1
|
Wunderlich TM, Deshpande C, Paasche LW, Friedrich T, Diegmüller F, Haddad E, Kreienbaum C, Naseer H, Stebel SE, Daus N, Leers J, Lan J, Trinh VT, Vázquez O, Butter F, Bartkuhn M, Mackay JP, Hake SB. ZNF512B binds RBBP4 via a variant NuRD interaction motif and aggregates chromatin in a NuRD complex-independent manner. Nucleic Acids Res 2024:gkae926. [PMID: 39460621 DOI: 10.1093/nar/gkae926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 09/23/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
The evolutionarily conserved histone variant H2A.Z plays a crucial role in various DNA-based processes, but the mechanisms underlying its activity are not completely understood. Recently, we identified the zinc finger (ZF) protein ZNF512B as a protein associated with H2A.Z, HMG20A and PWWP2A. Here, we report that high levels of ZNF512B expression lead to nuclear protein and chromatin aggregation foci that form in a manner that is dependent on the ZF domains of ZNF512B. Notably, we demonstrate ZNF512B binding to the nucleosome remodeling and deacetylase (NuRD) complex. We discover a conserved amino acid sequence within ZNF512B that resembles the NuRD-interaction motif (NIM) previously identified in FOG-1 and other transcriptional regulators. By solving the crystal structure of this motif bound to the NuRD component RBBP4 and by applying several biochemical and biophysical assays, we demonstrate that this internal NIM is both necessary and sufficient for robust and high-affinity NuRD binding. Transcriptome analyses and reporter assays identify ZNF512B as a repressor of gene expression that can act in both NuRD-dependent and -independent ways. Our study might have implications for diseases in which ZNF512B expression is deregulated, such as cancer and neurodegenerative diseases, and hints at the existence of more proteins as potential NuRD interactors.
Collapse
Affiliation(s)
- Tim Marius Wunderlich
- Institute for Genetics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Chandrika Deshpande
- School of Life and Environmental Sciences, Butlin Ave, University of Sydney, Darlington, New South Wales 2006, Australia
| | - Lena W Paasche
- Institute for Genetics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Tobias Friedrich
- Biomedical Informatics and Systems Medicine Science Unit for Basic and Clinical Medicine, Justus-Liebig University Giessen, Aulweg 128, 35392 Giessen, Germany
| | - Felix Diegmüller
- Institute for Genetics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Elias Haddad
- Institute for Genetics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Carlotta Kreienbaum
- Institute for Genetics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Haniya Naseer
- Institute for Genetics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Sophie E Stebel
- Institute for Genetics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Nadine Daus
- Institute for Genetics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Jörg Leers
- Institute for Genetics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Jie Lan
- Institute for Genetics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Van Tuan Trinh
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Olalla Vázquez
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
- Center for Synthetic Microbiology, Philipps University Marburg, Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
| | - Falk Butter
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany
| | - Marek Bartkuhn
- Biomedical Informatics and Systems Medicine Science Unit for Basic and Clinical Medicine, Justus-Liebig University Giessen, Aulweg 128, 35392 Giessen, Germany
| | - Joel P Mackay
- School of Life and Environmental Sciences, Butlin Ave, University of Sydney, Darlington, New South Wales 2006, Australia
| | - Sandra B Hake
- Institute for Genetics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| |
Collapse
|
2
|
Tili E, Otsu H, Commisso TL, Palamarchuk A, Balatti V, Michaille JJ, Nuovo GJ, Croce CM. MiR-155-targeted IcosL controls tumor rejection. Proc Natl Acad Sci U S A 2024; 121:e2408649121. [PMID: 38980909 PMCID: PMC11260163 DOI: 10.1073/pnas.2408649121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/08/2024] [Indexed: 07/11/2024] Open
Abstract
Elevated levels of miR-155 in solid and liquid malignancies correlate with aggressiveness of the disease. In this manuscript, we show that miR-155 targets transcripts encoding IcosL, the ligand for Inducible T-cell costimulator (Icos), thus impairing the ability of T cells to recognize and eliminate malignant cells. We specifically found that overexpression of miR-155 in B cells of Eµ-miR-155 mice causes loss of IcosL expression as they progress toward malignancy. Similarly, in mice where miR-155 expression is controlled by a Cre-Tet-OFF system, miR-155 induction led to malignant infiltrates lacking IcosL expression. Conversely, turning miR-155 OFF led to tumor regression and emergence of infiltrates composed of IcosL-positive B cells and Icos-positive T cells forming immunological synapses. Therefore, we next engineered malignant cells to express IcosL, in order to determine whether IcosL expression would increase tumor infiltration by cytotoxic T cells and reduce tumor progression. Indeed, overexpressing an IcosL-encoding cDNA in MC38 murine colon cancer cells before injection into syngeneic C57BL6 mice reduced tumor size and increased intratumor CD8+ T cell infiltration, that formed synapses with IcosL-expressing MC38 cells. Our results underscore the fact that by targeting IcosL transcripts, miR-155 impairs the infiltration of tumors by cytotoxic T cells, as well as the importance of IcosL on enhancing the immune response against malignant cells. These findings should lead to the development of more effective anticancer treatments based on maintaining, increasing, or restoring IcosL expression by malignant cells, along with impairing miR-155 activity.
Collapse
Affiliation(s)
- Esmerina Tili
- Department of Anesthesiology, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH43210
- The Ohio State University, Comprehensive Cancer Center, Department of Cancer Biology and Genetics, Wexner Medical Center, Columbus, OH43210
| | - Hajime Otsu
- The Ohio State University, Comprehensive Cancer Center, Department of Cancer Biology and Genetics, Wexner Medical Center, Columbus, OH43210
| | - Teresa L. Commisso
- The Ohio State University, Comprehensive Cancer Center, Department of Cancer Biology and Genetics, Wexner Medical Center, Columbus, OH43210
| | - Alexey Palamarchuk
- The Ohio State University, Comprehensive Cancer Center, Department of Cancer Biology and Genetics, Wexner Medical Center, Columbus, OH43210
| | - Veronica Balatti
- The Ohio State University, Comprehensive Cancer Center, Department of Cancer Biology and Genetics, Wexner Medical Center, Columbus, OH43210
| | - Jean-Jacques Michaille
- The Ohio State University, Comprehensive Cancer Center, Department of Cancer Biology and Genetics, Wexner Medical Center, Columbus, OH43210
| | | | - Carlo M. Croce
- The Ohio State University, Comprehensive Cancer Center, Department of Cancer Biology and Genetics, Wexner Medical Center, Columbus, OH43210
| |
Collapse
|
3
|
Volovat SR, Augustin I, Zob D, Boboc D, Amurariti F, Volovat C, Stefanescu C, Stolniceanu CR, Ciocoiu M, Dumitras EA, Danciu M, Apostol DGC, Drug V, Shurbaji SA, Coca LG, Leon F, Iftene A, Herghelegiu PC. Use of Personalized Biomarkers in Metastatic Colorectal Cancer and the Impact of AI. Cancers (Basel) 2022; 14:4834. [PMID: 36230757 PMCID: PMC9562853 DOI: 10.3390/cancers14194834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/18/2022] [Accepted: 09/29/2022] [Indexed: 12/09/2022] Open
Abstract
Colorectal cancer is a major cause of cancer-related death worldwide and is correlated with genetic and epigenetic alterations in the colonic epithelium. Genetic changes play a major role in the pathophysiology of colorectal cancer through the development of gene mutations, but recent research has shown an important role for epigenetic alterations. In this review, we try to describe the current knowledge about epigenetic alterations, including DNA methylation and histone modifications, as well as the role of non-coding RNAs as epigenetic regulators and the prognostic and predictive biomarkers in metastatic colorectal disease that can allow increases in the effectiveness of treatments. Additionally, the intestinal microbiota's composition can be an important biomarker for the response to strategies based on the immunotherapy of CRC. The identification of biomarkers in mCRC can be enhanced by developing artificial intelligence programs. We present the actual models that implement AI technology as a bridge connecting ncRNAs with tumors and conducted some experiments to improve the quality of the model used as well as the speed of the model that provides answers to users. In order to carry out this task, we implemented six algorithms: the naive Bayes classifier, the random forest classifier, the decision tree classifier, gradient boosted trees, logistic regression and SVM.
