1
|
Gutierrez Fugón OJ, Sharifi O, Heath N, Soto DC, Gomez JA, Yasui DH, Mendiola AJP, O'Geen H, Beitnere U, Tomkova M, Haghani V, Dillon G, Segal DJ, LaSalle JM. Integration of CTCF loops, methylome, and transcriptome in differentiating LUHMES as a model for imprinting dynamics of the 15q11-q13 locus in human neurons. Hum Mol Genet 2024; 33:1711-1725. [PMID: 39045627 DOI: 10.1093/hmg/ddae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/30/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
Human cell line models, including the neuronal precursor line LUHMES, are important for investigating developmental transcriptional dynamics within imprinted regions, particularly the 15q11-q13 Angelman (AS) and Prader-Willi (PWS) syndrome locus. AS results from loss of maternal UBE3A in neurons, where the paternal allele is silenced by a convergent antisense transcript UBE3A-ATS, a lncRNA that terminates at PWAR1 in non-neurons. qRT-PCR analysis confirmed the exclusive and progressive increase in UBE3A-ATS in differentiating LUHMES neurons, validating their use for studying UBE3A silencing. Genome-wide transcriptome analyses revealed changes to 11 834 genes during neuronal differentiation, including the upregulation of most genes within the 15q11-q13 locus. To identify dynamic changes in chromatin loops linked to transcriptional activity, we performed a HiChIP validated by 4C, which identified two neuron-specific CTCF loops between MAGEL2-SNRPN and PWAR1-UBE3A. To determine if allele-specific differentially methylated regions (DMR) may be associated with CTCF loop anchors, whole genome long-read nanopore sequencing was performed. We identified a paternally hypomethylated DMR near the SNRPN upstream loop anchor exclusive to neurons and a paternally hypermethylated DMR near the PWAR1 CTCF anchor exclusive to undifferentiated cells, consistent with increases in neuronal transcription. Additionally, DMRs near CTCF loop anchors were observed in both cell types, indicative of allele-specific differences in chromatin loops regulating imprinted transcription. These results provide an integrated view of the 15q11-q13 epigenetic landscape during LUHMES neuronal differentiation, underscoring the complex interplay of transcription, chromatin looping, and DNA methylation. They also provide insights for future therapeutic approaches for AS and PWS.
Collapse
Affiliation(s)
- Orangel J Gutierrez Fugón
- Genome Center, Department of Biochemistry and Molecular Medicine, University of California Davis, 451 Health Sciences Dr., Davis, CA 95616, United States
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 1275 Med Science Dr, Davis, CA 95616, United States
| | - Osman Sharifi
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 1275 Med Science Dr, Davis, CA 95616, United States
| | - Nicholas Heath
- Genome Center, Department of Biochemistry and Molecular Medicine, University of California Davis, 451 Health Sciences Dr., Davis, CA 95616, United States
| | - Daniela C Soto
- Genome Center, Department of Biochemistry and Molecular Medicine, University of California Davis, 451 Health Sciences Dr., Davis, CA 95616, United States
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, 757 Westwood Plaza #4, Los Angeles, CA 90095, United States
| | - J Antonio Gomez
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 1275 Med Science Dr, Davis, CA 95616, United States
- Department of Natural Science, Seaver College, Pepperdine University, 24255 Pacific Coast Hwy, Malibu, CA 90263, United States
| | - Dag H Yasui
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 1275 Med Science Dr, Davis, CA 95616, United States
| | - Aron Judd P Mendiola
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 1275 Med Science Dr, Davis, CA 95616, United States
| | - Henriette O'Geen
- Genome Center, Department of Biochemistry and Molecular Medicine, University of California Davis, 451 Health Sciences Dr., Davis, CA 95616, United States
| | - Ulrika Beitnere
- Genome Center, Department of Biochemistry and Molecular Medicine, University of California Davis, 451 Health Sciences Dr., Davis, CA 95616, United States
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Marketa Tomkova
- Genome Center, Department of Biochemistry and Molecular Medicine, University of California Davis, 451 Health Sciences Dr., Davis, CA 95616, United States
- Ludwig Cancer Research Center, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Headington, Oxford OX3 7DQ, United Kingdom
| | - Viktoria Haghani
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 1275 Med Science Dr, Davis, CA 95616, United States
| | - Greg Dillon
- Genetics and Neurodevelopmental Disorders Unit, Biogen, 225 Binney Street Cambridge, MA 02142 United States
| | - David J Segal
- Genome Center, Department of Biochemistry and Molecular Medicine, University of California Davis, 451 Health Sciences Dr., Davis, CA 95616, United States
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 1275 Med Science Dr, Davis, CA 95616, United States
| |
Collapse
|
2
|
Saito A, Tahara R, Hirose M, Kadota M, Hasegawa A, Kondo S, Kato H, Amano T, Yoshiki A, Ogura A, Kiyosawa H. Inter-subspecies mouse F1 hybrid embryonic stem cell lines newly established for studies of allelic imbalance in gene expression. Exp Anim 2024; 73:310-318. [PMID: 38447983 PMCID: PMC11254486 DOI: 10.1538/expanim.24-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024] Open
Abstract
Allele-specific monoallelic gene expression is a unique phenomenon and a great resource for analyzing gene regulation. To study this phenomenon, we established new embryonic stem (ES) cell lines derived from F1 hybrid blastocysts from crosses between four mouse subspecies (Mus musculus domesticus, C57BL/6; M. musculus molossinus, MSM/Ms; M. musculus musculus, PWK; M. musculus castaneus, HMI/Ms) and analyzed the expression levels of undifferentiated pluripotent stem cell markers and karyotypes of each line. To demonstrate the utility of our cell lines, we analyzed the allele-specific expression pattern of the Inpp5d gene as an example. The allelic expression depended on the parental alleles; this dependence could be a consequence of differences in compatibility between cis- and trans-elements of the Inpp5d gene from different subspecies. The use of parental mice from four subspecies greatly enhanced genetic polymorphism. The F1 hybrid ES cells retained this polymorphism not only in the Inpp5d gene, but also at a genome-wide level. As we demonstrated for the Inpp5d gene, the established cell lines can contribute to the analysis of allelic expression imbalance based on the incompatibility between cis- and trans-elements and of phenotypes related to this incompatibility.
