1
|
Gonawala L, Wijekoon N, Attanayake D, Ratnayake P, Sirisena D, Gunasekara H, Dissanayake A, Keshavaraj A, Mohan C, Steinbusch HWM, Hoffman EP, Dalal A, de Silva KRD. Diagnostic outcome of pro bono neurogenetic diagnostic service in Sri Lanka: A wealth creation. Eur J Hum Genet 2024; 32:1299-1306. [PMID: 38253783 PMCID: PMC11500083 DOI: 10.1038/s41431-023-01525-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/29/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
The inherited disease community in Sri Lanka has been widely neglected. This article aimed to present accumulated knowledge in establishing a pro bono cost-effective national, island-wide, free-of-charge molecular diagnostic service, suggesting a model for other developing countries. The project provided 637 molecular diagnostic tests and reports free of charge to a nation with limited resources. We pioneered the implementation of mobile clinics and home visits, where the research team acted as barefoot doctors with the concept of the doctor and the researcher at the patient's doorstep. Establishing pro bono, cost-effective molecular diagnostics is feasible in developing countries with limited resources and state funding through the effort of dedicated postgraduate students. This service could provide an accurate molecular diagnosis of Duchenne muscular dystrophy, Huntington's disease, Spinocerebellar ataxia, and Spinal muscular atrophy, a diagnostic yield of 54% (343/637), of which 43% (147/343) of the patients identified as amenable for available gene therapies. Initiated human resource development by double doctoral degree opportunities with international collaborations. Established a neurobiobank and a national registry in Sri Lanka, a rich and unique repository, wealth creation for translational collaborative research and sharing of information in neurological diseases, as well as a lodestar for aspiring initiatives from other developing countries.
Collapse
Grants
- FMS/7090/2010 Muscular Dystrophy Association (Muscular Dystrophy Association Inc.)
- WCUP/Ph. D./19/2013, WCUP/Ph. D./19B/2013, ASP/06/RE/2010/07,ASP/06/RE/2012/18, ASP/06/RE/2013/28 University of Sri Jayewardenepura (USJP)
- 2010/81594-0 World Health Organization (WHO)
- Ministry of Primary Industries, Sri Lanka (Grant Number SP/CIN/2016/02) General Sir John Kotelawala Defence University, Sri Lanka (Grant Numbers KDU/RG/2021/CARE/005 and KDU/RG/2021/CARE/006); and the Interdisciplinary Center for Innovation in Biotechnology and Neuroscience, University of Sri Jayewardenepura (ICIBN/ USJ). The equipment was donated by the National Institutes of Health (Bethesda, MD, USA) through IBRO-APRC and by the Chinese Neuroscience Society. Moreover, the corresponding author received funding from the IBRO-APRC and the International Society for Neurochemistry for international training scholarships for postgraduates and neuroscience workshops in Sri Lanka.
Collapse
Affiliation(s)
- Lakmal Gonawala
- Centre for Innovations in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6200, Maastricht, The Netherlands
| | - Nalaka Wijekoon
- Centre for Innovations in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6200, Maastricht, The Netherlands
| | - Darshika Attanayake
- Centre for Innovations in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | | | | | | | | | | | - Chandra Mohan
- Department of Bioengineering, University of Houston, Houston, TX, USA
| | - Harry W M Steinbusch
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6200, Maastricht, The Netherlands
| | - Eric P Hoffman
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, New York, USA
| | - Ashwin Dalal
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| | - K Ranil D de Silva
- Centre for Innovations in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6200, Maastricht, The Netherlands.
- Institute for Combinatorial Advanced Research and Education (KDU-CARE), General Sir John Kotelawala Defence University, Ratmalana, Sri Lanka.
| |
Collapse
|
2
|
Venkatachari IV, Chougule A, Gowri V, Taur P, Bodhanwala M, Prabhu S, Madkaikar M, Desai M. Monogenic inborn errors of immunity in autoimmune disorders. Immunol Res 2023; 71:771-780. [PMID: 37199901 DOI: 10.1007/s12026-023-09391-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/03/2023] [Indexed: 05/19/2023]
Abstract
To estimate the prevalence of monogenic inborn errors of immunity in patients with autoimmune diseases (AID), the study included 56 subjects (male:female ratio: 1.07) with mean age of onset of autoimmunity 7 years (4 months-46 years). 21/56 had polyautoimmunity. 5/56 patients met the JMF criteria for PID. The different AID referred were hematological (42%) > gastrointestinal (GI) (16%) > skin (14%) > endocrine (10%) > rheumatological (8%) > renal (6%) > neurological (2%). 36/56 reported recurrent infections. 27/56 were on polyimmunotherapy. 18/52 (35%) had CD19 lymphopenia, 24/52 (46%) had CD4 lymphopenia, 11/52 (21%) had CD8 lymphopenia, and 14/48 (29%) had NK lymphopenia. 21/50 (42%) had hypogammaglobinemia; 3 of whom were given rituximab. 28/56 were found to have pathogenic variants among PIRD genes. These 28 patients had 42 AID among which hematological was most common (50%) > GI (14%) = skin (14%)> endocrine (9%) > rheumatological (7%) > renal and neurological (2%). Hematological AID was the most common AID (75%) in children with PIRD. Positive predictive value (PPV) of abnormal immunological tests was 50% and sensitivity of 70%. JMF criteria had specificity of 100% in identifying PIRD and sensitivity of 17%. Polyautoimmunity had a PPV of 35% and sensitivity of 40%. 11/28 of these children were offered transplant. 8/28 were started on sirolimus, 2/28 on abatacept, and 3/28 on baricitinib/ruxolitinib after diagnosis. In conclusion, 50% of children with AID have underlying PIRD. LRBA deficiency and STAT1 GOF were the most common PIRD. Age at presentation, number of autoimmunity, routine immunological tests, and JMF criteria are not predictive of underlying PIRD. Early diagnosis with exome sequencing alters the prognosis and opens new therapeutic avenue.
