1
|
Ototake M, Inagaki M, Kimura S, Onda K, Tada M, Kawaguchi D, Murase H, Fukuchi K, Gao Y, Kokubo K, Acharyya S, Meng Z, Ishida T, Kawasaki T, Abe N, Hashiya F, Kimura Y, Abe H. Development of hydrophobic tag purifying monophosphorylated RNA for chemical synthesis of capped mRNA and enzymatic synthesis of circular mRNA. Nucleic Acids Res 2024; 52:12141-12157. [PMID: 39414255 PMCID: PMC11551738 DOI: 10.1093/nar/gkae847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/16/2024] [Accepted: 09/21/2024] [Indexed: 10/18/2024] Open
Abstract
We developed phosphorylation reagents with a nitrobenzyl hydrophobic tag and used them for 5'-phosphorylation of chemically or transcriptionally synthesized RNA. The capability of hydrophobic tags to synthesize 5'-monophosphorylated RNA was evaluated based on the yield of the desired oligonucleotides, stability of protecting groups during cleavage/deprotection, separation ability in reverse-phase HPLC (RP-HPLC), and deprotection efficiency after RP-HPLC purification. The results showed that a nitrobenzyl derivative with a tert-butyl group at the benzyl position was most suitable for RNA 5'-phosphorylation. Using the developed phosphorylation reagent, we chemically synthesized 5'-phosphorylated RNA and confirmed that it could be purified by RP-HPLC and the following deprotection. In addition, we demonstrated complete chemical synthesis of minimal mRNA by chemical capping of 5'-monophosphorylated RNA. Ribonucleoside 5'-monophosphates with hydrophobic protecting groups have also been developed and used as substrates to transcriptionally synthesize 5'-phosphorylated RNA with >1000 bases. From the mixture of the by-products and the desired RNA, only 5'-monophosphorylated RNA could be effectively isolated by RP-HPLC. Furthermore, monophosphorylated RNA can be converted into circular mRNA via RNA ligase-mediated cyclization. Circular mRNA expression of nanoluciferase in cultured cells and mice. These techniques are important for the production of chemically synthesized mRNA and circular mRNA.
Collapse
Affiliation(s)
- Mami Ototake
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Masahito Inagaki
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Seigo Kimura
- Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Kaoru Onda
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Mizuki Tada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Daisuke Kawaguchi
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Hirotaka Murase
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Kosuke Fukuchi
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Yinuo Gao
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Kengo Kokubo
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Susit Acharyya
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Zheyu Meng
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Tatsuma Ishida
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Tairin Kawasaki
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Naoko Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Fumitaka Hashiya
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- CREST, Japan Science and Technology Agency. 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Yasuaki Kimura
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Hiroshi Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- CREST, Japan Science and Technology Agency. 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
2
|
Chatterjee P, Ghosal P, Shit S, Biswas A, Mallik S, Allabun S, Othman M, Ali AH, Elshiekh E, Soufiene BO. Ribosomal computing: implementation of the computational method. BMC Bioinformatics 2024; 25:321. [PMID: 39358680 PMCID: PMC11448306 DOI: 10.1186/s12859-024-05945-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Several computational and mathematical models of protein synthesis have been explored to accomplish the quantitative analysis of protein synthesis components and polysome structure. The effect of gene sequence (coding and non-coding region) in protein synthesis, mutation in gene sequence, and functional model of ribosome needs to be explored to investigate the relationship among protein synthesis components further. Ribosomal computing is implemented by imitating the functional property of protein synthesis. RESULT In the proposed work, a general framework of ribosomal computing is demonstrated by developing a computational model to present the relationship between biological details of protein synthesis and computing principles. Here, mathematical abstractions are chosen carefully without probing into intricate chemical details of the micro-operations of protein synthesis for ease of understanding. This model demonstrates the cause and effect of ribosome stalling during protein synthesis and the relationship between functional protein and gene sequence. Moreover, it also reveals the computing nature of ribosome molecules and other protein synthesis components. The effect of gene mutation on protein synthesis is also explored in this model. CONCLUSION The computational model for ribosomal computing is implemented in this work. The proposed model demonstrates the relationship among gene sequences and protein synthesis components. This model also helps to implement a simulation environment (a simulator) for generating protein chains from gene sequences and can spot the problem during protein synthesis. Thus, this simulator can identify a disease that can happen due to a protein synthesis problem and suggest precautions for it.
