitope. The development of new endosomal escape protein domains and cell-penetrating peptides for efficient transfection broaden the application of inhibiting sdAbs. Last but not least, the generation of relatively new cell-specific nanoparticles such as polymersomes and polyplexes carrying cytosolic/nuclear sdAb-DNA or -protein will pave the way to apply cytosolic/nuclear sdAbs for inhibition of viral infection and cancer in the clinic.
Collapse
Affiliation(s)
- Thomas Böldicke
- Helmholtz Centre for Infection Research, Structure and Function of ProteinsInhoffenstraße 7, D‐38124BraunschweigGermany
| |
Collapse
|
6
|
Im SW, Pravinsagar P, Im SR, Jang YJ. Variable Heavy Chain Domain Derived from a Cell-Penetrating Anti-DNA Monoclonal Antibody for the Intracellular Delivery of Biomolecules. Immunol Invest 2017; 46:500-517. [DOI: 10.1080/08820139.2017.1301466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Sun-Woo Im
- Department of Biomedical Sciences, Graduate School of Medicine, and Department of Microbiology, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Pavithra Pravinsagar
- Department of Biomedical Sciences, Graduate School of Medicine, and Department of Microbiology, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Sae-Ran Im
- Department of Biomedical Sciences, Graduate School of Medicine, and Department of Microbiology, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Young-Ju Jang
- Department of Biomedical Sciences, Graduate School of Medicine, and Department of Microbiology, School of Medicine, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
7
|
Abstract
OBJECTIVE To develop a novel and potent fusion inhibitor of HIV infection based on a rational strategy for synthetic antibody library construction. DESIGN The reduced molecular weight of single-domain antibodies (sdAbs) allows targeting of cryptic epitopes, the most conserved and critical ones in the context of HIV entry. Heavy-chain sdAbs from camelids are particularly suited for this type of epitope recognition because of the presence of long and flexible antigen-binding regions [complementary-determining regions (CDRs)]. METHODS We translated camelid CDR features to a rabbit light-chain variable domain (VL) and constructed a library of minimal antibody fragments with elongated CDRs. Additionally to elongation, CDRs' variability was restricted to binding favorable amino acids to potentiate the selection of high-affinity sdAbs. The synthetic library was screened against a conserved, hidden, and crucial-to-fusion sequence on the heptad-repeat 1 (HR1) region of the HIV-1 envelope glycoprotein. RESULTS Two anti-HR1 VLs, named F63 and D104, strongly inhibited laboratory-adapted HIV-1 infectivity. F63 also inhibited infectivity of HIV-1 and HIV-2 primary isolates similarly to the Food and Drug Administration-approved fusion inhibitor T-20 and HIV-1 strains resistant to T-20. Moreover, epitope mapping of F63 revealed a novel target sequence within the highly conserved hydrophobic pocket of HR1. F63 was also capable of interacting with viral and cell lipid membrane models, a property previously associated with T-20's inhibitory mechanism. CONCLUSION In summary, to our best knowledge, we developed the first potent and broad VL sdAb fusion inhibitor of HIV infection. Our study also gives insights into engineering strategies that could be explored to enhance the development of antiviral drugs.