Collapse
Affiliation(s)
| | - Akshaya Chougule
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Acharya Dhonde Marg, Parel, Mumbai, 400012, India
| | - Vijaya Gowri
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Acharya Dhonde Marg, Parel, Mumbai, 400012, India
| | - Prasad Taur
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Acharya Dhonde Marg, Parel, Mumbai, 400012, India
| | - Minnie Bodhanwala
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Acharya Dhonde Marg, Parel, Mumbai, 400012, India
| | - Shakuntala Prabhu
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Acharya Dhonde Marg, Parel, Mumbai, 400012, India
| | - Manisha Madkaikar
- National Institute of Immunohematology, ICMR, KEM, Parel, Mumbai, India
| | - Mukesh Desai
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Acharya Dhonde Marg, Parel, Mumbai, 400012, India.
| |
Collapse
|
3
|
Ilori T, Watanabe A, Ng KH, Solarin A, Sinha A, Gbadegesin R. Genetics of Chronic Kidney Disease in Low-Resource Settings. Semin Nephrol 2022; 42:151314. [PMID: 36801667 PMCID: PMC10272019 DOI: 10.1016/j.semnephrol.2023.151314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Advances in kidney genomics in the past 20 years has opened the door for more precise diagnosis of kidney disease and identification of new and specific therapeutic agents. Despite these advances, an imbalance exists between low-resource and affluent regions of the world. Individuals of European ancestry from the United States, United Kingdom, and Iceland account for 16% of the world's population, but represent more than 80% of all genome-wide association studies. South Asia, Southeast Asia, Latin America, and Africa together account for 57% of the world population but less than 5% of genome-wide association studies. Implications of this difference include limitations in new variant discovery, inaccurate interpretation of the effect of genetic variants in non-European populations, and unequal access to genomic testing and novel therapies in resource-poor regions. It also further introduces ethical, legal, and social pitfalls, and ultimately may propagate global health inequities. Ongoing efforts to reduce the imbalance in low-resource regions include funding and capacity building, population-based genome sequencing, population-based genome registries, and genetic research networks. More funding, training, and capacity building for infrastructure and expertise is needed in resource-poor regions. Focusing on this will ensure multiple-fold returns on investments in genomic research and technology.
Collapse
Affiliation(s)
- Titilayo Ilori
- Division of Nephrology, Boston University School of Medicine, Boston, MA
| | - Andreia Watanabe
- Division of Molecular Medicine, Department of Pediatrics, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Kar-Hui Ng
- Department of Pediatrics, Yong Loo Lin School of Medicine, Singapore
| | - Adaobi Solarin
- Department of Pediatrics and Child Health, Lagos State University College of Medicine, Ikeja, Lagos, Nigeria
| | - Aditi Sinha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Rasheed Gbadegesin
- Division of Nephrology, Department of Pediatrics, Duke University School of Medicine, Durham, NC.
| |
Collapse
|
4
|
Sengupta D, Banerjee S, Mukhopadhyay P, Mitra R, Chaudhuri T, Sarkar A, Bhattacharjee G, Nath S, Roychoudhury S, Bhattacharjee S, Sengupta M. A comprehensive meta-analysis and a case-control study give insights into genetic susceptibility of lung cancer and subgroups. Sci Rep 2021; 11:14572. [PMID: 34272429 PMCID: PMC8285487 DOI: 10.1038/s41598-021-92275-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 06/08/2021] [Indexed: 12/17/2022] Open
Abstract
Reports of genetic association of polymorphisms with lung cancer in the Indian subcontinent are often conflicting. To summarise and replicate published evidence for association with lung cancer and its subgroups. We performed a meta-analysis of candidate associations on lung cancer, its histological subtypes and smoking status in the Indian subcontinent following PRISMA guidelines. Multiple testing corrections were done by the Benjamini-Hochberg method through assessment of significance at a false discovery rate of 10%. We genotyped and investigated rs1048943/CYP1A1 in a case-control sample from eastern India, followed by its global meta-analysis using a similar protocol. Meta-analysis of 18 variants of 11 genes reported in 39 studies (7630 cases and 8169 controls) showed significant association of rs1048943/CYP1A1 [2.07(1.49-2.87)] and rs4646903/CYP1A1 [1.48(1.93-1.95)] with overall lung cancer risk at 10% FDR, while nominal association (p < 0.05) was observed for del1/GSTT1, del2/GSTM1, rs1695/GSTP1 and rs17037102/ DKK2. Subtype analysis showed a significant association of del1/GSTT1 with adenocarcinoma, rs4646903/CYP1A1 with squamous carcinoma, and rs1048943/CYP1A1 with both. Association of rs4646903/CYP1A1 in smokers and effect modification by meta-regression analysis was observed. Genotyping of rs1048943/CYP1A1 that presented significant heterogeneity (p < 0.1) revealed an association with adenocarcinoma among eastern Indian smokers, while a global meta-analysis in 10458 cases and 10871 controls showed association with lung cancer and its subgroups. This study identified the susceptibility loci for lung cancer and its covariate-subgroups.
