1
|
Vishwakarma KK, Kolthur US, Venkatramani R. Multiple Functional Protein-Protein Interaction Interfaces Allosterically Regulate ATP-Binding in Cyclin-Dependent Kinase-1. Proteins 2024; 92:1329-1342. [PMID: 39012208 DOI: 10.1002/prot.26729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/30/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024]
Abstract
The ATP-dependent phosphorylation activity of cyclin-dependent kinase 1 (CDK1), an essential enzyme for cell cycle progression, is regulated by interactions with Cyclin-B, substrate, and Cks proteins. We have recently shown that active site acetylation in CDK1 abrogated binding to Cyclin-B which posits an intriguing long-range communication between the catalytic site and the protein-protein interaction (PPI) interface. Now, we demonstrate a general allosteric link between the CDK1 active site and all three of its PPI interfaces through atomistic molecular dynamics (MD) simulations. Specifically, we examined ATP binding free energies to CDK1 in native nonacetylated (K33wt) and acetylated (K33Ac) forms as well as the acetyl-mimic K33Q and the acetyl-null K33R mutant forms, which are accessible in vitro. In agreement with experiments, ATP binding is stronger in K33wt relative to the other three perturbed states. Free energy decomposition reveals, in addition to expected local changes, significant and selective nonlocal entropic responses to ATP binding/perturbation of K33 from theαC -helix, activation loop (A-loop), andαG -α H segments in CDK1 which interface with Cyclin-B, substrate, and Cks proteins, respectively. Statistical analysis reveals that while entropic responses of protein segments to active site perturbations are on average correlated with their dynamical changes, such correlations are lost in about 9%-48% of the dataset depending on the segment. Besides proving the bi-directional communication between the active site and the CDK1:Cyclin-B interface, our study uncovers a hitherto unknown mode of ATP binding regulation by multiple PPI interfaces in CDK1.
Collapse
Affiliation(s)
| | - Ullas Seetharam Kolthur
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
- Tata Institute of Fundamental Research, Hyderabad, India
| | - Ravindra Venkatramani
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
2
|
Chen LY, Singha Roy SJ, Jadhav AM, Wang WW, Chen PH, Bishop T, Erb MA, Parker CG. Functional Investigations of p53 Acetylation Enabled by Heterobifunctional Molecules. ACS Chem Biol 2024; 19:1918-1929. [PMID: 39250704 PMCID: PMC11421428 DOI: 10.1021/acschembio.4c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Post-translational modifications (PTMs) dynamically regulate the critical stress response and tumor suppressive functions of p53. Among these, acetylation events mediated by multiple acetyltransferases lead to differential target gene activation and subsequent cell fate. However, our understanding of these events is incomplete due to, in part, the inability to selectively and dynamically control p53 acetylation. We recently developed a heterobifunctional small molecule system, AceTAG, to direct the acetyltransferase p300/CBP for targeted protein acetylation in cells. Here, we expand AceTAG to leverage the acetyltransferase PCAF/GCN5 and apply these tools to investigate the functional consequences of targeted p53 acetylation in human cancer cells. We demonstrate that the recruitment of p300/CBP or PCAF/GCN5 to p53 results in distinct acetylation events and differentiated transcriptional activities. Further, we show that chemically induced acetylation of multiple hotspot p53 mutants results in increased stabilization and enhancement of transcriptional activity. Collectively, these studies demonstrate the utility of AceTAG for functional investigations of protein acetylation.
Collapse
Affiliation(s)
- Li-Yun Chen
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Soumya Jyoti Singha Roy
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Appaso M. Jadhav
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Wesley W. Wang
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Pei-Hsin Chen
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Timothy Bishop
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Michael A. Erb
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Christopher G. Parker
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
3
|
Betsinger CN, Justice JL, Tyl MD, Edgar JE, Budayeva HG, Abu YF, Cristea IM. Sirtuin 2 promotes human cytomegalovirus replication by regulating cell cycle progression. mSystems 2023; 8:e0051023. [PMID: 37916830 PMCID: PMC10734535 DOI: 10.1128/msystems.00510-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE This study expands the growing understanding that protein acetylation is a highly regulated molecular toggle of protein function in both host anti-viral defense and viral replication. We describe a pro-viral role for the human enzyme SIRT2, showing that its deacetylase activity supports HCMV replication. By integrating quantitative proteomics, flow cytometry cell cycle assays, microscopy, and functional virology assays, we investigate the temporality of SIRT2 functions and substrates. We identify a pro-viral role for the SIRT2 deacetylase activity via regulation of CDK2 K6 acetylation and the G1-S cell cycle transition. These findings highlight a link between viral infection, protein acetylation, and cell cycle progression.
Collapse
Affiliation(s)
- Cora N. Betsinger
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Joshua L. Justice
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Matthew D. Tyl
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Julia E. Edgar
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Hanna G. Budayeva
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Yaa F. Abu
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| |
Collapse
|
4
|
Xu X, Ding Y, Jin J, Xu C, Hu W, Wu S, Ding G, Cheng R, Cao L, Jia S. Post-translational modification of CDK1-STAT3 signaling by fisetin suppresses pancreatic cancer stem cell properties. Cell Biosci 2023; 13:176. [PMID: 37743465 PMCID: PMC10518106 DOI: 10.1186/s13578-023-01118-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND Pancreatic cancer stem cells (CSCs) promote pancreatic ductal adenocarcinoma (PDAC) tumorigenesis and chemoresistance. Cyclin-dependent kinase 1 (CDK1) plays an important role in tumor initiation in other tumors, but the function of CDK1 in PDAC remains unclear. Fisetin is a bioactive flavonoid with anti-tumor properties in multiple tumors, while its function in CSCs remains elusive. RESULTS In this study, we demonstrated that CDK1 was correlated with prognosis and was highly expressed in pancreatic cancer tissue and gemcitabine-resistant cells. Silencing CDK1 impaired tumor stemness and reduced a subset of CSCs. We found that fisetin blocked the kinase pocket domain of CDK1 and inhibited pancreatic CSC characteristics. Using acetylation proteomics analysis and phosphorylation array assay, we confirmed that fisetin reduced CDK1 expression and increased CDK1 acetylation at lysine 33 (K33), which resulted in the suppression of CDK1 phosphorylation. Silencing CDK1 or STAT3 suppressed tumor stemness properties, while overexpressing CDK1 or STAT3 showed the opposite effect. Mutation or acetylation of CDK1 at K33 weakened STAT3 phosphorylation at Y705, impairing the expression of stem-related genes and pancreatic cancer stemness. In addition, lack of histone deacetylase 3 (HDAC3), which deacetylates CDK1, contributed to weakening STAT3 phosphorylation by regulating the post-translational modification of CDK1, thereby decreasing the stemness of PDAC. Moreover, our results revealed that fisetin enhanced the effect of gemcitabine through eliminating a subpopulation of pancreatic CSCs by inhibiting the CDK1-STAT3 axis in vitro and in vivo. CONCLUSION Our findings highlight the role of post-translational modifications of CDK1-STAT3 signaling in maintaining cancer stemness of PDAC, and indicated that targeting the CDK1-STAT3 axis with inhibitors such as fisetin is a potential therapeutic strategy to diminish drug resistance and eliminate PDAC.
