1
|
Robinson JP, Ostafe R, Iyengar SN, Rajwa B, Fischer R. Flow Cytometry: The Next Revolution. Cells 2023; 12:1875. [PMID: 37508539 PMCID: PMC10378642 DOI: 10.3390/cells12141875] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Unmasking the subtleties of the immune system requires both a comprehensive knowledge base and the ability to interrogate that system with intimate sensitivity. That task, to a considerable extent, has been handled by an iterative expansion in flow cytometry methods, both in technological capability and also in accompanying advances in informatics. As the field of fluorescence-based cytomics matured, it reached a technological barrier at around 30 parameter analyses, which stalled the field until spectral flow cytometry created a fundamental transformation that will likely lead to the potential of 100 simultaneous parameter analyses within a few years. The simultaneous advance in informatics has now become a watershed moment for the field as it competes with mature systematic approaches such as genomics and proteomics, allowing cytomics to take a seat at the multi-omics table. In addition, recent technological advances try to combine the speed of flow systems with other detection methods, in addition to fluorescence alone, which will make flow-based instruments even more indispensable in any biological laboratory. This paper outlines current approaches in cell analysis and detection methods, discusses traditional and microfluidic sorting approaches as well as next-generation instruments, and provides an early look at future opportunities that are likely to arise.
Collapse
Affiliation(s)
- J Paul Robinson
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Raluca Ostafe
- Molecular Evolution, Protein Engineering and Production Facility (PI4D), Purdue University, West Lafayette, IN 47907, USA
| | | | - Bartek Rajwa
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - Rainer Fischer
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
2
|
Gilad AA, Bar-Shir A, Bricco AR, Mohanta Z, McMahon MT. Protein and peptide engineering for chemical exchange saturation transfer imaging in the age of synthetic biology. NMR IN BIOMEDICINE 2023; 36:e4712. [PMID: 35150021 PMCID: PMC10642350 DOI: 10.1002/nbm.4712] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 05/23/2023]
Abstract
At the beginning of the millennium, the first chemical exchange saturation transfer (CEST) contrast agents were bio-organic molecules. However, later, metal-based CEST agents (paraCEST agents) took center stage. This did not last too long as paraCEST agents showed limited translational potential. By contrast, the CEST field gradually became dominated by metal-free CEST agents. One branch of research stemming from the original work by van Zijl and colleagues is the development of CEST agents based on polypeptides. Indeed, in the last 2 decades, tremendous progress has been achieved in this field. This includes the design of novel peptides as biosensors, genetically encoded recombinant as well as synthetic reporters. This was a result of extensive characterization and elucidation of the theoretical requirements for rational designing and engineering of such agents. Here, we provide an extensive overview of the evolution of more precise protein-based CEST agents, review the rationalization of enzyme-substrate pairs as CEST contrast enhancers, discuss the theoretical considerations to improve peptide selectivity, specificity and enhance CEST contrast. Moreover, we discuss the strong influence of synthetic biology on the development of the next generation of protein-based CEST contrast agents.
Collapse
Affiliation(s)
- Assaf A. Gilad
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan, USA
- Department of Radiology, Michigan State University, East Lansing, Michigan, USA
| | - Amnon Bar-Shir
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander R. Bricco
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Zinia Mohanta
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Michael T. McMahon
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Computationally designed dual-color MRI reporters for noninvasive imaging of transgene expression. Nat Biotechnol 2022; 40:1143-1149. [PMID: 35102291 DOI: 10.1038/s41587-021-01162-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/12/2021] [Indexed: 12/13/2022]
Abstract
Imaging of gene-expression patterns in live animals is difficult to achieve with fluorescent proteins because tissues are opaque to visible light. Imaging of transgene expression with magnetic resonance imaging (MRI), which penetrates to deep tissues, has been limited by single reporter visualization capabilities. Moreover, the low-throughput capacity of MRI limits large-scale mutagenesis strategies to improve existing reporters. Here we develop an MRI system, called GeneREFORM, comprising orthogonal reporters for two-color imaging of transgene expression in deep tissues. Starting from two promiscuous deoxyribonucleoside kinases, we computationally designed highly active, orthogonal enzymes ('reporter genes') that specifically phosphorylate two MRI-detectable synthetic deoxyribonucleosides ('reporter probes'). Systemically administered reporter probes exclusively accumulate in cells expressing the designed reporter genes, and their distribution is displayed as pseudo-colored MRI maps based on dynamic proton exchange for noninvasive visualization of transgene expression. We envision that future extensions of GeneREFORM will pave the way to multiplexed deep-tissue mapping of gene expression in live animals.