Collapse
Affiliation(s)
- Debmalya Sengupta
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Souradeep Banerjee
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Pramiti Mukhopadhyay
- Greehey Children's Cancer Research Institute, UT Health San Antonio, 8403 Floyd Curl Dr., San Antonio, TX-78229, USA
| | - Ritabrata Mitra
- Department of CHEST, IPGME&R, 244 A.J.C. Bose Road, Kolkata, 700020, India
| | - Tamohan Chaudhuri
- Saroj Gupta Cancer Centre and Research Institute, Mahatma Gandhi Road, Thakurpukur, Kolkata, 700063, India
| | - Abhijit Sarkar
- Saroj Gupta Cancer Centre and Research Institute, Mahatma Gandhi Road, Thakurpukur, Kolkata, 700063, India
| | - Gautam Bhattacharjee
- Saroj Gupta Cancer Centre and Research Institute, Mahatma Gandhi Road, Thakurpukur, Kolkata, 700063, India
| | - Somsubhra Nath
- Saroj Gupta Cancer Centre and Research Institute, Mahatma Gandhi Road, Thakurpukur, Kolkata, 700063, India
| | - Susanta Roychoudhury
- CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, India
| | - Samsiddhi Bhattacharjee
- National Institute of Biomedical Genomics, Near Netaji Subhas Sanatorium Post Office, Kalyani, West Bengal, 741251, India.
| | - Mainak Sengupta
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
5
|
Kalfakakou D, Fostira F, Papathanasiou A, Apostolou P, Dellatola V, Gavra IE, Vlachos IS, Scouras ZG, Drosopoulou E, Yannoukakos D, Konstantopoulou I. CanVaS: Documenting the genetic variation spectrum of Greek cancer patients. Hum Mutat 2021; 42:1081-1093. [PMID: 34174131 DOI: 10.1002/humu.24249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/13/2021] [Accepted: 06/14/2021] [Indexed: 11/08/2022]
Abstract
National genetic variation registries vastly increase the level of detail for the relevant population, while directly affecting patient management. Herein, we report CanVaS, a Cancer Variation reSource aiming to document the genetic variation of cancer patients in Greece. CanVaS comprises germline genetic data from 7,363 Greek individuals with a personal and/or family history of malignancy. The data set incorporates approximately 24,000 functionally annotated rare variants in 97 established or suspected cancer susceptibility genes. For each variant, allele frequency for the Greek population, interpretation for clinical significance, anonymized family and segregation information, as well as phenotypic traits of the carriers, are included. Moreover, information on the geographic distribution of the variants across the country is provided, enabling the study of Greek population isolates. Direct comparisons between Greek (sub)populations with relevant genetic resources are supported, allowing fine-grain localized adjustment of guidelines and clinical decision-making. Most importantly, anonymized data are available for download, while the Leiden Open Variation Database schema is adopted, enabling integration/interconnection with central resources. CanVaS could become a stepping-stone for a countrywide effort to characterize the cancer genetic variation landscape, concurrently supporting national and international cancer research. The database can be accessed at: http://ithaka.rrp.demokritos.gr/CanVaS.
Collapse
Affiliation(s)
- Despoina Kalfakakou
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Molecular Diagnostics Laboratory, Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Florentia Fostira
- Molecular Diagnostics Laboratory, Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Athanasios Papathanasiou
- Molecular Diagnostics Laboratory, Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Paraskevi Apostolou
- Molecular Diagnostics Laboratory, Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Vasiliki Dellatola
- Molecular Diagnostics Laboratory, Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Ioanna E Gavra
- Molecular Diagnostics Laboratory, Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Ioannis S Vlachos
- Department of Pathology, Cancer Research Institute, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Zacharias G Scouras
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Drosopoulou
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Drakoulis Yannoukakos
- Molecular Diagnostics Laboratory, Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Irene Konstantopoulou
- Molecular Diagnostics Laboratory, Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, National Center for Scientific Research "Demokritos", Athens, Greece
| |
Collapse
|
6
|
Bansal M, Tandon R, Saxena R, Sharma A, Sen S, Kishore A, Venkatesh P, Maiti S, Chakraborty D. Ophthalmic genetics practice and research in India: Vision in 2020. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:718-727. [PMID: 32865332 DOI: 10.1002/ajmg.c.31827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/19/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022]
Abstract
Ophthalmic genetics is a much needed and growing area in India. Ethnic diversity, with a high degree of consanguinity, has led to a high prevalence of genetic disorders in the country. As the second most populous country in the world, this naturally results in a significant number of affected people overall. Practice involves coherent association between ophthalmologists, genetic counselor and pediatricians. Eye genetics in India in recent times has witnessed advanced research using cutting edge diagnostics, next generation sequencing (NGS) approaches, stem cell therapies, gene therapy and genomic editing. This article will highlight the studies reporting genetic variations in the country, challenges in practice, and the latest advances in ophthalmic genetic research in India.
