1
|
Miao X, Alidadipour A, Saed V, Sayyadi F, Jadidi Y, Davoudi M, Amraee F, Jadidi N, Afrisham R. Hepatokines: unveiling the molecular and cellular mechanisms connecting hepatic tissue to insulin resistance and inflammation. Acta Diabetol 2024; 61:1339-1361. [PMID: 39031190 DOI: 10.1007/s00592-024-02335-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/06/2024] [Indexed: 07/22/2024]
Abstract
Insulin resistance arising from Non-Alcoholic Fatty Liver Disease (NAFLD) stands as a prevalent global ailment, a manifestation within societies stemming from individuals' suboptimal dietary habits and lifestyles. This form of insulin resistance emerges as a pivotal factor in the development of type 2 diabetes mellitus (T2DM). Emerging evidence underscores the significant role of hepatokines, as hepatic-secreted hormone-like entities, in the genesis of insulin resistance and eventual onset of type 2 diabetes. Hepatokines exert influence over extrahepatic metabolism regulation. Their principal functions encompass impacting adipocytes, pancreatic cells, muscles, and the brain, thereby playing a crucial role in shaping body metabolism through signaling to target tissues. This review explores the most important hepatokines, each with distinct influences. Our review shows that Fetuin-A promotes lipid-induced insulin resistance by acting as an endogenous ligand for Toll-like receptor 4 (TLR-4). FGF21 reduces inflammation in diabetes by blocking the nuclear translocation of nuclear factor-κB (NF-κB) in adipocytes and adipose tissue, while also improving glucose metabolism. ANGPTL6 enhances AMPK and insulin signaling in muscle, and suppresses gluconeogenesis. Follistatin can influence insulin resistance and inflammation by interacting with members of the TGF-β family. Adropin show a positive correlation with phosphoenolpyruvate carboxykinase 1 (PCK1), a key regulator of gluconeogenesis. This article delves into hepatokines' impact on NAFLD, inflammation, and T2DM, with a specific focus on insulin resistance. The aim is to comprehend the influence of these recently identified hormones on disease development and their underlying physiological and pathological mechanisms.
Collapse
Affiliation(s)
- Xiaolei Miao
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Arian Alidadipour
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Vian Saed
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Firooze Sayyadi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasaman Jadidi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Davoudi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Amraee
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Jadidi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Afrisham
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Sima LE, Matei D, Condello S. The Outside-In Journey of Tissue Transglutaminase in Cancer. Cells 2022; 11:cells11111779. [PMID: 35681474 PMCID: PMC9179582 DOI: 10.3390/cells11111779] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Tissue transglutaminase (TG2) is a member of the transglutaminase family that catalyzes Ca2+-dependent protein crosslinks and hydrolyzes guanosine 5′-triphosphate (GTP). The conformation and functions of TG2 are regulated by Ca2+ and GTP levels; the TG2 enzymatically active open conformation is modulated by high Ca2+ concentrations, while high intracellular GTP promotes the closed conformation, with inhibition of the TG-ase activity. TG2’s unique characteristics and its ubiquitous distribution in the intracellular compartment, coupled with its secretion in the extracellular matrix, contribute to modulate the functions of the protein. Its aberrant expression has been observed in several cancer types where it was linked to metastatic progression, resistance to chemotherapy, stemness, and worse clinical outcomes. The N-terminal domain of TG2 binds to the 42 kDa gelatin-binding domain of fibronectin with high affinity, facilitating the formation of a complex with β-integrins, essential for cellular adhesion to the matrix. This mechanism allows TG2 to interact with key matrix proteins and to regulate epithelial to mesenchymal transition and stemness. Here, we highlight the current knowledge on TG2 involvement in cancer, focusing on its roles translating extracellular cues into activation of oncogenic programs. Improved understanding of these mechanisms could lead to new therapeutic strategies targeting this multi-functional protein.
Collapse
Affiliation(s)
- Livia Elena Sima
- Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, 060031 Bucharest, Romania;
| | - Daniela Matei
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Salvatore Condello
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence:
| |
Collapse
|
3
|
Zalewska-Piątek B, Piątek R. Bacteriophages as Potential Tools for Use in Antimicrobial Therapy and Vaccine Development. Pharmaceuticals (Basel) 2021; 14:331. [PMID: 33916345 PMCID: PMC8066226 DOI: 10.3390/ph14040331] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/19/2021] [Accepted: 04/02/2021] [Indexed: 12/16/2022] Open
Abstract
The constantly growing number of people suffering from bacterial, viral, or fungal infections, parasitic diseases, and cancers prompts the search for innovative methods of disease prevention and treatment, especially based on vaccines and targeted therapy. An additional problem is the global threat to humanity resulting from the increasing resistance of bacteria to commonly used antibiotics. Conventional vaccines based on bacteria or viruses are common and are generally effective in preventing and controlling various infectious diseases in humans. However, there are problems with the stability of these vaccines, their transport, targeted delivery, safe use, and side effects. In this context, experimental phage therapy based on viruses replicating in bacterial cells currently offers a chance for a breakthrough in the treatment of bacterial infections. Phages are not infectious and pathogenic to eukaryotic cells and do not cause diseases in human body. Furthermore, bacterial viruses are sufficient immuno-stimulators with potential adjuvant abilities, easy to transport, and store. They can also be produced on a large scale with cost reduction. In recent years, they have also provided an ideal platform for the design and production of phage-based vaccines to induce protective host immune responses. The most promising in this group are phage-displayed vaccines, allowing for the display of immunogenic peptides or proteins on the phage surfaces, or phage DNA vaccines responsible for expression of target genes (encoding protective antigens) incorporated into the phage genome. Phage vaccines inducing the production of specific antibodies may in the future protect us against infectious diseases and constitute an effective immune tool to fight cancer. Moreover, personalized phage therapy can represent the greatest medical achievement that saves lives. This review demonstrates the latest advances and developments in the use of phage vaccines to prevent human infectious diseases; phage-based therapy, including clinical trials; and personalized treatment adapted to the patient's needs and the type of bacterial infection. It highlights the advantages and disadvantages of experimental phage therapy and, at the same time, indicates its great potential in the treatment of various diseases, especially those resistant to commonly used antibiotics. All the analyses performed look at the rich history and development of phage therapy over the past 100 years.
Collapse
Affiliation(s)
- Beata Zalewska-Piątek
- Department of Molecular Biotechnology and Microbiology, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland;
| | - Rafał Piątek
- Department of Molecular Biotechnology and Microbiology, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland;
- BioTechMed Center, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
4
|
Puccio S, Grillo G, Consiglio A, Soluri MF, Sblattero D, Cotella D, Santoro C, Liuni S, Bellis GD, Lugli E, Peano C, Licciulli F. InteractomeSeq: a web server for the identification and profiling of domains and epitopes from phage display and next generation sequencing data. Nucleic Acids Res 2020; 48:W200-W207. [PMID: 32402076 PMCID: PMC7319578 DOI: 10.1093/nar/gkaa363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/16/2020] [Accepted: 05/05/2020] [Indexed: 01/03/2023] Open
Abstract
High-Throughput Sequencing technologies are transforming many research fields, including the analysis of phage display libraries. The phage display technology coupled with deep sequencing was introduced more than a decade ago and holds the potential to circumvent the traditional laborious picking and testing of individual phage rescued clones. However, from a bioinformatics point of view, the analysis of this kind of data was always performed by adapting tools designed for other purposes, thus not considering the noise background typical of the 'interactome sequencing' approach and the heterogeneity of the data. InteractomeSeq is a web server allowing data analysis of protein domains ('domainome') or epitopes ('epitome') from either Eukaryotic or Prokaryotic genomic phage libraries generated and selected by following an Interactome sequencing approach. InteractomeSeq allows users to upload raw sequencing data and to obtain an accurate characterization of domainome/epitome profiles after setting the parameters required to tune the analysis. The release of this tool is relevant for the scientific and clinical community, because InteractomeSeq will fill an existing gap in the field of large-scale biomarkers profiling, reverse vaccinology, and structural/functional studies, thus contributing essential information for gene annotation or antigen identification. InteractomeSeq is freely available at https://InteractomeSeq.ba.itb.cnr.it/.
Collapse
Affiliation(s)
- Simone Puccio
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, IRCCS, Rozzano (Milan), 20089, Italy
| | - Giorgio Grillo
- Institute for Biomedical Technologies, National Research Council, Bari 70100, Italy
| | - Arianna Consiglio
- Institute for Biomedical Technologies, National Research Council, Bari 70100, Italy
| | - Maria Felicia Soluri
- Department of Health Sciences & Center for TranslationalResearch on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara 28100, Italy
| | - Daniele Sblattero
- Department of Life Sciences, University of Trieste, Trieste 34100, Italy
| | - Diego Cotella
- Department of Health Sciences & Center for TranslationalResearch on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara 28100, Italy
| | - Claudio Santoro
- Department of Health Sciences & Center for TranslationalResearch on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara 28100, Italy
| | - Sabino Liuni
- Institute for Biomedical Technologies, National Research Council, Bari 70100, Italy
| | - Gianluca De Bellis
- Institute for Biomedical Technologies, National Research Council, Segrate (Milan) 20090, Italy
| | - Enrico Lugli
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, IRCCS, Rozzano (Milan), 20089, Italy.,Humanitas Flow Cytometry Core, Humanitas Clinical and Research Center, IRCCS, Rozzano (Milan) 20089, Italy
| | - Clelia Peano
- Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, Rozzano (Milan) 20089, Italy.,Genomic Unit, Humanitas Clinical and Research Center, IRCCS,Rozzano (Milan) 20089, Italy
| | - Flavio Licciulli
- Institute for Biomedical Technologies, National Research Council, Bari 70100, Italy
| |
Collapse
|
5
|
Huang W, Soeung V, Boragine DM, Palzkill T. Mapping Protein-Protein Interaction Interface Peptides with Jun-Fos Assisted Phage Display and Deep Sequencing. ACS Synth Biol 2020; 9:1882-1896. [PMID: 32502338 DOI: 10.1021/acssynbio.0c00242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein-protein interactions govern many cellular processes, and identifying binding interaction sites on proteins can facilitate the discovery of inhibitors to block such interactions. Here we identify peptides from a randomly fragmented plasmid encoding the β-lactamase inhibitory protein (BLIP) and the Lac repressor (LacI) that represent regions of protein-protein interactions. We utilized a Jun-Fos-assisted phage display system that has previously been used to screen cDNA and genomic libraries to identify antibody antigens. Affinity selection with polyclonal antibodies against LacI or BLIP resulted in the rapid enrichment of in-frame peptides from various regions of the proteins. Further, affinity selection with β-lactamase enriched peptides that encompass regions of BLIP previously shown to contribute strongly to the binding energy of the BLIP/β-lactamase interaction, i.e., hotspot residues. Further, one of the regions enriched by affinity selection encompassed a disulfide-constrained region of BLIP that forms part of the BLIP interaction surface in the native complex that we show also binds to β-lactamase as a disulfide-constrained macrocycle peptide with a KD of ∼1 μM. Fragmented open reading frame (ORF) libraries may efficiently identify such naturally constrained peptides at protein-protein interaction interfaces. With sufficiently deep coverage of ORFs by peptide-coding inserts, phage display and deep sequencing can provide detailed information on the domains or peptides that contribute to an interaction. Such information should enable the design of potentially therapeutic macrocycles or peptidomimetics that block the interaction.