Collapse
Affiliation(s)
- Simona-Ruxandra Volovat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
| | - Iolanda Augustin
- Department of Medical Oncology, AI.Trestioreanu Institute of Oncology, 022328 Bucharest, Romania
| | - Daniela Zob
- Department of Medical Oncology, AI.Trestioreanu Institute of Oncology, 022328 Bucharest, Romania
| | - Diana Boboc
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
| | - Florin Amurariti
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
| | - Constantin Volovat
- Department of Medical Oncology, “Euroclinic” Center of Oncology, 2 Vasile Conta Str., 700106 Iasi, Romania
| | - Cipriana Stefanescu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
| | - Cati Raluca Stolniceanu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Eduard Alexandru Dumitras
- Department of Pathophysiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Department of Anesthesiology and Intensive Care, Regional Institute of Oncology, 700115 Iasi, Romania
| | - Mihai Danciu
- Pathology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | | | - Vasile Drug
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
- Gastroenterology Clinic, Institute of Gastroenterology and Hepatology, ‘St. Spiridon’ Clinical Hospital, 700115 Iasi, Romania
| | - Sinziana Al Shurbaji
- Gastroenterology Clinic, Institute of Gastroenterology and Hepatology, ‘St. Spiridon’ Clinical Hospital, 700115 Iasi, Romania
| | - Lucia-Georgiana Coca
- Faculty of Computer Science, Alexandru Ioan Cuza University, 700115 Iasi, Romania
| | - Florin Leon
- Faculty of Automatic Control and Computer Engineering, Gheorghe Asachi Technical University, 700115 Iasi, Romania
| | - Adrian Iftene
- Faculty of Computer Science, Alexandru Ioan Cuza University, 700115 Iasi, Romania
| | - Paul-Corneliu Herghelegiu
- Faculty of Automatic Control and Computer Engineering, Gheorghe Asachi Technical University, 700115 Iasi, Romania
| |
Collapse
|
4
|
Kreienbaum C, Paasche LW, Hake SB. H2A.Z's 'social' network: functional partners of an enigmatic histone variant. Trends Biochem Sci 2022; 47:909-920. [PMID: 35606214 DOI: 10.1016/j.tibs.2022.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/14/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022]
Abstract
The histone variant H2A.Z has been extensively studied to understand its manifold DNA-based functions. In the past years, researchers identified its specific binding partners, the 'H2A.Z interactome', that convey H2A.Z-dependent chromatin changes. Here, we summarize the latest findings regarding vertebrate H2A.Z-associated factors and focus on their roles in gene activation and repression, cell cycle regulation, (neuro)development, and tumorigenesis. Additionally, we demonstrate how protein-protein interactions and post-translational histone modifications can fine-tune the complex interplay of H2A.Z-regulated gene expression. Last, we review the most recent results on interactors of the two isoforms H2A.Z.1 and H2A.Z.2.1, which differ in only three amino acids, and focus on cancer-associated mutations of H2A and H2A.Z, which reveal fascinating insights into the functional importance of such minuscule changes.
Collapse
Affiliation(s)
| | - Lena W Paasche
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Sandra B Hake
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany.
| |
Collapse
|
5
|
Gao Y, Chen Y, Zhang Z, Yu X, Zheng J. Recent Advances in Mouse Models of Sjögren's Syndrome. Front Immunol 2020; 11:1158. [PMID: 32695097 PMCID: PMC7338666 DOI: 10.3389/fimmu.2020.01158] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
Sjögren's syndrome (SS) is a complex rheumatoid disease that mainly affects exocrine glands, resulting in xerostomia (dry mouth) and xerophthalmia (dry eye). SS is characterized by autoantibodies, infiltration into exocrine glands, and ectopic expression of MHC II molecules on glandular epithelial cells. In contrast to the well-characterized clinical and immunological features, the etiology and pathogenesis of SS remain largely unknown. Animal models are powerful research tools for elucidating the pathogenesis of human diseases. To date, many mouse models of SS, including induced models, in which disease is induced in mice, and genetic models, in which mice spontaneously develop SS-like disease, have been established. These mouse models have provided new insight into the pathogenesis of SS. In this review, we aim to provide a comprehensive overview of recent advances in the field of experimental SS.
Collapse
Affiliation(s)
- Yunzhen Gao
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Yan Chen
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Zhongjian Zhang
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Xinhua Yu
- Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), Borstel, Germany
| | - Junfeng Zheng
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
6
|
Liu Q, Zhao Y, Wu R, Jiang Q, Cai M, Bi Z, Liu Y, Yao Y, Feng J, Wang Y, Wang X. ZFP217 regulates adipogenesis by controlling mitotic clonal expansion in a METTL3-m 6A dependent manner. RNA Biol 2019; 16:1785-1793. [PMID: 31434544 DOI: 10.1080/15476286.2019.1658508] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Obesity is becoming a global problem. Research into the detailed mechanism of adipocyte development is crucial for the treatment of excess fat. Zinc finger protein 217 plays roles in adipogenesis. However, the underlying mechanism remains unclear. Here, we demonstrated that ZFP217 knockdown prevented the mitotic clonal expansion process and caused adipogenesis inhibition. Depletion of ZFP217 increased the expression of the m6A methyltransferase METTL3, which upregulated the m6A level of cyclin D1 mRNA. METTL3 knockdown rescued the siZFP217-inhibited MCE and promoted CCND1 expression. YTH domain family 2 recognized and degraded the methylated CCND1 mRNA, leading to the downregulation of CCND1. Consequently, cell-cycle progression was blocked, and adipogenesis was inhibited. YTHDF2 knockdown relieved siZFP217-inhibited adipocyte differentiation. These findings reveal that ZFP217 knockdown-induced adipogenesis inhibition was caused by CCND1, which was mediated by METTL3 and YTHDF2 in an m6A-dependent manner. We have provided novel insight into the underlying molecular mechanisms by which m6A methylation is involved in the ZFP217 regulation of adipogenesis.