Collapse
Affiliation(s)
- Mayank Bansal
- Council for Scientific and Industrial Research (CSIR), Institute of Genomics and Integrative Biology (IGIB), New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Delhi, India.,Department of Ophthalmology, Fortis Memorial Research Institute, Gurugram, India
| | - Radhika Tandon
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Rohit Saxena
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Arundhati Sharma
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Sagnik Sen
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Alisha Kishore
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Pradeep Venkatesh
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Souvik Maiti
- Council for Scientific and Industrial Research (CSIR), Institute of Genomics and Integrative Biology (IGIB), New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Delhi, India
| | - Debojyoti Chakraborty
- Council for Scientific and Industrial Research (CSIR), Institute of Genomics and Integrative Biology (IGIB), New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Delhi, India
| |
Collapse
|
7
|
Pemmasani SK, Raman R, Mohapatra R, Vidyasagar M, Acharya A. A Review on the Challenges in Indian Genomics Research for Variant Identification and Interpretation. Front Genet 2020; 11:753. [PMID: 32793285 PMCID: PMC7387655 DOI: 10.3389/fgene.2020.00753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/24/2020] [Indexed: 11/13/2022] Open
Abstract
Today, genomic data holds great potential to improve healthcare strategies across various dimensions – be it disease prevention, enhanced diagnosis, or optimized treatment. The biggest hurdle faced by the medical and research community in India is the lack of genotype-phenotype correlations for Indians at a population-wide and an individual level. This leads to inefficient translation of genomic information during clinical decision making. Population-wide sequencing projects for Indian genomes help overcome hurdles and enable us to unearth and validate the genetic markers for different health conditions. Machine learning algorithms are essential to analyze huge amounts of genotype data in synergy with gene expression, demographic, clinical, and pathological data. Predictive models developed through these algorithms help in classifying the individuals into different risk groups, so that preventive measures and personalized therapies can be designed. They also help in identifying the impact of each genetic marker with the associated condition, from a clinical perspective. In India, genome sequencing technologies have now become more accessible to the general population. However, information on variants associated with several major diseases is not available in publicly-accessible databases. Creating a centralized database of variants facilitates early detection and mitigation of health risks in individuals. In this article, we discuss the challenges faced by genetic researchers and genomic testing facilities in India, in terms of dearth of public databases, people with knowledge on machine learning algorithms, computational resources and awareness in the medical community in interpreting genetic variants. Potential solutions to enhance genomic research in India, are also discussed.
Collapse
Affiliation(s)
| | - Rasika Raman
- Research and Development Division, Mapmygenome India Limited, Hyderabad, India
| | | | | | - Anuradha Acharya
- Research and Development Division, Mapmygenome India Limited, Hyderabad, India
| |
Collapse
|
8
|
Angural A, Spolia A, Mahajan A, Verma V, Sharma A, Kumar P, Dhar MK, Pandita KK, Rai E, Sharma S. Review: Understanding Rare Genetic Diseases in Low Resource Regions Like Jammu and Kashmir - India. Front Genet 2020; 11:415. [PMID: 32425985 PMCID: PMC7203485 DOI: 10.3389/fgene.2020.00415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
Rare diseases (RDs) are the clinical conditions affecting a few percentage of individuals in a general population compared to other diseases. Limited clinical information and a lack of reliable epidemiological data make their timely diagnosis and therapeutic management difficult. Emerging Next-Generation DNA Sequencing technologies have enhanced our horizons on patho-physiological understanding of many of the RDs and ushered us into an era of diagnostic and therapeutic research related to this ignored health challenge. Unfortunately, relevant research is meager in developing countries which lack a reliable estimate of the exact burden of most of the RDs. India is to be considered as the "Pandora's Box of genetic disorders." Owing to its huge population heterogeneity and high inbreeding or endogamy rates, a higher burden of rare recessive genetic diseases is expected and supported by the literature findings that endogamy is highly detrimental to health as it enhances the degree of homozygosity of recessive alleles in the general population. The population of a low resource region Jammu and Kashmir (J&K) - India, is highly inbred. Some of its population groups variably practice consanguinity. In context with the region's typical geographical topography, highly inbred population structure and unique but heterogeneous gene pool, a huge burden of known and uncharacterized genetic disorders is expected. Unfortunately, many suspected cases of genetic disorders remain undiagnosed or misdiagnosed due to lack of appropriate clinical as well as diagnostic resources in the region, causing patients to face a huge psycho-socio-economic crisis and many a time suffer life-long with their ailment. In this review, the major challenges associated with RDs are highlighted in general and an account on the methods that can be adopted for conducting fruitful molecular genetic studies in genetically vulnerable and low resource regions is also provided, with an example of a region like J&K - India.