Collapse
|
6
|
Fasolo F, Patrucco L, Volpe M, Bon C, Peano C, Mignone F, Carninci P, Persichetti F, Santoro C, Zucchelli S, Sblattero D, Sanges R, Cotella D, Gustincich S. The RNA-binding protein ILF3 binds to transposable element sequences in SINEUP lncRNAs. FASEB J 2019; 33:13572-13589. [PMID: 31570000 PMCID: PMC6894054 DOI: 10.1096/fj.201901618rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transposable elements (TEs) compose about half of the mammalian genome and, as embedded sequences, up to 40% of long noncoding RNA (lncRNA) transcripts. Embedded TEs may represent functional domains within lncRNAs, providing a structured RNA platform for protein interaction. Here we show the interactome profile of the mouse inverted short interspersed nuclear element (SINE) of subfamily B2 (invSINEB2) alone and embedded in antisense (AS) ubiquitin C-terminal hydrolase L1 (Uchl1), an lncRNA that is AS to Uchl1 gene. AS Uchl1 is the representative member of a functional class of AS lncRNAs, named SINEUPs, in which the invSINEB2 acts as effector domain (ED)-enhancing translation of sense protein-coding mRNAs. By using RNA-interacting domainome technology, we identify the IL enhancer-binding factor 3 (ILF3) as a protein partner of AS Uchl1 RNA. We determine that this interaction is mediated by the RNA-binding motif 2 of ILF3 and the invSINEB2. Furthermore, we show that ILF3 is able to bind a free right Arthrobacter luteus (Alu) monomer sequence, the embedded TE acting as ED in human SINEUPs. Bioinformatic analysis of Encyclopedia of DNA Elements-enhanced cross-linking immunoprecipitation data reveals that ILF3 binds transcribed human SINE sequences at transcriptome-wide levels. We then demonstrate that the embedded TEs modulate AS Uchl1 RNA nuclear localization to an extent moderately influenced by ILF3. This work unveils the existence of a specific interaction between embedded TEs and an RNA-binding protein, strengthening the model of TEs as functional modules in lncRNAs.-Fasolo, F., Patrucco, L., Volpe, M., Bon, C., Peano, C., Mignone, F., Carninci, P., Persichetti, F., Santoro, C., Zucchelli, S., Sblattero, D., Sanges, R., Cotella, D., Gustincich, S. The RNA-binding protein ILF3 binds to transposable element sequences in SINEUP lncRNAs.
Collapse
Affiliation(s)
- Francesca Fasolo
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Laura Patrucco
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Massimiliano Volpe
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Carlotta Bon
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.,Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Clelia Peano
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan, Italy.,Humanitas Clinical and Research Center, Rozzano, Italy
| | - Flavio Mignone
- Department of Sciences and Innovation, Università del Piemonte Orientale, Alessandria, Italy
| | - Piero Carninci
- Division of Genomic Technologies, Riken Center for Life Science Technologies, Yokohama, Japan
| | | | - Claudio Santoro
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Silvia Zucchelli
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.,Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | | | - Remo Sanges
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.,Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Diego Cotella
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Stefano Gustincich
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.,Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| |
Collapse
|
7
|
Hirose H, Hideshima T, Katoh T, Suga H. A Case Study on the Keap1 Interaction with Peptide Sequence Epitopes Selected by the Peptidomic mRNA Display. Chembiochem 2019; 20:2089-2100. [PMID: 31169361 DOI: 10.1002/cbic.201900039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/12/2019] [Indexed: 11/08/2022]
Abstract
Many protein-protein and peptide-protein interactions (PPIs) play key roles in the regulation of biological functions, and therefore, the modulation of PPIs has become an attractive target of new drug development. Although a number of PPIs have already been identified, over 100 000 unknown PPIs are predicted to exist. To uncover such unknown PPIs, it is important to devise a conceptually distinct method from that of currently available methods. Herein, an mRNA display by using a total RNA library derived from various human tissues, which serves as a unique method to physically isolate peptide epitopes that potentially bind to a target protein of interest, is reported. In this study, selection was performed against Kelch-like ECH-associated protein (Keap1) as a model target protein, leading to a peptide epitope originating from astrotactin-1 (ASTN1). It turned out that this ASTN1 peptide was able to interact with Keap1 more strongly than that with a known peptide derived from Nrf2; a well-known, naturally occurring Keap1 binder. This case study demonstrates the applicability of peptidomic mRNA display for the rapid exploration of consensus binding peptide motifs and the potential for the discovery of unknown PPIs with other proteins of interest.
Collapse
Affiliation(s)
- Hisaaki Hirose
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tomoki Hideshima
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
8
|
Andrews SS, Schaefer-Ramadan S, Al-Thani NM, Ahmed I, Mohamoud YA, Malek JA. High-resolution protein-protein interaction mapping using all- versus-all sequencing (AVA-Seq). J Biol Chem 2019; 294:11549-11558. [PMID: 31182485 DOI: 10.1074/jbc.ra119.008792] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/09/2019] [Indexed: 11/06/2022] Open
Abstract
Two-hybrid systems can be used for investigating protein-protein interactions and may provide important information about gene products with unknown function. Despite their success in mapping protein interactions, two-hybrid systems have remained mostly untouched by improvements in next-generation DNA sequencing. The two-hybrid systems rely on one-versus-all methods in which each bait is sequentially screened against an entire library. Here, we developed a screening method that joins both bait and prey as a convergent fusion into one bacterial plasmid vector that can then be amplified and paired-end sequencing by next-generation sequencing (NGS). Our method enables all-versus-all sequencing (AVA-Seq) and utilizes NGS to remove multiple bottlenecks of the two-hybrid system. AVA-Seq allows for high-resolution protein-protein interaction mapping of a small set of proteins and has the potential for lower-resolution mapping of entire proteomes. Features of the system include ORF selection to improve efficiency, high bacterial transformation efficiency, a convergent fusion vector to allow paired-end sequencing of interactors, and the use of protein fragments rather than full-length proteins to better resolve specific protein contact points. We demonstrate the system's strengths and limitations on a set of proteins known to interact in humans and provide a framework for future large-scale projects.
Collapse
Affiliation(s)
- Simeon S Andrews
- Department of Genetic Medicine, Weill Cornell Medicine in Qatar, Doha 24144, Qatar
| | | | - Nayra M Al-Thani
- Department of Genetic Medicine, Weill Cornell Medicine in Qatar, Doha 24144, Qatar
| | - Ikhlak Ahmed
- Department of Genetic Medicine, Weill Cornell Medicine in Qatar, Doha 24144, Qatar
| | - Yasmin A Mohamoud
- Genomics Laboratory, Weill Cornell Medicine in Qatar, Doha 24144, Qatar
| | - Joel A Malek
- Department of Genetic Medicine, Weill Cornell Medicine in Qatar, Doha 24144, Qatar .,Genomics Laboratory, Weill Cornell Medicine in Qatar, Doha 24144, Qatar
| |
Collapse
|
9
|
Antony F, Deantonio C, Cotella D, Soluri MF, Tarasiuk O, Raspagliesi F, Adorni F, Piazza S, Ciani Y, Santoro C, Macor P, Mezzanzanica D, Sblattero D. High-throughput assessment of the antibody profile in ovarian cancer ascitic fluids. Oncoimmunology 2019; 8:e1614856. [PMID: 31428516 PMCID: PMC6685609 DOI: 10.1080/2162402x.2019.1614856] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 04/25/2019] [Accepted: 04/27/2019] [Indexed: 12/31/2022] Open
Abstract
The identification of effective biomarkers for early diagnosis, prognosis, and response to treatments remains a challenge in ovarian cancer (OC) research. Here, we present an unbiased high-throughput approach to profile ascitic fluid autoantibodies in order to obtain a tumor-specific antigen signature in OC. We first reported the reactivity of immunoglobulins (Igs) purified from OC patient ascites towards two different OC cell lines. Using a discovery set of Igs, we selected tumor-specific antigens from a phage display cDNA library. After biopanning, 700 proteins were expressed as fusion protein and used in protein array to enable large-scale immunoscreening with independent sets of cancer and noncancerous control. Finally, the selected antigens were validated by ELISA. The initial screening identified eight antigenic clones: CREB3, MRPL46, EXOSC10, BCOR, HMGN2, HIP1R, OLFM4, and KIAA1755. These antigens were all validated by ELISA in a study involving ascitic Igs from 153 patients (69 with OC, 34 with other cancers and 50 without cancer), with CREB3 showing the highest sensitivity (86.95%) and specificity (98%). Notably, we were able to identify an association between the tumor-associated (TA) antibody response and the response to a first-line tumor treatment (platinum-based chemotherapy). A stronger association was found by combining three antigens (BCOR, CREB3, and MRLP46) as a single antibody signature. Measurement of an ascitic fluid antibody response to multiple TA antigens may aid in the identification of new prognostic signatures in OC patients and shift attention to new potentially relevant targets.
Collapse
Affiliation(s)
- Frank Antony
- Department of Health Sciences, and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
| | - Cecilia Deantonio
- Department of Health Sciences, and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
| | - Diego Cotella
- Department of Health Sciences, and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
| | - Maria Felicia Soluri
- Department of Health Sciences, and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
| | - Olga Tarasiuk
- Department of Health Sciences, and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
| | | | - Fulvio Adorni
- Epidemiology Unit, Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Silvano Piazza
- Bioinformatics and Functional Genomics Unit, Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie (LNCIB), Area Science Park Trieste, Italy
| | - Yari Ciani
- Bioinformatics and Functional Genomics Unit, Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie (LNCIB), Area Science Park Trieste, Italy
| | - Claudio Santoro
- Department of Health Sciences, and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
| | - Paolo Macor
- Department of Life Science, University of Trieste, Trieste, Italy
| | - Delia Mezzanzanica
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | |
Collapse
|
10
|
Dal Ferro M, Rizzo S, Rizzo E, Marano F, Luisi I, Tarasiuk O, Sblattero D. Phage Display Technology for Human Monoclonal Antibodies. Methods Mol Biol 2019; 1904:319-338. [PMID: 30539478 DOI: 10.1007/978-1-4939-8958-4_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
During the last 20 years in vitro technologies opened powerful routes to combine the generation of large libraries together with fast selection and screening procedures to identify lead candidates. One of the most successful methods is based on the use of filamentous phages. Functional Antibodies (Abs) fragments can be displayed on the surface of phages by fusing the coding sequence of the antibody variable (V) regions to the phage minor coat protein pIII. By creating large libraries, antibodies with affinities comparable to those obtained using traditional hybridoma technology can be isolated by a series of cycles of selection on the antigen of interest. In this system, antibody genes can be recovered simultaneously with selection and can be easily further engineered, for example by increasing their affinity to levels unobtainable in the immune system, or by modulating their specificity and their effector functions (by recloning into a full-length immunoglobulin scaffold). This chapter describes the basic protocols for antibody library construction and selection of binder with desired specificity.