Collapse
Affiliation(s)
- Qing Liu
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yuanling Zhao
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Ruifan Wu
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Qin Jiang
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Min Cai
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhen Bi
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Youhua Liu
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yongxi Yao
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jie Feng
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xinxia Wang
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
MicroRNA Control of TGF-β Signaling. Int J Mol Sci 2018; 19:ijms19071901. [PMID: 29958433 PMCID: PMC6073626 DOI: 10.3390/ijms19071901] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/17/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022] Open
Abstract
Transcriptional and post-transcriptional regulation shapes the transcriptome and proteome changes induced by various cellular signaling cascades. MicroRNAs (miRNAs) are small regulatory RNAs that are approximately 22 nucleotides long, which direct the post-transcriptional regulation of diverse target genes and control cell states. Transforming growth factor (TGF)-β family is a multifunctional cytokine family, which plays many regulatory roles in the development and pathogenesis of diverse diseases, including fibrotic disease, cardiovascular disease and cancer. Previous studies have shown that the TGF-β pathway includes the miRNA pathway as an important component of its downstream signaling cascades. Multiple studies of epithelial–mesenchymal transition (EMT)-related miRNAs have highlighted that miRNAs constitute the intrinsic bistable molecular switches of cell states by forming double negative feedback loops with EMT-inducing transcription factors. This may be important for understanding the reversibility of EMT at the single-cell level, the presence of distinct EMT transition states and the intra- and inter-tumor heterogeneity of cancer cell phenotypes. In the present review, I summarize the connection between TGF-β signaling and the miRNA pathway, placing particular emphasis on the regulation of miRNA expression by TGF-β signaling, the modulation of TGF-β signaling by miRNAs, the miRNA-mediated modulation of EMT and endothelial–mesenchymal transition as well as the crosstalk between miRNA and TGF-β pathways in the tumor microenvironment.
Collapse
|
8
|
Zhu F, Wu Q, Ni Z, Lei C, Li T, Shi Y. miR-19a/b and MeCP2 repress reciprocally to regulate multidrug resistance in gastric cancer cells. Int J Mol Med 2018; 42:228-236. [PMID: 29568890 PMCID: PMC5979884 DOI: 10.3892/ijmm.2018.3581] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/20/2018] [Indexed: 12/18/2022] Open
Abstract
Despite the improvement in gastric cancer (GC) treatment, multidrug resistance (MDR) is still a significant reason for chemotherapy failure. Our previous studies have demonstrated that miR-19a/b upregulation directly promoted MDR in GC cells. However, the exact regulation and the potential molecule mechanisms have not been fully clarified. In this study, we found that miR-19a/b was directly involved in 5-aza-2'-deoxycytidine (5-Aza-dC) induced MDR of GC cells. Mechanically, demethylation of miR-19a/b repressed methyl CpG binding protein 2 (MeCP2) expression via direct binding at the 3'-untranslated regions, which then alleviated the inhibitory effects of MeCP2 on miR-19a/b expression. Thus, the mutual regulatory network sustains preservation of the expression levels of miR-19a/b. We further demonstrated that miR-19a/b expression was inversely correlated to MeCP2 expression in GC tissues. These data showed an intimate interplay among miR-19a/b methylation, MeCP2 activity, and MDR, revealing a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Fei Zhu
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Qiong Wu
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhen Ni
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Chao Lei
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Ting Li
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yongquan Shi
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
9
|
Expression of VHL tumor suppressor mRNA and miR-92a in papillary thyroid carcinoma and their correlation with clinical and pathological parameters. Med Oncol 2018; 35:17. [PMID: 29340905 DOI: 10.1007/s12032-017-1066-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 11/30/2017] [Indexed: 01/20/2023]
Abstract
A growing body of evidence suggests a role of the von Hippel-Lindau (VHL) tumor suppressor gene in the progression of papillary thyroid carcinoma (PTC). Our previous study of VHL in PTCs showed that lower VHL expression was associated with aggressive tumor features, but we found no evidence for VHL downregulation through common genetic or epigenetic modifications. Several studies pointed to a role of microRNA-92a (miR-92a) in the regulation of VHL expression in different cancers. In the present study, we examined the expression levels of VHL mRNA and miR-92a in 42 pairs of PTCs and matched non-tumor thyroid tissues by means of quantitative RT-PCR. We explored the correlation between them and their association with clinicopathological parameters. The results revealed that both VHL and miR-92a were either up- or downregulated in PTCs compared to corresponding non-tumor tissues. On univariate analysis, lower VHL levels were significantly associated with extrathyroid spread (P = 0.022) and capsular invasion (P = 0.032). Multivariate analysis confirmed the association of low VHL with extrathyroid spread (OR 0.246, 95% CI 0.069-0.872, P = 0.038). Higher miR-92a among PTC tissues associated with the presence of nodal metastases (univariate analysis: P = 0.012; multivariate: OR 4.703, 95% CI 1.109-19.938, P = 0.036). A negative correlation between VHL and miR-92a was observed in a subgroup of PTCs having vascular invasion (P = 0.033, r = - 0.673). The data here reported demonstrate that the expression of both VHL and miR-92a is deregulated in PTC tissues and that in some PTCs they may have opposite roles. These roles, as well as their diagnostic and/or prognostic utility, remain to be clarified.
Collapse
|
10
|
Peck AB, Nguyen CQ. What can Sjögren's syndrome-like disease in mice contribute to human Sjögren's syndrome? Clin Immunol 2017; 182:14-23. [PMID: 28478104 DOI: 10.1016/j.clim.2017.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 05/01/2017] [Accepted: 05/01/2017] [Indexed: 12/12/2022]
Abstract
For decades, Sjögren's syndrome (SS) and Sjögren's syndrome-like (SS-like) disease in patients and mouse models, respectively, have been intensely investigated in attempts to identify the underlying etiologies, the pathophysiological changes defining disease phenotypes, the nature of the autoimmune responses, and the propensity for developing B cell lymphomas. An emerging question is whether the generation of a multitude of mouse models and the data obtained from their studies is actually important to the understanding of the human disease and potential interventional therapies. In this brief report, we comment on how and why mouse models can stimulate interest in specific lines of research that apparently parallel aspects of human SS. Focusing on two mouse models, NOD and B6·Il14α, we present the possible relevance of mouse models to human SS, highlighting a few selected disease-associated biological processes that have baffled both SS and SS-like investigations for decades.