Collapse
Affiliation(s)
- Arshia Angural
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Akshi Spolia
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Ankit Mahajan
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Vijeshwar Verma
- Bioinformatics Infrastructure Facility, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Ankush Sharma
- Shri Mata Vaishno Devi Narayana Superspeciality Hospital, Katra, India
| | - Parvinder Kumar
- Institute of Human Genetics, University of Jammu, Jammu, India
| | | | - Kamal Kishore Pandita
- Shri Mata Vaishno Devi Narayana Superspeciality Hospital, Katra, India
- Independent Researcher, Health Clinic, Jammu, India
| | - Ekta Rai
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Swarkar Sharma
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| |
Collapse
|
9
|
Kar D, Sellamuthu K, Kumar SD, Eswarappa SM. Induction of Translational Readthrough across the Thalassemia-Causing Premature Stop Codon in β-Globin-Encoding mRNA. Biochemistry 2019; 59:80-84. [PMID: 31577420 DOI: 10.1021/acs.biochem.9b00761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nonsense mutations that result in premature stop codons in the HBB gene cause β-thalassemia. This disease is characterized by a reduced hemoglobin level due to the lack of β-globin. Compounds that induce translational readthrough across the thalassemia-causing premature stop codon will have therapeutic benefits. Currently available molecules that induce translational readthrough lack specificity, and some of them show toxicity after prolonged use. In this study, we have developed an oligonucleotide-based approach to induce translational readthrough across the thalassemia-causing premature stop codon. Oligonucleotides that target HBB mRNA downstream of the premature stop codon could induce translational readthrough, generating a full-length β-globin protein. We show this effect using fluorescence- and luminescence-based readthrough assays and by Western blot. Remarkably, the amount of oligonucleotide-induced translational readthrough product is comparable to that of the protein generated by normal translation when there was no premature stop codon. Thus, these oligonucleotides, with certain modifications, have the potential to be used as drugs for the treatment of β-thalassemia. Also, this strategy can be extended to treat other genetic diseases caused by premature stop codons.
Collapse
Affiliation(s)
- Debaleena Kar
- Department of Biochemistry , Indian Institute of Science , Bengaluru , Karnataka 560012 , India
| | - Karthi Sellamuthu
- Department of Biochemistry , Indian Institute of Science , Bengaluru , Karnataka 560012 , India
| | - Sangeetha Devi Kumar
- Department of Biochemistry , Indian Institute of Science , Bengaluru , Karnataka 560012 , India
| | - Sandeep M Eswarappa
- Department of Biochemistry , Indian Institute of Science , Bengaluru , Karnataka 560012 , India
| |
Collapse
|
10
|
Sivasubbu S, Scaria V. Genomics of rare genetic diseases-experiences from India. Hum Genomics 2019; 14:52. [PMID: 31554517 PMCID: PMC6760067 DOI: 10.1186/s40246-019-0215-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022] Open
Abstract
Home to a culturally heterogeneous population, India is also a melting pot of genetic diversity. The population architecture characterized by multiple endogamous groups with specific marriage patterns, including the widely prevalent practice of consanguinity, not only makes the Indian population distinct from rest of the world but also provides a unique advantage and niche to understand genetic diseases. Centuries of genetic isolation of population groups have amplified the founder effects, contributing to high prevalence of recessive alleles, which translates into genetic diseases, including rare genetic diseases in India.Rare genetic diseases are becoming a public health concern in India because a large population size of close to a billion people would essentially translate to a huge disease burden for even the rarest of the rare diseases. Genomics-based approaches have been demonstrated to accelerate the diagnosis of rare genetic diseases and reduce the socio-economic burden. The Genomics for Understanding Rare Diseases: India Alliance Network (GUaRDIAN) stands for providing genomic solutions for rare diseases in India. The consortium aims to establish a unique collaborative framework in health care planning, implementation, and delivery in the specific area of rare genetic diseases. It is a nation-wide collaborative research initiative catering to rare diseases across multiple cohorts, with over 240 clinician/scientist collaborators across 70 major medical/research centers. Within the GUaRDIAN framework, clinicians refer rare disease patients, generate whole genome or exome datasets followed by computational analysis of the data for identifying the causal pathogenic variations. The outcomes of GUaRDIAN are being translated as community services through a suitable platform providing low-cost diagnostic assays in India. In addition to GUaRDIAN, several genomic investigations for diseased and healthy population are being undertaken in the country to solve the rare disease dilemma.In summary, rare diseases contribute to a significant disease burden in India. Genomics-based solutions can enable accelerated diagnosis and management of rare diseases. We discuss how a collaborative research initiative such as GUaRDIAN can provide a nation-wide framework to cater to the rare disease community of India.