Collapse
Affiliation(s)
- Xiaodong Xu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
- General Surgery, Cancer Center, Department of Colorectal Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Yimin Ding
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Junbin Jin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Chengjie Xu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Wenyi Hu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Songtao Wu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Guoping Ding
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Rui Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Liping Cao
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
- Innovation Center for Minimally Invasive Technique and Device, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
| | - Shengnan Jia
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
- Innovation Center for Minimally Invasive Technique and Device, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
| |
Collapse
|
5
|
Li ZM, Liu G, Gao Y, Zhao MG. Targeting CDK7 in oncology: The avenue forward. Pharmacol Ther 2022; 240:108229. [PMID: 35700828 DOI: 10.1016/j.pharmthera.2022.108229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 12/14/2022]
Abstract
Cyclin-dependent kinase (CDK) 7 is best characterized for the ability to regulate biological processes, including the cell cycle and gene transcription. Abnormal CDK7 activity is observed in various tumours and represents a driving force for tumourigenesis. Therefore, CDK7 may be an appealing target for cancer treatment. Whereas, the enthusiasm for CDK7-targeted therapeutic strategy is mitigated due to the widely possessed belief that this protein is essential for normal cells. Indeed, the fact confronts the consensus. This is the first review to introduce the role of CDK7 in pan-cancers via a combined analysis of comprehensive gene information and (pre)clinical research results. We also discuss the recent advances in protein structure and summarize the understanding of mechanisms underlying CDK7 function. These endeavours highlight the pivotal roles of CDK7 in tumours and may contribute to the development of effective CDK7 inhibitors within the strategy of structure-based drug discovery for cancer therapy.
Collapse
Affiliation(s)
- Zhi-Mei Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Guan Liu
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xinsi Road 1, Xi'an 710038, Shaanxi, PR China
| | - Ya Gao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, Henan, PR China.
| | - Ming-Gao Zhao
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China; Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xinsi Road 1, Xi'an 710038, Shaanxi, PR China.
| |
Collapse
|
6
|
Tabassum Z, Tseng JH, Isemann C, Tian X, Chen Y, Herring LE, Cohen TJ. Identification of a reciprocal negative feedback loop between tau-modifying proteins MARK2 kinase and CBP acetyltransferase. J Biol Chem 2022; 298:101977. [PMID: 35469920 PMCID: PMC9136110 DOI: 10.1016/j.jbc.2022.101977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 11/30/2022] Open
Abstract
The posttranslational regulation of the neuronal proteome is critical for brain homeostasis but becomes dysregulated in the aged or diseased brain, in which abnormal posttranslational modifications (PTMs) are frequently observed. While the full extent of modified substrates that comprise the "PTM-ome" are slowly emerging, how the upstream enzymes catalyzing these processes are regulated themselves is not well understood, particularly in the context of neurodegeneration. Here, we describe the reciprocal regulation of a kinase, the microtubule affinity-regulating kinase 2 (MARK2), and an acetyltransferase, CREB-binding protein (CBP), two enzymes known to extensively modify tau proteins in the progression of Alzheimer's disease. We found that MARK2 negatively regulates CBP and, conversely, CBP directly acetylates and inhibits MARK2 kinase activity. These findings highlight a reciprocal negative feedback loop between a kinase and an acetyltransferase, which has implications for how PTM interplay is coordinated on substrates including tau. Our study suggests that PTM profiles occur through the posttranslational control of the master PTM remodeling enzymes themselves.
Collapse
Affiliation(s)
- Zarin Tabassum
- Department of Neurology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jui-Heng Tseng
- Department of Neurology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Camryn Isemann
- Department of Neurology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Xu Tian
- Department of Neurology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Youjun Chen
- Department of Neurology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Laura E Herring
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Todd J Cohen
- Department of Neurology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA.
| |
Collapse
|
7
|
p27 Kip1, an Intrinsically Unstructured Protein with Scaffold Properties. Cells 2021; 10:cells10092254. [PMID: 34571903 PMCID: PMC8465030 DOI: 10.3390/cells10092254] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
The Cyclin-dependent kinase (CDK) regulator p27Kip1 is a gatekeeper of G1/S transition. It also regulates G2/M progression and cytokinesis completion, via CDK-dependent or -independent mechanisms. Recently, other important p27Kip1 functions have been described, including the regulation of cell motility and migration, the control of cell differentiation program and the activation of apoptosis/autophagy. Several factors modulate p27Kip1 activities, including its level, cellular localization and post-translational modifications. As a matter of fact, the protein is phosphorylated, ubiquitinated, SUMOylated, O-linked N-acetylglicosylated and acetylated on different residues. p27Kip1 belongs to the family of the intrinsically unstructured proteins and thus it is endowed with a large flexibility and numerous interactors, only partially identified. In this review, we look at p27Kip1 properties and ascribe part of its heterogeneous functions to the ability to act as an anchor or scaffold capable to participate in the construction of different platforms for modulating cell response to extracellular signals and allowing adaptation to environmental changes.
Collapse
|
8
|
Wang F, Li Z, Zhou J, Wang G, Zhang W, Xu J, Liang A. SIRT1 regulates the phosphorylation and degradation of P27 by deacetylating CDK2 to promote T-cell acute lymphoblastic leukemia progression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:259. [PMID: 34407842 PMCID: PMC8371879 DOI: 10.1186/s13046-021-02071-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/11/2021] [Indexed: 11/12/2022]
Abstract
Background Despite marked advances in the clinical therapies, clinical outcome of most T-cell acute lymphoblastic leukemia (T-ALL) patients remains poor, due to the high risk of relapse, even after complete remission. Previous studies suggest that the NAD-dependent deacetylase sirtuin 1 (SIRT1) has a dual role in hematologic malignancies, acting as a tumor suppressor or tumor promoter depending on the tumor type. However, little is known about the expression and functions of SIRT1 in T-ALL leukemogenesis. Methods Public RNA-seq data, a Notch1 driven T-ALL mouse model and γ-secretase inhibitor were used to identify SIRT1 expression in T-ALL. We knocked down SIRT1 expression with ShRNAs and assessed the impacts of SIRT1 deficiency on cell proliferation, colony formation, the cell cycle and apoptosis. Transgenic SIRT1 knockout mice were used to determine the function of SIRT1 in vivo. RT-PCR, western blot, co-immunoprecipitation and ubiquitination analyses were used to detect SIRT1, p27 and CDK2 expression and their interactions. Results SIRT1 protein expression was positively correlated with the activation of Notch1. Downregulation of SIRT1 expression suppressed the proliferation and colony formation of T-ALL cell lines, which was reversed by SIRT1 overexpression. SIRT1 silencing prolonged the lifespan of T-ALL model mice. We demonstrated that p27 was involved in the downstream mechanism of cell cycle arrest induced by silencing SIRT1. SIRT1 increased the phosphorylation of p27 on Thr187 by deacetylating CDK2 and enhanced the interaction between p27 and SKP2 leading to the degradation of p27. Conclusion Our findings suggest that SIRT1 is a promising target in T-ALL and offer a mechanistic link between the upregulation of SIRT1 and downregulation of p27. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02071-w.