Collapse
Affiliation(s)
- Ammon B Peck
- Department of Pathology and Infectious Diseases, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA; Center for Orphan Autoimmune Disorders, College of Dentistry, University of Florida, Gainesville, FL 32608, USA.
| | - Cuong Q Nguyen
- Department of Pathology and Infectious Diseases, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA; Center for Orphan Autoimmune Disorders, College of Dentistry, University of Florida, Gainesville, FL 32608, USA; Department of Oral Biology, College of Dentistry, University of Florida, FL 32608, USA
| |
Collapse
|
11
|
Promiscuous Effects of Some Phenolic Natural Products on Inflammation at Least in Part Arise from Their Ability to Modulate the Expression of Global Regulators, Namely microRNAs. Molecules 2016; 21:molecules21091263. [PMID: 27657035 PMCID: PMC6272860 DOI: 10.3390/molecules21091263] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/12/2016] [Accepted: 09/14/2016] [Indexed: 12/13/2022] Open
Abstract
Recent years have seen the exploration of a puzzling number of compounds found in human diet that could be of interest for prevention or treatment of various pathologies. Although many of these natural products (NPs) have long been used as remedies, their molecular effects still remain elusive. With the advent of biotechnology revolution, NP studies turned from chemistry and biochemistry toward global analysis of gene expression. Hope is to use genetics to identify groups of patient for whom certain NPs or their derivatives may offer new preventive or therapeutic treatments. Recently, microRNAs have gained the statute of global regulators controlling cell homeostasis by regulating gene expression through genetic and epigenetic regulatory loops. Realization that certain plant polyphenols can modify microRNA expression and thus impact gene expression globally, initiated new, mainly in vitro studies, in particular to determine phytochemicals effects on inflammatory response, whose exacerbation has been linked to several disorders including cancer, auto-immune, metabolic, cardiovascular and neuro-inflammatory diseases. However, very few mechanistic insights have been provided, given the complexity of genetic regulatory networks implicated. In this review, we will concentrate on data showing the potential interest of some plant polyphenols in manipulating the expression of pro- and anti-inflammatory microRNAs in pathological conditions.
Collapse
|
12
|
Quaking and miR-155 interactions in inflammation and leukemogenesis. Oncotarget 2016; 6:24599-610. [PMID: 26337206 PMCID: PMC4694781 DOI: 10.18632/oncotarget.5248] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/18/2015] [Indexed: 01/11/2023] Open
Abstract
Quaking (QKI) is a tumor-suppressor gene encoding a conserved RNA-binding protein, whose expression is downregulated in several solid tumors. Here we report that QKI plays an important role in the immune response and suppression of leukemogenesis. We show that the expression of Qki is reduced in lipopolysaccharide (LPS)-challenged macrophages, suggesting that Qki is a key regulator of LPS signaling pathway. Furthermore, LPS-induced downregulation of Qki expression is miR-155-dependent. Qki overexpression impairs LPS-induced phosphorylation of JNK and particularly p38 MAPKs, in addition to increasing the production of anti-inflammatory cytokine IL-10. In contrast, Qki ablation decreases Fas expression and the rate of Caspase3/7 activity, while increasing the levels of IL-1α, IL-1β and IL-6, and p38 phosphorylation. Similarly, the p38 pathway is also a target of QKI activity in chronic lymphocytic leukemia (CLL)-derived MEC2 cells. Finally, B-CLL patients show lower levels of QKI expression compared with B cells from healthy donor, and Qki is similarily downregulated with the progression of leukemia in Eµ-miR-155 transgenic mice. Altogether, these data implicate QKI in the pathophysiology of inflammation and oncogenesis where miR-155 is involved.
Collapse
|
13
|
Ju XD, Liu T, Chen J, Li XG, Liu XX, Liu WC, Wang K, Deng M. Single-nucleotide Polymorphism rs2275294 in ZNF512B is not Associated with Susceptibility to Amyotrophic Lateral Sclerosis in a Large Chinese Cohort. Chin Med J (Engl) 2015; 128:3305-9. [PMID: 26668144 PMCID: PMC4797505 DOI: 10.4103/0366-6999.171421] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that primarily affects motor neurons and has no effective treatment. Recently, Iida et al. identified a single-nucleotide polymorphism (SNP) rs2275294 in the ZNF512B gene that is significantly associated with susceptibility to ALS in the Japanese population. Here, we performed a case–control study examining the possible association of rs2275294 with risk of sporadic ALS (SALS) in a large Chinese cohort. Methods: To assess this association, we performed a replication study in 953 SALS patients and 1039 age- and gender-matched healthy control subjects, who were recruited from Peking University Third Hospital and the First Affiliated Hospital of Anhui Medical University from January 2004 to December 2013 throughout China. We genotyped the rs2275294 SNP using polymerase chain reaction and direct sequencing. Results: The allele frequency of rs2275294 in ZNF512B was different between Japanese and Chinese. The association in Chinese between ALS patients and controls did not reach statistical significance (P = 0.54; odds ratio = 0.94; 95% confidence interval = 0.76–1.15). Conclusions: The SNP rs2275294 in ZNF512B is not considered to be associated with ALS susceptibility in the Chinese population. Our study highlights genetic heterogeneity in ALS susceptibility in different population. Given our negative results, further replication study involving larger and more homogeneous samples in different ethnicities should be performed in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Min Deng
- Medical Research Center, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
14
|
Sokolova V, Fiorino A, Zoni E, Crippa E, Reid JF, Gariboldi M, Pierotti MA. The Effects of miR-20a on p21: Two Mechanisms Blocking Growth Arrest in TGF-β-Responsive Colon Carcinoma. J Cell Physiol 2015; 230:3105-14. [PMID: 26012475 DOI: 10.1002/jcp.25051] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 05/19/2015] [Indexed: 12/18/2022]
Abstract
Loss of response to TGF-β is a central event in the genesis of colorectal cancer (CRC), a disease that, in the majority cases, is refractory to growth inhibition induced by this cytokine. However, inactivating mutations at receptors and transducers from the TGF-β cascade occur only in approximately half of CRCs, suggesting the involvement of additional mechanisms altering the response to the cytokine. We have recently described the amplification of the 13q31 locus, where the miR-17-92 cluster maps, associated with overexpression of its members. In this study, we address the potential role of miR-20a, from the miR-17-92 cluster, in the suppression of TGF-β cytostatic response in CRC. Using the poorly tumorigenic and TGF-β-sensitive FET cell line that expresses low miR-20a levels, we first confirmed that miR-20a downmodulated CDKN1A expression, both at mRNA and protein level, through direct binding to its 3'-UTR. We demonstrated that miR-20a significantly diminished cell response to TGF-β by preventing its delay of G1/S transition and promoting progression into cell cycle. Moreover, besides modulating CDKN1A, miR-20a blocked TGF-β-induced transactivation of its promoter without affecting the post-receptor activation of Smad3/4 effectors directly. Finally, miR-20a abrogated the TGF-β-mediated c-Myc repression, a direct inhibitor of the CDKN1A promoter activation, most likely by reducing the expression of specific MYC-regulating genes from the Smad/E2F-based core repressor complex. Our experiments indicate that miR-20a interferes with the colonic epithelium homeostasis by disrupting the regulation of Myc/p21 by TGF-β, which is essential for its malignant transformation.