Collapse
Affiliation(s)
| | | | - Sahadeb Shit
- Kazi Nazrul University, Asansol, West Bengal, India
| | | | - Saurav Mallik
- Department of Environmental Health, Harvard T H Chan School of Public Health, Boston, USA
- Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ, 02115, USA
| | - Sarah Allabun
- Department of Medical Education, College of Medicine, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia
| | - Manal Othman
- Department of Medical Education, College of Medicine, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia
| | - Almubarak Hassan Ali
- Division of Radiology, Department of Medicine, College of Medicine and surgery, King Khalid University (KKU), Abha, Aseer, Kingdom of Saudi Arabia
| | - E Elshiekh
- Department of Radiological Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ben Othman Soufiene
- PRINCE Laboratory Research, ISITcom, Hammam Sousse, University of Sousse, Sousse, Tunisia.
| |
Collapse
|
3
|
Imani S, Tagit O, Pichon C. Neoantigen vaccine nanoformulations based on Chemically synthesized minimal mRNA (CmRNA): small molecules, big impact. NPJ Vaccines 2024; 9:14. [PMID: 38238340 PMCID: PMC10796345 DOI: 10.1038/s41541-024-00807-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
Recently, chemically synthesized minimal mRNA (CmRNA) has emerged as a promising alternative to in vitro transcribed mRNA (IVT-mRNA) for cancer therapy and immunotherapy. CmRNA lacking the untranslated regions and polyadenylation exhibits enhanced stability and efficiency. Encapsulation of CmRNA within lipid-polymer hybrid nanoparticles (LPPs) offers an effective approach for personalized neoantigen mRNA vaccines with improved control over tumor growth. LPP-based delivery systems provide superior pharmacokinetics, stability, and lower toxicity compared to viral vectors, naked mRNA, or lipid nanoparticles that are commonly used for mRNA delivery. Precise customization of LPPs in terms of size, surface charge, and composition allows for optimized cellular uptake, target specificity, and immune stimulation. CmRNA-encoded neo-antigens demonstrate high translational efficiency, enabling immune recognition by CD8+ T cells upon processing and presentation. This perspective highlights the potential benefits, challenges, and future directions of CmRNA neoantigen vaccines in cancer therapy compared to Circular RNAs and IVT-mRNA. Further research is needed to optimize vaccine design, delivery, and safety assessment in clinical trials. Nevertheless, personalized LPP-CmRNA vaccines hold great potential for advancing cancer immunotherapy, paving the way for personalized medicine.
Collapse
Affiliation(s)
- Saber Imani
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China.
| | - Oya Tagit
- Institute of Chemistry and Bioanalytics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Chantal Pichon
- Center of Molecular Biophysics, CNRS, Orléans, France.
- ART-ARNm, National Institute of Health and Medical Research (Inserm) and University of Orléans, Orléans, France.
- Institut Universitaire de France, Paris, France.
| |
Collapse
|
4
|
Noël M, Guez T, Thillier Y, Vasseur JJ, Debart F. Access to High-Purity 7m G-cap RNA in Substantial Quantities by a Convenient All-Chemical Solid-Phase Method. Chembiochem 2023; 24:e202300544. [PMID: 37666794 DOI: 10.1002/cbic.202300544] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/06/2023]
Abstract
Given the importance of mRNA with 5'-cap, easy access to RNA substrates with different 7m G caps, of high quality and in large quantities is essential to elucidate the roles of RNA and the regulation of underlying processes. In addition to existing synthetic routes to 5'-cap RNA based on enzymatic, chemical or chemo-enzymatic methods, we present here an all-chemical method for synthetic RNA capping. The novelty of this study lies in the fact that the capping reaction is performed on solid-support after automated RNA assembly using commercial 2'-O-propionyloxymethyl ribonucleoside phosphoramidites, which enable final RNA deprotection under mild conditions while preserving both 7m G-cap and RNA integrity. The capping reaction is efficiently carried out between a 5'-phosphoroimidazolide RNA anchored on the support and 7m GDP in DMF in the presence of zinc chloride. Substantial amounts of 7m G-cap RNA (from 1 to 28 nucleotides in length and of any sequence with or without internal methylations) containing various cap structures (7m GpppA, 7m GpppAm , 7m Gpppm6 A, 7m Gpppm6 Am , 7m GpppG, 7m GpppGm ) were obtained with high purity after IEX-HPLC purification. This capping method using solid-phase chemistry is convenient to perform and provides access to valuable RNA substrates as useful research tools to unravel specific issues regarding cap-related processes.