Collapse
|
4
|
Bar-Shir A, Alon L, Korrer MJ, Lim HS, Yadav NN, Kato Y, Pathak AP, Bulte JWM, Gilad AA. Quantification and tracking of genetically engineered dendritic cells for studying immunotherapy. Magn Reson Med 2017; 79:1010-1019. [PMID: 28480589 DOI: 10.1002/mrm.26708] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/15/2017] [Accepted: 03/18/2017] [Indexed: 12/12/2022]
Abstract
PURPOSE Genetically encoded reporters can assist in visualizing biological processes in live organisms and have been proposed for longitudinal and noninvasive tracking of therapeutic cells in deep tissue. Cells can be labeled in situ or ex vivo and followed in live subjects over time. Nevertheless, a major challenge for reporter systems is to identify the cell population that actually expresses an active reporter. METHODS We have used a nucleoside analog, pyrrolo-2'-deoxycytidine, as an imaging probe for the putative reporter gene, Drosophila melanogaster 2'-deoxynucleoside kinase. Bioengineered cells were imaged in vivo in animal models of brain tumor and immunotherapy using chemical exchange saturation transfer MRI. The number of transduced cells was quantified by flow cytometry based on the optical properties of the probe. RESULTS We performed a comparative analysis of six different cell lines and demonstrate utility in a mouse model of immunotherapy. The proposed technology can be used to quantify the number of labeled cells in a given region, and moreover is sensitive enough to detect less than 10,000 cells. CONCLUSION This unique technology that enables efficient selection of labeled cells followed by in vivo monitoring with both optical and MRI. Magn Reson Med 79:1010-1019, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Amnon Bar-Shir
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lina Alon
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael J Korrer
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Hong Seo Lim
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nirbhay N Yadav
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Yoshinori Kato
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Arvind P Pathak
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeff W M Bulte
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Chemical & Biomolecular Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Assaf A Gilad
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Biological phosphorylation of an Unnatural Base Pair (UBP) using a Drosophila melanogaster deoxynucleoside kinase (DmdNK) mutant. PLoS One 2017; 12:e0174163. [PMID: 28323896 PMCID: PMC5360312 DOI: 10.1371/journal.pone.0174163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/03/2017] [Indexed: 11/23/2022] Open
Abstract
One research goal for unnatural base pair (UBP) is to replicate, transcribe and translate them in vivo. Accordingly, the corresponding unnatural nucleoside triphosphates must be available at sufficient concentrations within the cell. To achieve this goal, the unnatural nucleoside analogues must be phosphorylated to the corresponding nucleoside triphosphates by a cascade of three kinases. The first step is the monophosphorylation of unnatural deoxynucleoside catalyzed by deoxynucleoside kinases (dNK), which is generally considered the rate limiting step because of the high specificity of dNKs. Here, we applied a Drosophila melanogaster deoxyribonucleoside kinase (DmdNK) to the phosphorylation of an UBP (a pyrimidine analogue (6-amino-5-nitro-3-(1’-b-d-2’-deoxyribofuranosyl)-2(1H)-pyridone, Z) and its complementary purine analogue (2-amino-8-(1’-b-d-2’-deoxyribofuranosyl)-imidazo[1,2-a]-1,3,5-triazin-4(8H)-one, P). The results showed that DmdNK could efficiently phosphorylate only the dP nucleoside. To improve the catalytic efficiency, a DmdNK-Q81E mutant was created based on rational design and structural analyses. This mutant could efficiently phosphorylate both dZ and dP nucleoside. Structural modeling indicated that the increased efficiency of dZ phosphorylation by the DmdNK-Q81E mutant might be related to the three additional hydrogen bonds formed between E81 and the dZ base. Overall, this study provides a groundwork for the biological phosphorylation and synthesis of unnatural base pair in vivo.
Collapse
|
6
|
Matsuura MF, Winiger CB, Shaw RW, Kim MJ, Kim MS, Daugherty AB, Chen F, Moussatche P, Moses JD, Lutz S, Benner SA. A Single Deoxynucleoside Kinase Variant from Drosophila melanogaster Synthesizes Monophosphates of Nucleosides That Are Components of an Expanded Genetic System. ACS Synth Biol 2017; 6:388-394. [PMID: 27935283 DOI: 10.1021/acssynbio.6b00228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deoxynucleoside kinase from D. melanogaster (DmdNK) has broad specificity; although it catalyzes the phosphorylation of natural pyrimidine more efficiently than natural purine nucleosides, it accepts all four 2'-deoxynucleosides and many analogues, using ATP as a phosphate donor to give the corresponding deoxynucleoside monophosphates. Here, we show that replacing a single amino acid (glutamine 81 by glutamate) in DmdNK creates a variant that also catalyzes the phosphorylation of nucleosides that form part of an artificially expanded genetic information system (AEGIS). By shuffling hydrogen bonding groups on the nucleobases, AEGIS adds potentially as many as four additional nucleobase pairs to the genetic "alphabet". Specifically, we show that DmdNK Q81E creates the monophosphates from the AEGIS nucleosides dP, dZ, dX, and dK (respectively 2-amino-8-(1'-β-d-2'-deoxyribofuranosyl)-imidazo[1,2-a]-1,3,5-triazin-4(8H)-one, dP; 6-amino-3-(1'-β-d-2'-deoxyribofuranosyl)-5-nitro-1H-pyridin-2-one, dZ; 8-(1'β-d-2'-deoxy-ribofuranosyl)imidazo[1,2-a]-1,3,5-triazine-2(8H)-4(3H)-dione, dX; and 2,4-diamino-5-(1'-β-d-2'-deoxyribofuranosyl)-pyrimidine, dK). Using a coupled enzyme assay, in vitro kinetic parameters were obtained for three of these nucleosides (dP, dX, and dK; the UV absorbance of dZ made it impossible to get its precise kinetic parameters). Thus, DmdNK Q81E appears to be a suitable enzyme to catalyze the first step in the biosynthesis of AEGIS 2'-deoxynucleoside triphosphates in vitro and, perhaps, in vivo, in a cell able to manage plasmids containing AEGIS DNA.