Collapse
Affiliation(s)
| | - Sridhar Sivasubbu
- CSIR Institute of Genomics and Integrative Biology, Delhi, 110025, India.
| | - Vinod Scaria
- CSIR Institute of Genomics and Integrative Biology, Delhi, 110025, India.
| |
Collapse
|
11
|
Qasim I, Ahmad B, Khan MA, Khan N, Muhammad N, Basit S, Khan S. Pakistan Genetic Mutation Database (PGMD); A centralized Pakistani mutome data source. Eur J Med Genet 2017; 61:204-208. [PMID: 29223505 DOI: 10.1016/j.ejmg.2017.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 11/22/2017] [Accepted: 11/26/2017] [Indexed: 10/18/2022]
Abstract
The development and advancement of next generation sequencing have not only sped up the process of identifying rare variants, but have also enabled scientists to explore all variants in a single individual. The Pakistani population has a high ratio of first degree consanguinity, which is why it is a rich source for various kinds of genetic disorders. Due to the heterogeneous composition of Pakistani population, the likelihood of genetic heterogeneity for each disorder is high. Therefore, the compilation and organization of such vast genetic data is necessary to facilitate access for analysis and interpretation to researchers and medical geneticists. The increased research on Pakistani ethnic families for disease gene identification has revealed many mutations, which has led us to develop a Pakistani mutome database entitled "Pakistan Genetic Mutation Database (PGMD)". In PGMD, the medico-genetic information about diseases are mainly compiled into Syndromic and Non-syndromic disorders. It is a public database, which can be freely accessed from http://www.pakmutation.com. At present, we have registered more than 1000 mutations, reported in about 130 different kinds of genetic disorders. Practically, PGMD will assist researchers, clinicians, and geneticists in genetic counseling and screening of population-specific mutations, which will also aid in personalized healthcare.
Collapse
Affiliation(s)
- Iqbal Qasim
- Department of Computer Science, University of Science & Technology, Bannu, Pakistan
| | - Bilal Ahmad
- Department of Computer Science, University of Science & Technology, Bannu, Pakistan
| | - Muzammil Ahmad Khan
- Gomal Centre of Biochemistry and Biotechnology Gomal University, D.I.Khan, Pakistan
| | - Niamatullah Khan
- Department of Biotechnology & Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Noor Muhammad
- Department of Biotechnology & Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Sulman Basit
- Center for Genetics and Inherited Diseases, Taibah University, Almadinah Almunawwarah, Saudi Arabia
| | - Saadullah Khan
- Department of Biotechnology & Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
12
|
Kumar S, Malik MA, K. S, Sihota R, Kaur J. Genetic variants associated with primary open angle glaucoma in Indian population. Genomics 2017; 109:27-35. [PMID: 27851990 DOI: 10.1016/j.ygeno.2016.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 01/26/2023]
|
13
|
Chakrabarty S, Kabekkodu SP, Brand A, Satyamoorthy K. Perspectives on Translational Genomics and Public Health in India. Public Health Genomics 2015; 19:61-8. [PMID: 26683060 DOI: 10.1159/000442518] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 11/19/2022] Open
Abstract
It is now recognized worldwide that anticipation and prevention of diseases have significant advantages for the health and healthy ageing of the population. Early recognition of the disease in a vulnerable population such as in children aged <5 years and adults aged >60 years enhances our preparedness for any eventualities and future burden of the diseases to society. It is also recognized that current public health practices alone cannot bring about the desired outcome. When tackling public health-related issues, such problems must be recognized and state-of-the-art principles and innovations from genomic sciences, information technologies, and medical specialties must be encompassed and embraced. These will enhance strategies for preparedness and provide us with a better understanding of how to identify, manage, and control disease burdens. The ever expanding landscape of genomics research also includes experimental and computational approaches for effectively utilizing DNA sequence information. From these perspectives, the intricacies of Mendelian single gene disorders are the least challenging compared to intricacies of multi-dimensional host factors for infectious diseases or complex disorders such as cancer. The concepts of public health in India are on firm footing; however, integration of contemporary advances to implement public health principles into practice has neither been attempted nor impacted on disease burden or our preparedness to prevent eventualities. At the same time, translational genomics is gradually paving the way for personalized medicine. Principles of personalized medicine remain to be fully understood and practiced despite the pharmacogenomics-based future of drug development, and treatment has not been as exciting as the advances in genomics we are witnessing today. The relevance, importance, and translational impediments of these advances will be discussed.
Collapse
|
14
|
Tasleem M, Ishrat R, Islam A, Ahmad F, Hassan MI. Human Disease Insight: An integrated knowledge-based platform for disease-gene-drug information. J Infect Public Health 2015; 9:331-8. [PMID: 26631432 DOI: 10.1016/j.jiph.2015.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 05/21/2015] [Accepted: 10/23/2015] [Indexed: 10/22/2022] Open
Abstract
The scope of the Human Disease Insight (HDI) database is not limited to researchers or physicians as it also provides basic information to non-professionals and creates disease awareness, thereby reducing the chances of patient suffering due to ignorance. HDI is a knowledge-based resource providing information on human diseases to both scientists and the general public. Here, our mission is to provide a comprehensive human disease database containing most of the available useful information, with extensive cross-referencing. HDI is a knowledge management system that acts as a central hub to access information about human diseases and associated drugs and genes. In addition, HDI contains well-classified bioinformatics tools with helpful descriptions. These integrated bioinformatics tools enable researchers to annotate disease-specific genes and perform protein analysis, search for biomarkers and identify potential vaccine candidates. Eventually, these tools will facilitate the analysis of disease-associated data. The HDI provides two types of search capabilities and includes provisions for downloading, uploading and searching disease/gene/drug-related information. The logistical design of the HDI allows for regular updating. The database is designed to work best with Mozilla Firefox and Google Chrome and is freely accessible at http://humandiseaseinsight.com.