Collapse
Affiliation(s)
- Ayaka Saito
- Laboratory for Genome Science, Department of Life Science, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Ryosuke Tahara
- Laboratory for Genome Science, Department of Life Science, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Michiko Hirose
- Bioresource Engineering Division, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Masayo Kadota
- Experimental Animal Division, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Ayumi Hasegawa
- Bioresource Engineering Division, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Shinji Kondo
- Transdisciplinary Research Integration Center, Research Organization of Information and Systems, 4-3-13 Toranomon, Minato-ku, Tokyo 105-0001, Japan
| | - Hidemasa Kato
- Department of Developmental Biology and Functional Genomics, Graduate School of Medicine, Ehime University, 454 Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Takanori Amano
- Next Generation Human Disease Model Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Atsushi Yoshiki
- Experimental Animal Division, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Atsuo Ogura
- Bioresource Engineering Division, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Hidenori Kiyosawa
- Laboratory for Genome Science, Department of Life Science, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| |
Collapse
|
3
|
Langouët M, Gorka D, Orniacki C, Dupont-Thibert CM, Chung MS, Glatt-Deeley HR, Germain N, Crandall LJ, Cotney JL, Stoddard CE, Lalande M, Chamberlain SJ. Specific ZNF274 binding interference at SNORD116 activates the maternal transcripts in Prader-Willi syndrome neurons. Hum Mol Genet 2021; 29:3285-3295. [PMID: 32977341 DOI: 10.1093/hmg/ddaa210] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/15/2020] [Accepted: 08/26/2020] [Indexed: 12/27/2022] Open
Abstract
Prader-Willi syndrome (PWS) is characterized by neonatal hypotonia, developmental delay and hyperphagia/obesity. This disorder is caused by the absence of paternally expressed gene products from chromosome 15q11-q13. We previously demonstrated that knocking out ZNF274, a Kruppel-associated box-A-domain zinc finger protein capable of recruiting epigenetic machinery to deposit the H3K9me3 repressive histone modification, can activate expression from the normally silent maternal allele of SNORD116 in neurons derived from PWS induced pluripotent stem cells (iPSCs). However, ZNF274 has many other targets in the genome in addition to SNORD116. Depleting ZNF274 will surely affect the expression of other important genes and disrupt other pathways. Here, we used CRISPR/Cas9 to delete ZNF274 binding sites at the SNORD116 locus to determine whether activation of the maternal copy of SNORD116 could be achieved without altering ZNF274 protein levels. We obtained similar activation of gene expression from the normally silenced maternal allele in neurons derived from PWS iPSCs, compared with ZNF274 knockout, demonstrating that ZNF274 is directly involved in the repression of SNORD116. These results suggest that interfering with ZNF274 binding at the maternal SNORD116 locus is a potential therapeutic strategy for PWS.
Collapse
Affiliation(s)
- Maéva Langouët
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Dea Gorka
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Clarisse Orniacki
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Clémence M Dupont-Thibert
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Michael S Chung
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Heather R Glatt-Deeley
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Noelle Germain
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Leann J Crandall
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Justin L Cotney
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA.,Institute for Systems Genomics, University of Connecticut, Farmington, CT 06030, USA
| | - Christopher E Stoddard
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Marc Lalande
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA.,Institute for Systems Genomics, University of Connecticut, Farmington, CT 06030, USA
| | - Stormy J Chamberlain
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA.,Institute for Systems Genomics, University of Connecticut, Farmington, CT 06030, USA
| |
Collapse
|
4
|
Li J, Zhang C, Si H, Gu S, Liu X, Li D, Meng S, Yang X, Li S. Brain-specific monoallelic expression of bovine UBE3A is associated with genomic position. Anim Genet 2020; 52:47-54. [PMID: 33200847 DOI: 10.1111/age.13023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2020] [Indexed: 11/30/2022]
Abstract
Genomic imprinting is a rare epigenetic process in mammalian cells that leads to monoallelic expression of a gene with a parent-specific pattern. The UBE3A (ubiquitin protein ligase E3A) gene is imprinted with maternal allelic expression in the brain but biallelically expressed in all other tissues in humans. The silencing of the paternal UBE3A allele is thought to be caused by the paternally expressed antisense RNA transcript of UBE3A-ATS. The aberrant imprinted expression of the UBE3A is associated with several neurodevelopmental syndromes and psychological disorders. Cattle are a valuable model species in determining the genetic etiology of sporadic human disorder, and maternal expression of UEB3A has been revealed by next-generation sequencing study in the bovine conceptus. In this study, we investigated the allelic expression of UBE3A and UBE3A-ATS in adult bovine somatic tissues. To confirm the splicing pattern of bovine UBE3A, five 5' alternative transcripts (MT210534-MT210538) were first obtained from bovine brain tissue by RT-PCR. Based on 10 SNP genotypes, we found that the brain-specific monoallelic expression of bovine UBE3A did not occur along the entire locus, and there was a shift from biallelic expression to monoallelic expression in exon 14 of the UBE3A gene. However, the brain-specific monoallelic expression of bovine UBE3A-ATS occurred in the entire gene. These observations demonstrated that the monoallelic expression did not occur along the bovine UBE3A entire locus and was associated with the genomic position.
Collapse
Affiliation(s)
- J Li
- College of Life Science, Agricultural University of Hebei, Baoding, Hebei, China
| | - C Zhang
- College of Life Science, Agricultural University of Hebei, Baoding, Hebei, China
| | - H Si
- College of Life Science, Agricultural University of Hebei, Baoding, Hebei, China
| | - S Gu
- College of Life Science, Agricultural University of Hebei, Baoding, Hebei, China
| | - X Liu
- College of Life Science, Agricultural University of Hebei, Baoding, Hebei, China
| | - D Li
- College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - S Meng
- College of Life Science, Agricultural University of Hebei, Baoding, Hebei, China
| | - X Yang
- College of Life Science, Agricultural University of Hebei, Baoding, Hebei, China
| | - S Li
- College of Life Science, Agricultural University of Hebei, Baoding, Hebei, China
| |
Collapse
|
5
|
Chung MS, Langouët M, Chamberlain SJ, Carmichael GG. Prader-Willi syndrome: reflections on seminal studies and future therapies. Open Biol 2020; 10:200195. [PMID: 32961075 PMCID: PMC7536080 DOI: 10.1098/rsob.200195] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022] Open
Abstract
Prader-Willi syndrome (PWS) is caused by the loss of function of the paternally inherited 15q11-q13 locus. This region is governed by genomic imprinting, a phenomenon in which genes are expressed exclusively from one parental allele. The genomic imprinting of the 15q11-q13 locus is established in the germline and is largely controlled by a bipartite imprinting centre. One part, termed the Prader-Willi syndrome imprinting center (PWS-IC), comprises a CpG island that is unmethylated on the paternal allele and methylated on the maternal allele. The second part, termed the Angelman syndrome imprinting centre, is required to silence the PWS_IC in the maternal germline. The loss of the paternal contribution of the imprinted 15q11-q13 locus most frequently occurs owing to a large deletion of the entire imprinted region but can also occur through maternal uniparental disomy or an imprinting defect. While PWS is considered a contiguous gene syndrome based on large-deletion and uniparental disomy patients, the lack of expression of only non-coding RNA transcripts from the SNURF-SNRPN/SNHG14 may be the primary cause of PWS. Patients with small atypical deletions of the paternal SNORD116 cluster alone appear to have most of the PWS related clinical phenotypes. The loss of the maternal contribution of the 15q11-q13 locus causes a separate and distinct condition called Angelman syndrome. Importantly, while much has been learned about the regulation and expression of genes and transcripts deriving from the 15q11-q13 locus, there remains much to be learned about how these genes and transcripts contribute at the molecular level to the clinical traits and developmental aspects of PWS that have been observed.