Collapse
Affiliation(s)
- Fangce Wang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Zheng Li
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Jie Zhou
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Guangming Wang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Wenjun Zhang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, People's Republic of China.
| | - Jun Xu
- East Hospital, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, People's Republic of China.
| | - Aibin Liang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
9
|
Abstract
Nε-lysine acetylation was discovered more than half a century ago as a post-translational modification of histones and has been extensively studied in the context of transcription regulation. In the past decade, proteomic analyses have revealed that non-histone proteins are frequently acetylated and constitute a major portion of the acetylome in mammalian cells. Indeed, non-histone protein acetylation is involved in key cellular processes relevant to physiology and disease, such as gene transcription, DNA damage repair, cell division, signal transduction, protein folding, autophagy and metabolism. Acetylation affects protein functions through diverse mechanisms, including by regulating protein stability, enzymatic activity, subcellular localization and crosstalk with other post-translational modifications and by controlling protein-protein and protein-DNA interactions. In this Review, we discuss recent progress in our understanding of the scope, functional diversity and mechanisms of non-histone protein acetylation.
Collapse
|
10
|
Collesi C, Felician G, Secco I, Gutierrez MI, Martelletti E, Ali H, Zentilin L, Myers MP, Giacca M. Reversible Notch1 acetylation tunes proliferative signalling in cardiomyocytes. Cardiovasc Res 2019; 114:103-122. [PMID: 29186476 DOI: 10.1093/cvr/cvx228] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 11/23/2017] [Indexed: 01/07/2023] Open
Abstract
Aims The Notch signalling pathway regulates the balance between proliferation and differentiation in several tissues, including the heart. Our previous work has demonstrated that the proliferative potential of neonatal cardiomyocytes relies on Notch1 activity. A deep investigation on the biochemical regulation of the Notch signalling in cardiomyocytes is the focus of the current research. Methods and results We show that the Notch1 intracellular domain is acetylated in proliferating neonatal rat cardiomyocytes and that acetylation tightly controls the amplitude and duration of Notch signalling. We found that acetylation extends the half-life of the protein, and enhanced its transcriptional activity, therefore counteracting apoptosis and sustaining cardiomyocyte proliferation. Sirt1 acted as a negative modulator of Notch1 signalling; its overexpression in cardiomyocytes reverted Notch acetylation and dampened its stability. A constitutively acetylated fusion protein between Notch1 and the acetyltransferase domain of p300 promoted cardiomyocyte proliferation, which was remarkably sustained over time. Viral vector-mediated expression of this protein enhanced heart regeneration after apical resection in neonatal mice. Conclusion These results identify the reversible acetylation of Notch1 as a novel mechanism to modulate its signalling in the heart and tune the proliferative potential of cardiomyocytes.
Collapse
Affiliation(s)
- Chiara Collesi
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy.,Department of Medical, Surgical and Health Sciences, University of Trieste, Strada di Fiume 447, 34100 Trieste, Italy.,Center for Translational Cardiology, Azienda Sanitaria Universitaria Integrata, Via Valdoni 7, 34100 Trieste, Italy; and
| | - Giulia Felician
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| | - Ilaria Secco
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| | - Maria Ines Gutierrez
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| | - Elisa Martelletti
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| | - Hashim Ali
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| | - Lorena Zentilin
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| | - Michael P Myers
- Protein Networks Laboratories, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy.,Department of Medical, Surgical and Health Sciences, University of Trieste, Strada di Fiume 447, 34100 Trieste, Italy.,Center for Translational Cardiology, Azienda Sanitaria Universitaria Integrata, Via Valdoni 7, 34100 Trieste, Italy; and
| |
Collapse
|
11
|
Deota S, Rathnachalam S, Namrata K, Boob M, Fulzele A, Radhika S, Ganguli S, Balaji C, Kaypee S, Vishwakarma KK, Kundu TK, Bhandari R, Gonzalez de Peredo A, Mishra M, Venkatramani R, Kolthur-Seetharam U. Allosteric Regulation of Cyclin-B Binding by the Charge State of Catalytic Lysine in CDK1 Is Essential for Cell-Cycle Progression. J Mol Biol 2019; 431:2127-2142. [PMID: 30974121 DOI: 10.1016/j.jmb.2019.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 01/19/2023]
Abstract
Cyclin-dependent kinase 1 (CDK1) is essential for cell-cycle progression. While dependence of CDK activity on cyclin levels is well established, molecular mechanisms that regulate their binding are less understood. Here, we report for the first time that CDK1:cyclin-B binding is not default but rather determined by the evolutionarily conserved catalytic residue, lysine-33 in CDK1. We demonstrate that the charge state of this lysine allosterically remodels the CDK1:cyclin-B interface. Cell cycle-dependent acetylation of lysine-33 or its mutation to glutamine, which mimics acetylation, abrogates cyclin-B binding. Using biochemical approaches and atomistic molecular dynamics simulations, we have uncovered both short-range and long-range effects of perturbing the charged state of the catalytic lysine, which lead to inhibition of kinase activity. Specifically, although loss of the charge state of catalytic lysine did not impact ATP binding significantly, it altered its orientation in the active site. In addition, the catalytic lysine also acts as an intra-molecular electrostatic tether at the active site to orient structural elements interfacing with cyclin-B. Physiologically, opposing activities of SIRT1 and P300 regulate acetylation and thus control the charge state of lysine-33. Importantly, cells expressing acetylation mimic mutant of Cdc2/CDK1 in yeast are arrested in G2 and fail to divide, indicating the requirement of the deacetylated state of the catalytic lysine for cell division. Thus, by illustrating the molecular role of the catalytic lysine and cell cycle-dependent deacetylation as a determinant of CDK1:cyclin-B interaction, our results redefine the current model of CDK1 activation and cell-cycle progression.
Collapse
Affiliation(s)
- Shaunak Deota
- Department of Biological Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai 400005, India
| | - Sivasudhan Rathnachalam
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai 400005, India
| | - Kanojia Namrata
- Department of Biological Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai 400005, India
| | - Mayank Boob
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai 400005, India
| | - Amit Fulzele
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Toulouse 31400, France
| | - S Radhika
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai 400005, India
| | - Shubhra Ganguli
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad 500039, India; Graduate Studies, Manipal Academy of Higher Education, Manipal 576104, India
| | - Chinthapalli Balaji
- Department of Biological Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai 400005, India
| | - Stephanie Kaypee
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru 560064, India
| | - Krishna Kant Vishwakarma
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai 400005, India
| | - Tapas Kumar Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru 560064, India
| | - Rashna Bhandari
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad 500039, India
| | | | - Mithilesh Mishra
- Department of Biological Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai 400005, India
| | - Ravindra Venkatramani
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai 400005, India.
| | - Ullas Kolthur-Seetharam
- Department of Biological Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai 400005, India.