Collapse
|
8
|
Min SE, Lee KH, Park SW, Yoo TH, Oh CH, Park JH, Yang SY, Kim YS, Kim DM. Cell-free production and streamlined assay of cytosol-penetrating antibodies. Biotechnol Bioeng 2016; 113:2107-12. [DOI: 10.1002/bit.25985] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 03/28/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Seung Eui Min
- Department of Chemical Engineering and Applied Chemistry; Chungnam National University; Daejeon 34134 Korea
| | - Kyung-Ho Lee
- Department of Chemical Engineering and Applied Chemistry; Chungnam National University; Daejeon 34134 Korea
| | - Seong-Wook Park
- Department of Molecular Science and Technology; Ajou University; Suwon Korea
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology; Ajou University; Suwon Korea
| | - Chan Hee Oh
- Department of Bio and Brain Engineering; Korea Advanced Institute of Science and Technology; Daejeon Korea
| | - Ji-Ho Park
- Department of Bio and Brain Engineering; Korea Advanced Institute of Science and Technology; Daejeon Korea
| | - Sung Yun Yang
- Department of Polymer Science and Engineering; Chungnam National University; Daejeon Korea
| | - Yong-Sung Kim
- Department of Molecular Science and Technology; Ajou University; Suwon Korea
| | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry; Chungnam National University; Daejeon 34134 Korea
| |
Collapse
|
9
|
Choi DK, Bae J, Shin SM, Shin JY, Kim S, Kim YS. A general strategy for generating intact, full-length IgG antibodies that penetrate into the cytosol of living cells. MAbs 2015; 6:1402-14. [PMID: 25484049 DOI: 10.4161/mabs.36389] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Full-length IgG antibodies cannot cross cell membranes of living cells; this limits their use for direct targeting of cytosolic proteins. Here, we describe a general strategy for the generation of intact, full-length IgG antibodies, herein called cytotransmabs, which internalize into living cells and localize in the cytosol. We first generated a humanized light chain variable domain (VL) that could penetrate into the cytosol of living cells and was engineered for association with various subtypes of human heavy chain variable domains (VHs). When light chains with humanized VL were co-expressed with 3 heavy chains (HCs), including 2 HCs of the clinically approved adalimumab (Humira®) and bevacizumab (Avastin®), all 3 purified IgG antibodies were internalized into the cytoplasm of living cells. Cytotransmabs primarily internalized into living cells by the clathrin-mediated endocytic pathway through interactions with heparin sulfate proteoglycan that was expressed on the cell surface. The cytotransmabs escaped into the cytosol from early endosomes without being further transported into other cellular compartments, like the lysosomes, endoplasmic reticulum, Golgi apparatus, and nucleus. Furthermore, we generated a cytotransmab that co-localized with the targeted cytosolic protein when it was incubated with living cells, demonstrating that the cytotransmab can directly target cytosolic proteins. Internalized cytotransmabs did not show any noticeable cytotoxicity and remained in the cytosol for more than 6 h before being degraded by proteosomes. These results suggest that cytotransmabs, which efficiently enter living cells and reach the cytosolic space, will find widespread uses as research, diagnostic, and therapeutic agents.
Collapse
Affiliation(s)
- Dong-Ki Choi
- a Department of Molecular Science and Technology ; Ajou University ; Suwon , Korea
| | | | | | | | | | | |
Collapse
|
10
|
Itakura S, Hama S, Ikeda H, Mitsuhashi N, Majima E, Kogure K. Effective capture of proteins inside living cells by antibodies indirectly linked to a novel cell-penetrating polymer-modified protein A derivative. FEBS J 2014; 282:142-52. [DOI: 10.1111/febs.13111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 09/30/2014] [Accepted: 10/14/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Shoko Itakura
- Department of Biophysical Chemistry; Kyoto Pharmaceutical University; Japan
| | - Susumu Hama
- Department of Biophysical Chemistry; Kyoto Pharmaceutical University; Japan
| | - Hisafumi Ikeda
- Department of Environmental Science and Education; Tokyo Kasei University; Japan
| | | | | | - Kentaro Kogure
- Department of Biophysical Chemistry; Kyoto Pharmaceutical University; Japan
| |
Collapse
|
11
|
Kim DY, Hussack G, Kandalaft H, Tanha J. Mutational approaches to improve the biophysical properties of human single-domain antibodies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1983-2001. [DOI: 10.1016/j.bbapap.2014.07.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/05/2014] [Accepted: 07/11/2014] [Indexed: 01/06/2023]
|