Collapse
Affiliation(s)
- Munazzah Tasleem
- Centre for Interdisciplinary Research In Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Romana Ishrat
- Centre for Interdisciplinary Research In Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research In Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research In Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research In Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
15
|
Ankala A, Tamhankar PM, Valencia CA, Rayam KK, Kumar MM, Hegde MR. Clinical Applications and Implications of Common and Founder Mutations in Indian Subpopulations. Hum Mutat 2014; 36:1-10. [DOI: 10.1002/humu.22704] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 09/16/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Arunkanth Ankala
- Department of Human Genetics; Emory University School of Medicine; Atlanta Georgia
| | - Parag M. Tamhankar
- ICMR Genetic Research Center; National Institute for Research in Reproductive Health; Mumbai Maharashtra India
| | - C. Alexander Valencia
- Division of Human Genetics; Cincinnati Children's Hospital Medical Center; Cincinnati Ohio
- Department of Pediatrics; University of Cincinnati Medical School; Cincinnati Ohio
| | - Krishna K. Rayam
- Department of Biosciences; CMR Institute of Management Studies; Bangalore Karnataka India
| | - Manisha M. Kumar
- Department of Biosciences; CMR Institute of Management Studies; Bangalore Karnataka India
| | - Madhuri R. Hegde
- Department of Human Genetics; Emory University School of Medicine; Atlanta Georgia
| |
Collapse
|
16
|
Juyal G, Mondal M, Luisi P, Laayouni H, Sood A, Midha V, Heutink P, Bertranpetit J, Thelma BK, Casals F. Population and genomic lessons from genetic analysis of two Indian populations. Hum Genet 2014; 133:1273-87. [PMID: 24980708 DOI: 10.1007/s00439-014-1462-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/05/2014] [Indexed: 12/25/2022]
Abstract
Indian demographic history includes special features such as founder effects, interpopulation segregation, complex social structure with a caste system and elevated frequency of consanguineous marriages. It also presents a higher frequency for some rare mendelian disorders and in the last two decades increased prevalence of some complex disorders. Despite the fact that India represents about one-sixth of the human population, deep genetic studies from this terrain have been scarce. In this study, we analyzed high-density genotyping and whole-exome sequencing data of a North and a South Indian population. Indian populations show higher differentiation levels than those reported between populations of other continents. In this work, we have analyzed its consequences, by specifically assessing the transferability of genetic markers from or to Indian populations. We show that there is limited genetic marker portability from available genetic resources such as HapMap or the 1,000 Genomes Project to Indian populations, which also present an excess of private rare variants. Conversely, tagSNPs show a high level of portability between the two Indian populations, in contrast to the common belief that North and South Indian populations are genetically very different. By estimating kinship from mates and consanguinity in our data from trios, we also describe different patterns of assortative mating and inbreeding in the two populations, in agreement with distinct mating preferences and social structures. In addition, this analysis has allowed us to describe genomic regions under recent adaptive selection, indicating differential adaptive histories for North and South Indian populations. Our findings highlight the importance of considering demography for design and analysis of genetic studies, as well as the need for extending human genetic variation catalogs to new populations and particularly to those with particular demographic histories.
Collapse
Affiliation(s)
- Garima Juyal
- Department of Genetics, University of Delhi South Campus, New Delhi, 110 021, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Molecular basis of albinism in India: evaluation of seven potential candidate genes and some new findings. Gene 2012; 511:470-4. [PMID: 23010199 DOI: 10.1016/j.gene.2012.09.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 09/06/2012] [Accepted: 09/06/2012] [Indexed: 11/21/2022]
Abstract
Albinism represents a group of genetic disorders with a broad spectrum of hypopigmentary phenotypes dependent on the genetic background of the patients. Oculocutaneous albinism (OCA) patients have little or no pigment in their eyes, skin and hair, whereas ocular albinism (OA) primarily presents the ocular symptoms, and the skin and hair color may vary from near normal to very fair. Mutations in genes directly or indirectly regulating melanin production are responsible for different forms of albinism with overlapping clinical features. In this study, 27 albinistic individuals from 24 families were screened for causal variants by a PCR-sequencing based approach. TYR, OCA2, TYRP1, SLC45A2, SLC24A5, TYRP2 and SILV were selected as candidate genes. We identified 5 TYR and 3 OCA2 mutations, majority in homozygous state, in 8 unrelated patients including a case of autosomal recessive ocular albinism (AROA). A homozygous 4-nucleotide novel insertion in SLC24A5 was detected in a person showing with extreme cutaneous hypopigmentation. A potential causal variant was identified in the TYRP2 gene in a single patient. Haplotype analyses in the patients carrying homozygous mutations in the classical OCA genes suggested founder effect. This is the first report of an Indian AROA patient harboring a mutation in OCA2. Our results also reveal for the first time that mutations in SLC24A5 could contribute to extreme hypopigmentation in humans.