Collapse
Affiliation(s)
- Mathieu Noël
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-University of Montpellier-ENSCM, Equipe ChemBioNAC, Pôle Chimie Balard Recherche, 1919 Route de Mende, 34293, Montpellier Cedex 5, France
| | - Theo Guez
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-University of Montpellier-ENSCM, Equipe ChemBioNAC, Pôle Chimie Balard Recherche, 1919 Route de Mende, 34293, Montpellier Cedex 5, France
| | - Yann Thillier
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-University of Montpellier-ENSCM, Equipe ChemBioNAC, Pôle Chimie Balard Recherche, 1919 Route de Mende, 34293, Montpellier Cedex 5, France
- Present address: Chemgenes, 900 Middlesex Turnpike, Billerica, MA 01821, USA
| | - Jean-Jacques Vasseur
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-University of Montpellier-ENSCM, Equipe ChemBioNAC, Pôle Chimie Balard Recherche, 1919 Route de Mende, 34293, Montpellier Cedex 5, France
| | - Françoise Debart
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-University of Montpellier-ENSCM, Equipe ChemBioNAC, Pôle Chimie Balard Recherche, 1919 Route de Mende, 34293, Montpellier Cedex 5, France
| |
Collapse
|
5
|
Janowski M, Andrzejewska A. The legacy of mRNA engineering: A lineup of pioneers for the Nobel Prize. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:272-284. [PMID: 35855896 PMCID: PMC9278038 DOI: 10.1016/j.omtn.2022.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
mRNA is like Hermes, delivering the genetic code to cellular construction sites, so it has long been of interest, but only to a small group of scientists, and only demonstrating its remarkable efficacy in coronavirus disease 2019 (COVID-19) vaccines allowed it to go out into the open. Therefore, now is the right timing to delve into the stepping stones that underpin this success and pay tribute to the underlying scientists. From this perspective, advances in mRNA engineering have proven crucial to the rapidly growing role of this molecule in healthcare. Development of consecutive generations of cap analogs, including anti-reverse cap analogs (ARCAs), has significantly boosted translation efficacy and maintained an enthusiasm for mRNA research. Nucleotide modification to protect mRNA molecules from the host's immune system, followed by finding appropriate purification and packaging methods, were other links in the chain enabling medical breakthroughs. Currently, vaccines are the central area of mRNA research, but it will reach far beyond COVID-19. Supplementation of missing or abnormal proteins is another large field of mRNA research. Ex vivo cell engineering and genome editing have been expanding recently. Thus, it is time to recognize mRNA pioneers while building upon their legacy.
Collapse
Affiliation(s)
- Miroslaw Janowski
- Program in Image Guided Neurointerventions, Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA,Tumor Immunology and Immunotherapy Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| | - Anna Andrzejewska
- NeuroRepair Department, Mossakowski Medical Research Institute, PAS, 5 Pawinskiego Street, 02-106 Warsaw, Poland,Corresponding author Anna Andrzejewska, NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland.
| |
Collapse
|
6
|
Abe N, Imaeda A, Inagaki M, Li Z, Kawaguchi D, Onda K, Nakashima Y, Uchida S, Hashiya F, Kimura Y, Abe H. Complete Chemical Synthesis of Minimal Messenger RNA by Efficient Chemical Capping Reaction. ACS Chem Biol 2022; 17:1308-1314. [PMID: 35608277 DOI: 10.1021/acschembio.1c00996] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Site-specific chemical modification of mRNA can improve its translational efficiency and stability. For this purpose, it is desirable to develop a complete chemical synthesis method for chemically modified mRNA. The key is a chemical reaction that introduces a cap structure into the chemically synthesized RNA. In this study, we developed a fast and quantitative chemical capping reaction between 5'-phosphorylated RNA and N7-methylated GDP imidazolide in the presence of 1-methylimidazole in the organic solvent dimethyl sulfoxide. It enabled quantitative preparation of capping RNA within 3 h. We prepared chemically modified 107-nucleotide mRNAs, including N6-methyladenosine, insertion of non-nucleotide linkers, and 2'-O-methylated nucleotides at the 5' end and evaluated their effects on translational activity in cultured HeLa cells. The results showed that mRNAs with non-nucleotide linkers in the untranslated regions were sufficiently tolerant to translation and that mRNAs with the Cap_2 structure had higher translational activity than those with the Cap_0 structure.