Collapse
Affiliation(s)
- Viktorija Sokolova
- Molecular Genetics of Cancer, Fondazione Istituto FIRC di Oncologia Molecolare, Milano, Italy.,Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Antonio Fiorino
- Department of Predictive and Preventive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Eugenio Zoni
- Molecular Genetics of Cancer, Fondazione Istituto FIRC di Oncologia Molecolare, Milano, Italy.,Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elisabetta Crippa
- Molecular Genetics of Cancer, Fondazione Istituto FIRC di Oncologia Molecolare, Milano, Italy.,Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - James F Reid
- Molecular Genetics of Cancer, Fondazione Istituto FIRC di Oncologia Molecolare, Milano, Italy.,Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Manuela Gariboldi
- Molecular Genetics of Cancer, Fondazione Istituto FIRC di Oncologia Molecolare, Milano, Italy.,Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marco A Pierotti
- Scientific Directorate, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
15
|
Smith L, Baxter EW, Chambers PA, Green CA, Hanby AM, Hughes TA, Nash CE, Millican-Slater RA, Stead LF, Verghese ET, Speirs V. Down-Regulation of miR-92 in Breast Epithelial Cells and in Normal but Not Tumour Fibroblasts Contributes to Breast Carcinogenesis. PLoS One 2015; 10:e0139698. [PMID: 26437339 PMCID: PMC4593575 DOI: 10.1371/journal.pone.0139698] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/16/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND MicroRNA (miR) expression is commonly dysregulated in many cancers, including breast. MiR-92 is one of six miRs encoded by the miR-17-92 cluster, one of the best-characterised oncogenic miR clusters. We examined expression of miR-92 in the breast epithelium and stroma during breast cancer progression. We also investigated the role of miR-92 in fibroblasts in vitro and showed that down-regulation in normal fibroblasts enhances the invasion of breast cancer epithelial cells. METHODOLOGY/PRINCIPAL FINDINGS We used laser microdissection (LMD) to isolate epithelial cells from matched normal, DCIS and invasive tissue from 9 breast cancer patients and analysed miR-92 expression by qRT-PCR. Expression of ERβ1, a direct miR-92 target, was concurrently analysed for each case by immunohistochemistry. LMD was also used to isolate matched normal (NFs) and cancer-associated fibroblasts (CAFs) from 14 further cases. Effects of miR-92 inhibition in fibroblasts on epithelial cell invasion in vitro was examined using a Matrigel™ assay. miR-92 levels decreased in microdissected epithelial cells during breast cancer progression with highest levels in normal breast epithelium, decreasing in DCIS (p<0.01) and being lowest in invasive breast tissue (p<0.01). This was accompanied by a shift in cell localisation of ERβ1 from nuclear expression in normal breast epithelium to increased cytoplasmic expression during progression to DCIS (p = 0.0078) and invasive breast cancer (p = 0.031). ERβ1 immunoreactivity was also seen in stromal fibroblasts in tissues. Where miR-92 expression was low in microdissected NFs this increased in matched CAFs; a trend also seen in cultured primary fibroblasts. Down-regulation of miR-92 levels in NFs but not CAFs enhanced invasion of both MCF-7 and MDA-MB-231 breast cancer epithelial cells. CONCLUSIONS miR-92 is gradually lost in breast epithelial cells during cancer progression correlating with a shift in ERβ1 immunoreactivity from nuclei to the cytoplasm. Our data support a functional role in fibroblasts where modification of miR-92 expression can influence the invasive capacity of breast cancer epithelial cells. However in silico analysis suggests that ERβ1 may not be the most important miR-92 target in breast cancer.
Collapse
Affiliation(s)
- Laura Smith
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Euan W. Baxter
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Philip A. Chambers
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Caroline A. Green
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Andrew M. Hanby
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Thomas A. Hughes
- Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, United Kingdom
| | - Claire E. Nash
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | | | - Lucy F. Stead
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Eldo T. Verghese
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Valerie Speirs
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
Wang W, Corrigan-Cummins M, Barber EA, Saleh LM, Zingone A, Ghafoor A, Costello R, Zhang Y, Kurlander RJ, Korde N, Roccaro AM, Ghobrial IM, Landgren O, Calvo KR. Aberrant Levels of miRNAs in Bone Marrow Microenvironment and Peripheral Blood of Myeloma Patients and Disease Progression. J Mol Diagn 2015; 17:669-78. [PMID: 26433312 DOI: 10.1016/j.jmoldx.2015.06.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/26/2015] [Accepted: 06/22/2015] [Indexed: 12/20/2022] Open
Abstract
The bone marrow (BM) microenvironment of multiple myeloma (MM) is reported to play a role in the biology of disease. In this study, we found that the extracellular BM microenvironment in MM contains a unique miRNA signature detectable by miRNA microarray and quantitative real-time PCR, which is partially represented in the peripheral blood. Eleven miRNAs were significantly decreased in both BM and serum of MM patients in comparison with controls. Evaluation of these miRNAs in plasma of a separate cohort of MM patients and controls confirmed significantly aberrant levels of let-7a, let-7b, let-7i, miR-15b, miR-16, and miR-20a in both serum and plasma. We then studied the myeloma precursor diseases and found that a subset of the MM miRNAs exhibited aberrant expression in monoclonal gammopathy of undetermined significance and smoldering myeloma. miRNA analysis of enriched CD138(+) plasma cells from MM and monoclonal gammopathy of undetermined significance found that most of the validated MM BM signature miRNAs were significantly decreased in MM plasma cells. Gene expression profiling indicated that multiple targets of the decreased miRNAs found increased expression in MM plasma cells, including ATF2, HRAS, HDAC4, TGFB1, TGFBR1, and mitogen-activated protein kinases. The findings suggest that these miRNAs are detectable in aberrant levels in the peripheral blood of patients with plasma cell proliferation and may play a role in aberrant plasma cell proliferation and disease progression.
Collapse
Affiliation(s)
- Weixin Wang
- Hematology Section, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland
| | - Meghan Corrigan-Cummins
- Hematology Section, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland
| | - Emily A Barber
- Hematology Section, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland
| | - Layla M Saleh
- Hematology Section, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland
| | - Adriana Zingone
- Multiple Myeloma Section, Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Azam Ghafoor
- Hematology Section, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland
| | - Rene Costello
- Multiple Myeloma Section, Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Yong Zhang
- Multiple Myeloma Section, Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Roger J Kurlander
- Hematology Section, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland
| | - Neha Korde
- Multiple Myeloma Section, Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Aldo M Roccaro
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Irene M Ghobrial
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Ola Landgren
- Multiple Myeloma Section, Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Katherine R Calvo
- Hematology Section, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland.
| |
Collapse
|
17
|
Qi L, Chen L, Li Y, Qin Y, Pan R, Zhao W, Gu Y, Wang H, Wang R, Chen X, Guo Z. Critical limitations of prognostic signatures based on risk scores summarized from gene expression levels: a case study for resected stage I non-small-cell lung cancer. Brief Bioinform 2015; 17:233-42. [PMID: 26254430 DOI: 10.1093/bib/bbv064] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Indexed: 12/16/2022] Open
Abstract
Most of current gene expression signatures for cancer prognosis are based on risk scores, usually calculated as some summaries of expression levels of the signature genes, whose applications require presetting risk score thresholds and data normalization. In this study, we demonstrate the critical limitations of such type of signatures that the risk scores of samples will change greatly when they are normalized together with different samples, which would induce spurious risk classification and difficulty in clinical settings, and the risk scores of independent samples are incomparable if data normalization is not adopted. To overcome these limitations, we propose a rank-based method to extract a prognostic gene pair signature for overall survival of stage I non-small-cell lung cancer. The prognostic gene pair signature is verified in three integrated data sets detected by different laboratories with different microarray platforms. We conclude that, different from the type of signatures based on risk scores summarized from gene expression levels, the rank-based signatures could be robustly applied at the individualized level to independent clinical samples assessed in different laboratories.