Collapse
Affiliation(s)
- Mariko F. Matsuura
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Christian B. Winiger
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Ryan W. Shaw
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences, LLC, 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Myong-Jung Kim
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences, LLC, 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Myong-Sang Kim
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences, LLC, 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Ashley B. Daugherty
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Fei Chen
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Patricia Moussatche
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences, LLC, 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Jennifer D. Moses
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Stefan Lutz
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Steven A. Benner
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences, LLC, 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| |
Collapse
|
7
|
Lutz S, Williams E, Muthu P. Engineering Therapeutic Enzymes. DIRECTED ENZYME EVOLUTION: ADVANCES AND APPLICATIONS 2017:17-67. [DOI: 10.1007/978-3-319-50413-1_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
8
|
Kamiya H, Ito M, Nishi K, Harashima H. In vivo selection of active deoxyribonucleoside kinase by a mutagenic nucleoside analog. J Biotechnol 2016; 228:52-57. [PMID: 27131895 DOI: 10.1016/j.jbiotec.2016.04.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/20/2016] [Accepted: 04/26/2016] [Indexed: 11/18/2022]
Abstract
A novel in vivo selection method for active deoxyribonucleoside kinase proteins is described here. A pool of randomly mutated genes for deoxyribonucleoside kinase from Drosophila melanogaster (Dm-dNK) was prepared and inserted into an expression vector. Enzymatically active mutants were selected by repeated cycles, including (i) introduction into Escherichia coli, (ii) treatment of the E. coli pool with a mutagenic deoxyribonucleoside (2-hydroxy-dA), and (iii) selection of antibiotic-resistant colonies resulting from mutations by phosphorylated 2-hydroxy-dA and the subsequent isolation of the plasmid DNAs. The ratio of the resistant colonies increased by two orders of magnitude from the first cycle to the fifth cycle, and then reached a plateau. Fifteen Dm-dNK mutants selected after the seventh and eighth evolution cycles were actually active in vivo. Moreover, one of the mutant proteins was as active as the wild-type protein in vitro. These results indicate that this novel in vivo evolution method was useful and that similar strategies would be applicable to other deoxyribonucleoside kinases. In addition, the distribution of mutated amino acids suggests important residues/regions in the Dm-dNK protein.
Collapse
Affiliation(s)
- Hiroyuki Kamiya
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan; Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan.
| | - Mana Ito
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Kosuke Nishi
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
9
|
Molina-Espeja P, Viña-Gonzalez J, Gomez-Fernandez BJ, Martin-Diaz J, Garcia-Ruiz E, Alcalde M. Beyond the outer limits of nature by directed evolution. Biotechnol Adv 2016; 34:754-767. [PMID: 27064127 DOI: 10.1016/j.biotechadv.2016.03.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/22/2016] [Accepted: 03/27/2016] [Indexed: 01/19/2023]
Abstract
For more than thirty years, biotechnology has borne witness to the power of directed evolution in designing molecules of industrial relevance. While scientists all over the world discuss the future of molecular evolution, dozens of laboratory-designed products are being released with improved characteristics in terms of turnover rates, substrate scope, catalytic promiscuity or stability. In this review we aim to present the most recent advances in this fascinating research field that are allowing us to surpass the limits of nature and apply newly gained attributes to a range of applications, from gene therapy to novel green processes. The use of directed evolution in non-natural environments, the generation of catalytic promiscuity for non-natural reactions, the insertion of unnatural amino acids into proteins or the creation of unnatural DNA, is described comprehensively, together with the potential applications in bioremediation, biomedicine and in the generation of new bionanomaterials. These successful case studies show us that the limits of directed evolution will be defined by our own imagination, and in some cases, stretching beyond that.