Collapse
Affiliation(s)
| | | | | | - Gordon G. Carmichael
- Department of Genetics and Genome Sciences, UCONN Health, 400 Farmington Avenue, Farmington, CT 06030, USA
| |
Collapse
|
6
|
Maranga C, Fernandes TG, Bekman E, da Rocha ST. Angelman syndrome: a journey through the brain. FEBS J 2020; 287:2154-2175. [PMID: 32087041 DOI: 10.1111/febs.15258] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/02/2020] [Accepted: 02/21/2020] [Indexed: 12/31/2022]
Abstract
Angelman syndrome (AS) is an incurable neurodevelopmental disease caused by loss of function of the maternally inherited UBE3A gene. AS is characterized by a defined set of symptoms, namely severe developmental delay, speech impairment, uncontrolled laughter, and ataxia. Current understanding of the pathophysiology of AS relies mostly on studies using the murine model of the disease, although alternative models based on patient-derived stem cells are now emerging. Here, we summarize the literature of the last decade concerning the three major brain areas that have been the subject of study in the context of AS: hippocampus, cortex, and the cerebellum. Our comprehensive analysis highlights the major phenotypes ascribed to the different brain areas. Moreover, we also discuss the major drawbacks of current models and point out future directions for research in the context of AS, which will hopefully lead us to an effective treatment of this condition in humans.
Collapse
Affiliation(s)
- Carina Maranga
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Tiago G Fernandes
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Evguenia Bekman
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Simão Teixeira da Rocha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
7
|
Kühnel T, Heinz HSB, Utz N, Božić T, Horsthemke B, Steenpass L. A human somatic cell culture system for modelling gene silencing by transcriptional interference. Heliyon 2020; 6:e03261. [PMID: 32021933 PMCID: PMC6994850 DOI: 10.1016/j.heliyon.2020.e03261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/06/2020] [Accepted: 01/15/2020] [Indexed: 11/30/2022] Open
Abstract
Transcriptional interference and transcription through regulatory elements (transcriptional read-through) are implicated in gene silencing and the establishment of DNA methylation. Transcriptional read-through is needed to seed DNA methylation at imprinted genes in the germ line and can lead to aberrant gene silencing by DNA methylation in human disease. To enable the study of parameters and factors influencing transcriptional interference and transcriptional read-through at human promoters, we established a somatic cell culture system. At two promoters of imprinted genes (UBE3A and SNRPN) and two promoters shown to be silenced by aberrant transcriptional read-through in human disease (MSH2 and HBA2) we tested, if transcriptional read-through is sufficient for gene repression and the acquisition of DNA methylation. Induction of transcriptional read-through from the doxycycline-inducible CMV promoter resulted in consistent repression of all downstream promoters, independent of promoter type and orientation. Repression was dependent on ongoing transcription, since withdrawal of induction resulted in reactivation. DNA methylation was not acquired at any of the promoters. Overexpression of DNMT3A and DNMT3L, factors needed for DNA methylation establishment in oocytes, was still not sufficient for the induction of DNA methylation. This indicates that induction of DNA methylation has more complex requirements than transcriptional read-through and the presence of de novo DNA methyltransferases.
Collapse
Affiliation(s)
- Theresa Kühnel
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Hufelandstr 55, 45147 Essen, Germany
| | - Helena Sophie Barbara Heinz
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Hufelandstr 55, 45147 Essen, Germany
| | - Nadja Utz
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Hufelandstr 55, 45147 Essen, Germany
- Present address: Institute of Neuropathology, Justus Liebig University Giessen, Aulweg 128, 35392 Giessen, Germany
| | - Tanja Božić
- Helmholtz Institute for Biomedical Engineering, Division of Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstr. 20, 52074 Aachen, Germany
| | - Bernhard Horsthemke
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Hufelandstr 55, 45147 Essen, Germany
| | - Laura Steenpass
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Hufelandstr 55, 45147 Essen, Germany
- Corresponding author.
| |
Collapse
|
8
|
Schaffler MD, Middleton LJ, Abdus-Saboor I. Mechanisms of Tactile Sensory Phenotypes in Autism: Current Understanding and Future Directions for Research. Curr Psychiatry Rep 2019; 21:134. [PMID: 31807945 PMCID: PMC6900204 DOI: 10.1007/s11920-019-1122-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW This review aims to summarize the current body of behavioral, physiological, and molecular knowledge concerning tactile sensitivity in autism spectrum disorder (ASD), with a focus on recent studies utilizing rodent models. RECENT FINDINGS Mice with mutations in the ASD-related genes, Shank3, Fmr1, UBE3A, and Mecp2, display tactile abnormalities. Some of these abnormalities appear to be caused by mutation-related changes in the PNS, as opposed to changes in the processing of touch stimuli in the CNS, as previously thought. There is also growing evidence suggesting that peripheral mechanisms may contribute to some of the core symptoms and common comorbidities of ASD. Researchers are therefore beginning to assess the therapeutic potential of targeting the PNS in treating some of the core symptoms of ASD. Sensory abnormalities are common in rodent models of ASD. There is growing evidence that sensory hypersensitivity, especially tactile sensitivity, may contribute to social deficits and other autism-related behaviors.