Collapse
Affiliation(s)
- Marco Dal Ferro
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Serena Rizzo
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Emanuela Rizzo
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Francesca Marano
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Immacolata Luisi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Olga Tarasiuk
- Department of Health Sciences and IRCAD, University of Eastern Piedmont, Novara, Italy
| | | |
Collapse
|
11
|
Abstract
The display of antibodies on the surface of Saccharomyces cerevisiae cells enables the high-throughput and precise selection of specific binders for the target antigen. The recent implementation of next-generation sequencing (NGS) to antibody display screening provides a complete picture of the entire selected polyclonal population. As such, NGS overcomes the limitations of random clones screening, but it comes with two main limitations: (1) depending upon the platform, the sequencing is usually restricted to the variable heavy chain domain complementary determining region 3 (HCDR3), or VH gene, and does not provide additional information on the rest of the antibody gene, including the VL; and (2) the sequence-identified clones are not physically available for validation. Here, we describe a rapid and effective protocol based on an inverse-PCR method to recover specific antibody clones based on their HCDR3 sequence from a yeast display selection output.
Collapse
|
12
|
Soluri MF, Boccafoschi F, Cotella D, Moro L, Forestieri G, Autiero I, Cavallo L, Oliva R, Griffin M, Wang Z, Santoro C, Sblattero D. Mapping the minimum domain of the fibronectin binding site on transglutaminase 2 (TG2) and its importance in mediating signaling, adhesion, and migration in TG2-expressing cells. FASEB J 2018; 33:2327-2342. [PMID: 30285580 DOI: 10.1096/fj.201800054rrr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interaction between the enzyme transglutaminase 2 (TG2) and fibronectin (FN) is involved in the cell-matrix interactions that regulate cell signaling, adhesion, and migration and play central roles in pathologic conditions, particularly fibrosis and cancer. A precise definition of the exact interaction domains on both proteins could provide a tool to design novel molecules with potential therapeutic applications. Although specific residues involved in the interaction within TG2 have been analyzed, little is known regarding the TG2 binding site on FN. This site has been mapped to a large internal 45-kDa protein fragment coincident with the gelatin binding domain (GBD). With the goal of defining the minimal FN interacting domain for TG2, we produced several expression constructs encoding different portions or modules of the GBD and tested their binding and functional properties. The results demonstrate that the I8 module is necessary and sufficient for TG2-binding in vitro, but does not have functional effects on TG2-expressing cells. Modules I7 and I9 increase the strength of the binding and are required for cell adhesion. A 15-kDa fragment encompassing modules I7-9 behaves as the whole 45-kDa GBD and mediates signaling, adhesion, spreading, and migration of TG2+ cells. This study provides new insights into the mechanism for TG2 binding to FN.-Soluri, M. F., Boccafoschi, F., Cotella, D., Moro, L., Forestieri, G., Autiero, I., Cavallo, L., Oliva, R., Griffin, M., Wang, Z., Santoro, C., Sblattero, D. Mapping the minimum domain of the fibronectin binding site on transglutaminase 2 (TG2) and its importance in mediating signaling, adhesion, and migration in TG2-expressing cells.
Collapse
Affiliation(s)
- Maria Felicia Soluri
- Department of Health Sciences, University of Piemonte Orientale (UPO), Novara, Italy.,Interdisciplinary Research Center on Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Francesca Boccafoschi
- Department of Health Sciences, University of Piemonte Orientale (UPO), Novara, Italy.,Interdisciplinary Research Center on Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Diego Cotella
- Department of Health Sciences, University of Piemonte Orientale (UPO), Novara, Italy.,Interdisciplinary Research Center on Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Laura Moro
- Department of Pharmaceutical Sciences, University of Piemonte Orientale (UPO), Novara, Italy
| | - Gabriela Forestieri
- Department of Health Sciences, University of Piemonte Orientale (UPO), Novara, Italy.,Interdisciplinary Research Center on Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Ida Autiero
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST) Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Luigi Cavallo
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST) Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Naples, Italy.,Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Martin Griffin
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom; and
| | - Zhuo Wang
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom; and
| | - Claudio Santoro
- Department of Health Sciences, University of Piemonte Orientale (UPO), Novara, Italy.,Interdisciplinary Research Center on Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
| | | |
Collapse
|
13
|
Soluri MF, Puccio S, Caredda G, Grillo G, Licciulli VF, Consiglio A, Edomi P, Santoro C, Sblattero D, Peano C. Interactome-Seq: A Protocol for Domainome Library Construction, Validation and Selection by Phage Display and Next Generation Sequencing. J Vis Exp 2018. [PMID: 30346377 DOI: 10.3791/56981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Folding reporters are proteins with easily identifiable phenotypes, such as antibiotic resistance, whose folding and function is compromised when fused to poorly folding proteins or random open reading frames. We have developed a strategy where, by using TEM-1 β-lactamase (the enzyme conferring ampicillin resistance) on a genomic scale, we can select collections of correctly folded protein domains from the coding portion of the DNA of any intronless genome. The protein fragments obtained by this approach, the so called "domainome", will be well expressed and soluble, making them suitable for structural/functional studies. By cloning and displaying the "domainome" directly in a phage display system, we have showed that it is possible to select specific protein domains with the desired binding properties (e.g., to other proteins or to antibodies), thus providing essential experimental information for gene annotation or antigen identification. The identification of the most enriched clones in a selected polyclonal population can be achieved by using novel next-generation sequencing technologies (NGS). For these reasons, we introduce deep sequencing analysis of the library itself and the selection outputs to provide complete information on diversity, abundance and precise mapping of each of the selected fragment. The protocols presented here show the key steps for library construction, characterization, and validation.
Collapse
Affiliation(s)
- Maria Felicia Soluri
- Department of Health Sciences, Università del Piemonte Orientale & IRCAD, Novara, Italy
| | - Simone Puccio
- Institute of Biomedical Technologies, National Research Council, Segrate, Milan, Italy
| | - Giada Caredda
- Institute of Biomedical Technologies, National Research Council, Segrate, Milan, Italy
| | - Giorgio Grillo
- Institute of Biomedical Technologies, National Research Council, Bari, Italy
| | | | - Arianna Consiglio
- Institute of Biomedical Technologies, National Research Council, Bari, Italy
| | - Paolo Edomi
- Department of Life Sciences, University of Trieste, Italy
| | - Claudio Santoro
- Department of Health Sciences, Università del Piemonte Orientale & IRCAD, Novara, Italy
| | | | - Clelia Peano
- Institute of Genetic and Biomedical Research, National Research Council, Rozzano, Milan, Italy; Humanitas Clinical and Research Center, Rozzano, Milan, Italy;
| |
Collapse
|
14
|
Ryvkin A, Ashkenazy H, Weiss-Ottolenghi Y, Piller C, Pupko T, Gershoni JM. Phage display peptide libraries: deviations from randomness and correctives. Nucleic Acids Res 2018; 46:e52. [PMID: 29420788 PMCID: PMC5961013 DOI: 10.1093/nar/gky077] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/25/2017] [Accepted: 01/31/2018] [Indexed: 12/14/2022] Open
Abstract
Peptide-expressing phage display libraries are widely used for the interrogation of antibodies. Affinity selected peptides are then analyzed to discover epitope mimetics, or are subjected to computational algorithms for epitope prediction. A critical assumption for these applications is the random representation of amino acids in the initial naïve peptide library. In a previous study, we implemented next generation sequencing to evaluate a naïve library and discovered severe deviations from randomness in UAG codon over-representation as well as in high G phosphoramidite abundance causing amino acid distribution biases. In this study, we demonstrate that the UAG over-representation can be attributed to the burden imposed on the phage upon the assembly of the recombinant Protein 8 subunits. This was corrected by constructing the libraries using supE44-containing bacteria which suppress the UAG driven abortive termination. We also demonstrate that the overabundance of G stems from variant synthesis-efficiency and can be corrected using compensating oligonucleotide-mixtures calibrated by mass spectroscopy. Construction of libraries implementing these correctives results in markedly improved libraries that display random distribution of amino acids, thus ensuring that enriched peptides obtained in biopanning represent a genuine selection event, a fundamental assumption for phage display applications.
Collapse
Affiliation(s)
- Arie Ryvkin
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Haim Ashkenazy
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yael Weiss-Ottolenghi
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chen Piller
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tal Pupko
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jonathan M Gershoni
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
15
|
Abstract
ORFeome phage display allows the efficient functional screening of entire proteomes or even metaproteomes to identify immunogenic proteins. For this purpose, randomly fragmented, whole genomes or metagenomes are cloned into a phage-display vector allowing positive selection for open reading frames (ORF) to improve the library quality. These libraries display all possible proteins encoded by a pathogen or a microbiome on the phage surface. Consequently, immunogenic proteins can be selected from these libraries using disease-related immunoglobulins from patient serum. ORFeome phage display in particular allows the identification of immunogenic proteins that are only expressed in the host-pathogen interaction but not in cultivation, as well as the detection of very low expressed and very small immunogens and immunogenic proteins of non-cultivable organisms. The identified immunogenic proteins are potential biomarkers for the development of diagnostic assays or vaccines. These articles will give an introduction to ORFeome phage-display technology and give detailed protocols to identify immunogenic proteins by phage display.
Collapse
Affiliation(s)
- Jonas Zantow
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | | | - Stefan Dübel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Michael Hust
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
16
|
Metasecretome Phage Display. Methods Mol Biol 2017. [PMID: 29116525 DOI: 10.1007/978-1-4939-7447-4_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Metasecretome is a collection of cell-surface and secreted proteins that mediate interactions between microbial communities and their environment. These include adhesins, enzymes, surface structures such as pili or flagella, vaccine targets or proteins responsible for immune evasion. Traditional approaches to exploring matasecretome of complex microbial communities via cultivation of microorganisms and screening of individual strains fail to sample extraordinary diversity in these communities, since only a limited fraction of microorganisms are represented by cultures. Advances in culture-independent sequence analysis methods, collectively referred to as metagenomics, offer an alternative approach that enables the direct analysis of collective microbial genomes (metagenome) recovered from environmental samples. This protocol describes a method, metasecretome phage display, which selectively displays the metasecretome portion of the metagenome. The metasecretome library can then be used for two purposes: (1) to sequence the entire metasecretome (using PacBio technology); (2) to identify metasecretome proteins that have a specific function of interest by affinity-screening (bio-panning) using a variety of methods described in other chapters of this volume.
Collapse
|
17
|
Namjoshi SV, Raab-Graham KF. Screening the Molecular Framework Underlying Local Dendritic mRNA Translation. Front Mol Neurosci 2017; 10:45. [PMID: 28286470 PMCID: PMC5323403 DOI: 10.3389/fnmol.2017.00045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/10/2017] [Indexed: 12/13/2022] Open
Abstract
In the last decade, bioinformatic analyses of high-throughput proteomics and transcriptomics data have enabled researchers to gain insight into the molecular networks that may underlie lasting changes in synaptic efficacy. Development and utilization of these techniques have advanced the field of learning and memory significantly. It is now possible to move from the study of activity-dependent changes of a single protein to modeling entire network changes that require local protein synthesis. This data revolution has necessitated the development of alternative computational and statistical techniques to analyze and understand the patterns contained within. Thus, the focus of this review is to provide a synopsis of the journey and evolution toward big data techniques to address still unanswered questions regarding how synapses are modified to strengthen neuronal circuits. We first review the seminal studies that demonstrated the pivotal role played by local mRNA translation as the mechanism underlying the enhancement of enduring synaptic activity. In the interest of those who are new to the field, we provide a brief overview of molecular biology and biochemical techniques utilized for sample preparation to identify locally translated proteins using RNA sequencing and proteomics, as well as the computational approaches used to analyze these data. While many mRNAs have been identified, few have been shown to be locally synthesized. To this end, we review techniques currently being utilized to visualize new protein synthesis, a task that has proven to be the most difficult aspect of the field. Finally, we provide examples of future applications to test the physiological relevance of locally synthesized proteins identified by big data approaches.