| |
Collapse
|
12
|
Hansen BK, Gupta R, Baldus L, Lyon D, Narita T, Lammers M, Choudhary C, Weinert BT. Analysis of human acetylation stoichiometry defines mechanistic constraints on protein regulation. Nat Commun 2019; 10:1055. [PMID: 30837475 PMCID: PMC6401094 DOI: 10.1038/s41467-019-09024-0] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/11/2019] [Indexed: 12/21/2022] Open
Abstract
Lysine acetylation is a reversible posttranslational modification that occurs at thousands of sites on human proteins. However, the stoichiometry of acetylation remains poorly characterized, and is important for understanding acetylation-dependent mechanisms of protein regulation. Here we provide accurate, validated measurements of acetylation stoichiometry at 6829 sites on 2535 proteins in human cervical cancer (HeLa) cells. Most acetylation occurs at very low stoichiometry (median 0.02%), whereas high stoichiometry acetylation (>1%) occurs on nuclear proteins involved in gene transcription and on acetyltransferases. Analysis of acetylation copy numbers show that histones harbor the majority of acetylated lysine residues in human cells. Class I deacetylases target a greater proportion of high stoichiometry acetylation compared to SIRT1 and HDAC6. The acetyltransferases CBP and p300 catalyze a majority (65%) of high stoichiometry acetylation. This resource dataset provides valuable information for evaluating the impact of individual acetylation sites on protein function and for building accurate mechanistic models. Many human proteins are regulated by lysine acetylation, but the degree of acetylation at individual sites is poorly characterized. Here, the authors measure acetylation stoichiometry in the HeLa cell proteome, providing a resource to assess mechanistic constraints on acetylation-mediated protein regulation.
Collapse
Affiliation(s)
- Bogi Karbech Hansen
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Rajat Gupta
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Linda Baldus
- Institute of Biochemistry, Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, Greifswald, 17487, Germany.,Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, CECAD, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - David Lyon
- Disease Systems Biology Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Takeo Narita
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Michael Lammers
- Institute of Biochemistry, Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, Greifswald, 17487, Germany.,Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, CECAD, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Chunaram Choudhary
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark.
| | - Brian T Weinert
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark.
| |
Collapse
|
13
|
The acetylation of cyclin-dependent kinase 5 at lysine 33 regulates kinase activity and neurite length in hippocampal neurons. Sci Rep 2018; 8:13676. [PMID: 30209341 PMCID: PMC6135752 DOI: 10.1038/s41598-018-31785-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 08/19/2018] [Indexed: 01/06/2023] Open
Abstract
Cyclin-dependent kinase 5 (CDK5) plays a pivotal role in neural development and neurodegeneration. CDK5 activity can be regulated by posttranslational modifications, including phosphorylation and S-nitrosylation. In this study, we demonstrate a novel mechanism by which the acetylation of CDK5 at K33 (Ac-CDK5) results in the loss of ATP binding and impaired kinase activity. We identify GCN5 and SIRT1 as critical factor controlling Ac-CDK5 levels. Ac-CDK5 achieved its lowest levels in rat fetal brains but was dramatically increased during postnatal periods. Intriguingly, nuclear Ac-CDK5 levels negatively correlated with neurite length in embryonic hippocampal neurons. Either treatment with the SIRT1 activator SRT1720 or overexpression of SIRT1 leads to increases in neurite length, whereas SIRT1 inhibitor EX527 or ectopic expression of acetyl-mimetic (K33Q) CDK5 induced the opposite effect. Furthermore, the expression of nuclear-targeted CDK5 K33Q abolished the SRT1720-induced neurite outgrowth, showing that SIRT1 positively regulates neurite outgrowth via deacetylation of nuclear CDK5. The CDK5 activity-dependent increase of neurite length was mediated by enhanced transcriptional regulation of BDNF via unknown mechanism(s). Our findings identify a novel mechanism by which acetylation-mediated regulation of nuclear CDK5 activity plays a critical role in determining neurite length in embryonic neurons.
Collapse
|
14
|
Bachs O, Gallastegui E, Orlando S, Bigas A, Morante-Redolat JM, Serratosa J, Fariñas I, Aligué R, Pujol MJ. Role of p27 Kip1 as a transcriptional regulator. Oncotarget 2018; 9:26259-26278. [PMID: 29899857 PMCID: PMC5995243 DOI: 10.18632/oncotarget.25447] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 05/01/2018] [Indexed: 12/16/2022] Open
Abstract
The protein p27Kip1 is a member of the Cip/Kip family of cyclin-dependent kinase (Cdk) inhibitors. It interacts with both the catalytic and the regulatory subunit (cyclin) and introduces a region into the catalytic cleave of the Cdk inducing its inactivation. Its inhibitory capacity can be modulated by specific tyrosine phosphorylations. p27Kip1 also behaves as a transcriptional regulator. It associates with specific chromatin domains through different transcription factors. ChIP on chip, ChIP-seq and expression microarray analysis allowed the identification of the transcriptional programs regulated by p27Kip1. Thus, important cellular functions as cell division cycle, respiration, RNA processing, translation and cell adhesion, are under p27Kip1 regulation. Moreover, genes involved in pathologies as cancer and neurodegeneration are also regulated by p27Kip1, suggesting its implication in these pathologies. The carboxyl moiety of p27Kip1 can associate with different proteins, including transcriptional regulators. In contrast, its NH2-terminal region specifically interacts with cyclin-Cdk complexes. The general mechanistic model of how p27Kip1 regulates transcription is that it associates by its COOH region to the transcriptional regulators on the chromatin and by the NH2-domain to cyclin-Cdk complexes. After Cdk activation it would phosphorylate the specific targets on the chromatin leading to gene expression. This model has been demonstrated to apply in the transcriptional regulation of p130/E2F4 repressed genes involved in cell cycle progression. We summarize in this review our current knowledge on the role of p27Kip1 in the regulation of transcription, on the transcriptional programs under its regulation and on its relevance in pathologies as cancer and neurodegeneration.