Collapse
Affiliation(s)
- Melanie D Schaffler
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Leah J Middleton
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ishmail Abdus-Saboor
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
9
|
Kondo S, Kato H, Suzuki Y, Takada T, Eitoku M, Shiroishi T, Suganuma N, Sugano S, Kiyosawa H. Monoallelic, antisense and total RNA transcription in an in vitro neural differentiation system based on F1 hybrid mice. J Cell Sci 2019; 132:jcs.228973. [PMID: 31409693 DOI: 10.1242/jcs.228973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 08/04/2019] [Indexed: 11/20/2022] Open
Abstract
We developed an in vitro system to differentiate embryonic stem cells (ESCs) derived from reciprocally crossed F1 hybrid mice into neurons, and used it to investigate poly(A)+ and total RNA transcription at different stages of cell differentiation. By comparing expression profiles of transcripts assembled from 20 RNA sequencing datasets [2 alleles×(2 cell lines×4 time-points+2 mouse brains)], the relative influence of strain, cell and parent specificities to overall expression could be assessed. Divergent expression profiles of ESCs converged tightly at neural progenitor stage. Patterns of temporal variation of monoallelically expressed transcripts and antisense transcripts were quantified. Comparison of sense and antisense transcript pairs within the poly(A)+ sample, within the total RNA sample, and across poly(A)+ and total RNA samples revealed distinct rates of pairs showing anti-correlated expression variation. Unique patterns of sharing of poly(A)+ and poly(A)- transcription were identified in distinct RNA species. Regulation and functionality of monoallelic expression, antisense transcripts and poly(A)- transcription remain elusive. We demonstrated the effectiveness of our approach to capture these transcriptional activities, and provided new resources to elucidate the mammalian developmental transcriptome.
Collapse
Affiliation(s)
- Shinji Kondo
- Transdisciplinary Research Integration Center, Research Organization of Information and Systems, Tokyo 105-0001, Japan
| | - Hidemasa Kato
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Toyoyuki Takada
- Transdisciplinary Research Integration Center, Research Organization of Information and Systems, Tokyo 105-0001, Japan.,Mammalian Genetics Laboratory, National Institute of Genetics, Shizuoka 411-8540, Japan
| | - Masamitsu Eitoku
- Department of Environmental Medicine, Kochi Medical School, Kochi University, Kochi 783-8505, Japan
| | - Toshihiko Shiroishi
- Transdisciplinary Research Integration Center, Research Organization of Information and Systems, Tokyo 105-0001, Japan.,Mammalian Genetics Laboratory, National Institute of Genetics, Shizuoka 411-8540, Japan
| | - Narufumi Suganuma
- Department of Environmental Medicine, Kochi Medical School, Kochi University, Kochi 783-8505, Japan
| | - Sumio Sugano
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Hidenori Kiyosawa
- Transdisciplinary Research Integration Center, Research Organization of Information and Systems, Tokyo 105-0001, Japan .,Department of Environmental Medicine, Kochi Medical School, Kochi University, Kochi 783-8505, Japan
| |
Collapse
|
10
|
Langouët M, Glatt-Deeley HR, Chung MS, Dupont-Thibert CM, Mathieux E, Banda EC, Stoddard CE, Crandall L, Lalande M. Zinc finger protein 274 regulates imprinted expression of transcripts in Prader-Willi syndrome neurons. Hum Mol Genet 2019; 27:505-515. [PMID: 29228278 DOI: 10.1093/hmg/ddx420] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/01/2017] [Indexed: 01/09/2023] Open
Abstract
Prader-Willi syndrome (PWS) is characterized by neonatal hypotonia, developmental delay and hyperphagia/obesity and is caused by the absence of paternal contribution to chromosome 15q11-q13. Using induced pluripotent stem cell (iPSC) models of PWS, we previously discovered an epigenetic complex that is comprised of the zinc-finger protein ZNF274 and the SET domain bifurcated 1 (SETDB1) histone H3 lysine 9 (H3K9) methyltransferase and that silences the maternal alleles at the PWS locus. Here, we have knocked out ZNF274 and rescued the expression of silent maternal alleles in neurons derived from PWS iPSC lines, without affecting DNA methylation at the PWS-Imprinting Center (PWS-IC). This suggests that the ZNF274 complex is a separate imprinting mark that represses maternal PWS gene expression in neurons and is a potential target for future therapeutic applications to rescue the PWS phenotype.
Collapse
Affiliation(s)
- Maéva Langouët
- Department of Genetics and Genome Sciences, School of Medicine
| | | | - Michael S Chung
- Department of Genetics and Genome Sciences, School of Medicine
| | | | - Elodie Mathieux
- Department of Genetics and Genome Sciences, School of Medicine
| | - Erin C Banda
- Department of Genetics and Genome Sciences, School of Medicine
| | | | - Leann Crandall
- Department of Genetics and Genome Sciences, School of Medicine
| | - Marc Lalande
- Department of Genetics and Genome Sciences, School of Medicine.,Institute for Systems Genomics, University of Connecticut, Farmington, CT 06030-6403, USA
| |
Collapse
|
11
|
Abstract
DIO3 and DIO3OS are two imprinted genes identified in mouse and humans. The DIO3 gene, which encodes for the type 3 deiodinase, is preferentially expressed from the paternal allele, while the DIO3OS transcript is transcribed in opposite orientation to DIO3, multiple noncoding and alternatively splicing isoforms from maternal allele. In this study, the five splice variants of DIO3OS were identified in Holstein cattle and had complex, tissue-specific expression patterns observed in eight tissues, including heart, liver, spleen, lung, kidney, muscle, fat and brain. In the G+C rich region, upstream from the cattle DIO3 gene, there were three small conserved regions and some promoter elements similar to those observed in mouse and humans. An allele-specific expression analysis-based SNP method revealed that DIO3 and DIO3OS genes exhibited monoallelic expression in the eight tissues, indicating that DIO3 and DIO3OS are imprinted in cattle.