Collapse
Affiliation(s)
- Patricia Molina-Espeja
- Department of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Javier Viña-Gonzalez
- Department of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, 28049 Madrid, Spain
| | | | - Javier Martin-Diaz
- Department of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Eva Garcia-Ruiz
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Ave, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 600 South Mathews Ave, Urbana, IL 61801, USA
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
10
|
Muthu P, Lutz S. Quantitative Detection of Nucleoside Analogues by Multi-enzyme Biosensors using Time-Resolved Kinetic Measurements. ChemMedChem 2016; 11:660-6. [PMID: 26934468 DOI: 10.1002/cmdc.201600096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Indexed: 01/05/2023]
Abstract
Fast, simple and cost-effective methods for detecting and quantifying pharmaceutical agents in patients are highly sought after to replace equipment and labor-intensive analytical procedures. The development of new diagnostic technology including portable detection devices also enables point-of-care by non-specialists in resource-limited environments. We have focused on the detection and dose monitoring of nucleoside analogues used in viral and cancer therapies. Using deoxyribonucleoside kinases (dNKs) as biosensors, our chemometric model compares observed time-resolved kinetics of unknown analytes to known substrate interactions across multiple enzymes. The resulting dataset can simultaneously identify and quantify multiple nucleosides and nucleoside analogues in complex sample mixtures.
Collapse
Affiliation(s)
- Pravin Muthu
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322, USA
| | - Stefan Lutz
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322, USA.
| |
Collapse
|
11
|
Bag SS, Talukdar S, Das SK, Pradhan MK, Mukherjee S. Donor/acceptor chromophores-decorated triazolyl unnatural nucleosides: synthesis, photophysical properties and study of interaction with BSA. Org Biomol Chem 2016; 14:5088-108. [DOI: 10.1039/c6ob00500d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report the syntheses and photophysical properties of some triazolyl donor/acceptor unnatural nucleosides and studies on the interaction of one of the fluorescent nucleosides with BSA.
Collapse
Affiliation(s)
- Subhendu Sekhar Bag
- Bio-organic Chemistry Laboratory
- Department of Chemistry
- Indian Institute of Technology Guwahati-781039
- India
| | - Sangita Talukdar
- Bio-organic Chemistry Laboratory
- Department of Chemistry
- Indian Institute of Technology Guwahati-781039
- India
| | - Suman Kalyan Das
- Bio-organic Chemistry Laboratory
- Department of Chemistry
- Indian Institute of Technology Guwahati-781039
- India
| | - Manoj Kumar Pradhan
- Bio-organic Chemistry Laboratory
- Department of Chemistry
- Indian Institute of Technology Guwahati-781039
- India
| | - Soumen Mukherjee
- Bio-organic Chemistry Laboratory
- Department of Chemistry
- Indian Institute of Technology Guwahati-781039
- India
| |
Collapse
|
12
|
Currin A, Swainston N, Day PJ, Kell DB. Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chem Soc Rev 2015; 44:1172-239. [PMID: 25503938 PMCID: PMC4349129 DOI: 10.1039/c4cs00351a] [Citation(s) in RCA: 258] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Indexed: 12/21/2022]
Abstract
The amino acid sequence of a protein affects both its structure and its function. Thus, the ability to modify the sequence, and hence the structure and activity, of individual proteins in a systematic way, opens up many opportunities, both scientifically and (as we focus on here) for exploitation in biocatalysis. Modern methods of synthetic biology, whereby increasingly large sequences of DNA can be synthesised de novo, allow an unprecedented ability to engineer proteins with novel functions. However, the number of possible proteins is far too large to test individually, so we need means for navigating the 'search space' of possible protein sequences efficiently and reliably in order to find desirable activities and other properties. Enzymologists distinguish binding (Kd) and catalytic (kcat) steps. In a similar way, judicious strategies have blended design (for binding, specificity and active site modelling) with the more empirical methods of classical directed evolution (DE) for improving kcat (where natural evolution rarely seeks the highest values), especially with regard to residues distant from the active site and where the functional linkages underpinning enzyme dynamics are both unknown and hard to predict. Epistasis (where the 'best' amino acid at one site depends on that or those at others) is a notable feature of directed evolution. The aim of this review is to highlight some of the approaches that are being developed to allow us to use directed evolution to improve enzyme properties, often dramatically. We note that directed evolution differs in a number of ways from natural evolution, including in particular the available mechanisms and the likely selection pressures. Thus, we stress the opportunities afforded by techniques that enable one to map sequence to (structure and) activity in silico, as an effective means of modelling and exploring protein landscapes. Because known landscapes may be assessed and reasoned about as a whole, simultaneously, this offers opportunities for protein improvement not readily available to natural evolution on rapid timescales. Intelligent landscape navigation, informed by sequence-activity relationships and coupled to the emerging methods of synthetic biology, offers scope for the development of novel biocatalysts that are both highly active and robust.