Collapse
Affiliation(s)
- Sanjeev V Namjoshi
- Center for Learning and Memory, The University of Texas at Austin, AustinTX, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, AustinTX, USA
| | - Kimberly F Raab-Graham
- Center for Learning and Memory, The University of Texas at Austin, AustinTX, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, AustinTX, USA; Department of Physiology and Pharmacology, Wake Forest Health Sciences, Medical Center Boulevard, Winston-SalemNC, USA
| |
Collapse
|
18
|
Patrucco L, Peano C, Chiesa A, Guida F, Luisi I, Boria I, Mignone F, De Bellis G, Zucchelli S, Gustincich S, Santoro C, Sblattero D, Cotella D. Identification of novel proteins binding the AU-rich element of α-prothymosin mRNA through the selection of open reading frames (RIDome). RNA Biol 2016; 12:1289-300. [PMID: 26512911 DOI: 10.1080/15476286.2015.1107702] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
We describe here a platform for high-throughput protein expression and interaction analysis aimed at identifying the RNA-interacting domainome. This approach combines the selection of a phage library displaying "filtered" open reading frames with next-generation DNA sequencing. The method was validated using an RNA bait corresponding to the AU-rich element of α-prothymosin, an RNA motif that promotes mRNA stability and translation through its interaction with the RNA-binding protein ELAVL1. With this strategy, we not only confirmed known RNA-binding proteins that specifically interact with the target RNA (such as ELAVL1/HuR and RBM38) but also identified proteins not previously known to be ARE-binding (R3HDM2 and RALY). We propose this technology as a novel approach for studying the RNA-binding proteome.
Collapse
Affiliation(s)
- Laura Patrucco
- a Department of Health Sciences and Interdisciplinary Research Center on Autoimmune Diseases (IRCAD) ; Università del Piemonte Orientale ; Novara , Italy
| | - Clelia Peano
- b Institute of Biomedical Technologies; National Research Council (ITB CNR) ; Milan , Italy
| | - Andrea Chiesa
- a Department of Health Sciences and Interdisciplinary Research Center on Autoimmune Diseases (IRCAD) ; Università del Piemonte Orientale ; Novara , Italy
| | - Filomena Guida
- c Department of Life Sciences ; University of Trieste ; Italy
| | - Imma Luisi
- c Department of Life Sciences ; University of Trieste ; Italy
| | - Ilenia Boria
- d Department of Chemistry ; University of Milan ; Italy
| | - Flavio Mignone
- e Department of Sciences and Innovation ; Università del Piemonte Orientale ; Alessandria , Italy
| | - Gianluca De Bellis
- b Institute of Biomedical Technologies; National Research Council (ITB CNR) ; Milan , Italy
| | - Silvia Zucchelli
- a Department of Health Sciences and Interdisciplinary Research Center on Autoimmune Diseases (IRCAD) ; Università del Piemonte Orientale ; Novara , Italy.,f Area of Neuroscience; SISSA ; Trieste , Italy
| | | | - Claudio Santoro
- a Department of Health Sciences and Interdisciplinary Research Center on Autoimmune Diseases (IRCAD) ; Università del Piemonte Orientale ; Novara , Italy
| | - Daniele Sblattero
- a Department of Health Sciences and Interdisciplinary Research Center on Autoimmune Diseases (IRCAD) ; Università del Piemonte Orientale ; Novara , Italy.,c Department of Life Sciences ; University of Trieste ; Italy
| | - Diego Cotella
- a Department of Health Sciences and Interdisciplinary Research Center on Autoimmune Diseases (IRCAD) ; Università del Piemonte Orientale ; Novara , Italy
| |
Collapse
|
19
|
Zantow J, Just S, Lagkouvardos I, Kisling S, Dübel S, Lepage P, Clavel T, Hust M. Mining gut microbiome oligopeptides by functional metaproteome display. Sci Rep 2016; 6:34337. [PMID: 27703179 PMCID: PMC5050496 DOI: 10.1038/srep34337] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/12/2016] [Indexed: 12/25/2022] Open
Abstract
Pathogen infections, autoimmune diseases, and chronic inflammatory disorders are associated with systemic antibody responses from the host immune system. Disease-specific antibodies can be important serum biomarkers, but the identification of antigens associated with specific immune reactions is challenging, in particular if complex communities of microorganisms are involved in the disease progression. Despite promising new diagnostic opportunities, the discovery of these serological markers becomes more difficult with increasing complexity of microbial communities. In the present work, we used a metagenomic M13 phage display approach to select immunogenic oligopeptides from the gut microbiome of transgenic mice suffering from chronic ileitis. We constructed three individual metaproteome phage display libraries with a library size of approximately 107 clones each. Using serum antibodies, we selected and validated three oligopeptides that induced specific antibody responses in the mouse model. This proof-of-concept study provides the first successful application of functional metaproteome display for the study of protein-protein interactions and the discovery of potential disease biomarkers.
Collapse
Affiliation(s)
- Jonas Zantow
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics - Department for Biotechnology, Germany
| | - Sarah Just
- Technische Universität München, ZIEL Institute for Food and Health, Freising, Germany
| | - Ilias Lagkouvardos
- Technische Universität München, ZIEL Institute for Food and Health, Freising, Germany
| | - Sigrid Kisling
- Technische Universität München, ZIEL Institute for Food and Health, Freising, Germany
| | - Stefan Dübel
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics - Department for Biotechnology, Germany
| | - Patricia Lepage
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Thomas Clavel
- Technische Universität München, ZIEL Institute for Food and Health, Freising, Germany
| | - Michael Hust
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics - Department for Biotechnology, Germany
| |
Collapse
|
20
|
Cardoso I, Østerlund EC, Stamnaes J, Iversen R, Andersen JT, Jørgensen TJD, Sollid LM. Dissecting the interaction between transglutaminase 2 and fibronectin. Amino Acids 2016; 49:489-500. [DOI: 10.1007/s00726-016-2296-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/04/2016] [Indexed: 02/07/2023]
|
21
|
Gagic D, Ciric M, Wen WX, Ng F, Rakonjac J. Exploring the Secretomes of Microbes and Microbial Communities Using Filamentous Phage Display. Front Microbiol 2016; 7:429. [PMID: 27092113 PMCID: PMC4823517 DOI: 10.3389/fmicb.2016.00429] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 03/17/2016] [Indexed: 01/12/2023] Open
Abstract
Microbial surface and secreted proteins (the secretome) contain a large number of proteins that interact with other microbes, host and/or environment. These proteins are exported by the coordinated activities of the protein secretion machinery present in the cell. A group of bacteriophage, called filamentous phage, have the ability to hijack bacterial protein secretion machinery in order to amplify and assemble via a secretion-like process. This ability has been harnessed in the use of filamentous phage of Escherichia coli in biotechnology applications, including screening large libraries of variants for binding to “bait” of interest, from tissues in vivo to pure proteins or even inorganic substrates. In this review we discuss the roles of secretome proteins in pathogenic and non-pathogenic bacteria and corresponding secretion pathways. We describe the basics of phage display technology and its variants applied to discovery of bacterial proteins that are implicated in colonization of host tissues and pathogenesis, as well as vaccine candidates through filamentous phage display library screening. Secretome selection aided by next-generation sequence analysis was successfully applied for selective display of the secretome at a microbial community scale, the latter revealing the richness of secretome functions of interest and surprising versatility in filamentous phage display of secretome proteins from large number of Gram-negative as well as Gram-positive bacteria and archaea.
Collapse
Affiliation(s)
- Dragana Gagic
- Institute of Fundamental Sciences, Massey UniversityPalmerston North, New Zealand; Animal Science, Grasslands Research Centre, AgResearch Ltd, Palmerston NorthNew Zealand
| | - Milica Ciric
- Institute of Fundamental Sciences, Massey UniversityPalmerston North, New Zealand; Animal Science, Grasslands Research Centre, AgResearch Ltd, Palmerston NorthNew Zealand
| | - Wesley X Wen
- Institute of Fundamental Sciences, Massey University Palmerston North, New Zealand
| | - Filomena Ng
- Animal Science, Grasslands Research Centre, AgResearch Ltd, Palmerston North New Zealand
| | - Jasna Rakonjac
- Institute of Fundamental Sciences, Massey University Palmerston North, New Zealand
| |
Collapse
|
22
|
Gourlay LJ, Peano C, Deantonio C, Perletti L, Pietrelli A, Villa R, Matterazzo E, Lassaux P, Santoro C, Puccio S, Sblattero D, Bolognesi M. Selecting soluble/foldable protein domains through single-gene or genomic ORF filtering: structure of the head domain of Burkholderia pseudomallei antigen BPSL2063. ACTA ACUST UNITED AC 2015; 71:2227-35. [PMID: 26527140 DOI: 10.1107/s1399004715015680] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/21/2015] [Indexed: 11/10/2022]
Abstract
The 1.8 Å resolution crystal structure of a conserved domain of the potential Burkholderia pseudomallei antigen and trimeric autotransporter BPSL2063 is presented as a structural vaccinology target for melioidosis vaccine development. Since BPSL2063 (1090 amino acids) hosts only one conserved domain, and the expression/purification of the full-length protein proved to be problematic, a domain-filtering library was generated using β-lactamase as a reporter gene to select further BPSL2063 domains. As a result, two domains (D1 and D2) were identified and produced in soluble form in Escherichia coli. Furthermore, as a general tool, a genomic open reading frame-filtering library from the B. pseudomallei genome was also constructed to facilitate the selection of domain boundaries from the entire ORFeome. Such an approach allowed the selection of three potential protein antigens that were also produced in soluble form. The results imply the further development of ORF-filtering methods as a tool in protein-based research to improve the selection and production of soluble proteins or domains for downstream applications such as X-ray crystallography.