Collapse
Affiliation(s)
- Naoko Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Akihiro Imaeda
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Masahito Inagaki
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Zhenmin Li
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Daisuke Kawaguchi
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Kaoru Onda
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Yuko Nakashima
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Satoshi Uchida
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Fumitaka Hashiya
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Yasuaki Kimura
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Hiroshi Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- CREST, Japan Science and Technology Agency, 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
7
|
Liu D, Shu X, Xiang S, Li T, Huang C, Cheng M, Cao J, Hua Y, Liu J. N4 -allyldeoxycytidine: A New DNA Tag with Chemical Sequencing Power for Pinpointing Labelling Sites, Mapping Epigenetic Mark, and in situ Imaging. Chembiochem 2022; 23:e202200143. [PMID: 35438823 DOI: 10.1002/cbic.202200143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/18/2022] [Indexed: 11/08/2022]
Abstract
DNA tagging with base analogs has found numerous applications. To precisely record the DNA labelling information, it will be highly beneficial to develop chemical sequencing tags that can be encoded into DNA as regular bases and decoded as mutant bases upon a mild, efficient and bioorthognal chemical treatment. Here we reported such a DNA tag, N4-allyldeoxycytidine (a4dC), to label and identify DNA by in vitro assays. The iodination of a4dC led to fast and complete formation of 3, N4-cyclized deoxycytidine, which induced base misincorporation during DNA replication and thus could be located at single base resolution. We explored the applications of a4dC in pinpointing DNA labelling sites at single base resolution, mapping epigenetic mark N4-methyldeoxycytidine, and imaging nucleic acids in situ. In addition, mammalian cellular DNA could be metabolically labelled with a4dC. Together,our study sheds light on the design of next generation DNA tags with chemical sequencing power.
Collapse
Affiliation(s)
- Donghong Liu
- Zhejiang University, Department of polymer science and engineering, CHINA
| | - Xiao Shu
- Zhejiang University, Department of polymer science and engineering, CHINA
| | - Siying Xiang
- Zhejiang University, Department of polymer science and engineering, CHINA
| | - Tengwei Li
- Zhejiang University, Department of polymer science and engineering, CHINA
| | - Chenyang Huang
- Zhejiang University, Department of polymer science and engineering, CHINA
| | - Mohan Cheng
- Zhejiang University, Department of polymer science and engineering, CHINA
| | - Jie Cao
- Zhejiang University, Life Sciences Institute; Department of Polymer Science and Engineering, CHINA
| | - Yuejin Hua
- Zhejiang University, he MOE Key Laboratory of Biosystems Homeostasis & Protection; Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, CHINA
| | - Jianzhao Liu
- Zhejiang University, Department of Polymer Science and Engineering, Zheda road 38, 310007, hangzhou, CHINA
| |
Collapse
|
8
|
Takahashi M, Cawrse BM, Grajkowski A, Beaucage SL. Use of Arabinonucleosides for Development and Implementation of a Novel 2'-O-Protecting Group for Efficient Solid-Phase Synthesis and 2'-O-Deprotection of RNA Sequences. Curr Protoc 2022; 2:e346. [PMID: 35030289 DOI: 10.1002/cpz1.346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The implementation of protecting groups for 2'-hydroxyl function of ribonucleosides is very demanding in that synthetic RNA sequences must be highly pure to ensure the safety and efficacy of nucleic acid-based drugs for treatment of human diseases. A synthetic approach consisting of a condensation reaction between 2'-O-aminoribonucleosides with ethyl pyruvate has been employed to provide stable 2'-O-imino-2-methyl propanoic acid ethyl esters. Conversion of these esters to fully protected ribonucleoside phosphoramidite monomers has allowed rapid and efficient incorporation of 2'-O-protected ribonucleosides into RNA sequences while minimizing the formation of process-related impurities during solid-phase synthesis. Two chimeric 20-mer RNA sequences have been synthesized and then exposed to a solution of sodium hydroxide to saponify the 2'-O-imino-2-methyl propanoic acid ethyl ester protecting groups to their sodium salts. When subjected to ion-exchange conditions at 65°C and near neutral pH, fully deprotected RNA sequences are isolated without production of alkylating side-products and/or formation of mutagenic nucleobase adducts. © 2022 Wiley Periodicals LLC. This article has been contributed to by US Government employees and their work is in the public domain in the USA. Basic Protocol 1: Synthesis of uridine 2'-O-imino-2-propanoic acid ethyl ester and its fully protected 3'-O-phosphoramidite Basic Protocol 2: Synthesis of N6 -protected adenosine 2'-O-imino-2-propanoic acid ethyl ester and its fully protected 3'-O-phosphoramidite Basic Protocol 3: Synthesis of N4 -protected cytidine 2'-O-imino-2-propanoic acid ethyl ester and its fully protected 3'-O-phosphoramidite Basic Protocol 4: Synthesis of N2 -protected guanosine 2'-O-imino-2-propanoic acid ethyl ester and its fully protected 3'-O-phosphoramidite Basic Protocol 5: Automated solid-phase RNA synthesis and deprotection using 2'-O-imino-2-proponate-protected phosphoramidites.