Collapse
|
18
|
Non-small-cell lung cancer and miRNAs: novel biomarkers and promising tools for treatment. Clin Sci (Lond) 2015; 128:619-34. [PMID: 25760961 DOI: 10.1042/cs20140530] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide, with approximately 80–85% of cases being non-small-cell lung cancer (NSCLC). The miRNAs are small non-coding RNAs that regulate gene expression at a post-transcriptional level by either degradation or inhibition of the translation of target genes. Evidence is mounting that miRNAs exert pivotal effects in the development and progression of human malignancies, including NSCLC. A better understanding of the role that miRNAs play in the disease will contribute to the development of new diagnostic biomarkers and individualized therapeutic tools. In the present review, we briefly describe the role of miRNAs in NSCLC as well as the possible future of these discoveries in clinical applications.
Collapse
|
19
|
Vahid F, Zand H, Nosrat-Mirshekarlou E, Najafi R, Hekmatdoost A. The role dietary of bioactive compounds on the regulation of histone acetylases and deacetylases: a review. Gene 2015; 562:8-15. [PMID: 25701602 DOI: 10.1016/j.gene.2015.02.045] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 01/25/2015] [Accepted: 02/15/2015] [Indexed: 12/18/2022]
Abstract
Nutrigenomics is an area of epigenomics that explores and defines the rapidly evolving field of diet-genome interactions. Lifestyle and diet can significantly influence epigenetic mechanisms, which cause heritable changes in gene expression without changes in DNA sequence. Nutrient-dependent epigenetic variations can significantly affect genome stability, mRNA and protein expression, and metabolic changes, which in turn influence food absorption and the activity of its constituents. Dietary bioactive compounds can affect epigenetic alterations, which are accumulated over time and are shown to be involved in the pathogenesis of age-related diseases such as diabetes, cancer, and cardiovascular disease. Histone acetylation is an epigenetic modification mediated by histone acetyl transferases (HATs) and histone deacetylases (HDACs) critically involved in regulating affinity binding between the histones and DNA backbone. The HDAC-mediated increase in histone affinity to DNA causes DNA condensation, preventing transcription, whereas HAT-acetylated chromatin is transcriptionally active. HDAC and HAT activities are reported to be associated with signal transduction, cell growth and death, as well as with the pathogenesis of various diseases. The aim of this review was to evaluate the role of diet and dietary bioactive compounds on the regulation of HATs and HDACs in epigenetic diseases. Dietary bioactive compounds such as genistein, phenylisothiocyanate, curcumin, resveratrol, indole-3-carbinol, and epigallocatechin-3-gallate can regulate HDAC and HAT activities and acetylation of histones and non-histone chromatin proteins, and their health benefits are thought to be attributed to these epigenetic mechanisms. The intake of dietary compounds that regulate epigenetic modifications can provide significant health effects and may prevent various pathological processes involved in the development of cancer and other life-threatening diseases.
Collapse
Affiliation(s)
- F Vahid
- Department of Nutritional Sciences, Nutrition and Food Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Nutrition and Food Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - H Zand
- Department of Nutritional Sciences, Nutrition and Food Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Nutrition and Food Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Cell and Molecular Science and Nutrition, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - E Nosrat-Mirshekarlou
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| | - R Najafi
- Department of Nutritional Sciences, Nutrition and Food Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Nutrition and Food Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - A Hekmatdoost
- Department of Nutritional Sciences, Nutrition and Food Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Nutrition and Food Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Li E, Guo Y, Wang G, Chen F, Li Q. Effect of resveratrol on restoring spermatogenesis in experimental cryptorchid mice and analysis of related differentially expressed proteins. Cell Biol Int 2015; 39:733-40. [PMID: 25604468 DOI: 10.1002/cbin.10441] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 01/12/2015] [Indexed: 11/08/2022]
Abstract
The present study aimed to evaluate the effect of trans-Resveratrol on spermatogenesis. Male Kunming suckling mice (10 days old) were surgically rendered cryptorchid and subcutaneously injected with trans-Resveratrol at doses of 5, 10, 20, and 40 µg/g/day as groups I, II, III, and IV, respectively, for 35 days. Animals in the control group received 10 µL/mouse/day of olive oil. Serum estradiol, testosterone, FSH, and LH levels were measured on day 45. Tissue analysis and sperm morphological abnormalities analysis were done. Results showed that in the control group and group I only spermatogonia and primary spermatocytes were present, whereas spermatogenesis was totally restored in groups II, III, and IV. Sperm counts in groups III and IV were remarkably higher than the control group (P<0.05). The morphological abnormalities in resveratrol-treated groups were higher than the mature mice. Serum estradiol levels in the resveratrol-treated groups were not significantly different from the control group, but were lower than the mature mice (P<0.05). There was no significant difference in serum testosterone levels between the resveratrol-treated groups and mature mice, but the levels in the resveratrol-treated groups was significantly lower than the control group (P<0.05). No significant influence of trans-Resveratrol was observed on serum FSH levels in all cryptorchid mice. Serum LH levels in groups I, II, and III were higher than the control group. These results indicate that trans-Resveratrol restores spermatogenesis in cryptorchid mice. In addition, proteomic analysis between the 20 μg/g/day resveratrol-treated group and the control group was carried out, and five kinds of proteins (BAF250, ZFP261, CHD1L, RBBP9, and SOHLH2) were identified. The expression of SOHLH2 increased, while that of BAF250, ZFP261, CHD1L, and RBBP9 decreased in the 20 µg/g/day resveratrol-treated group, indicating that SOHLH2 may contribute to testicular germ cell differentiation.