Collapse
Affiliation(s)
- Louise J Gourlay
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Clelia Peano
- Institute of Biomedical Technologies, National Research Council, Via Fratelli Cervi 93, 20090 Segrate, Italy
| | - Cecilia Deantonio
- Department of Health Sciences and IRCAD, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy
| | - Lucia Perletti
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Alessandro Pietrelli
- Institute of Biomedical Technologies, National Research Council, Via Fratelli Cervi 93, 20090 Segrate, Italy
| | - Riccardo Villa
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Elena Matterazzo
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Patricia Lassaux
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Claudio Santoro
- Department of Health Sciences and IRCAD, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy
| | - Simone Puccio
- Institute of Biomedical Technologies, National Research Council, Via Fratelli Cervi 93, 20090 Segrate, Italy
| | - Daniele Sblattero
- Department of Life Sciences, University of Trieste, Via Weiss 2, 34128 Trieste, Italy
| | - Martino Bolognesi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
23
|
Blikstad C, Ivarsson Y. High-throughput methods for identification of protein-protein interactions involving short linear motifs. Cell Commun Signal 2015; 13:38. [PMID: 26297553 PMCID: PMC4546347 DOI: 10.1186/s12964-015-0116-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/11/2015] [Indexed: 02/07/2023] Open
Abstract
Interactions between modular domains and short linear motifs (3–10 amino acids peptide stretches) are crucial for cell signaling. The motifs typically reside in the disordered regions of the proteome and the interactions are often transient, allowing for rapid changes in response to changing stimuli. The properties that make domain-motif interactions suitable for cell signaling also make them difficult to capture experimentally and they are therefore largely underrepresented in the known protein-protein interaction networks. Most of the knowledge on domain-motif interactions is derived from low-throughput studies, although there exist dedicated high-throughput methods for the identification of domain-motif interactions. The methods include arrays of peptides or proteins, display of peptides on phage or yeast, and yeast-two-hybrid experiments. We here provide a survey of scalable methods for domain-motif interaction profiling. These methods have frequently been applied to a limited number of ubiquitous domain families. It is now time to apply them to a broader set of peptide binding proteins, to provide a comprehensive picture of the linear motifs in the human proteome and to link them to their potential binding partners. Despite the plethora of methods, it is still a challenge for most approaches to identify interactions that rely on post-translational modification or context dependent or conditional interactions, suggesting directions for further method development.
Collapse
Affiliation(s)
- Cecilia Blikstad
- Department of Chemistry - BMC, Husargatan 3, 751 23, Uppsala, Sweden
| | - Ylva Ivarsson
- Department of Chemistry - BMC, Husargatan 3, 751 23, Uppsala, Sweden.
| |
Collapse
|
24
|
Christiansen A, Kringelum JV, Hansen CS, Bøgh KL, Sullivan E, Patel J, Rigby NM, Eiwegger T, Szépfalusi Z, de Masi F, Nielsen M, Lund O, Dufva M. High-throughput sequencing enhanced phage display enables the identification of patient-specific epitope motifs in serum. Sci Rep 2015; 5:12913. [PMID: 26246327 PMCID: PMC4650709 DOI: 10.1038/srep12913] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/08/2015] [Indexed: 12/13/2022] Open
Abstract
Phage display is a prominent screening technique with a multitude of applications including therapeutic antibody development and mapping of antigen epitopes. In this study, phages were selected based on their interaction with patient serum and exhaustively characterised by high-throughput sequencing. A bioinformatics approach was developed in order to identify peptide motifs of interest based on clustering and contrasting to control samples. Comparison of patient and control samples confirmed a major issue in phage display, namely the selection of unspecific peptides. The potential of the bioinformatic approach was demonstrated by identifying epitopes of a prominent peanut allergen, Ara h 1, in sera from patients with severe peanut allergy. The identified epitopes were confirmed by high-density peptide micro-arrays. The present study demonstrates that high-throughput sequencing can empower phage display by (i) enabling the analysis of complex biological samples, (ii) circumventing the traditional laborious picking and functional testing of individual phage clones and (iii) reducing the number of selection rounds.
Collapse
Affiliation(s)
- Anders Christiansen
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jens V Kringelum
- Center for Biological Sequence Analysis, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Christian S Hansen
- Center for Biological Sequence Analysis, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Katrine L Bøgh
- National Food Institute, Technical University of Denmark, Søborg, Denmark
| | - Eric Sullivan
- Roche NimbleGen, Madison, Wisconsin, the United States of America
| | - Jigar Patel
- Roche NimbleGen, Madison, Wisconsin, the United States of America
| | - Neil M Rigby
- Institute of Food Research, Norwich, United Kingdom
| | - Thomas Eiwegger
- Department of Paediatrics, Medical University of Vienna, Vienna, Austria
| | - Zsolt Szépfalusi
- Department of Paediatrics, Medical University of Vienna, Vienna, Austria
| | - Federico de Masi
- Center for Biological Sequence Analysis, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Morten Nielsen
- 1] Center for Biological Sequence Analysis, Technical University of Denmark, Kgs. Lyngby, Denmark [2] Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Ole Lund
- Center for Biological Sequence Analysis, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Martin Dufva
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
25
|
Awwad K, Hu J, Shi L, Mangels N, Abdel Malik R, Zippel N, Fisslthaler B, Eble JA, Pfeilschifter J, Popp R, Fleming I. Role of secreted modular calcium-binding protein 1 (SMOC1) in transforming growth factor β signalling and angiogenesis. Cardiovasc Res 2015; 106:284-94. [PMID: 25750188 DOI: 10.1093/cvr/cvv098] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/30/2015] [Indexed: 12/30/2022] Open
Abstract
AIMS Secreted modular calcium-binding protein 1 (SMOC1) is a matricellular protein that potentially interferes with growth factor receptor signalling. The aim of this study was to determine how its expression is regulated in endothelial cells and its role in the regulation of endothelial cell function. METHODS AND RESULTS SMOC1 was expressed by native murine endothelial cells as well as by cultured human, porcine, and murine endothelial cells. SMOC1 expression in cultured cells was increased by hypoxia via the down-regulation of miR-223, and SMOC1 expression was increased in lungs from miR-223-deficient mice. Silencing SMOC1 (small interfering RNA) attenuated endothelial cell proliferation, migration, and sprouting in in vitro angiogenesis assays. Similarly endothelial cell sprouting from aortic rings ex vivo as well as postnatal retinal angiogenesis in vivo was attenuated in SMOC1(+/-) mice. In endothelial cells, transforming growth factor (TGF)-β signalling via activin-like kinase (ALK) 5 leads to quiescence, whereas TGF-β signalling via ALK1 results in endothelial cell activation. SMOC1 acted as a negative regulator of ALK5/SMAD2 signalling, resulting in altered α2 integrin levels. Mechanistically, SMOC1 associated (immunohistochemistry, proximity ligation assay, and co-immunoprecipitation) with endoglin; an endothelium-specific type III auxiliary receptor for the TGF-β super family and the effects of SMOC1 down-regulation on SMAD2 phosphorylation were abolished by the down-regulation of endoglin. CONCLUSION These results indicate that SMOC1 is an ALK5 antagonist produced by endothelial cells that tips TGF-β signalling towards ALK1 activation, thus promoting endothelial cell proliferation and angiogenesis.
Collapse
Affiliation(s)
- Khader Awwad
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe-University, Theodor Stern Kai 7, 60596 Frankfurt am Main, Germany
| | - Jiong Hu
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe-University, Theodor Stern Kai 7, 60596 Frankfurt am Main, Germany
| | - Lei Shi
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe-University, Theodor Stern Kai 7, 60596 Frankfurt am Main, Germany
| | - Nicole Mangels
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe-University, Theodor Stern Kai 7, 60596 Frankfurt am Main, Germany
| | - Randa Abdel Malik
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe-University, Theodor Stern Kai 7, 60596 Frankfurt am Main, Germany
| | - Nina Zippel
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe-University, Theodor Stern Kai 7, 60596 Frankfurt am Main, Germany
| | - Beate Fisslthaler
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe-University, Theodor Stern Kai 7, 60596 Frankfurt am Main, Germany
| | - Johannes A Eble
- Institute for Physiological Chemistry and Pathobiochemistry, Excellence Cluster Cell-in-Motion, 48149 Münster, Germany
| | - Josef Pfeilschifter
- Pharmacenter Frankfurt/ZAFES, Goethe-University Hospital, 60590 Frankfurt am Main, Germany
| | - Rüdiger Popp
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe-University, Theodor Stern Kai 7, 60596 Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe-University, Theodor Stern Kai 7, 60596 Frankfurt am Main, Germany
| |
Collapse
|
26
|
Alam KK, Chang JL, Burke DH. FASTAptamer: A Bioinformatic Toolkit for High-throughput Sequence Analysis of Combinatorial Selections. MOLECULAR THERAPY-NUCLEIC ACIDS 2015; 4:e230. [PMID: 25734917 PMCID: PMC4354339 DOI: 10.1038/mtna.2015.4] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 01/08/2015] [Indexed: 12/22/2022]
Abstract
High-throughput sequence (HTS) analysis of combinatorial selection populations accelerates lead discovery and optimization and offers dynamic insight into selection processes. An underlying principle is that selection enriches high-fitness sequences as a fraction of the population, whereas low-fitness sequences are depleted. HTS analysis readily provides the requisite numerical information by tracking the evolutionary trajectory of individual sequences in response to selection pressures. Unlike genomic data, for which a number of software solutions exist, user-friendly tools are not readily available for the combinatorial selections field, leading many users to create custom software. FASTAptamer was designed to address the sequence-level analysis needs of the field. The open source FASTAptamer toolkit counts, normalizes and ranks read counts in a FASTQ file, compares populations for sequence distribution, generates clusters of sequence families, calculates fold-enrichment of sequences throughout the course of a selection and searches for degenerate sequence motifs. While originally designed for aptamer selections, FASTAptamer can be applied to any selection strategy that can utilize next-generation DNA sequencing, such as ribozyme or deoxyribozyme selections, in vivo mutagenesis and various surface display technologies (peptide, antibody fragment, mRNA, etc.). FASTAptamer software, sample data and a user's guide are available for download at http://burkelab.missouri.edu/fastaptamer.html.
Collapse
Affiliation(s)
- Khalid K Alam
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Jonathan L Chang
- 1] Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA [2] Current Address: School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Donald H Burke
- 1] Department of Biochemistry, University of Missouri, Columbia, Missouri, USA [2] Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
27
|
Mai-Prochnow A, Hui JGK, Kjelleberg S, Rakonjac J, McDougald D, Rice SA. 'Big things in small packages: the genetics of filamentous phage and effects on fitness of their host'. FEMS Microbiol Rev 2015; 39:465-87. [PMID: 25670735 DOI: 10.1093/femsre/fuu007] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 12/17/2014] [Indexed: 01/01/2023] Open
Abstract
This review synthesizes recent and past observations on filamentous phages and describes how these phages contribute to host phentoypes. For example, the CTXφ phage of Vibrio cholerae encodes the cholera toxin genes, responsible for causing the epidemic disease, cholera. The CTXφ phage can transduce non-toxigenic strains, converting them into toxigenic strains, contributing to the emergence of new pathogenic strains. Other effects of filamentous phage include horizontal gene transfer, biofilm development, motility, metal resistance and the formation of host morphotypic variants, important for the biofilm stress resistance. These phages infect a wide range of Gram-negative bacteria, including deep-sea, pressure-adapted bacteria. Many filamentous phages integrate into the host genome as prophage. In some cases, filamentous phages encode their own integrase genes to facilitate this process, while others rely on host-encoded genes. These differences are mediated by different sets of 'core' and 'accessory' genes, with the latter group accounting for some of the mechanisms that alter the host behaviours in unique ways. It is increasingly clear that despite their relatively small genomes, these phages exert signficant influence on their hosts and ultimately alter the fitness and other behaviours of their hosts.