Collapse
Affiliation(s)
- Andrew Currin
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- School of Chemistry , The University of Manchester , Manchester M13 9PL , UK
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
| | - Neil Swainston
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
- School of Computer Science , The University of Manchester , Manchester M13 9PL , UK
| | - Philip J. Day
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
- Faculty of Medical and Human Sciences , The University of Manchester , Manchester M13 9PT , UK
| | - Douglas B. Kell
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- School of Chemistry , The University of Manchester , Manchester M13 9PL , UK
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
| |
Collapse
|
13
|
Pitzler C, Wirtz G, Vojcic L, Hiltl S, Böker A, Martinez R, Schwaneberg U. A Fluorescent Hydrogel-Based Flow Cytometry High-Throughput Screening Platform for Hydrolytic Enzymes. ACTA ACUST UNITED AC 2014; 21:1733-42. [DOI: 10.1016/j.chembiol.2014.10.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/16/2014] [Accepted: 10/23/2014] [Indexed: 01/12/2023]
|
14
|
Synthesis and enzymatic incorporation of photolabile dUTP analogues into DNA and their applications for DNA labeling. Bioorg Med Chem 2013; 21:6205-11. [PMID: 23719284 DOI: 10.1016/j.bmc.2013.04.081] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 04/26/2013] [Accepted: 04/30/2013] [Indexed: 11/22/2022]
Abstract
Two novel photolabile nucleotide triphosphate (NTP) analogues were synthesized through Sonogashira coupling and their enzymatic incorporation into DNA was evaluated with three different DNA polymerases (Taq, Vent exo- and T4) by polymerase chain reaction. Both nucleotide triphosphate analogues were recognized by these DNA polymerases as substrates for primer extension. Light irradiation of PCR products removed the photolabile group and released the amino and carboxyl moieties. Further site-specific dual-labeling for oligodeoxynucleotides (ODNs) and random labeling for a long DNA construct with fluorophores were successfully achieved with incorporation of the photolabile amine modified deoxyuridine triphosphate (dUnTP).
Collapse
|
15
|
|
16
|
Bag SS, Talukdar S, Matsumoto K, Kundu R. Triazolyl donor/acceptor chromophore decorated unnatural nucleosides and oligonucleotides with duplex stability comparable to that of a natural adenine/thymine pair. J Org Chem 2012; 78:278-91. [PMID: 23171090 DOI: 10.1021/jo302033f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report the design and synthesis of triazolyl donor/acceptor unnatural nucleosides via click chemistry and studies on the duplex stabilization of DNA containing two such new nucleosides. The observed duplex stabilization among the self-pair/heteropair has been found to be comparable to that of a natural A/T pair. Our observations on the comparable duplex stabilization has been explained on the basis of possible π-π stacking and/or charge transfer interactions between the pairing partners. The evidence of ground-state charge transfer complexation came from the UV-vis spectra and the static quenching of fluorescence in a heteropair. We have also exploited one of our unnatural DNAs in stabilizing abasic DNA.
Collapse
Affiliation(s)
- Subhendu Sekhar Bag
- Bio-organic Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Guwahati-781039, India.
| | | | | | | |
Collapse
|
17
|
Heselpoth RD, Nelson DC. A new screening method for the directed evolution of thermostable bacteriolytic enzymes. J Vis Exp 2012:4216. [PMID: 23169108 PMCID: PMC3520584 DOI: 10.3791/4216] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Directed evolution is defined as a method to harness natural selection in order to engineer proteins to acquire particular properties that are not associated with the protein in nature. Literature has provided numerous examples regarding the implementation of directed evolution to successfully alter molecular specificity and catalysis(1). The primary advantage of utilizing directed evolution instead of more rational-based approaches for molecular engineering relates to the volume and diversity of variants that can be screened(2). One possible application of directed evolution involves improving structural stability of bacteriolytic enzymes, such as endolysins. Bacteriophage encode and express endolysins to hydrolyze a critical covalent bond in the peptidoglycan (i.e. cell wall) of bacteria, resulting in host cell lysis and liberation of progeny virions. Notably, these enzymes possess the ability to extrinsically induce lysis to susceptible bacteria in the absence of phage and furthermore have been validated both in vitro and in vivo for their therapeutic potential(3-5). The subject of our directed evolution study involves the PlyC endolysin, which is composed of PlyCA and PlyCB subunits(6). When purified and added extrinsically, the PlyC holoenzyme lyses group A streptococci (GAS) as well as other streptococcal groups in a matter of seconds and furthermore has been validated in vivo against GAS(7). Significantly, monitoring residual enzyme kinetics after elevated temperature incubation provides distinct evidence that PlyC loses lytic activity abruptly at 45 °C, suggesting a short therapeutic shelf life, which may limit additional development of this enzyme. Further studies reveal the lack of thermal stability is only observed for the PlyCA subunit, whereas the PlyCB subunit is stable up to ~90 °C (unpublished observation). In addition to PlyC, there are several examples in literature that describe the thermolabile nature of endolysins. For example, the Staphylococcus aureus endolysin LysK and Streptococcus pneumoniae endolysins Cpl-1 and Pal lose activity spontaneously at 42 °C, 43.5 °C and 50.2 °C, respectively(8-10). According to the Arrhenius equation, which relates the rate of a chemical reaction to the temperature present in the particular system, an increase in thermostability will correlate with an increase in shelf life expectancy(11). Toward this end, directed evolution has been shown to be a useful tool for altering the thermal activity of various molecules in nature, but never has this particular technology been exploited successfully for the study of bacteriolytic enzymes. Likewise, successful accounts of progressing the structural stability of this particular class of antimicrobials altogether are nonexistent. In this video, we employ a novel methodology that uses an error-prone DNA polymerase followed by an optimized screening process using a 96 well microtiter plate format to identify mutations to the PlyCA subunit of the PlyC streptococcal endolysin that correlate to an increase in enzyme kinetic stability (Figure 1). Results after just one round of random mutagenesis suggest the methodology is generating PlyC variants that retain more than twice the residual activity when compared to wild-type (WT) PlyC after elevated temperature treatment.