Collapse
Affiliation(s)
- Enzhong Li
- Huanghuai University, 6 Kaiyuan Road, Zhumadian, 463000, China.,College of Animal Science and Technology, Northwest A&F University, 22 Xi-Nong Road, Yangling, Shanxi, 712100, China
| | - Yuping Guo
- Anyang Normal University, 4 Xian'ge Road, Anyang, 455002, China
| | - Gailing Wang
- Huanghuai University, 6 Kaiyuan Road, Zhumadian, 463000, China
| | - Fujia Chen
- Huanghuai University, 6 Kaiyuan Road, Zhumadian, 463000, China
| | - Qingwang Li
- College of Animal Science and Technology, Northwest A&F University, 22 Xi-Nong Road, Yangling, Shanxi, 712100, China
| |
Collapse
|
21
|
Manipulating miRNA Expression: A Novel Approach for Colon Cancer Prevention and Chemotherapy. ACTA ACUST UNITED AC 2015; 1:141-153. [PMID: 26029495 DOI: 10.1007/s40495-015-0020-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Small non-coding RNA has been implicated in the control of various cellular processes such as proliferation, apoptosis, and differentiation. About 50% of the miRNA genes are positioned in cancer-associated genomic regions. Several studies have shown that miRNA expression is deregulated in cancer and modulating their expression has reversed the cancer phenotype. Therefore, mechanisms to modulate microRNA (miRNA) activity have provided a novel opportunity for cancer prevention and therapy. In addition, a common cause for development of colorectal cancers is environmental and lifestyle factors. One such factor, diet has been shown to modulate miRNA expression in colorectal cancer patients. In this chapter, we will summarize the work demonstrating that miRNAs are novel promising drug targets for cancer chemoprevention and therapy. Improved delivery, increased stability and enhanced regulation of off-target effects will overcome the current challenges of this exciting approach in the field of cancer prevention and therapy.
Collapse
|
22
|
Wong JJL, Ritchie W, Gao D, Lau KA, Gonzalez M, Choudhary A, Taft RJ, Rasko JEJ, Holst J. Identification of nuclear-enriched miRNAs during mouse granulopoiesis. J Hematol Oncol 2014; 7:42. [PMID: 24886830 PMCID: PMC4046156 DOI: 10.1186/1756-8722-7-42] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/10/2014] [Indexed: 12/11/2022] Open
Abstract
Background MicroRNAs (miRNAs) are coordinators of cellular differentiation, including granulopoiesis. Although differential expression of many miRNAs is associated with the maturation of granulocytes, analysis of differentially expressed miRNAs and their cellular localization across all stages of granulopoiesis, starting from hemopoietic stems cells, is not well characterized. Methods We analyzed whole cell miRNA and mRNA expression during granulopoiesis using Taqman low-density and Affymetrix arrays respectively. We also performed nuclear and cytoplasmic fractionation followed by Taqman low-density array and/or quantitative PCR to identify nuclear-enriched miRNAs in hemopoietic stem/progenitor cells, promyelocytes, myelocytes, granulocytes and several hemopoietic cell lines. Anti-correlation between the expression of miRNA and target pairs was used to determine putative miRNA targets. Results Analyses of our array data revealed distinct clusters of differentially expressed miRNAs that are specific to promyelocytes and granulocytes. While the roles of many of these miRNAs in granulopoiesis are not currently known, anti-correlation of the expression of miRNA/mRNA target pairs identified a suite of novel target genes. Clusters of miRNAs (including members of the let-7 and miR-17-92 families) are downregulated in hemopoietic stem/progenitor cells, potentially allowing the expression of target genes known to facilitate stem cell proliferation and homeostasis. Additionally, four miRNAs (miR-709, miR-706, miR-690 and miR-467a*) were found to be enriched in the nucleus of myeloid cells and multiple hemopoietic cell lines compared to other miRNAs, which are predominantly cytoplasmic-enriched. Both miR-709 and miR-706 are nuclear-enriched throughout granulopoiesis and have putative binding sites of extensive complementarity downstream of pri-miRNAs. Nuclear enrichment of miR-467a* is specific to hemopoietic stem/progenitors and promyelocytes. These miRNAs are also nuclear-enriched in other hemopoietic cell lines, where nuclear sequestering may fine-tune the expression of cytoplasmic mRNA targets. Conclusions Overall, we have demonstrated differentially expressed miRNAs that have not previously been associated with hemopoietic differentiation and provided further evidence of regulated nuclear-enrichment of miRNAs. Further studies into miRNA function in granulocyte development may shed light on fundamental aspects of regulatory RNA biology and the role of nuclear miRNAs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jeff Holst
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown, Australia.
| |
Collapse
|
23
|
MiR-19a/b modulate the metastasis of gastric cancer cells by targeting the tumour suppressor MXD1. Cell Death Dis 2014; 5:e1144. [PMID: 24675462 PMCID: PMC3973221 DOI: 10.1038/cddis.2014.110] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 12/29/2022]
Abstract
The microRNAs 19a and 19b, hereafter collectively referred to as miR-19a/b, were recognised to be the most important miRNAs in the oncomiRs—miR-17-92 cluster. However, the exact roles of miR-19a/b in cancers have not been elucidated. In the present study, miR-19a/b was found to be over-expressed in gastric cancer tissues and significantly associated with the patients' metastasis of gastric cancer. Using gain or loss-of-function in in vitro and in vivo experiments, a pro-metastatic function of miR-19a/b was observed in gastric cancer. Furthermore, reporter gene assay and western blot showed that MXD1 is a direct target of miR-19a/b. Functional assays showed that not only MXD1 had an opposite effect to miR-19a/b in the regulation of gastric cancer cells, but also overexpression of MXD1 reduced both miR-19a/b and c-Myc levels, indicating a potential positive feedback loop among miR-19a/b, MXD1 and c-Myc. In conclusion, miR-17-92 cluster members miR-19a/b facilitated gastric cancer cell migration, invasion and metastasis through targeting the antagonist of c-Myc -- MXD1, implicating a novel mechanism for the malignant phenotypes of gastric cancer.
Collapse
|
24
|
Tenga MJ, Lazar IM. Proteomic snapshot of breast cancer cell cycle: G1/S transition point. Proteomics 2013; 13:48-60. [PMID: 23152136 DOI: 10.1002/pmic.201200188] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 09/22/2012] [Accepted: 10/25/2012] [Indexed: 01/16/2023]
Abstract
The biological processes that unfold during the G1-phase of the cell cycle are dependent on extracellular mitogenic factors that signal the cell to enter a state of quiescence, or commit to a cell-cycle round by passing the restriction point (R-point) and enter the S-phase. Unlike normal cells, cancer cells evolved the ability to evade the R-point and continue through the cell cycle even in the presence of extensive DNA damage or absence of mitogenic signals. The purpose of this study was to perform a quantitative proteomic evaluation of the biological processes that are responsible for driving MCF-7 breast cancer cells into division even when molecular checkpoints such as the G1/S R-point are in place. Nuclear and cytoplasmic fractions of the G1 and S cell-cycle phases were analyzed by LC-MS/MS to result in the confident identification of more than 2700 proteins. Statistical evaluation of the normalized data resulted in the selection of proteins that displayed twofold or more change in spectral counts in each cell state. Pathway mapping, functional annotation clustering, and protein interaction network analysis revealed that the top-scoring clusters that could play a role in overriding the G1/S transition point included DNA damage response, chromatin remodeling, transcription/translation regulation, and signaling proteins.