12
|
Kim DY, To R, Kandalaft H, Ding W, van Faassen H, Luo Y, Schrag JD, St-Amant N, Hefford M, Hirama T, Kelly JF, MacKenzie R, Tanha J. Antibody light chain variable domains and their biophysically improved versions for human immunotherapy. MAbs 2014; 6:219-35. [PMID: 24423624 PMCID: PMC3929445 DOI: 10.4161/mabs.26844] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We set out to gain deeper insight into the potential of antibody light chain variable domains (VLs) as immunotherapeutics. To this end, we generated a naïve human VL phage display library and, by using a method previously shown to select for non-aggregating antibody heavy chain variable domains (VHs), we isolated a diversity of VL domains by panning the library against B cell super-antigen protein L. Eight domains representing different germline origins were shown to be non-aggregating at concentrations as high as 450 µM, indicating VL repertoires are a rich source of non-aggregating domains. In addition, the VLs demonstrated high expression yields in E. coli, protein L binding and high reversibility of thermal unfolding. A side-by-side comparison with a set of non-aggregating human VHs revealed that the VLs had similar overall profiles with respect to melting temperature (Tm), reversibility of thermal unfolding and resistance to gastrointestinal proteases. Successful engineering of a non-canonical disulfide linkage in the core of VLs did not compromise the non-aggregation state or protein L binding properties. Furthermore, the introduced disulfide bond significantly increased their Tms, by 5.5–17.5 °C, and pepsin resistance, although it somewhat reduced expression yields and subtly changed the structure of VLs. Human VLs and engineered versions may make suitable therapeutics due to their desirable biophysical features. The disulfide linkage-engineered VLs may be the preferred therapeutic format because of their higher stability, especially for oral therapy applications that necessitate high resistance to the stomach’s acidic pH and pepsin.
Collapse
Affiliation(s)
- Dae Young Kim
- Human Health Therapeutics; National Research Council Canada; Ottawa, ON Canada
| | - Rebecca To
- Human Health Therapeutics; National Research Council Canada; Ottawa, ON Canada
| | - Hiba Kandalaft
- Human Health Therapeutics; National Research Council Canada; Ottawa, ON Canada
| | - Wen Ding
- Human Health Therapeutics; National Research Council Canada; Ottawa, ON Canada
| | - Henk van Faassen
- Human Health Therapeutics; National Research Council Canada; Ottawa, ON Canada
| | - Yan Luo
- Human Health Therapeutics; National Research Council Canada; Ottawa, ON Canada
| | - Joseph D Schrag
- Human Health Therapeutics; National Research Council Canada; Montréal, QC Canada
| | - Nadereh St-Amant
- Centre for Vaccine Evaluation; Biologics and Genetic Therapies Directorate;, Health Canada; Ottawa, ON Canada
| | - Mary Hefford
- Centre for Vaccine Evaluation; Biologics and Genetic Therapies Directorate;, Health Canada; Ottawa, ON Canada
| | - Tomoko Hirama
- Human Health Therapeutics; National Research Council Canada; Ottawa, ON Canada
| | - John F Kelly
- Human Health Therapeutics; National Research Council Canada; Ottawa, ON Canada
| | - Roger MacKenzie
- Human Health Therapeutics; National Research Council Canada; Ottawa, ON Canada; School of Environmental Sciences; Ontario Agricultural College; University of Guelph; Guelph, ON Canada
| | - Jamshid Tanha
- Human Health Therapeutics; National Research Council Canada; Ottawa, ON Canada; School of Environmental Sciences; Ontario Agricultural College; University of Guelph; Guelph, ON Canada; Department of Biochemistry, Microbiology, and Immunology; University of Ottawa; Ottawa, ON Canada
| |
Collapse
|
13
|
Catalytic antibodies and their applications in biotechnology: state of the art. Biotechnol Lett 2014; 36:1369-79. [PMID: 24652545 DOI: 10.1007/s10529-014-1503-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 02/20/2014] [Indexed: 01/06/2023]
Abstract
Catalytic antibodies are immunoglobulins endowed with enzymatic properties. Discovered in the second part of the 1980s, the enthusiasm they initially aroused was counterbalanced by the difficulty of their production and their low catalytic rates. Nevertheless, improvements in expression systems and engineering technologies, combined with various studies suggesting that catalytic antibodies play a role in the immune system, have opened the way to new applications for these proteins. Herein we review catalytic antibodies from a biotechnological point of view, focusing our study on the different production methods, expression systems and their potential clinical applications dedicated to these proteins.