Collapse
Affiliation(s)
- Anne Mai-Prochnow
- The Centre for Marine Bio-Innovation and the School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney NSW 2052, Australia
| | - Janice Gee Kay Hui
- The Centre for Marine Bio-Innovation and the School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney NSW 2052, Australia
| | - Staffan Kjelleberg
- The Centre for Marine Bio-Innovation and the School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney NSW 2052, Australia The Singapore Centre on Environmental Life Sciences Engineering and the School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Jasna Rakonjac
- Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Diane McDougald
- The Centre for Marine Bio-Innovation and the School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney NSW 2052, Australia The Singapore Centre on Environmental Life Sciences Engineering and the School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Scott A Rice
- The Centre for Marine Bio-Innovation and the School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney NSW 2052, Australia The Singapore Centre on Environmental Life Sciences Engineering and the School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| |
Collapse
|
28
|
D'Angelo S, Glanville J, Ferrara F, Naranjo L, Gleasner CD, Shen X, Bradbury ARM, Kiss C. The antibody mining toolbox: an open source tool for the rapid analysis of antibody repertoires. MAbs 2014; 6:160-72. [PMID: 24423623 PMCID: PMC3929439 DOI: 10.4161/mabs.27105] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In vitro selection has been an essential tool in the development of recombinant antibodies against various antigen targets. Deep sequencing has recently been gaining ground as an alternative and valuable method to analyze such antibody selections. The analysis provides a novel and extremely detailed view of selected antibody populations, and allows the identification of specific antibodies using only sequencing data, potentially eliminating the need for expensive and laborious low-throughput screening methods such as enzyme-linked immunosorbant assay. The high cost and the need for bioinformatics experts and powerful computer clusters, however, have limited the general use of deep sequencing in antibody selections. Here, we describe the AbMining ToolBox, an open source software package for the straightforward analysis of antibody libraries sequenced by the three main next generation sequencing platforms (454, Ion Torrent, MiSeq). The ToolBox is able to identify heavy chain CDR3s as effectively as more computationally intense software, and can be easily adapted to analyze other portions of antibody variable genes, as well as the selection outputs of libraries based on different scaffolds. The software runs on all common operating systems (Microsoft Windows, Mac OS X, Linux), on standard personal computers, and sequence analysis of 1–2 million reads can be accomplished in 10–15 min, a fraction of the time of competing software. Use of the ToolBox will allow the average researcher to incorporate deep sequence analysis into routine selections from antibody display libraries.
Collapse
Affiliation(s)
| | | | | | - Leslie Naranjo
- B Division; Los Alamos National Laboratory; Los Alamos, NM USA
| | | | - Xiaohong Shen
- B Division; Los Alamos National Laboratory; Los Alamos, NM USA
| | | | - Csaba Kiss
- B Division; Los Alamos National Laboratory; Los Alamos, NM USA
| |
Collapse
|
29
|
Deantonio C, Sedini V, Cesaro P, Quasso F, Cotella D, Persichetti F, Santoro C, Sblattero D. An Air-Well sparging minifermenter system for high-throughput protein production. Microb Cell Fact 2014; 13:132. [PMID: 25218288 PMCID: PMC4172861 DOI: 10.1186/s12934-014-0132-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/27/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Over the last few years High-Throughput Protein Production (HTPP) has played a crucial role for functional proteomics. High-quality, high yield and fast recombinant protein production are critical for new HTPP technologies. Escherichia coli is usually the expression system of choice in protein production thanks to its fast growth, ease of handling and high yields of protein produced. Even though shake-flask cultures are widely used, there is an increasing need for easy to handle, lab scale, high throughput systems. RESULTS In this article we described a novel minifermenter system suitable for HTPP. The Air-Well minifermenter system is made by a homogeneous air sparging device that includes an air diffusion system, and a stainless steel 96 needle plate integrated with a 96 deep well plate where cultures take place. This system provides aeration to achieve higher optical density growth compared to classical shaking growth without the decrease in pH value and bacterial viability. Moreover the yield of recombinant protein is up to 3-fold higher with a considerable improvement in the amount of full length proteins. CONCLUSIONS High throughput production of hundreds of proteins in parallel can be obtained sparging air in a continuous and controlled manner. The system used is modular and can be easily modified and scaled up to meet the demands for HTPP.
Collapse
|
30
|
Lim BN, Tye GJ, Choong YS, Ong EBB, Ismail A, Lim TS. Principles and application of antibody libraries for infectious diseases. Biotechnol Lett 2014; 36:2381-92. [PMID: 25214212 DOI: 10.1007/s10529-014-1635-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/11/2014] [Indexed: 02/01/2023]
Abstract
Antibodies have been used efficiently for the treatment and diagnosis of many diseases. Recombinant antibody technology allows the generation of fully human antibodies. Phage display is the gold standard for the production of human antibodies in vitro. To generate monoclonal antibodies by phage display, the generation of antibody libraries is crucial. Antibody libraries are classified according to the source where the antibody gene sequences were obtained. The most useful library for infectious diseases is the immunized library. Immunized libraries would allow better and selective enrichment of antibodies against disease antigens. The antibodies generated from these libraries can be translated for both diagnostic and therapeutic applications. This review focuses on the generation of immunized antibody libraries and the potential applications of the antibodies derived from these libraries.
Collapse
Affiliation(s)
- Bee Nar Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia,
| | | | | | | | | | | |
Collapse
|
31
|
Interaction analysis through proteomic phage display. BIOMED RESEARCH INTERNATIONAL 2014; 2014:176172. [PMID: 25295249 PMCID: PMC4177731 DOI: 10.1155/2014/176172] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/11/2014] [Accepted: 08/19/2014] [Indexed: 11/29/2022]
Abstract
Phage display is a powerful technique for profiling specificities of peptide binding domains. The method is suited for the identification of high-affinity ligands with inhibitor potential when using highly diverse combinatorial peptide phage libraries. Such experiments further provide consensus motifs for genome-wide scanning of ligands of potential biological relevance. A complementary but considerably less explored approach is to display expression products of genomic DNA, cDNA, open reading frames (ORFs), or oligonucleotide libraries designed to encode defined regions of a target proteome on phage particles. One of the main applications of such proteomic libraries has been the elucidation of antibody epitopes. This review is focused on the use of proteomic phage display to uncover protein-protein interactions of potential relevance for cellular function. The method is particularly suited for the discovery of interactions between peptide binding domains and their targets. We discuss the largely unexplored potential of this method in the discovery of domain-motif interactions of potential biological relevance.
Collapse
|
32
|
D'Angelo S, Kumar S, Naranjo L, Ferrara F, Kiss C, Bradbury ARM. From deep sequencing to actual clones. Protein Eng Des Sel 2014; 27:301-7. [PMID: 25183780 DOI: 10.1093/protein/gzu032] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The application of deep sequencing to in vitro display technologies has been invaluable for the straightforward analysis of enriched clones. After sequencing in vitro selected populations, clones are binned into identical or similar groups and ordered by abundance, allowing identification of those that are most enriched. However, the greatest strength of deep sequencing is also its greatest weakness: clones are easily identified by their DNA sequences, but are not physically available for testing without a laborious multistep process involving several rounds of polymerization chain reaction (PCR), assembly and cloning. Here, using the isolation of antibody genes from a phage and yeast display selection as an example, we show the power of a rapid and simple inverse PCR-based method to easily isolate clones identified by deep sequencing. Once primers have been received, clone isolation can be carried out in a single day, rather than two days. Furthermore the reduced number of PCRs required will reduce PCR mutations correspondingly. We have observed a 100% success rate in amplifying clones with an abundance as low as 0.5% in a polyclonal population. This approach allows us to obtain full-length clones even when an incomplete sequence is available, and greatly simplifies the subcloning process. Moreover, rarer, but functional clones missed by traditional screening can be easily isolated using this method, and the approach can be extended to any selected library (scFv, cDNA, libraries based on scaffold proteins) where a unique sequence signature for the desired clones of interest is available.
Collapse
Affiliation(s)
| | - Sandeep Kumar
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA Present address: Compugen USA, Inc., San Francisco, CA 94080, USA
| | - Leslie Naranjo
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | | | - Csaba Kiss
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | | |
Collapse
|
33
|
Deantonio C, Cotella D, Macor P, Santoro C, Sblattero D. Phage display technology for human monoclonal antibodies. Methods Mol Biol 2014; 1060:277-295. [PMID: 24037846 DOI: 10.1007/978-1-62703-586-6_14] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
During the last 15 years in vitro technologies opened powerful routes to combine the generation of large libraries together with fast selection procedures to identify lead candidates. One of the commonest methods is based on the use filamentous phages. Antibodies (Abs) can be displayed successfully on the surface of phage by fusing the coding sequence of the antibody variable (V) regions to the phage minor coat protein pIII. By creating large libraries, antibodies with affinities comparable to those obtained using traditional hybridomas technology can be selected by a series of cycles of selection on antigen. As in this system antibody genes are cloned simultaneously with selection they can be easily further engineered for example by increasing their affinity (to levels unobtainable in the immune system), modulating their specificity or their effector function (by recloning into a full-length immunoglobulin scaffold). This chapter describes the basic protocols for antibody library construction, handling, and selection.
Collapse
Affiliation(s)
- Cecilia Deantonio
- Department of Health Sciences and Interdisciplinary Research Center for Autoimmune Diseases (IRCAD), University of Eastern Piedmont, Novara, Italy
| | | | | | | | | |
Collapse
|
34
|
Gupta A, Shrivastava N, Grover P, Singh A, Mathur K, Verma V, Kaur C, Chaudhary VK. A novel helper phage enabling construction of genome-scale ORF-enriched phage display libraries. PLoS One 2013; 8:e75212. [PMID: 24086469 PMCID: PMC3785514 DOI: 10.1371/journal.pone.0075212] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 08/08/2013] [Indexed: 11/19/2022] Open
Abstract
Phagemid-based expression of cloned genes fused to the gIIIP coding sequence and rescue using helper phages, such as VCSM13, has been used extensively for constructing large antibody phage display libraries. However, for randomly primed cDNA and gene fragment libraries, this system encounters reading frame problems wherein only one of 18 phages display the translated foreign peptide/protein fused to phagemid-encoded gIIIP. The elimination of phages carrying out-of-frame inserts is vital in order to improve the quality of phage display libraries. In this study, we designed a novel helper phage, AGM13, which carries trypsin-sensitive sites within the linker regions of gIIIP. This renders the phage highly sensitive to trypsin digestion, which abolishes its infectivity. For open reading frame (ORF) selection, the phagemid-borne phages are rescued using AGM13, so that clones with in-frame inserts express fusion proteins with phagemid-encoded trypsin-resistant gIIIP, which becomes incorporated into the phages along with a few copies of AGM13-encoded trypsin-sensitive gIIIP. In contrast, clones with out-of-frame inserts produce phages carrying only AGM13-encoded trypsin-sensitive gIIIP. Trypsin treatment of the phage population renders the phages with out-of-frame inserts non-infectious, whereas phages carrying in-frame inserts remain fully infectious and can hence be enriched by infection. This strategy was applied efficiently at a genome scale to generate an ORF-enriched whole genome fragment library from Mycobacterium tuberculosis, in which nearly 100% of the clones carried in-frame inserts after selection. The ORF-enriched libraries were successfully used for identification of linear and conformational epitopes for monoclonal antibodies specific to mycobacterial proteins.