Collapse
|
12
|
Enhanced Nociception in Angelman Syndrome Model Mice. J Neurosci 2017; 37:10230-10239. [PMID: 28931574 DOI: 10.1523/jneurosci.1018-17.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 09/07/2017] [Indexed: 01/22/2023] Open
Abstract
Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by mutation or deletion of the maternal UBE3A allele. The maternal UBE3A allele is expressed in nearly all neurons of the brain and spinal cord, whereas the paternal UBE3A allele is repressed by an extremely long antisense transcript (UBE3A-ATS). Little is known about expression of UBE3A in the peripheral nervous system, where loss of maternal UBE3A might contribute to AS phenotypes. Here we sought to examine maternal and paternal Ube3a expression in DRGs neurons and to evaluate whether nociceptive responses were affected in AS model mice (global deletion of maternal Ube3a allele; Ube3am-/p+). We found that most large-diameter proprioceptive and mechanosensitive DRG neurons expressed maternal Ube3a and paternal Ube3a-ATS In contrast, most small-diameter neurons expressed Ube3a biallelically and had low to undetectable levels of Ube3a-ATS Analysis of single-cell DRG transcriptomes further suggested that Ube3a is expressed monoallelically in myelinated large-diameter neurons and biallelically in unmyelinated small-diameter neurons. Behavioral responses to some noxious thermal and mechanical stimuli were enhanced in male and female AS model mice; however, nociceptive responses were not altered by the conditional deletion of maternal Ube3a in the DRG. These data suggest that the enhanced nociceptive responses in AS model mice are due to loss of maternal Ube3a in the central, but not peripheral, nervous system. Our study provides new insights into sensory processing deficits associated with AS.SIGNIFICANCE STATEMENT Angelman syndrome (AS) is a neurodevelopmental disorder caused by loss or mutation of the maternal UBE3A allele. While sensory processing deficits are frequently associated with AS, it is currently unknown whether Ube3a is expressed in peripheral sensory neurons or whether maternal deletion of Ube3a affects somatosensory responses. Here, we found that Ube3a is primarily expressed from the maternally inherited allele in myelinated large-diameter sensory neurons and biallelically expressed in unmyelinated small-diameter neurons. Nociceptive responses to select noxious thermal and mechanical stimuli were enhanced following global, but not sensory neuron-specific, deletion of maternal Ube3a in mice. These data suggest that maternal loss of Ube3a affects nociception via a central, but not peripheral mechanism, with implications for AS.
Collapse
|
13
|
Markers associated with neuron-specific Ube3a imprinting during neuronal differentiation of mouse embryonic stem cells. Cytotechnology 2017; 70:45-53. [PMID: 28780625 DOI: 10.1007/s10616-017-0126-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 07/19/2017] [Indexed: 10/19/2022] Open
Abstract
Understanding gene expression in the brain requires allele-specific transcriptome analysis because of the presence of neuron-specific imprinted genes, which are expressed in a neuron-specific and parent-of-origin-specific manner. Ube3a is a neuron-specific imprinted gene with an expression pattern that changes from biallelic to maternal only (Ube3a imprinting) during differentiation. Because Ube3a imprinting occurs only in neurons, it has the potential to be a marker to assess the quality of neurons produced by in vitro neuronal differentiation of embryonic stem cells (ESCs). For the analysis of Ube3a imprinting, genetic polymorphisms between the two alleles are necessary to identify the parental origin of each. However, ESCs derived from commonly used inbred mouse strains have no genetic polymorphisms. To overcome this problem, we examined 10 markers of neurogenesis to determine whether they were associated with Ube3a imprinting. We measured the relative expression levels of these 10 gene markers and assessed the Ube3a imprinting status of 54 neuron samples differentiated under various in vitro conditions. Then we divided the samples into two groups depending on their Ube3a imprinting status and selected markers statistically associated with Ube3a imprinting. The identified markers included the antisense noncoding transcript of Ube3a and a mature neuron marker Mtap2, consistent with the markers we used empirically in our previous study to assess the quality of differentiated neurons. These findings provide new quality control criteria for differentiated neurons, and could also be applied to human ESCs and induced pluripotent stem cells.
Collapse
|
14
|
Hillman PR, Christian SGB, Doan R, Cohen ND, Konganti K, Douglas K, Wang X, Samollow PB, Dindot SV. Genomic imprinting does not reduce the dosage of UBE3A in neurons. Epigenetics Chromatin 2017; 10:27. [PMID: 28515788 PMCID: PMC5433054 DOI: 10.1186/s13072-017-0134-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/03/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The ubiquitin protein E3A ligase gene (UBE3A) gene is imprinted with maternal-specific expression in neurons and biallelically expressed in all other cell types. Both loss-of-function and gain-of-function mutations affecting the dosage of UBE3A are associated with several neurodevelopmental syndromes and psychological conditions, suggesting that UBE3A is dosage-sensitive in the brain. The observation that loss of imprinting increases the dosage of UBE3A in brain further suggests that inactivation of the paternal UBE3A allele evolved as a dosage-regulating mechanism. To test this hypothesis, we examined UBE3A transcript and protein levels among cells, tissues, and species with different imprinting states of UBE3A. RESULTS Overall, we found no correlation between the imprinting status and dosage of UBE3A. Importantly, we found that maternal Ube3a protein levels increase in step with decreasing paternal Ube3a protein levels during neurogenesis in mouse, fully compensating for loss of expression of the paternal Ube3a allele in neurons. CONCLUSIONS Based on our findings, we propose that imprinting of UBE3A does not function to reduce the dosage of UBE3A in neurons but rather to regulate some other, as yet unknown, aspect of gene expression or protein function.
Collapse
Affiliation(s)
- Paul R. Hillman
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77845 USA
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX 77845 USA
| | - Sarah G. B. Christian
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77845 USA
| | - Ryan Doan
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77845 USA
- Interdisciplinary Genetics Program, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77845 USA
| | - Noah D. Cohen
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX USA
| | - Kranti Konganti
- Institute for Genome Science and Society, Texas A&M University, College Station, TX 77845 USA
| | - Kory Douglas
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX USA
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Xu Wang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853 USA
| | - Paul B. Samollow
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Scott V. Dindot
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77845 USA
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX 77845 USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4467 TAMU, College Station, TX 77843 USA
| |
Collapse
|
15
|
Buiting K, Williams C, Horsthemke B. Angelman syndrome — insights into a rare neurogenetic disorder. Nat Rev Neurol 2016; 12:584-93. [DOI: 10.1038/nrneurol.2016.133] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Eitoku M, Suganuma N, Kiyosawa H. Comparison of two types of non-adherent plate for neuronal differentiation of mouse embryonic stem cells. Cytotechnology 2016; 68:2761-2768. [PMID: 27059854 DOI: 10.1007/s10616-016-9968-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/17/2016] [Indexed: 11/29/2022] Open
Abstract
In vitro differentiation systems of mouse embryonic stem cells (ESCs) are widely used as tools for studies of cell differentiation, organogenesis, and regenerative medicine. We have studied the regulation of neuron-specific imprinting genes, Ube3a and its antisense transcripts (Ube3a ATS), using in vitro neuronal differentiation of F1 hybrid ESCs. Each different non-adherent plate used for embryoid body (EB) formation during differentiation is associated with different costs; notably, plates coated with 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer are more expensive than untreated polystyrene plates. Here, we assessed whether the polymer-coated plates gave better results than the untreated plates. The first stage of differentation was performed in the MPC polymer-coated or untreated plates. The formed EBs were then passaged onto laminin-coated plates for further differentiation into neurons. Neither the neuron-specific imprinting status of Ube3a nor the expression levels of the neuron-specific markers Ube3a ATS and Mtap2 differed between neurons prepared on untreated plates and those prepared on MPC polymer-coated plates. These results suggest that the two non-adherent plates displayed almost the same characteristics for inducing neuronal differentiation of mouse ESCs and EB formation. Our study proved that untreated polystyrene plates are a cost-effective choice for EB formation in in vitro differentiation systems of mouse ESCs.