Collapse
Affiliation(s)
- Ryan D Heselpoth
- Institute for Bioscience and Biotechnology Research, University of Maryland, MD, USA
| | | |
Collapse
|
18
|
Ardiani A, Johnson AJ, Ruan H, Sanchez-Bonilla M, Serve K, Black ME. Enzymes to die for: exploiting nucleotide metabolizing enzymes for cancer gene therapy. Curr Gene Ther 2012; 12:77-91. [PMID: 22384805 DOI: 10.2174/156652312800099571] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/26/2012] [Accepted: 01/27/2012] [Indexed: 11/22/2022]
Abstract
Suicide gene therapy is an attractive strategy to selectively destroy cancer cells while minimizing unnecessary toxicity to normal cells. Since this idea was first introduced more than two decades ago, numerous studies have been conducted and significant developments have been made to further its application for mainstream cancer therapy. Major limitations of the suicide gene therapy strategy that have hindered its clinical application include inefficient directed delivery to cancer cells and the poor prodrug activation capacity of suicide enzymes. This review is focused on efforts that have been and are currently being pursued to improve the activity of individual suicide enzymes towards their respective prodrugs with particular attention to the application of nucleotide metabolizing enzymes in suicide cancer gene therapy. A number of protein engineering strategies have been employed and our discussion here will center on the use of mutagenesis approaches to create and evaluate nucleotide metabolizing enzymes with enhanced prodrug activation capacity and increased thermostability. Several of these studies have yielded clinically important enzyme variants that are relevant for cancer gene therapy applications because their utilization can serve to maximize cancer cell killing while minimizing the prodrug dose, thereby limiting undesirable side effects.
Collapse
Affiliation(s)
- Andressa Ardiani
- School of Molecular Biosciences, Washington State University, Pullman, 99164-7520, USA
| | | | | | | | | | | |
Collapse
|
19
|
Goldsmith M, Tawfik DS. Directed enzyme evolution: beyond the low-hanging fruit. Curr Opin Struct Biol 2012; 22:406-12. [DOI: 10.1016/j.sbi.2012.03.010] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 03/14/2012] [Accepted: 03/14/2012] [Indexed: 12/26/2022]
|
20
|
MA FQ, FENG Y, YANG GY. Ultrahigh-throughput Enzymatic Screening Method Based on Fluorescence-activated Cell Sorting and Its Applications*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Zhang W, Modén O, Tars K, Mannervik B. Structure-Based Redesign of GST A2-2 for Enhanced Catalytic Efficiency with Azathioprine. ACTA ACUST UNITED AC 2012; 19:414-21. [DOI: 10.1016/j.chembiol.2012.01.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 01/08/2012] [Accepted: 01/10/2012] [Indexed: 11/25/2022]
|
22
|
Assessing directed evolution methods for the generation of biosynthetic enzymes with potential in drug biosynthesis. Future Med Chem 2011; 3:809-19. [PMID: 21644826 DOI: 10.4155/fmc.11.48] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
To address the synthesis of increasingly structurally diverse small-molecule drugs, methods for the generation of efficient and selective biological catalysts are becoming increasingly important. 'Directed evolution' is an umbrella term referring to a variety of methods for improving or altering the function of enzymes using a nature-inspired twofold strategy of mutagenesis followed by selection. This article provides an objective assessment of the effectiveness of directed evolution campaigns in generating enzymes with improved catalytic parameters for new substrates from the last decade, excluding studies that aimed to select for only improved physical properties and those that lack kinetic characterization. An analysis of the trends of methodologies and their success rates from 81 qualifying examples in the literature reveals the average fold improvement for k (cat) (or V (max)), K (m) and k (cat)/K (m) to be 366-, 12- and 2548-fold, respectively, whereas the median fold improvements are 5.4, 3 and 15.6. Further analysis by enzyme class, library-generation methodology and screening methodology explores relationships between successful campaigns and the methodologies employed.