Collapse
Affiliation(s)
- Oriol Bachs
- Department of Biomedical Sciences, Faculty of Medicine, University of Barcelona, IDIBAPS, CIBERONC, Barcelona, Spain
| | - Edurne Gallastegui
- Department of Biomedical Sciences, Faculty of Medicine, University of Barcelona, IDIBAPS, CIBERONC, Barcelona, Spain
| | - Serena Orlando
- Department of Biomedical Sciences, Faculty of Medicine, University of Barcelona, IDIBAPS, CIBERONC, Barcelona, Spain
| | - Anna Bigas
- Program in Cancer Research, Institut Hospital Del Mar d'Investigacions Mèdiques (IMIM), CIBERONC, Barcelona, Spain
| | - José Manuel Morante-Redolat
- Departamento de Biología Celular, Biología Funcional y Antropología Física and ERI de Biotecnología y Biomedicina, CIBERNED, Universidad de Valencia, Valencia, Spain
| | - Joan Serratosa
- Department of Cerebral Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), IDIBAPS, Barcelona, Spain
| | - Isabel Fariñas
- Departamento de Biología Celular, Biología Funcional y Antropología Física and ERI de Biotecnología y Biomedicina, CIBERNED, Universidad de Valencia, Valencia, Spain
| | - Rosa Aligué
- Department of Biomedical Sciences, Faculty of Medicine, University of Barcelona, IDIBAPS, CIBERONC, Barcelona, Spain
| | - Maria Jesús Pujol
- Department of Biomedical Sciences, Faculty of Medicine, University of Barcelona, IDIBAPS, CIBERONC, Barcelona, Spain
| |
Collapse
|
15
|
Abstract
Alpha-synuclein (α-SYN) is the main component of anomalous protein aggregates (Lewy bodies) that play a crucial role in several neurodegenerative diseases (synucleinopathies) like Parkinson’s disease and multiple system atrophy. However, the mechanisms involved in its transcriptional regulation are poorly understood. We investigated here the role of the cyclin-dependent kinase (Cdk) inhibitor and transcriptional regulator p27Kip1 (p27) in the regulation of α-SYN expression. We observed that selective deletion of p27 by CRISPR/Cas9 technology in neural cells resulted in increased levels of α-SYN. Knock-down of the member of the same family p21Cip1 (p21) also led to increased α-SYN levels, indicating that p27 and p21 collaborate in the repression of α-SYN transcription. We demonstrated that this repression is mediated by the transcription factor E2F4 and the member of the retinoblastoma protein family p130 and that it is dependent of Cdk activity. Chromatin immunoprecipitation analysis revealed specific binding sites for p27, p21 and E2F4 in the proximal α-SYN gene promoter. Finally, luciferase assays revealed a direct action of p27, p21 and E2F4 in α-SYN gene expression. Our findings reveal for the first time a negative regulatory mechanism of α-SYN expression, suggesting a putative role for cell cycle regulators in the etiology of synucleinopathies.
Collapse
|
16
|
Tian W, Liang J. On quantification of geometry and topology of protein pockets and channels for assessing mutation effects. ... IEEE-EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS. IEEE-EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS 2018; 2018:263-266. [PMID: 30272056 PMCID: PMC6157619 DOI: 10.1109/bhi.2018.8333419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Geometric and topological features of proteins such as voids, pockets and channels are important for protein functions. We discuss a method for visualizing protein pockets and channels based on orthogonal spheres computed from alpha shapes of the protein structures, and how metric properties of channel surfaces can be mapped. In addition, we discuss how structurally prominent sites, such as constriction sties in channels, can be computed, which may help to understand protein functions and mutation effects, with implications in developing novel therapeutic interventions.
Collapse
Affiliation(s)
- Wei Tian
- Bioinformatics Program, Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Jie Liang
- Bioinformatics Program, Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
17
|
Biçer A, Orlando S, Islam ABMMK, Gallastegui E, Besson A, Aligué R, Bachs O, Pujol MJ. ChIP-Seq analysis identifies p27(Kip1)-target genes involved in cell adhesion and cell signalling in mouse embryonic fibroblasts. PLoS One 2017; 12:e0187891. [PMID: 29155860 PMCID: PMC5695801 DOI: 10.1371/journal.pone.0187891] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 10/27/2017] [Indexed: 12/25/2022] Open
Abstract
The protein p27Kip1 (p27), a member of the Cip-Kip family of cyclin-dependent kinase inhibitors, is involved in tumorigenesis and a correlation between reduced levels of this protein in human tumours and a worse prognosis has been established. Recent reports revealed that p27 also behaves as a transcriptional regulator. Thus, it has been postulated that the development of tumours with low amounts of p27 could be propitiated by deregulation of transcriptional programs under the control of p27. However, these programs still remain mostly unknown. The aim of this study has been to define the transcriptional programs regulated by p27 by first identifying the p27-binding sites (p27-BSs) on the whole chromatin of quiescent mouse embryonic fibroblasts. The chromatin regions associated to p27 have been annotated to the most proximal genes and it has been considered that the expression of these genes could by regulated by p27. The identification of the chromatin p27-BSs has been performed by Chromatin Immunoprecipitation Sequencing (ChIP-seq). Results revealed that p27 associated with 1839 sites that were annotated to 1417 different genes being 852 of them protein coding genes. Interestingly, most of the p27-BSs were in distal intergenic regions and introns whereas, in contrast, its association with promoter regions was very low. Gene ontology analysis of the protein coding genes revealed a number of relevant transcriptional programs regulated by p27 as cell adhesion, intracellular signalling and neuron differentiation among others. We validated the interaction of p27 with different chromatin regions by ChIP followed by qPCR and demonstrated that the expressions of several genes belonging to these programs are actually regulated by p27. Finally, cell adhesion assays revealed that the adhesion of p27-/- cells to the plates was much higher that controls, revealing a role of p27 in the regulation of a transcriptional program involved in cell adhesion.
Collapse
Affiliation(s)
- Atilla Biçer
- Department of Biomedical Sciences, University of Barcelona-IDIBAPS (Institut d'investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain
| | - Serena Orlando
- Department of Biomedical Sciences, University of Barcelona-IDIBAPS (Institut d'investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain
| | - Abul B M M K Islam
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Edurne Gallastegui
- Department of Biomedical Sciences, University of Barcelona-IDIBAPS (Institut d'investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain
| | - Arnaud Besson
- INSERM UMR1037, Cancer Research Center of Toulouse, Toulouse, France.,Université de Toulouse, Toulouse, France.,CNRS ERL5294, Toulouse, France
| | - Rosa Aligué
- Department of Biomedical Sciences, University of Barcelona-IDIBAPS (Institut d'investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain
| | - Oriol Bachs
- Department of Biomedical Sciences, University of Barcelona-IDIBAPS (Institut d'investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain
| | - Maria Jesús Pujol
- Department of Biomedical Sciences, University of Barcelona-IDIBAPS (Institut d'investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain
| |
Collapse
|
18
|
Perearnau A, Orlando S, Islam ABMMK, Gallastegui E, Martínez J, Jordan A, Bigas A, Aligué R, Pujol MJ, Bachs O. p27Kip1, PCAF and PAX5 cooperate in the transcriptional regulation of specific target genes. Nucleic Acids Res 2017; 45:5086-5099. [PMID: 28158851 PMCID: PMC5435914 DOI: 10.1093/nar/gkx075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 01/26/2017] [Indexed: 12/13/2022] Open
Abstract
The cyclin-dependent kinase inhibitor p27Kip1 (p27) also behaves as a transcriptional repressor. Data showing that the p300/CBP-associated factor (PCAF) acetylates p27 inducing its degradation suggested that PCAF and p27 could collaborate in the regulation of transcription. However, this possibility remained to be explored. We analyzed here the transcriptional programs regulated by PCAF and p27 in the colon cancer cell line HCT116 by chromatin immunoprecipitation sequencing (ChIP-seq). We identified 269 protein-encoding genes that contain both p27 and PCAF binding sites being the majority of these sites different for PCAF and p27. PCAF or p27 knock down revealed that both regulate the expression of these genes, PCAF as an activator and p27 as a repressor. The double knock down of PCAF and p27 strongly reduced their expression indicating that the activating role of PCAF overrides the repressive effect of p27. We also observed that the transcription factor Pax5 interacts with both p27 and PCAF and that the knock down of Pax5 induces the expression of p27/PCAF target genes indicating that it also participates in the transcriptional regulation mediated by p27/PCAF. In summary, we report here a previously unknown mechanism of transcriptional regulation mediated by p27, Pax5 and PCAF.