Collapse
Affiliation(s)
- Masamitsu Eitoku
- Department of Environmental Medicine, Kochi Medical School, Kochi University, Oko-cho Kohasu, Nankoku, Kochi, 783-8505, Japan
| | - Narufumi Suganuma
- Department of Environmental Medicine, Kochi Medical School, Kochi University, Oko-cho Kohasu, Nankoku, Kochi, 783-8505, Japan
| | - Hidenori Kiyosawa
- Department of Environmental Medicine, Kochi Medical School, Kochi University, Oko-cho Kohasu, Nankoku, Kochi, 783-8505, Japan.
| |
Collapse
|
17
|
Judson MC, Sosa-Pagan JO, Del Cid WA, Han JE, Philpot BD. Allelic specificity of Ube3a expression in the mouse brain during postnatal development. J Comp Neurol 2014; 522:1874-96. [PMID: 24254964 DOI: 10.1002/cne.23507] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 10/30/2013] [Accepted: 11/15/2013] [Indexed: 12/23/2022]
Abstract
Genetic alterations of the maternal UBE3A allele result in Angelman syndrome (AS), a neurodevelopmental disorder characterized by severe developmental delay, lack of speech, and difficulty with movement and balance. The combined effects of maternal UBE3A mutation and cell type-specific epigenetic silencing of paternal UBE3A are hypothesized to result in a complete loss of functional UBE3A protein in neurons. However, the allelic specificity of UBE3A expression in neurons and other cell types in the brain has yet to be characterized throughout development, including the early postnatal period when AS phenotypes emerge. Here we define maternal and paternal allele-specific Ube3a protein expression throughout postnatal brain development in the mouse, a species that exhibits orthologous epigenetic silencing of paternal Ube3a in neurons and AS-like behavioral phenotypes subsequent to maternal Ube3a deletion. We find that neurons downregulate paternal Ube3a protein expression as they mature and, with the exception of neurons born from postnatal stem cell niches, do not express detectable paternal Ube3a beyond the first postnatal week. By contrast, neurons express maternal Ube3a throughout postnatal development, during which time localization of the protein becomes increasingly nuclear. Unlike neurons, astrocytes and oligodendrotyes biallelically express Ube3a. Notably, mature oligodendrocytes emerge as the predominant Ube3a-expressing glial cell type in the cortex and white matter tracts during postnatal development. These findings demonstrate the spatiotemporal characteristics of allele-specific Ube3a expression in key brain cell types, thereby improving our understanding of the developmental parameters of paternal Ube3a silencing and the cellular basis of AS.
Collapse
Affiliation(s)
- Matthew C Judson
- Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, 27599
| | | | | | | | | |
Collapse
|
18
|
Meng L, Person RE, Huang W, Zhu PJ, Costa-Mattioli M, Beaudet AL. Truncation of Ube3a-ATS unsilences paternal Ube3a and ameliorates behavioral defects in the Angelman syndrome mouse model. PLoS Genet 2013; 9:e1004039. [PMID: 24385930 PMCID: PMC3873245 DOI: 10.1371/journal.pgen.1004039] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 11/04/2013] [Indexed: 11/18/2022] Open
Abstract
Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by maternal deficiency of the imprinted gene UBE3A. Individuals with AS suffer from intellectual disability, speech impairment, and motor dysfunction. Currently there is no cure for the disease. Here, we evaluated the phenotypic effect of activating the silenced paternal allele of Ube3a by depleting its antisense RNA Ube3a-ATS in mice. Premature termination of Ube3a-ATS by poly(A) cassette insertion activates expression of Ube3a from the paternal chromosome, and ameliorates many disease-related symptoms in the AS mouse model, including motor coordination defects, cognitive deficit, and impaired long-term potentiation. Studies on the imprinting mechanism of Ube3a revealed a pattern of biallelic transcription initiation with suppressed elongation of paternal Ube3a, implicating transcriptional collision between sense and antisense polymerases. These studies demonstrate the feasibility and utility of unsilencing the paternal copy of Ube3a via targeting Ube3a-ATS as a treatment for Angelman syndrome. Angelman syndrome (AS) is a devastating neurodevelopmental disorder diagnosed in young children, currently with no effective treatments. It is characterized by absence of speech, ataxia, intellectual disability, epilepsy, and a characteristic behavior of frequent laughter and smiling. The disease is caused by loss of the maternal allele of UBE3A, which is preferentially silenced on the paternal chromosome and expressed on the maternal chromosome in neurons due to genomic imprinting. It has been long proposed that by activating the originally silenced paternal allele of UBE3A, the disease may be cured. Here in our research, we demonstrated the feasibility of activating paternal Ube3a in mice by terminating the transcription of its antisense RNA Ube3a-ATS genetically. In the AS mouse model who additionally receives the terminated Ube3a-ATS allele from the paternal side, we observed restoration of Ube3a expression, amelioration of behavioral defects and reversal of the impaired long-term potentiation. We further studied the imprinting mechanisms of Ube3a and proposed a novel transcriptional collision model. These results provide solid in vivo evidence for a key regulatory role of Ube3a-ATS in the disease and open up an exciting possibility of a gene-specific treatment for Angelman syndrome.
Collapse
Affiliation(s)
- Linyan Meng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Richard Erwin Person
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Wei Huang
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ping Jun Zhu
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mauro Costa-Mattioli
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Arthur L. Beaudet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
19
|
Li J, Xuan Z, Liu C. Long non-coding RNAs and complex human diseases. Int J Mol Sci 2013; 14:18790-808. [PMID: 24036441 PMCID: PMC3794807 DOI: 10.3390/ijms140918790] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/28/2013] [Accepted: 09/03/2013] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are a heterogeneous class of RNAs that are generally defined as non-protein-coding transcripts longer than 200 nucleotides. Recently, an increasing number of studies have shown that lncRNAs can be involved in various critical biological processes, such as chromatin remodeling, gene transcription, and protein transport and trafficking. Moreover, lncRNAs are dysregulated in a number of complex human diseases, including coronary artery diseases, autoimmune diseases, neurological disorders, and various cancers, which indicates their important roles in these diseases. Here, we reviewed the current understanding of lncRNAs, including their definition and subclassification, regulatory functions, and potential roles in different types of complex human diseases.