Collapse
|
23
|
Jochens H, Hesseler M, Stiba K, Padhi SK, Kazlauskas RJ, Bornscheuer UT. Protein Engineering of α/β-Hydrolase Fold Enzymes. Chembiochem 2011; 12:1508-17. [DOI: 10.1002/cbic.201000771] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Indexed: 01/01/2023]
|
24
|
Swanick KN, Dodd DW, Price JT, Brazeau AL, Jones ND, Hudson RHE, Ding Z. Electrogenerated chemiluminescence of triazole-modified deoxycytidine analogues in N,N-dimethylformamide. Phys Chem Chem Phys 2011; 13:17405-12. [DOI: 10.1039/c1cp22116g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Jäckel C, Hilvert D. Biocatalysts by evolution. Curr Opin Biotechnol 2010; 21:753-9. [DOI: 10.1016/j.copbio.2010.08.008] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 08/15/2010] [Accepted: 08/19/2010] [Indexed: 11/28/2022]
|
26
|
Yang G, Rich JR, Gilbert M, Wakarchuk WW, Feng Y, Withers SG. Fluorescence activated cell sorting as a general ultra-high-throughput screening method for directed evolution of glycosyltransferases. J Am Chem Soc 2010; 132:10570-7. [PMID: 20662530 DOI: 10.1021/ja104167y] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycosyltransferases (GTs) offer very attractive approaches to the synthesis of complex oligosaccharides. However, the limited number of available GTs, together with their instability and strict substrate specificity, have severely hampered the broad application of these enzymes. Previous attempts to broaden the range of substrate scope and to increase the activity of GTs via protein engineering have met with limited success, partially because of the lack of effective high-throughput screening methods. Recently, we reported an ultra-high-throughput screening method for sialyltransferases based on fluorescence-activated cell sorting (Aharoni et al. Nat. Methods 2006, 3, 609-614). Here, we considerably improve this method via the introduction of a two-color screening protocol to minimize the probability of false positive mutants and demonstrate its generality through directed evolution of a neutral sugar transferase, beta-1,3-galactosyltransferase CgtB. A variant with broader substrate tolerance than the wild-type enzyme and 300-fold higher activity was identified rapidly from a library of >10(7) CgtB mutants. Importantly, the variant effected much more efficient synthesis of G(M1a) and asialo G(M1) oligosaccharides, the building blocks of important therapeutic glycosphingolipids, than did the parent enzyme. This work not only establishes a new methodology for the directed evolution of galactosyltransferases, but also suggests a powerful strategy for the screening of almost all GT activities, thereby facilitating the engineering of glycosyltransferases.
Collapse
Affiliation(s)
- Guangyu Yang
- Centre for High-throughput Biology (CHiBi) and Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Liu L, Murphy P, Baker D, Lutz S. Computational design of orthogonal nucleoside kinases. Chem Commun (Camb) 2010; 46:8803-5. [PMID: 20959903 DOI: 10.1039/c0cc02961k] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the computational enzyme design of an orthogonal nucleoside analog kinase for 3'-deoxythymidine. The best kinase variant shows an 8500-fold change in substrate specificity, resulting from a 4.6-fold gain in catalytic efficiency for the nucleoside analog and a 2000-fold decline for the native substrate thymidine.
Collapse
Affiliation(s)
- Lingfeng Liu
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
28
|
Deville-Bonne D, El Amri C, Meyer P, Chen Y, Agrofoglio LA, Janin J. Human and viral nucleoside/nucleotide kinases involved in antiviral drug activation: structural and catalytic properties. Antiviral Res 2010; 86:101-20. [PMID: 20417378 DOI: 10.1016/j.antiviral.2010.02.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 01/31/2010] [Accepted: 02/01/2010] [Indexed: 12/11/2022]
Abstract
Antiviral nucleoside and nucleotide analogs, essential for the treatment of viral infections in the absence of efficient vaccines, are prodrug forms of the active compounds that target the viral DNA polymerase or reverse transcriptase. The activation process requires several successive phosphorylation steps catalyzed by different kinases, which are present in the host cell or encoded by some of the viruses. These activation reactions often are rate-limiting steps and are thus open to improvement. We review here the structural and enzymatic properties of the enzymes that carry out the activation of analogs used in therapy against human immunodeficiency virus and against DNA viruses such as hepatitis B, herpes and poxviruses. Four major classes of drugs are considered: thymidine analogs, non-natural L-nucleosides, acyclic nucleoside analogs and acyclic nucleoside phosphonate analogs. Their efficiency as drugs depends both on the low specificity of the viral polymerase that allows their incorporation into DNA, but also on the ability of human/viral kinases to provide the activated triphosphate active forms at a high concentration at the right place. Two distinct modes of action are considered, depending on the origin of the kinase (human or viral). If the human kinases are house-keeping enzymes that belong to the metabolic salvage pathway, herpes and poxviruses encode for related enzymes. The structures, substrate specificities and catalytic properties of each of these kinases are discussed in relation to drug activation.