Collapse
Affiliation(s)
- Anna Perearnau
- Department of Biomedical Sciences, University of Barcelona-IDIBAPS, CIBERONC, 08036 Barcelona, Spain
| | - Serena Orlando
- Department of Biomedical Sciences, University of Barcelona-IDIBAPS, CIBERONC, 08036 Barcelona, Spain
| | - Abul B M M K Islam
- Department of Genetic Engineering and Biotechnology University of Dhaka, Dhaka 1000, Bangladesh
| | - Edurne Gallastegui
- Department of Biomedical Sciences, University of Barcelona-IDIBAPS, CIBERONC, 08036 Barcelona, Spain
| | - Jonatan Martínez
- Department of Biomedical Sciences, University of Barcelona-IDIBAPS, CIBERONC, 08036 Barcelona, Spain
| | - Albert Jordan
- Department of Molecular Genomics, Molecular Biology Institute of Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), 08029 Barcelona, Spain
| | - Anna Bigas
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), CIBERONC, 08003 Barcelona, Spain
| | - Rosa Aligué
- Department of Biomedical Sciences, University of Barcelona-IDIBAPS, CIBERONC, 08036 Barcelona, Spain
| | - Maria Jesús Pujol
- Department of Biomedical Sciences, University of Barcelona-IDIBAPS, CIBERONC, 08036 Barcelona, Spain
| | - Oriol Bachs
- Department of Biomedical Sciences, University of Barcelona-IDIBAPS, CIBERONC, 08036 Barcelona, Spain
| |
Collapse
|
19
|
Sirt1 regulates glial progenitor proliferation and regeneration in white matter after neonatal brain injury. Nat Commun 2016; 7:13866. [PMID: 27991597 PMCID: PMC5187440 DOI: 10.1038/ncomms13866] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/07/2016] [Indexed: 11/15/2022] Open
Abstract
Regenerative processes in brain pathologies require the production of distinct neural cell populations from endogenous progenitor cells. We have previously demonstrated that oligodendrocyte progenitor cell (OPC) proliferation is crucial for oligodendrocyte (OL) regeneration in a mouse model of neonatal hypoxia (HX) that reproduces diffuse white matter injury (DWMI) of premature infants. Here we identify the histone deacetylase Sirt1 as a Cdk2 regulator in OPC proliferation and response to HX. HX enhances Sirt1 and Sirt1/Cdk2 complex formation through HIF1α activation. Sirt1 deacetylates retinoblastoma (Rb) in the Rb/E2F1 complex, leading to dissociation of E2F1 and enhanced OPC proliferation. Sirt1 knockdown in culture and its targeted ablation in vivo suppresses basal and HX-induced OPC proliferation. Inhibition of Sirt1 also promotes OPC differentiation after HX. Our results indicate that Sirt1 is an essential regulator of OPC proliferation and OL regeneration after neonatal brain injury. Therefore, enhancing Sirt1 activity may promote OL recovery after DWMI.
Oligodendrocyte progenitor cell (OPC) proliferation is crucial for regeneration after hypoxic lesions in mice, a model of diffuse white matter injury of premature infants. Here, the authors show that the histone deacetylase Sirt1 is a Cdk2-dependent mediator of OPC proliferation and OPC response to hypoxia.
Collapse
|
20
|
Fournier M, Orpinell M, Grauffel C, Scheer E, Garnier JM, Ye T, Chavant V, Joint M, Esashi F, Dejaegere A, Gönczy P, Tora L. KAT2A/KAT2B-targeted acetylome reveals a role for PLK4 acetylation in preventing centrosome amplification. Nat Commun 2016; 7:13227. [PMID: 27796307 PMCID: PMC5095585 DOI: 10.1038/ncomms13227] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/14/2016] [Indexed: 12/12/2022] Open
Abstract
Lysine acetylation is a widespread post-translational modification regulating various biological processes. To characterize cellular functions of the human lysine acetyltransferases KAT2A (GCN5) and KAT2B (PCAF), we determined their acetylome by shotgun proteomics. One of the newly identified KAT2A/2B substrate is polo-like kinase 4 (PLK4), a key regulator of centrosome duplication. We demonstrate that KAT2A/2B acetylate the PLK4 kinase domain on residues K45 and K46. Molecular dynamics modelling suggests that K45/K46 acetylation impairs kinase activity by shifting the kinase to an inactive conformation. Accordingly, PLK4 activity is reduced upon in vitro acetylation of its kinase domain. Moreover, the overexpression of the PLK4 K45R/K46R mutant in cells does not lead to centrosome overamplification, as observed with wild-type PLK4. We also find that impairing KAT2A/2B-acetyltransferase activity results in diminished phosphorylation of PLK4 and in excess centrosome numbers in cells. Overall, our study identifies the global human KAT2A/2B acetylome and uncovers that KAT2A/2B acetylation of PLK4 prevents centrosome amplification. The acetyltransferases KAT2A and KAT2B are essential regulators of transcription, cell cycle progression and DNA repair. Here the authors describe a KAT2A/2B-dependent acetylome, and show that acetylation of the protein kinase PLK4 contributes to the regulation of centrosome number.
Collapse
Affiliation(s)
- Marjorie Fournier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France.,Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Meritxell Orpinell
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Cédric Grauffel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Elisabeth Scheer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Jean-Marie Garnier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Tao Ye
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Virginie Chavant
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Mathilde Joint
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Fumiko Esashi
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Annick Dejaegere
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|
21
|
Gallastegui E, Bachs O. Immunoprecipitation of Cdk-Cyclin Complexes for Determination of Kinase Activity. Methods Mol Biol 2016; 1336:1-8. [PMID: 26231703 DOI: 10.1007/978-1-4939-2926-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cyclin-dependent kinases (Cdks) belong to a family of key regulators of cell division cycle and transcription. The activity of some of them is deregulated in tumor cells and to find specific inhibitors is an important goal to be achieved. We report here the current methods to determine their in vitro activity in order to facilitate the identification of specific inhibitors. Mainly, the activity can be determined by using immunoprecipitates from cell samples with antibodies against specific Cdks as a source of the enzymes.