Collapse
Affiliation(s)
- Jing Li
- Bioinformatics Research Group, Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; E-Mail:
| | - Zhenyu Xuan
- Department of Molecular and Cell Biology, Center for Systems Biology, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA
| | - Changning Liu
- Bioinformatics Research Group, Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; E-Mail:
| |
Collapse
|
20
|
LaSalle JM, Powell WT, Yasui DH. Epigenetic layers and players underlying neurodevelopment. Trends Neurosci 2013; 36:460-70. [PMID: 23731492 DOI: 10.1016/j.tins.2013.05.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/02/2013] [Accepted: 05/03/2013] [Indexed: 12/22/2022]
Abstract
Epigenetic mechanisms convey information above and beyond the sequence of DNA, so it is predicted that they are critical in the complex regulation of brain development and explain the long-lived effects of environmental cues on pre- and early post-natal brain development. Neurons have a complex epigenetic landscape that changes dynamically with transcriptional activity in early life. Here, we summarize progress in our understanding of the discrete layers of the dynamic methylome, chromatin proteome, noncoding RNAs, chromatin loops, and long-range interactions in neuronal development and maturation. Many neurodevelopmental disorders have genetic alterations in these epigenetic modifications or regulators, and these human genetics lessons have demonstrated the importance of these epigenetic players and the epigenetic layers that transcriptional events lay down in the early brain.
Collapse
Affiliation(s)
- Janine M LaSalle
- Medical Microbiology and Immunology, Genome Center, MIND Institute, University of California, Davis, CA, USA.
| | | | | |
Collapse
|
21
|
Gaur U, Li K, Mei S, Liu G. Research progress in allele-specific expression and its regulatory mechanisms. J Appl Genet 2013; 54:271-83. [PMID: 23609142 DOI: 10.1007/s13353-013-0148-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 03/22/2013] [Accepted: 04/03/2013] [Indexed: 12/12/2022]
Abstract
Although the majority of genes are expressed equally from both alleles, some genes are differentially expressed. Organisms possess characteristics to preferentially express a particular allele under regulatory factors, which is termed allele-specific expression (ASE). It is one of the important genetic factors that lead to phenotypic variation and can be used to identify the variance of gene regulation factors. ASE indicates mechanisms such as DNA methylation, histone modifications, and non-coding RNAs function. Here, we review a broad survey of progress in ASE studies, and what this simple yet very effective approach can offer in functional genomics, and possible implications toward our better understanding of the underlying mechanisms of complex traits.
Collapse
Affiliation(s)
- Uma Gaur
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Yaoyuan No. 1, Nanhu, Hongshan District, Wuhan, 430064, People's Republic of China
| | | | | | | |
Collapse
|
22
|
Dietz WH, Masterson K, Sittig LJ, Redei EE, Herzing LBK. Imprinting and expression of Dio3os mirrors Dio3 in rat. Front Genet 2012; 3:279. [PMID: 23230449 PMCID: PMC3515906 DOI: 10.3389/fgene.2012.00279] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 11/16/2012] [Indexed: 12/31/2022] Open
Abstract
Genomic imprinting, the preferential expression of maternal or paternal alleles of imprinted genes, is often maintained through expression of imprinted long non-coding (lnc) “antisense” RNAs. These may overlap imprinted transcripts, and are expressed from the opposite allele. Previously we have described brain region-specific imprinted expression of the Dio3 gene in rat, which is preferentially modified by fetal ethanol exposure. The Dio3os (opposite strand) transcript is transcribed in opposite orientation to Dio3 in mouse and human, partially overlaps the Dio3 promoter, and mirrors total Dio3 developmental expression levels. Here, we present that the rat Dio3os transcript(s) exhibits brain region-specific imprinted expression patterns similar to those of Dio3. Rat Dio3os transcript expression is also similarly modified by fetal ethanol exposure. Uniquely, both Dio3 and Dio3os expression occur on the same, rather than opposite, alleles, as determined by strand-specific RT-PCR. Future studies will require direct manipulation of the Dio3os transcript to determine whether the novel paralleling of total and allele-specific expression patterns of this sense/antisense imprinted gene pair reflects an as-yet undefined regulatory mechanism for lncRNA mediated tissue-specific imprinted expression, or rather is a consequence of a more straightforward, but previously undescribed transcriptional coregulation process.
Collapse
Affiliation(s)
- William H Dietz
- Program in Human Molecular Genetics, Department of Pediatrics, Children's Hospital of Chicago Research Center, Feinberg School of Medicine, Northwestern University Chicago, IL, USA
| | | | | | | | | |
Collapse
|
23
|
Chamberlain SJ. RNAs of the human chromosome 15q11-q13 imprinted region. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012. [PMID: 23208756 DOI: 10.1002/wrna.1150] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The human chromosome 15q11-q13 region hosts a wide variety of coding and noncoding RNAs, and is also the site of nearly every imaginable type of RNA processing. To deepen the intrigue, the transcripts in the human chromosome 15q11-q13 region are subject to regulation by genomic imprinting, and some of these transcripts are imprinted in a tissue-specific manner. As the region is critically important for three human neurogenetic disorders, Angelman syndrome, Prader-Willi syndrome, and 15q duplication syndrome, there is intense interest in understanding the types of RNA and RNA processing that occurs among the imprinted genes. This review summarizes what is known about the various RNAs within the imprinted domain, including a novel type of RNA that was only very recently identified.
Collapse
Affiliation(s)
- Stormy J Chamberlain
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
24
|
Chan WL, Chang YS, Yang WK, Huang HD, Chang JG. Very long non-coding RNA and human disease. Biomedicine (Taipei) 2012. [DOI: 10.1016/j.biomed.2012.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
25
|
Meng L, Person RE, Beaudet AL. Ube3a-ATS is an atypical RNA polymerase II transcript that represses the paternal expression of Ube3a. Hum Mol Genet 2012; 21:3001-12. [PMID: 22493002 DOI: 10.1093/hmg/dds130] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Angelman syndrome gene, UBE3A, is subject to genomic imprinting controlled by mechanisms that are only partially understood. Its antisense transcript, UBE3A-ATS, is also imprinted and hypothesized to suppress UBE3A in cis. In this research, we showed that the mouse antisense ortholog, Ube3a-ATS, was transcribed by RNA polymerase (RNAP) II. However, unlike typical protein-coding transcripts, Ube3a-ATS was not poly-adenylated and was localized exclusively in the nucleus. It was relatively unstable with a half-life of 4 h, shorter than most protein-coding RNAs tested. To understand the role of Ube3a-ATS in vivo, a mouse model with a 0.9-kb genomic deletion over the paternal Snrpn major promoter was studied. The mice showed partial activation of paternal Ube3a, with decreased expression of Ube3a-ATS but not any imprinting defects in the Prader-Willi syndrome/Angelman syndrome region. A novel cell culture model was also generated with a transcriptional termination cassette inserted downstream of Ube3a on the paternal chromosome to reduce Ube3a-ATS transcription. In neuronally differentiated embryonic stem (ES) cells, paternal Ube3a was found to be expressed at a high level, comparable with that of the maternal allele. To further characterize the antisense RNA, a strand-specific microarray was performed. Ube3a-ATS was detectable across the entire locus of Ube3a and extended beyond the transcriptional start site of Ube3a. In summary, we conclude that Ube3a-ATS is an atypical RNAPII transcript that represses Ube3a on the paternal chromosome. These results suggest that the repression of human UBE3A-ATS may activate the expression of UBE3A from the paternal chromosome, providing a potential therapeutic strategy for patients with Angelman syndrome.