Collapse
Affiliation(s)
- Amita Gupta
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, India
- * E-mail: (AG); (VKC)
| | - Nimisha Shrivastava
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, India
| | - Payal Grover
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, India
| | - Ajay Singh
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, India
| | - Kapil Mathur
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, India
| | - Vaishali Verma
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, India
| | - Charanpreet Kaur
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, India
| | - Vijay K. Chaudhary
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, India
- * E-mail: (AG); (VKC)
| |
Collapse
|
35
|
D'Angelo S, Mignone F, Deantonio C, Di Niro R, Bordoni R, Marzari R, De Bellis G, Not T, Ferrara F, Bradbury A, Santoro C, Sblattero D. Profiling celiac disease antibody repertoire. Clin Immunol 2013; 148:99-109. [DOI: 10.1016/j.clim.2013.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/09/2013] [Accepted: 04/10/2013] [Indexed: 02/07/2023]
|
36
|
Forsyth CM, Juan V, Akamatsu Y, DuBridge RB, Doan M, Ivanov AV, Ma Z, Polakoff D, Razo J, Wilson K, Powers DB. Deep mutational scanning of an antibody against epidermal growth factor receptor using mammalian cell display and massively parallel pyrosequencing. MAbs 2013; 5:523-32. [PMID: 23765106 PMCID: PMC3906306 DOI: 10.4161/mabs.24979] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We developed a method for deep mutational scanning of antibody complementarity-determining regions (CDRs) that can determine in parallel the effect of every possible single amino acid CDR substitution on antigen binding. The method uses libraries of full length IgGs containing more than 1000 CDR point mutations displayed on mammalian cells, sorted by flow cytometry into subpopulations based on antigen affinity and analyzed by massively parallel pyrosequencing. Higher, lower and neutral affinity mutations are identified by their enrichment or depletion in the FACS subpopulations. We applied this method to a humanized version of the anti-epidermal growth factor receptor antibody cetuximab, generated a near comprehensive data set for 1060 point mutations that recapitulates previously determined structural and mutational data for these CDRs and identified 67 point mutations that increase affinity. The large-scale, comprehensive sequence-function data sets generated by this method should have broad utility for engineering properties such as antibody affinity and specificity and may advance theoretical understanding of antibody-antigen recognition.
Collapse
|
37
|
Ferrara F, Naranjo LA, Kumar S, Gaiotto T, Mukundan H, Swanson B, Bradbury ARM. Using phage and yeast display to select hundreds of monoclonal antibodies: application to antigen 85, a tuberculosis biomarker. PLoS One 2012; 7:e49535. [PMID: 23166701 PMCID: PMC3498134 DOI: 10.1371/journal.pone.0049535] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 10/10/2012] [Indexed: 11/24/2022] Open
Abstract
Background Current diagnostic methods for tuberculosis (TB), a major global health challenge that kills nearly two million people annually, are time-consuming and inadequate. During infection a number of bacterial molecules that play a role in the infective process are released and have been proposed as biomarkers for early TB diagnosis. Antigen 85 (Ag85) is the most abundant secreted TB protein, and a potential target for this diagnostic approach. One of the bottlenecks in the direct detection of such bacterial targets is the availability of robust, sensitive, specific antibodies. Methods Using Ag85 as a model, we describe a method to select antibodies against any potential target using a novel combination of phage and yeast display that exploits the advantage of each approach. Results The efficiency of this approach was attested to by the 111 specific antibodies identified in initial screens. These were assessed for binding to the different Ag85 subunits, affinity, and activity in sandwich assays. Conclusions The novelty of this approach lies in the possibility of screening the entire output of a phage antibody selection in a single experiment by yeast display. This can be considered analogous to carrying out a million ELISAs. The monoclonal antibodies (mAbs) identified in this way show high binding affinity and selectivity for the antigens and offer an advantage over traditional mAbs produced by relatively expensive and time consuming techniques. This approach has wide applicability, and the affinity of selected antibodies can be significantly improved, if required.
Collapse
Affiliation(s)
- Fortunato Ferrara
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Leslie A. Naranjo
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Sandeep Kumar
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Tiziano Gaiotto
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Harshini Mukundan
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Basil Swanson
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Andrew R. M. Bradbury
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
38
|
The expanding scope of DNA sequencing. Nat Biotechnol 2012; 30:1084-94. [PMID: 23138308 DOI: 10.1038/nbt.2421] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 10/15/2012] [Indexed: 01/04/2023]
Abstract
In just seven years, next-generation technologies have reduced the cost and increased the speed of DNA sequencing by four orders of magnitude, and experiments requiring many millions of sequencing reads are now routine. In research, sequencing is being applied not only to assemble genomes and to investigate the genetic basis of human disease, but also to explore myriad phenomena in organismic and cellular biology. In the clinic, the utility of sequence data is being intensively evaluated in diverse contexts, including reproductive medicine, oncology and infectious disease. A recurrent theme in the development of new sequencing applications is the creative 'recombination' of existing experimental building blocks. However, there remain many potentially high-impact applications of next-generation DNA sequencing that are not yet fully realized.
Collapse
|
39
|
Ryvkin A, Ashkenazy H, Smelyanski L, Kaplan G, Penn O, Weiss-Ottolenghi Y, Privman E, Ngam PB, Woodward JE, May GD, Bell C, Pupko T, Gershoni JM. Deep Panning: steps towards probing the IgOme. PLoS One 2012; 7:e41469. [PMID: 22870226 PMCID: PMC3409857 DOI: 10.1371/journal.pone.0041469] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 06/21/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Polyclonal serum consists of vast collections of antibodies, products of differentiated B-cells. The spectrum of antibody specificities is dynamic and varies with age, physiology, and exposure to pathological insults. The complete repertoire of antibody specificities in blood, the IgOme, is therefore an extraordinarily rich source of information-a molecular record of previous encounters as well as a status report of current immune activity. The ability to profile antibody specificities of polyclonal serum at exceptionally high resolution has been an important and serious challenge which can now be overcome. METHODOLOGY/PRINCIPAL FINDINGS Here we illustrate the application of Deep Panning, a method that combines the flexibility of combinatorial phage display of random peptides with the power of high-throughput deep sequencing. Deep Panning is first applied to evaluate the quality and diversity of naïve random peptide libraries. The production of very large data sets, hundreds of thousands of peptides, has revealed unexpected properties of combinatorial random peptide libraries and indicates correctives to ensure the quality of the libraries generated. Next, Deep Panning is used to analyze a model monoclonal antibody in addition to allowing one to follow the dynamics of biopanning and peptide selection. Finally Deep Panning is applied to profile polyclonal sera derived from HIV infected individuals. CONCLUSIONS/SIGNIFICANCE The ability to generate and characterize hundreds of thousands of affinity-selected peptides creates an effective means towards the interrogation of the IgOme and understanding of the humoral response to disease. Deep Panning should open the door to new possibilities for serological diagnostics, vaccine design and the discovery of the correlates of immunity to emerging infectious agents.
Collapse
Affiliation(s)
- Arie Ryvkin
- Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Haim Ashkenazy
- Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Larisa Smelyanski
- Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Gilad Kaplan
- Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Osnat Penn
- Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | | | - Eyal Privman
- Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Peter B. Ngam
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - James E. Woodward
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Gregory D. May
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Callum Bell
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Tal Pupko
- Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Jonathan M. Gershoni
- Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
40
|
Identification of peptides for tissue-specific delivery. Methods Mol Biol 2012. [PMID: 22454074 DOI: 10.1007/978-1-61779-767-5_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Antisense-mediated exon skipping has shown to be a promising therapeutic approach and is in clinical trials for Duchenne muscular dystrophy. However, after systemic treatment the majority of the injected antisense oligonucleotides (AONs) will not end up in the intended tissue. This mistargeting of AONs might have detrimental effects, especially with long-term treatment and continuous accumulation of AONs. Further, even when no detrimental effects occur, mistargeted AONs are lost for exon skipping in the intended tissue. One way to reduce the amount of mistargeted AONs is by adding a peptide that specifically binds to and is taken up by the intended tissue. Such peptides can be found by screening phage display libraries. With in silico, in vitro, and in vivo testing, the peptides that bind the intended tissue most efficiently and most specifically can be identified.
Collapse
|
41
|
Li W. ORF phage display to identify cellular proteins with different functions. Methods 2012; 58:2-9. [PMID: 22836128 DOI: 10.1016/j.ymeth.2012.07.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 07/11/2012] [Indexed: 01/17/2023] Open
Abstract
Open reading frame (ORF) phage display is a new branch of phage display aimed at improving its efficiency to identify cellular proteins with specific binding or functional activities. Despite the success of phage display with antibody libraries and random peptide libraries, phage display with cDNA libraries of cellular proteins identifies a high percentage of non-ORF clones encoding unnatural short peptides with minimal biological implications. This is mainly because of the uncontrollable reading frames of cellular proteins in conventional cDNA libraries. ORF phage display solves this problem by eliminating non-ORF clones to generate ORF cDNA libraries. Here I summarize the procedures of ORF phage display, discuss the factors influencing its efficiency, present examples of its versatile applications, and highlight evidence of its capability of identifying biologically relevant cellular proteins. ORF phage display coupled with different selection strategies is capable of delineating diverse functions of cellular proteins with unique advantages.
Collapse
Affiliation(s)
- Wei Li
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, 1638 NW 10th Avenue, Miami, FL 33136, USA.
| |
Collapse
|
42
|
Matochko WL, Chu K, Jin B, Lee SW, Whitesides GM, Derda R. Deep sequencing analysis of phage libraries using Illumina platform. Methods 2012; 58:47-55. [PMID: 22819855 DOI: 10.1016/j.ymeth.2012.07.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 07/11/2012] [Indexed: 11/25/2022] Open
Abstract
This paper presents an analysis of phage-displayed libraries of peptides using Illumina. We describe steps for the preparation of short DNA fragments for deep sequencing and MatLab software for the analysis of the results. Screening of peptide libraries displayed on the surface of bacteriophage (phage display) can be used to discover peptides that bind to any target. The key step in this discovery is the analysis of peptide sequences present in the library. This analysis is usually performed by Sanger sequencing, which is labor intensive and limited to examination of a few hundred phage clones. On the other hand, Illumina deep-sequencing technology can characterize over 10(7) reads in a single run. We applied Illumina sequencing to analyze phage libraries. Using PCR, we isolated the variable regions from M13KE phage vectors from a phage display library. The PCR primers contained (i) sequences flanking the variable region, (ii) barcodes, and (iii) variable 5'-terminal region. We used this approach to examine how diversity of peptides in phage display libraries changes as a result of amplification of libraries in bacteria. Using HiSeq single-end Illumina sequencing of these fragments, we acquired over 2×10(7) reads, 57 base pairs (bp) in length. Each read contained information about the barcode (6bp), one complimentary region (12bp) and a variable region (36bp). We applied this sequencing to a model library of 10(6) unique clones and observed that amplification enriches ∼150 clones, which dominate ∼20% of the library. Deep sequencing, for the first time, characterized the collapse of diversity in phage libraries. The results suggest that screens based on repeated amplification and small-scale sequencing identify a few binding clones and miss thousands of useful clones. The deep sequencing approach described here could identify under-represented clones in phage screens. It could also be instrumental in developing new screening strategies, which can preserve diversity of phage clones and identify ligands previously lost in phage display screens.