Collapse
|
18
|
Liu T, Xie L, Ye J, Liu Y, He X. Screening of candidate genes for primary open angle glaucoma. Mol Vis 2012; 18:2119-26. [PMID: 22876139 PMCID: PMC3413431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/23/2012] [Indexed: 11/15/2022] Open
Abstract
PURPOSE Primary open-angle glaucoma (POAG) is one of the leading causes of irreversible blindness in the world. To make progress in understanding POAG, it is necessary to identify more POAG-causing genes. METHODS Using haplotype analysis, we found that mutational region is located on chromosome 2 in two families. Furthermore, we screened 11 candidate genes on chromosome 2 by protein-protein interaction (PPI) analysis, including mutS homolog 6 (MSH6), mutS homolog 2 (MSH2), v-rel reticuloendotheliosis viral oncogene homolog (REL), endothelial PAS domain protein 1 (EPAS1), vaccinia related kinase 2 (VRK2), F-box protein 11 (FBXO11), EGF containing fibulin-like extracellular matrix protein 1 (EFEMP1), reticulon 4 (RTN4), RAB1A, member RAS oncogene family (RAB1A), ARP2 actin-related protein 2 homolog (ACTR2), and calmodulin 2 (phosphorylase kinase, delta; CALM2). These 11 genes are all predicted to be related to trabecular meshwork changes and progressive loss of retinal ganglion cells in POAG patients. RESULTS According to our study, FBXO11 and VRK2 may interact with tumor protein p53 to regulate mitochondrial membrane permeability, mitochondrial membrane organization, and apoptosis. MSH2 is responsible for repairing DNA mismatches and RTN4 is for neuronal regeneration. Therefore, they are supposed to play a negative role in cellular process in POAG. CALM2 may be involved in retinal ganglion cell death and oxidative damage to cell communication. CONCLUSIONS The results demonstrate that the genes above may be associated with pathogenesis of POAG.
Collapse
Affiliation(s)
- Ting Liu
- Department of Ophthalmology, Daping Hospital, Research Institute of Surgery, Third Military Medical University of PLA, Chongqing, China
| | - Lin Xie
- Department of Ophthalmology, Daping Hospital, Research Institute of Surgery, Third Military Medical University of PLA, Chongqing, China
| | - Jian Ye
- Department of Ophthalmology, Daping Hospital, Research Institute of Surgery, Third Military Medical University of PLA, Chongqing, China
| | - Yuewuyang Liu
- Ninth Team of the Cader Brigade of Third Military Medical University of PLA, Chongqing, China
| | - Xiangge He
- Department of Ophthalmology, Daping Hospital, Research Institute of Surgery, Third Military Medical University of PLA, Chongqing, China
| |
Collapse
|
19
|
Banerjee D, Bhattacharjee A, Ponda A, Sen A, Ray K. Comprehensive analysis of myocilin variants in east Indian POAG patients. Mol Vis 2012; 18:1548-57. [PMID: 22736945 PMCID: PMC3380904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 06/10/2012] [Indexed: 11/04/2022] Open
Abstract
PURPOSE Mutations in the myocilin gene (MYOC) account for 2%-4% of primary open angle glaucoma (POAG) cases. To date, a limited number of Indian POAG patients have been analyzed for the contribution of the gene towards the disease pathogenesis. In this study we provided a comprehensive analysis of a total of 765 eastern Indian POAG patients. METHODS In the present study 450 POAG patients and 208 ethnically matched controls were screened for the coding region of MYOC by using the polymerase chain reaction-direct sequencing approach; 315 POAG patients were analyzed in a previous study. Thus, our total patient cohort considering both the studies was 765. In addition, 1 kb upstream region of the gene was also examined for variants in a subset of 250 patients and 100 control samples. RESULTS Analysis of MYOC coding regions in 450 POAG patients revealed 10 novel variations including 2 frame-shift (R125SfsX158 and D273DfsX344) and 3 nonsynonymous changes (Arg33Lys, Ser331Leu, and Asp395Glu), 3 reported mutations and 4 reported polymorphisms. Gln48His, which has to date been reported only from Indian subcontinent, was identified in 4 individuals among 450 patients, taking the count to 7 individuals among 765 patients harboring the same mutation in eastern Indian cohort. Screening of 1 kb upstream region of MYOC in limited number of individuals yielded 5 variants but none are likely to contribute to the pathogenesis of the disease. CONCLUSIONS MYOC mutations were found to account for 3% of POAG cases in our entire cohort (n=765) and Gln48His is the most common defect. This study, for the first time, reports the presence of deletion mutations in Indian patients, and represents the largest study performed in a single cohort in the Indian population.
Collapse
Affiliation(s)
- Deblina Banerjee
- Molecular & Human Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Ashima Bhattacharjee
- Molecular & Human Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Archisman Ponda
- Molecular & Human Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | | | - Kunal Ray
- Molecular & Human Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|