Collapse
|
14
|
Mahendra A, Sharma M, Rao DN, Peyron I, Planchais C, Dimitrov JD, Kaveri SV, Lacroix-Desmazes S. Antibody-mediated catalysis: Induction and therapeutic relevance. Autoimmun Rev 2013. [DOI: 10.1016/j.autrev.2012.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Kim A, Shin TH, Shin SM, Pham CD, Choi DK, Kwon MH, Kim YS. Cellular internalization mechanism and intracellular trafficking of filamentous M13 phages displaying a cell-penetrating transbody and TAT peptide. PLoS One 2012; 7:e51813. [PMID: 23251631 PMCID: PMC3522607 DOI: 10.1371/journal.pone.0051813] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 11/06/2012] [Indexed: 11/19/2022] Open
Abstract
Cellular internalization of bacteriophage by surface-displayed cell penetrating peptides has been reported, though the underlying mechanism remains elusive. Here we describe in detail the internalization mechanism and intracellular trafficking and stability of filamentous M13 phages, the cellular entry of which is mediated by surface-displayed cell-penetrating light chain variable domain 3D8 VL transbody (3D8 VL-M13) or TAT peptide (TAT-M13). Recombinant 3D8 VL-M13 and TAT-M13 phages were efficiently internalized into living mammalian cells via physiologically relevant, energy-dependent endocytosis and were recovered from the cells in their infective form with the yield of 3D8 VL-M13 being higher (0.005∼0.01%) than that of TAT-M13 (0.001∼0.005%). Biochemical and genetic studies revealed that 3D8 VL-M13 was internalized principally by caveolae-mediated endocytosis via interaction with heparan sulfate proteoglycans as cell surface receptors, whereas TAT-M13 was internalized by clathrin- and caveolae-mediated endocytosis utilizing chondroitin sulfate proteoglycans as cell surface receptors, suggesting that phage internalization occurs by physiological endocytotic mechanism through specific cell surface receptors rather than non-specific transcytotic pathways. Internalized 3D8 VL-M13 phages routed to the cytosol and remained stable for more than 18 h without further trafficking to other subcellular compartments, whereas TAT-M13 phages routed to several subcellular compartments before being degraded in lysosomes even after 2 h of internalization. Our results suggest that the internalizing mechanism and intracellular trafficking of filamentous M13 bacteriophages largely follow the attributes of the displayed cell-penetrating moiety. Efficient internalization and cytosolic localization of 3D8 VL transbody-displayed phages will provide a useful tool for intracellular delivery of polar macromolecules such as proteins, peptides, and siRNAs.
Collapse
Affiliation(s)
- Aeyung Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Tae-Hwan Shin
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Seung-Min Shin
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Chuong D. Pham
- Department of Microbiology, Ajou University School of Medicine, Suwon, Korea
| | - Dong-Ki Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Myung-Hee Kwon
- Department of Microbiology, Ajou University School of Medicine, Suwon, Korea
| | - Yong-Sung Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
- * E-mail:
| |
Collapse
|
16
|
Interfering transbody-mediated Her2 gene silencing induces apoptosis by G0/G1 cell cycle arrest in Her2-overexpressing SK-BR-3 breast cancer cells. BIOTECHNOL BIOPROC E 2012. [DOI: 10.1007/s12257-011-0609-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
17
|
Kim A, Lee JY, Byun SJ, Kwon MH, Kim YS. Viral genome RNA degradation by sequence-selective, nucleic-acid hydrolyzing antibody inhibits the replication of influenza H9N2 virus without significant cytotoxicity to host cells. Antiviral Res 2012; 94:157-67. [PMID: 22484663 DOI: 10.1016/j.antiviral.2012.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 02/29/2012] [Accepted: 03/23/2012] [Indexed: 11/26/2022]
Abstract