Collapse
Affiliation(s)
- Linyan Meng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
26
|
Abstract
Tiling array and novel sequencing technologies have made available the transcription profile of the entire human genome. However, the extent of transcription and the function of genetic elements that occur outside of protein-coding genes, particularly those involved in disease, are still a matter of debate. In this review, we focus on long non-coding RNAs (lncRNAs) that are involved in cancer. We define lncRNAs and present a cancer-oriented list of lncRNAs, list some tools (for example, public databases) that classify lncRNAs or that scan genome spans of interest to find whether known lncRNAs reside there, and describe some of the functions of lncRNAs and the possible genetic mechanisms that underlie lncRNA expression changes in cancer, as well as current and potential future applications of lncRNA research in the treatment of cancer.
Collapse
|
27
|
Topoisomerase inhibitors unsilence the dormant allele of Ube3a in neurons. Nature 2011; 481:185-9. [PMID: 22190039 PMCID: PMC3257422 DOI: 10.1038/nature10726] [Citation(s) in RCA: 269] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 11/22/2011] [Indexed: 01/07/2023]
Abstract
Angelman syndrome is a severe neurodevelopmental disorder caused by deletion or mutation of the maternal allele of the ubiquitin protein ligase E3A (Ube3a)1–3. In neurons, the paternal allele of Ube3a is intact but epigenetically silenced4–6, raising the possibility that Angelman syndrome could be treated by activating this silenced allele to restore functional UBE3A protein7,8. Using an unbiased, high-content screen in primary cortical neurons from mice, we identified twelve topoisomerase I inhibitors and four topoisomerase II inhibitors that unsilence the paternal Ube3a allele. These drugs included topotecan, irinotecan, etoposide, and dexrazoxane (ICRF-187). At nanomolar concentrations, topotecan upregulated catalytically active UBE3A in neurons from maternal Ube3a-null mice. Topotecan concomitantly downregulated expression of the Ube3a antisense transcript that overlaps the paternal copy of Ube3a9–11. These results suggest that topotecan unsilences Ube3a in cis by reducing transcription of an imprinted antisense RNA. When administered in vivo, topotecan unsilenced the paternal Ube3a allele in several regions of the nervous system, including neurons in the hippocampus, neocortex, striatum, cerebellum and spinal cord. Paternal expression of Ube3a remained elevated in a subset of spinal cord neurons for at least twelve weeks after cessation of topotecan treatment, suggesting transient topoisomerase inhibition can have enduring effects on gene expression. While potential off-target effects remain to be investigated, our findings suggest a therapeutic strategy for reactivating the functional but dormant allele of Ube3a in patients with Angelman syndrome.
Collapse
|
28
|
Kohama C, Kato H, Numata K, Hirose M, Takemasa T, Ogura A, Kiyosawa H. ES cell differentiation system recapitulates the establishment of imprinted gene expression in a cell-type-specific manner. Hum Mol Genet 2011; 21:1391-401. [PMID: 22156770 DOI: 10.1093/hmg/ddr577] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genomic imprinting is a phenomenon whereby monoallelic gene expression occurs in a parent-of-origin-specific manner. A subset of imprinted genes acquires a tissue-specific imprinted status during the course of tissue development, and this process can be analyzed by means of an in vitro differentiation system utilizing embryonic stem (ES) cells. In neurons, the gene Ube3a is expressed from the maternal allele only, and a paternally expressed non-coding, antisense RNA has been implicated in the imprinting process in mice and humans. Here, to study the genomic imprinting mechanism, we established F1 hybrid ES cells derived from two sub-species of Mus musculus and established an in vitro neuronal differentiation system in which neuron-specific imprinting of Ube3a was recapitulated. With this system, we revealed that the switch from biallelic expression to maternal, monoallelic expression of Ube3a occurs late in neuronal development, during the neurite outgrowth period, and that the expression of endogenous antisense transcript from the Ube3a locus is up-regulated several hundred-fold during the same period. Our results suggest that evaluation of the quality of ES cells by studying their differentiation in vitro should include evaluation of epigenetic aspects, such as a comparison with the genomic imprinting status found in tissues in vivo, in addition to the evaluation of differentiation gene markers and morphology. Our F1 hybrid ES cells and in vitro differentiation system will allow researchers to investigate complex end-points such as neuron-specific genomic imprinting, and our F1 hybrid ES cells are a useful resource for other tissue-specific genomic imprinting and epigenetic analyses.
Collapse
Affiliation(s)
- Chihiro Kohama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8577, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Mabb AM, Judson MC, Zylka MJ, Philpot BD. Angelman syndrome: insights into genomic imprinting and neurodevelopmental phenotypes. Trends Neurosci 2011; 34:293-303. [PMID: 21592595 DOI: 10.1016/j.tins.2011.04.001] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/25/2011] [Accepted: 04/05/2011] [Indexed: 10/24/2022]
Abstract
Angelman syndrome (AS) is a severe genetic disorder caused by mutations or deletions of the maternally inherited UBE3A gene. UBE3A encodes an E3 ubiquitin ligase that is expressed biallelically in most tissues but is maternally expressed in almost all neurons. In this review, we describe recent advances in understanding the expression and function of UBE3A in the brain and the etiology of AS. We highlight current AS model systems, epigenetic mechanisms of UBE3A regulation, and the identification of potential UBE3A substrates in the brain. In the process, we identify major gaps in our knowledge that, if bridged, could move us closer to identifying treatments for this debilitating neurodevelopmental disorder.
Collapse
Affiliation(s)
- Angela M Mabb
- Department of Cell and Molecular Physiology, UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|