Collapse
Affiliation(s)
- Wadim L Matochko
- Department of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | | | | | | | | | | |
Collapse
|
43
|
't Hoen PAC, Jirka SMG, Ten Broeke BR, Schultes EA, Aguilera B, Pang KH, Heemskerk H, Aartsma-Rus A, van Ommen GJ, den Dunnen JT. Phage display screening without repetitious selection rounds. Anal Biochem 2011; 421:622-31. [PMID: 22178910 DOI: 10.1016/j.ab.2011.11.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/04/2011] [Accepted: 11/05/2011] [Indexed: 10/15/2022]
Abstract
Phage display screenings are frequently employed to identify high-affinity peptides or antibodies. Although successful, phage display is a laborious technology and is notorious for identification of false positive hits. To accelerate and improve the selection process, we have employed Illumina next generation sequencing to deeply characterize the Ph.D.-7 M13 peptide phage display library before and after several rounds of biopanning on KS483 osteoblast cells. Sequencing of the naive library after one round of amplification in bacteria identifies propagation advantage as an important source of false positive hits. Most important, our data show that deep sequencing of the phage pool after a first round of biopanning is already sufficient to identify positive phages. Whereas traditional sequencing of a limited number of clones after one or two rounds of selection is uninformative, the required additional rounds of biopanning are associated with the risk of losing promising clones propagating slower than nonbinding phages. Confocal and live cell imaging confirms that our screen successfully selected a peptide with very high binding and uptake in osteoblasts. We conclude that next generation sequencing can significantly empower phage display screenings by accelerating the finding of specific binders and restraining the number of false positive hits.
Collapse
Affiliation(s)
- Peter A C 't Hoen
- Center for Human and Clinical Genetics and Leiden Genome Technology Center, Leiden University Medical Center, 2300 RC Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Fowler DM, Araya CL, Gerard W, Fields S. Enrich: software for analysis of protein function by enrichment and depletion of variants. ACTA ACUST UNITED AC 2011; 27:3430-1. [PMID: 22006916 PMCID: PMC3232369 DOI: 10.1093/bioinformatics/btr577] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Summary: Measuring the consequences of mutation in proteins is critical to understanding their function. These measurements are essential in such applications as protein engineering, drug development, protein design and genome sequence analysis. Recently, high-throughput sequencing has been coupled to assays of protein activity, enabling the analysis of large numbers of mutations in parallel. We present Enrich, a tool for analyzing such deep mutational scanning data. Enrich identifies all unique variants (mutants) of a protein in high-throughput sequencing datasets and can correct for sequencing errors using overlapping paired-end reads. Enrich uses the frequency of each variant before and after selection to calculate an enrichment ratio, which is used to estimate fitness. Enrich provides an interactive interface to guide users. It generates user-accessible output for downstream analyses as well as several visualizations of the effects of mutation on function, thereby allowing the user to rapidly quantify and comprehend sequence–function relationships. Availability and Implementation: Enrich is implemented in Python and is available under a FreeBSD license at http://depts.washington.edu/sfields/software/enrich/. Enrich includes detailed documentation as well as a small example dataset. Contact:dfowler@uw.edu; fields@uw.edu Supplementary Information:Supplementary data is available at Bioinformatics online.
Collapse
Affiliation(s)
- Douglas M Fowler
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
45
|
van den Akker J, VanBavel E, van Geel R, Matlung HL, Guvenc Tuna B, Janssen GMC, van Veelen PA, Boelens WC, De Mey JGR, Bakker ENTP. The redox state of transglutaminase 2 controls arterial remodeling. PLoS One 2011; 6:e23067. [PMID: 21901120 PMCID: PMC3161997 DOI: 10.1371/journal.pone.0023067] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 07/06/2011] [Indexed: 11/18/2022] Open
Abstract
While inward remodeling of small arteries in response to low blood flow, hypertension, and chronic vasoconstriction depends on type 2 transglutaminase (TG2), the mechanisms of action have remained unresolved. We studied the regulation of TG2 activity, its (sub) cellular localization, substrates, and its specific mode of action during small artery inward remodeling. We found that inward remodeling of isolated mouse mesenteric arteries by exogenous TG2 required the presence of a reducing agent. The effect of TG2 depended on its cross-linking activity, as indicated by the lack of effect of mutant TG2. The cell-permeable reducing agent DTT, but not the cell-impermeable reducing agent TCEP, induced translocation of endogenous TG2 and high membrane-bound transglutaminase activity. This coincided with inward remodeling, characterized by a stiffening of the artery. The remodeling could be inhibited by a TG2 inhibitor and by the nitric oxide donor, SNAP. Using a pull-down assay and mass spectrometry, 21 proteins were identified as TG2 cross-linking substrates, including fibronectin, collagen and nidogen. Inward remodeling induced by low blood flow was associated with the upregulation of several anti-oxidant proteins, notably glutathione-S-transferase, and selenoprotein P. In conclusion, these results show that a reduced state induces smooth muscle membrane-bound TG2 activity. Inward remodeling results from the cross-linking of vicinal matrix proteins, causing a stiffening of the arterial wall.
Collapse
Affiliation(s)
- Jeroen van den Akker
- Department of Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ed VanBavel
- Department of Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Remon van Geel
- Department of Biomolecular Chemistry 271, Nijmegen Center for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Hanke L. Matlung
- Department of Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Bilge Guvenc Tuna
- Department of Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - George M. C. Janssen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands
- Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Peter A. van Veelen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands
| | - Wilbert C. Boelens
- Department of Biomolecular Chemistry 271, Nijmegen Center for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Jo G. R. De Mey
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Erik N. T. P. Bakker
- Department of Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
46
|
D'Angelo S, Velappan N, Mignone F, Santoro C, Sblattero D, Kiss C, Bradbury ARM. Filtering "genic" open reading frames from genomic DNA samples for advanced annotation. BMC Genomics 2011; 12 Suppl 1:S5. [PMID: 21810207 PMCID: PMC3223728 DOI: 10.1186/1471-2164-12-s1-s5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background In order to carry out experimental gene annotation, DNA encoding open reading frames (ORFs) derived from real genes (termed "genic") in the correct frame is required. When genes are correctly assigned, isolation of genic DNA for functional annotation can be carried out by PCR. However, not all genes are correctly assigned, and even when correctly assigned, gene products are often incorrectly folded when expressed in heterologous hosts. This is a problem that can sometimes be overcome by the expression of protein fragments encoding domains, rather than full-length proteins. One possible method to isolate DNA encoding such domains would to "filter" complex DNA (cDNA libraries, genomic and metagenomic DNA) for gene fragments that confer a selectable phenotype relying on correct folding, with all such domains present in a complex DNA sample, termed the “domainome”. Results In this paper we discuss the preparation of diverse genic ORF libraries from randomly fragmented genomic DNA using ß-lactamase to filter out the open reading frames. By cloning DNA fragments between leader sequences and the mature ß-lactamase gene, colonies can be selected for resistance to ampicillin, conferred by correct folding of the lactamase gene. Our experiments demonstrate that the majority of surviving colonies contain genic open reading frames, suggesting that ß-lactamase is acting as a selectable folding reporter. Furthermore, different leaders (Sec, TAT and SRP), normally translocating different protein classes, filter different genic fragment subsets, indicating that their use increases the fraction of the “domainone” that is accessible. Conclusions The availability of ORF libraries, obtained with the filtering method described here, combined with screening methods such as phage display and protein-protein interaction studies, or with protein structure determination projects, can lead to the identification and structural determination of functional genic ORFs. ORF libraries represent, moreover, a useful tool to proceed towards high-throughput functional annotation of newly sequenced genomes.
Collapse
Affiliation(s)
- Sara D'Angelo
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Woollard PM, Mehta NA, Vamathevan JJ, Van Horn S, Bonde BK, Dow DJ. The application of next-generation sequencing technologies to drug discovery and development. Drug Discov Today 2011; 16:512-9. [DOI: 10.1016/j.drudis.2011.03.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/24/2011] [Accepted: 03/17/2011] [Indexed: 12/17/2022]
|
48
|
Deep mutational scanning: assessing protein function on a massive scale. Trends Biotechnol 2011; 29:435-42. [PMID: 21561674 DOI: 10.1016/j.tibtech.2011.04.003] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/01/2011] [Accepted: 04/11/2011] [Indexed: 12/23/2022]
Abstract
Analysis of protein mutants is an effective means to understand their function. Protein display is an approach that allows large numbers of mutants of a protein to be selected based on their activity, but only a handful with maximal activity have been traditionally identified for subsequent functional analysis. However, the recent application of high-throughput sequencing (HTS) to protein display and selection has enabled simultaneous assessment of the function of hundreds of thousands of mutants that span the activity range from high to low. Such deep mutational scanning approaches are rapid and inexpensive with the potential for broad utility. In this review, we discuss the emergence of deep mutational scanning, the challenges associated with its use and some of its exciting applications.
Collapse
|
49
|
Malini E, Maurizio E, Bembich S, Sgarra R, Edomi P, Manfioletti G. HMGA Interactome: new insights from phage display technology. Biochemistry 2011; 50:3462-8. [PMID: 21417337 DOI: 10.1021/bi200101f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
High mobility group A proteins (HMGA1 and HMGA2) are architectural factors involved in chromatin remodelling and regulation of gene expression. HMGA are highly expressed during embryogenesis and in cancer cells and are involved in development and cell differentiation as well as cancer formation and progression. These factors, by binding to DNA and interacting with other nuclear proteins, can organize macromolecular complexes involved in transcription, chromatin dynamics, RNA processing, and DNA repair. The identification of protein partners for HMGA has greatly contributed to our understanding of their multiple functions. He we report the identification of HMGA molecular partners using a gene fragment library in a phage display screening. Using an ORF-enriched cDNA library, we have isolated several HMGA1 interacting clones and for two of them, TBP associated factor 3 (TAF3) and chromatin assembly factor 1 p150/CAF-1, have demonstrated an in vivo association with HMGA1. The identification of these new partners suggests that HMGA can also influence general aspects of transcription and once more underlines their involvement in chromatin remodelling and dynamics.
Collapse
Affiliation(s)
- Erika Malini
- Department of Life Sciences, University of Trieste, Italy
| | | | | | | | | | | |
Collapse
|
50
|
Identification of calpain substrates by ORF phage display. Molecules 2011; 16:1739-48. [PMID: 21339709 PMCID: PMC3175615 DOI: 10.3390/molecules16021739] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 02/18/2011] [Indexed: 11/17/2022] Open
Abstract
Substrate identification is the key to defining molecular pathways or cellular processes regulated by proteases. Although phage display with random peptide libraries has been used to analyze substrate specificity of proteases, it is difficult to deduce endogenous substrates from mapped peptide motifs. Phage display with conventional cDNA libraries identifies high percentage of non-open reading frame (non-ORF) clones, which encode short unnatural peptides, owing to uncontrollable reading frames of cellular proteins. We recently developed ORF phage display to identify endogenous proteins with specific binding or functional activity with minimal reading frame problem. Here we used calpain 2 as a protease to demonstrate that ORF phage display is capable of identifying endogenous substrates and showed its advantage to re-verify and characterize the identified substrates without requiring pure substrate proteins. An ORF phage display cDNA library with C-terminal biotin was bound to immobilized streptavidin and released by cleavage with calpain 2. After three rounds of phage selection, eleven substrates were identified, including calpastatin of endogenous calpain inhibitor. These results suggest that ORF phage display is a valuable technology to identify endogenous substrates for proteases.
Collapse
|