Collapse
Affiliation(s)
- Milagros J Tenga
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 246021, USA
| | | |
Collapse
|
25
|
Muñoz P, Iliou MS, Esteller M. Epigenetic alterations involved in cancer stem cell reprogramming. Mol Oncol 2012; 6:620-36. [PMID: 23141800 PMCID: PMC5528346 DOI: 10.1016/j.molonc.2012.10.006] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 10/17/2012] [Indexed: 02/07/2023] Open
Abstract
Current hypotheses suggest that tumors originate from cells that carry out a process of "malignant reprogramming" driven by genetic and epigenetic alterations. Multiples studies reported the existence of stem-cell-like cells that acquire the ability to self-renew and are able to generate the bulk of more differentiated cells that form the tumor. This population of cancer cells, called cancer stem cells (CSC), is responsible for sustaining the tumor growth and, under determined conditions, can disseminate and migrate to give rise to secondary tumors or metastases to distant organs. Furthermore, CSCs have shown to be more resistant to anti-tumor treatments than the non-stem cancer cells, suggesting that surviving CSCs could be responsible for tumor relapse after therapy. These important properties have raised the interest in understanding the mechanisms that govern the generation and maintenance of this special population of cells, considered to lie behind the on/off switches of gene expression patterns. In this review, we summarize the most relevant epigenetic alterations, from DNA methylation and histone modifications to the recently discovered miRNAs that contribute to the regulation of cancer stem cell features in tumor progression, metastasis and response to chemotherapy.
Collapse
Affiliation(s)
- Purificación Muñoz
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, Barcelona, Spain
| | | | | |
Collapse
|
26
|
The down-regulation of miR-125b in chronic lymphocytic leukemias leads to metabolic adaptation of cells to a transformed state. Blood 2012; 120:2631-8. [PMID: 22723551 DOI: 10.1182/blood-2012-03-415737] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MiR-125b-1 maps at 11q24, a chromosomal region close to the epicenter of 11q23 deletions in chronic lymphocytic leukemias (CLLs). Our results establish that both aggressive and indolent CLL patients show reduced expression of miR-125b. Overexpression of miR-125b in CLL-derived cell lines resulted in the repression of many transcripts encoding enzymes implicated in cell metabolism. Metabolomics analyses showed that miR-125b overexpression modulated glucose, glutathione, lipid, and glycerolipid metabolism. Changes on the same metabolic pathways also were observed in CLLs. We furthermore analyzed the expression of some of miR-125b-target transcripts that are potentially involved in the aforementioned metabolic pathways and defined a miR-125b-dependent CLL metabolism-related transcript signature. Thus, miR-125b acts as a master regulator for the adaptation of cell metabolism to a transformed state. MiR-125b and miR-125b-dependent metabolites therefore warrant further investigation as possible novel therapeutic approaches for patients with CLL.
Collapse
|
27
|
Butz H, Rácz K, Hunyady L, Patócs A. Crosstalk between TGF-β signaling and the microRNA machinery. Trends Pharmacol Sci 2012; 33:382-93. [PMID: 22613783 DOI: 10.1016/j.tips.2012.04.003] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 04/05/2012] [Accepted: 04/12/2012] [Indexed: 02/07/2023]
Abstract
The activin/transforming growth factor-β (TGF-β) pathway plays an important role in tumorigenesis either by its tumor suppressor or tumor promoting effect. Loss of members of the TGF-β signaling by somatic mutations or epigenetic events, such as DNA methylation or regulation by microRNA (miRNA), may affect the signaling process. Most members of the TGF-β pathway are known to be targeted by one or more miRNAs. In addition, the biogenesis of miRNAs is also regulated by TGF-β both directly and through SMADs. Based on these interactions, it appears that autoregulatory feedback loops between TGF-β and miRNAs influence the fate of tumor cells. Our aim is to review the crosstalk between TGF-β signaling and the miRNA machinery to highlight potential novel therapeutic targets.
Collapse
Affiliation(s)
- Henriett Butz
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | | | | | | |
Collapse
|
28
|
Zhang R, He Y, Zhang X, Xing B, Sheng Y, Lu H, Wei Z. Estrogen receptor-regulated microRNAs contribute to the BCL2/BAX imbalance in endometrial adenocarcinoma and precancerous lesions. Cancer Lett 2011; 314:155-65. [PMID: 22014978 DOI: 10.1016/j.canlet.2011.09.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/19/2011] [Accepted: 09/20/2011] [Indexed: 11/27/2022]
Abstract
Uncontrolled estrogen exposure can induce an imbalance in BCL2/BAX expression in endometrial cells, leading to precancerous lesions and type I endometrial adenocarcinoma. This study aimed to explore the mechanism underlying this phenomenon. We show that the activated estrogen receptor can suppress the expression of BAX by upregulating a group of microRNAs including hsa-let-7 family members and hsa-miR-27a, thereby promoting an increased BCL2/BAX ratio as well as enhanced survival and proliferation in the affected cells. These ER-regulated hsa-let-7 microRNAs can be detected in most hyperplastic endometria, suggesting their potential utility as indicators of estrogen over-exposure.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Obstetrics and Gynecology, Fengxian Central Hospital, Shanghai 201400, PR China.
| | | | | | | | | | | | | |
Collapse
|
29
|
Tili E, Michaille JJ. Resveratrol, MicroRNAs, Inflammation, and Cancer. J Nucleic Acids 2011; 2011:102431. [PMID: 21845215 PMCID: PMC3154569 DOI: 10.4061/2011/102431] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 06/15/2011] [Accepted: 06/22/2011] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs are short noncoding RNAs that regulate the expression of many target genes posttranscriptionally and are thus implicated in a wide array of cellular and developmental processes. The expression of miR-155 or miR-21 is upregulated during the course of the inflammatory response, but these microRNAs are also considered oncogenes due to their upregulation of expression in several types of tumors. Furthermore, it is now well established that inflammation is associated with the induction or the aggravation of nearly 25% of cancers. Therefore, the above microRNAs are thought to link inflammation and cancer. Recently, resveratrol (trans-3,4′,5-trihydroxystilbene), a natural polyphenol with antioxidant, anti-inflammatory, and anticancer properties, currently at the stage of preclinical studies for human cancer prevention, has been shown to induce the expression of miR-663, a tumor-suppressor and anti-inflammatory microRNA, while downregulating miR-155 and miR-21. In this paper we will discuss how the use of resveratrol in therapeutics may benefit from the preanalyses on the status of expression of miR-155 or miR-21 as well as of TGFβ1. In addition, we will discuss how resveratrol activity might possibly be enhanced by simultaneously manipulating the levels of its key target microRNAs, such as miR-663.
Collapse
Affiliation(s)
- Esmerina Tili
- Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University, Biomedical Research Tower, 460 W 12th Avenue, Columbus, OH 43210, USA
| | | |
Collapse
|