Collapse
Affiliation(s)
- Dominique Deville-Bonne
- Enzymologie Moléculaire et Fonctionnelle, UR4 Université Pierre et Marie Curie, 7 quai St Bernard, 75252 Paris Cedex 05, France.
| | | | | | | | | | | |
Collapse
|
29
|
Yang G, Withers SG. Ultrahigh-throughput FACS-based screening for directed enzyme evolution. Chembiochem 2010; 10:2704-15. [PMID: 19780076 DOI: 10.1002/cbic.200900384] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Directed enzyme evolution has proven to be a powerful tool for improving a range of properties of enzymes through consecutive rounds of diversification and selection. However, its success depends heavily on the efficiency of the screening strategy employed. Fluorescence-activated cell sorting (FACS) has recently emerged as a powerful tool for screening enzyme libraries due to its high sensitivity and its ability to analyze as many as 10(8) mutants per day. Applications of FACS screening have allowed the isolation of enzyme variants with significantly improved activities, altered substrate specificities, or even novel functions. This review discusses FACS-based screening for enzymatic activity and its potential application for the directed evolution of enzymes, ribozymes, and catalytic antibodies.
Collapse
Affiliation(s)
- Guangyu Yang
- Centre for High-Throughput Biology (CHiBi) and Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, B.C. V6T 1Z1, Canada
| | | |
Collapse
|
30
|
Li Y, Soni PB, Liu L, Zhang X, Liotta DC, Lutz S. Synthesis of fluorescent nucleoside analogs as probes for 2'-deoxyribonucleoside kinases. Bioorg Med Chem Lett 2010; 20:841-3. [PMID: 20060716 DOI: 10.1016/j.bmcl.2009.12.097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2009] [Revised: 12/21/2009] [Accepted: 12/22/2009] [Indexed: 10/20/2022]
Abstract
We are reporting on the synthesis of fluorescent nucleoside analogs with modified sugar moieties (e.g., sugars other than ribose and 2'-deoxyribose). Four novel derivatives of the fluorescent thymidine analog 6-methyl-3-(beta-D-2'-deoxyribofuranosyl) furano-[2,3-d]pyrimidin-2-one were synthesized via Sonogashira reaction and subsequent copper-catalyzed cycloaddition. These compounds represent promising tools for studying nucleoside metabolism inside living cells, as well as for screening directed evolution libraries of 2'-deoxyribonucleoside kinases with new and improved activity for the corresponding nucleoside analogs.
Collapse
Affiliation(s)
- Yongfeng Li
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
31
|
Dodd DW, Swanick KN, Price JT, Brazeau AL, Ferguson MJ, Jones ND, Hudson RHE. Blue fluorescent deoxycytidine analogues: convergent synthesis, solid-state and electronic structure, and solvatochromism. Org Biomol Chem 2010; 8:663-6. [DOI: 10.1039/b919921g] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
32
|
Abstract
Directed evolution circumvents our profound ignorance of how a protein's sequence encodes its function by using iterative rounds of random mutation and artificial selection to discover new and useful proteins. Proteins can be tuned to adapt to new functions or environments by simple adaptive walks involving small numbers of mutations. Directed evolution studies have shown how rapidly some proteins can evolve under strong selection pressures and, because the entire 'fossil record' of evolutionary intermediates is available for detailed study, they have provided new insight into the relationship between sequence and function. Directed evolution has also shown how mutations that are functionally neutral can set the stage for further adaptation.
Collapse
Affiliation(s)
| | - Frances H. Arnold
- Dick and Barbara Dickinson Professor of Chemical Engineering and Biochemistry, Division of Chemistry and Chemical Engineering, 210-41, California Institute of Technology, Pasadena, CA 91125 USA, Tel: (626) 395-4162
| |
Collapse
|
33
|
Lutz S, Liu L, Liu Y. Engineering Kinases to Phosphorylate Nucleoside Analogs for Antiviral and Cancer Therapy. Chimia (Aarau) 2009; 63:737-744. [PMID: 20305804 DOI: 10.2533/chimia.2009.737] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Enzyme engineering by directed evolution presents a powerful strategy for tailoring the function and physicochemical properties of biocatalysts to therapeutic and industrial applications. Our laboratory's research focuses on developing novel molecular tools for protein engineering, as well as on utilizing these methods to customize enzymes and to study fundamental aspects of their structure and function. Specifically, we are interested in nucleoside and nucleotide kinases which are responsible for the intracellular phosphorylation of nucleoside analog (NA) prodrugs to their biologically active triphosphates. The high substrate specificity of the cellular kinases often interferes with prodrug activation and consequently lowers the potency of NAs as antiviral and cancer therapeutics. A working solution to the problem is the co-adminstration of a promiscuous kinase from viruses, bacteria, and other mammals. However, further therapeutic enhancements of NAs depend on the selective and efficient prodrug phosphorylation. In the absence of true NA kinases in nature, we are pursuing laboratory evolution strategies to generate efficient phosphoryl-transfer catalysts. This review summarizes some of our recent work in the field and outlines future challenges.
Collapse
|