Collapse
Affiliation(s)
- Edurne Gallastegui
- Department of Cell Biology, Immunology and Neurosciences, University of Barcelona, Barcelona, Spain
| | | |
Collapse
|
22
|
Orlando S, Gallastegui E, Besson A, Abril G, Aligué R, Pujol MJ, Bachs O. p27Kip1 and p21Cip1 collaborate in the regulation of transcription by recruiting cyclin-Cdk complexes on the promoters of target genes. Nucleic Acids Res 2015; 43:6860-73. [PMID: 26071952 PMCID: PMC4538812 DOI: 10.1093/nar/gkv593] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/23/2015] [Indexed: 12/21/2022] Open
Abstract
Transcriptional repressor complexes containing p130 and E2F4 regulate the expression of genes involved in DNA replication. During the G1 phase of the cell cycle, sequential phosphorylation of p130 by cyclin-dependent kinases (Cdks) disrupts these complexes allowing gene expression. The Cdk inhibitor and tumor suppressor p27Kip1 associates with p130 and E2F4 by its carboxyl domain on the promoters of target genes but its role in the regulation of transcription remains unclear. We report here that p27Kip1 recruits cyclin D2/D3–Cdk4 complexes on the promoters by its amino terminal domain in early and mid G1. In cells lacking p27Kip1, cyclin D2/D3–Cdk4 did not associate to the promoters and phosphorylation of p130 and transcription of target genes was increased. In late G1, these complexes were substituted by p21Cip1-cyclin D1–Cdk2. In p21Cip1 null cells cyclin D1–Cdk2 were not found on the promoters and transcription was elevated. In p21/p27 double null cells transcription was higher than in control cells and single knock out cells. Thus, our results clarify the role of p27Kip1 and p21Cip1 in transcriptional regulation of genes repressed by p130/E2F4 complexes in which p27Kip1 and p21Cip1 play a sequential role by recruiting and regulating the activity of specific cyclin–Cdk complexes on the promoters.
Collapse
Affiliation(s)
- Serena Orlando
- Department of Cell Biology, Immunology and Neurosciences, University of Barcelona, 08036-Barcelona, Spain
| | - Edurne Gallastegui
- Department of Cell Biology, Immunology and Neurosciences, University of Barcelona, 08036-Barcelona, Spain
| | - Arnaud Besson
- INSERM UMR1037, Cancer Research Center of Toulouse, Toulouse, France Université de Toulouse, Toulouse, France CNRS ERL5294, Toulouse, France
| | - Gabriel Abril
- Department of Cell Biology, Immunology and Neurosciences, University of Barcelona, 08036-Barcelona, Spain
| | - Rosa Aligué
- Department of Cell Biology, Immunology and Neurosciences, University of Barcelona, 08036-Barcelona, Spain
| | - Maria Jesus Pujol
- Department of Cell Biology, Immunology and Neurosciences, University of Barcelona, 08036-Barcelona, Spain
| | - Oriol Bachs
- Department of Cell Biology, Immunology and Neurosciences, University of Barcelona, 08036-Barcelona, Spain
| |
Collapse
|
23
|
Castellano S, Milite C, Feoli A, Viviano M, Mai A, Novellino E, Tosco A, Sbardella G. Identification of structural features of 2-alkylidene-1,3-dicarbonyl derivatives that induce inhibition and/or activation of histone acetyltransferases KAT3B/p300 and KAT2B/PCAF. ChemMedChem 2014; 10:144-57. [PMID: 25333655 DOI: 10.1002/cmdc.201402371] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Indexed: 12/23/2022]
Abstract
Dysregulation of the activity of lysine acetyltransferases (KATs) is related to a variety of diseases and/or pathological cellular states; however, their role remains unclear. Therefore, the development of selective modulators of these enzymes is of paramount importance, because these molecules could be invaluable tools for assessing the importance of KATs in several pathologies. We recently found that diethyl pentadecylidenemalonate (SPV106) possesses a previously unobserved inhibitor/activator activity profile against protein acetyltransferases. Herein, we report that manipulation of the carbonyl functions of a series of analogues of SPV106 yielded different activity profiles against KAT2B and KAT3B (pure KAT2B activator, pan-inhibitor, or mixed KAT2B activator/KAT3B inhibitor). Among the novel compounds, a few derivatives may be useful chemical tools for studying the mechanism of lysine acetylation and its implications in physiological and/or pathological processes.
Collapse
Affiliation(s)
- Sabrina Castellano
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA) (Italy)
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Lee J, Yun N, Kim C, Song MY, Park KS, Oh YJ. Acetylation of cyclin-dependent kinase 5 is mediated by GCN5. Biochem Biophys Res Commun 2014; 447:121-7. [PMID: 24704205 DOI: 10.1016/j.bbrc.2014.03.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 03/24/2014] [Indexed: 11/19/2022]
Abstract
Cyclin-dependent kinase 5 (CDK5), a member of atypical serine/threonine cyclin-dependent kinase family, plays a crucial role in pathophysiology of neurodegenerative disorders. Its kinase activity and substrate specificity are regulated by several independent pathways including binding with its activator, phosphorylation and S-nitrosylation. In the present study, we report that acetylation of CDK5 comprises an additional posttranslational modification within the cells. Among many candidates, we confirmed that its acetylation is enhanced by GCN5, a member of the GCN5-related N-acetyl-transferase family of histone acetyltransferase. Co-immunoprecipitation assay and fluorescent localization study indicated that GCN5 physically interacts with CDK5 and they are co-localized at the specific nuclear foci. Furthermore, liquid chromatography in conjunction with a mass spectrometry indicated that CDK5 is acetylated at Lys33 residue of ATP binding domain. Considering this lysine site is conserved among a wide range of species and other related cyclin-dependent kinases, therefore, we speculate that acetylation may alter the kinase activity of CDK5 via affecting efficacy of ATP coordination.
Collapse
Affiliation(s)
- Juhyung Lee
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Republic of Korea
| | - Nuri Yun
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Republic of Korea
| | - Chiho Kim
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Republic of Korea
| | - Min-Young Song
- Department of Physiology and Biomedical Science Institute, Kyung Hee University School of Medicine, Seoul 130-701, Republic of Korea
| | - Kang-Sik Park
- Department of Physiology and Biomedical Science Institute, Kyung Hee University School of Medicine, Seoul 130-701, Republic of Korea
| | - Young J Oh
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Republic of Korea.
| |
Collapse
|
25
|
Zecchin A, Pattarini L, Gutierrez MI, Mano M, Mai A, Valente S, Myers MP, Pantano S, Giacca M. Reversible acetylation regulates vascular endothelial growth factor receptor-2 activity. J Mol Cell Biol 2014; 6:116-27. [PMID: 24620033 DOI: 10.1093/jmcb/mju010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The tyrosine kinase receptor vascular endothelial growth factor receptor 2 (VEGFR2) is a key regulator of angiogenesis. Here we show that VEGFR2 is acetylated in endothelial cells both at four lysine residues forming a dense cluster in the kinase insert domain and at a single lysine located in the receptor activation loop. These modifications are under dynamic control of the acetyltransferase p300 and two deacetylases HDAC5 and HDAC6. We demonstrate that VEGFR2 acetylation essentially regulates receptor phosphorylation. In particular, VEGFR2 acetylation significantly alters the kinetics of receptor phosphorylation after ligand binding, allowing receptor phosphorylation and intracellular signaling upon prolonged stimulation with VEGF. Molecular dynamics simulations indicate that acetylation of the lysine in the activation loop contributes to the transition to an open active state, in which tyrosine phosphorylation is favored by better exposure of the kinase target residues. These findings indicate that post-translational modification by acetylation is a critical mechanism that directly affects VEGFR2 function.