Influenza A virus infection is a great threat to avian species and humans. Targeting viral proteins by antibody has a limited success due to the antigen drift and shift. Here we present a novel antibody-based antiviral strategy of targeting viral genomic RNA (vRNA) for degradation rather than neutralizing viral proteins. Based on the template of a sequence-nonspecific nucleic acid-hydrolyzing, single domain antibody of the light chain variable domain, 3D8 VL, we generated a synthetic library on the yeast surface by randomizing putative nucleic acid interacting residues. To target nucleocapsid protein (NP)-encoding viral genomic RNA (NP-vRNA) of H9N2 influenza virus, the library was screened against a 18-nucleotide single stranded nucleic acid substrate, dubbed asNP(18), the sequence of which is unique to the NP-vRNA. We isolated a 3D8 VL variant, NP25, that had ∼15-fold higher affinity (∼54nM) and ∼3-fold greater selective hydrolyzing activity for the target substrate than for off targets. In contrast to 3D8 VL WT, asNP(18)-selective NP25 constitutively expressed in the cytosol of human lung carcinoma A549 cells does not exhibit any significant cytotoxicity and selectively degrades a reporter mRNA carrying the target asNP(18) sequence in the stable cell lines. NP25 more potently inhibits the replication of H9N2 influenza virus than 3D8 VL WT in the stable cell lines. NP25 more selectively reduces the amount of the targeted NP-vRNA than 3D8 VL WT from the early stage of virus infection in the stable cell lines, without noticeable harmful effects on the endogenous mRNA, suggesting that NP25 indeed more specifically recognizes to hydrolyze the target NP-vRNA of H9N2 virus than off-targets. Our results provide a new strategy of targeting viral genomic RNA for degradation by antibody for the prevention of influenza virus infection in humans and animals.
Collapse
Affiliation(s)
- Aeyung Kim
- Dept. of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | | | | | | | | |
Collapse
|
18
|
Arnett SO, Teillaud JL, Wurch T, Reichert JM, Dunlop C, Huber M. IBC's 21st Annual Antibody Engineering and 8th Annual Antibody Therapeutics International Conferences and 2010 Annual Meeting of the Antibody Society. December 5-9, 2010, San Diego, CA USA. MAbs 2011; 3:133-52. [PMID: 21304271 PMCID: PMC3092615 DOI: 10.4161/mabs.3.2.14939] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The 21st Annual Antibody Engineering and 8th Annual Antibody Therapeutics international conferences, and the 2010 Annual Meeting of The Antibody Society, organized by IBC Life Sciences with contributions from The Antibody Society and two Scientific Advisory Boards, was held December 5–9, 2010 in San Diego, CA. The conferences featured over 100 presentations and 100 posters, and included a pre-conference workshop on deep-sequencing of antibody genes. The total number of delegates exceeded 800, which set a new attendance record for the conference. The conferences were organized with a focus on antibody engineering only on the first day and a joint engineering/therapeutics session on the last day. Delegates could select from presentations that occurred in two simultaneous sessions on days 2 and 3. Day 1 included presentations on neutralizing antibodies and the identification of vaccine targets, as well as a historical overview of 20 years of phage display utilization. Topics presented in the Antibody Engineering sessions on day 2 and 3 included antibody biosynthesis, structure and stability; antibodies in a complex environment; antibody half-life; and targeted nanoparticle therapeutics. In the Antibody Therapeutics sessions on days 2 and 3, preclinical and early stage development and clinical updates of antibody therapeutics, including TRX518, SYM004, MM111, PRO140, CVX-241, ASG-5ME, U3-1287 (AMG888), R1507 and trastuzumab emtansine, were discussed and perspectives were provided on the development of biosimilar and biobetter antibodies, including coverage of regulatory and intellectual property issues. The joint engineering/therapeutics session on the last day focused on bispecific and next-generation antibodies. Summaries of most of the presentations are included here, but, due to the large number of speakers, it was not possible to include summaries for every presentation. Delegates enjoyed the splendid views of the San Diego Bay and proximity to the Gaslamp Quarter provided by the venue. The 22nd Annual Antibody Engineering and 9th Annual Antibody Therapeutics conferences, and the 2011 Annual Meeting of The Antibody Society, are planned for December 5–8, 2011 at the same location in San Diego, and will include two two-day short courses on Introduction to Antibody Engineering and Protein Characterization for Biotechnology Product Development.
Collapse
Affiliation(s)
- Samantha O Arnett
- Department of Immunology & Microbial Science, The Scripps Research Institute, La Jolla, USA
| | | | | | | | | | | |
Collapse
|