Collapse
Affiliation(s)
- Annalisa Zecchin
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Vidal-Laliena M, Gallastegui E, Mateo F, Martínez-Balbás M, Pujol MJ, Bachs O. Histone deacetylase 3 regulates cyclin A stability. J Biol Chem 2013; 288:21096-21104. [PMID: 23760262 DOI: 10.1074/jbc.m113.458323] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
PCAF and GCN5 acetylate cyclin A at specific lysine residues targeting it for degradation at mitosis. We report here that histone deacetylase 3 (HDAC3) directly interacts with and deacetylates cyclin A. HDAC3 interacts with a domain included in the first 171 aa of cyclin A, a region involved in the regulation of its stability. In cells, overexpression of HDAC3 reduced cyclin A acetylation whereas the knocking down of HDAC3 increased its acetylation. Moreover, reduction of HDAC3 levels induced a decrease of cyclin A that can be reversed by proteasome inhibitors. These results indicate that HDAC3 is able to regulate cyclin A degradation during mitosis via proteasome. Interestingly, HDAC3 is abruptly degraded at mitosis also via proteasome thus facilitating cyclin A acetylation by PCAF/GCN5, which will target cyclin A for degradation. Because cyclin A is crucial for S phase progression and mitosis entry, the knock down of HDAC3 affects cell cycle progression specifically at both, S phase and G2/M transition. In summary we propose here that HDAC3 regulates cyclin A stability by counteracting the action of the acetylases PCAF/GCN5.
Collapse
Affiliation(s)
- Miriam Vidal-Laliena
- From the Department of Cell Biology, Immunology and Neurosciences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain and
| | - Edurne Gallastegui
- From the Department of Cell Biology, Immunology and Neurosciences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain and
| | | | - Marian Martínez-Balbás
- Molecular Biology, Barcelona Institute of Molecular Biology, Consejo Superior de Investigaciones Científicas (CSIC), 08028 Barcelona, Spain
| | - Maria Jesús Pujol
- From the Department of Cell Biology, Immunology and Neurosciences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain and
| | - Oriol Bachs
- From the Department of Cell Biology, Immunology and Neurosciences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain and.
| |
Collapse
|
27
|
Spedale G, Timmers HTM, Pijnappel WWMP. ATAC-king the complexity of SAGA during evolution. Genes Dev 2012; 26:527-41. [PMID: 22426530 DOI: 10.1101/gad.184705.111] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The yeast SAGA (Spt-Ada-Gcn5-acetyltransferase) coactivator complex exerts functions in gene expression, including activator interaction, histone acetylation, histone deubiquitination, mRNA export, chromatin recognition, and regulation of the basal transcription machinery. These diverse functions involve distinct modules within this multiprotein complex. It has now become clear that yeast SAGA has diverged during metazoan evolution into two related complexes, SAGA and ATAC, which exist in two flavors in vertebrates. The compositions of metazoan ATAC and SAGA complexes have been characterized, and functional analyses indicate that these complexes have important but distinct roles in transcription, histone modification, signaling pathways, and cell cycle regulation.
Collapse
Affiliation(s)
- Gianpiero Spedale
- Molecular Cancer Research, Netherlands Proteomics Center, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | | | | |
Collapse
|
28
|
Pérez-Luna M, Aguasca M, Perearnau A, Serratosa J, Martínez-Balbas M, Jesús Pujol M, Bachs O. PCAF regulates the stability of the transcriptional regulator and cyclin-dependent kinase inhibitor p27 Kip1. Nucleic Acids Res 2012; 40:6520-33. [PMID: 22547391 PMCID: PMC3413142 DOI: 10.1093/nar/gks343] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
P27Kip1 (p27) is a member of the Cip/Kip family of cyclin-dependent kinase inhibitors. Recently, a new function of p27 as transcriptional regulator has been reported. It has been shown that p27 regulates the expression of target genes mostly involved in splicing, cell cycle, respiration and translation. We report here that p27 directly binds to the transcriptional coactivator PCAF by a region including amino acids 91–120. PCAF associates with p27 through its catalytic domain and acetylates p27 at lysine 100. Our data showed that overexpression of PCAF induces the degradation of p27 whereas in contrast, the knockdown of PCAF stabilizes the protein. A p27 mutant in which K100 was substituted by arginine (p27-K100R) cannot be acetylated by PCAF and has a half-life much higher than that of p27WT. Moreover, p27-K100R remains stable along cell-cycle progression. Ubiquitylation assays and the use of proteasome inhibitors indicate that PCAF induces p27 degradation via proteasome. We also observed that knockdown of skp2 did not affect the PCAF induced degradation of p27. In conclusion, our data suggest that the p27 acetylation by PCAF regulates its stability.
Collapse
Affiliation(s)
- Maria Pérez-Luna
- Department of Cell Biology, Immunology and Neurosciences, Institut d'Investigacions Biomèdiques August-Pi i Sunyer (IDIBAPS), University of Barcelona, 08036-Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
29
|
Rhodes JD, Lott MC, Russell SL, Moulton V, Sanderson J, Wormstone IM, Broadway DC. Activation of the innate immune response and interferon signalling in myotonic dystrophy type 1 and type 2 cataracts. Hum Mol Genet 2011; 21:852-62. [DOI: 10.1093/hmg/ddr515] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
30
|
Acetylation of a conserved lysine residue in the ATP binding pocket of p38 augments its kinase activity during hypertrophy of cardiomyocytes. Mol Cell Biol 2011; 31:2349-63. [PMID: 21444723 DOI: 10.1128/mcb.01205-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Like phosphorylation, acetylation of lysine residues within a protein is considered a biologically relevant modification that controls the activity of target proteins. During stress of cells, massive protein acetylation takes place. Here, we show that p38 mitogen-activated protein kinase (MAPK), which controls many biological functions during stress, is reversibly acetylated by PCAF/p300 and HDAC3. We identified two acetylated lysine residues, K152 and K53, located in the substrate binding domain and in the ATP-binding pocket of p38, respectively. Acetylation of lysine 53 enhanced the activity of p38 by increasing its affinity for ATP binding. The enhanced acetylation and activation of p38 were found to be in parallel with reduced intracellular ATP levels in cardiomyocytes under stress, as well as in vivo models of cardiac hypertrophy. Thus, our data show, for the first time, that p38 activity is critically regulated by, in addition to phosphorylation, reversible acetylation of a lysine residue, which is conserved in other kinases, implying the possibility of a similar mechanism regulating their activity.
Collapse
|
31
|
Khim L, Han J, Willetts L, Brady K, Gillece P, Rached O, Thomas NR, Stylianou E. Complementary PCAF-coenzyme A mutagenesis: chemoenzymatic synthesis of a novel enlarged coenzyme A analogue and evaluation of its biological activity. Chembiochem 2011; 11:2100-3. [PMID: 20821790 DOI: 10.1002/cbic.201000286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Leang Khim
- University of Nottingham, School of Biomedical Sciences, Nottingham, NG7 2UH, UK
| | | | | | | | | | | | | | | |
Collapse
|