Collapse
Affiliation(s)
- Mayumi Takahashi
- Laboratory of Biological Chemistry, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Brian M Cawrse
- Laboratory of Biological Chemistry, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Andrzej Grajkowski
- Laboratory of Biological Chemistry, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Serge L Beaucage
- Laboratory of Biological Chemistry, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
9
|
Matsuda H, Ito H, Nukaga Y, Uehara S, Sato K, Hara RI, Wada T. Solid-phase synthesis of oligouridine boranophosphates using the H-boranophosphonate method with 2′-O-(2-cyanoethoxymethyl) protection. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Takahashi M, Grajkowski A, Cawrse BM, Beaucage SL. Innovative 2'- O-Imino-2-propanoate-Protecting Group for Effective Solid-Phase Synthesis and 2'- O-Deprotection of RNA Sequences. J Org Chem 2021; 86:4944-4956. [PMID: 33706514 DOI: 10.1021/acs.joc.0c02773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The implementation of protecting groups for the 2'-hydroxyl function of ribonucleosides is still challenging, particularly when RNA sequences must be of the highest purity for therapeutic applications as nucleic acid-based drugs. A 2'-hydroxyl-protecting group should optimally (i) be easy to install; (ii) allow rapid and efficient incorporation of the 2'-O-protected ribonucleosides into RNA sequences to minimize, to the greatest extent possible, the formation of process-related impurities (e.g., shorter than full-length sequences) during solid-phase synthesis; and (iii) be completely cleaved from RNA sequences without the production of alkylating side products and/or formation of mutagenic nucleobase adducts. The reaction of 2'-O-aminoribonucleosides with ethyl pyruvate results in the formation of stable 2'-O-imino-2-methyl propanoic acid ethyl esters and, subsequently, of the fully protected ribonucleoside phosphoramidite monomers, which are required for the solid-phase synthesis of two chimeric RNA sequences (20-mers) containing the four canonical ribonucleosides. Upon treatment of the RNA sequences with a solution of sodium hydroxide, the 2'-O-imino-2-methyl propanoic acid ethyl ester-protecting groups are saponified to their sodium salts, which after ion exchange underwent quantitative intramolecular decarboxylation under neutral conditions at 65 °C to provide fully deprotected RNA sequences in marginally better yields than those obtained from commercial 2'-O-tert-butyldimethylsilyl ribonucleoside phosphoramidites under highly similar conditions.
Collapse
Affiliation(s)
- Mayumi Takahashi
- Laboratory of Biological Chemistry, Division of Biotechnology Review and Research IV, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993, United States
| | - Andrzej Grajkowski
- Laboratory of Biological Chemistry, Division of Biotechnology Review and Research IV, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993, United States
| | - Brian M Cawrse
- Laboratory of Biological Chemistry, Division of Biotechnology Review and Research IV, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993, United States
| | - Serge L Beaucage
- Laboratory of Biological Chemistry, Division of Biotechnology Review and Research IV, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993, United States
| |
Collapse
|
11
|
Abstract
Labeling of nucleic acids is required for many studies aiming to elucidate their functions and dynamics in vitro and in cells. Out of the numerous labeling concepts that have been devised, covalent labeling provides the most stable linkage, an unrivaled choice of small and highly fluorescent labels and - thanks to recent advances in click chemistry - an incredible versatility. Depending on the approach, site-, sequence- and cell-specificity can be achieved. DNA and RNA labeling are rapidly developing fields that bring together multiple areas of research: on the one hand, synthetic and biophysical chemists develop new fluorescent labels and isomorphic nucleobases as well as faster and more selective bioorthogonal reactions. On the other hand, the number of enzymes that can be harnessed for post-synthetic and site-specific labeling of nucleic acids has increased significantly. Together with protein engineering and genetic manipulation of cells, intracellular and cell-specific labeling has become possible. In this review, we provide a structured overview of covalent labeling approaches for nucleic acids and highlight notable developments, in particular recent examples. The majority of this review will focus on fluorescent labeling; however, the principles can often be readily applied to other labels. We will start with entirely chemical approaches, followed by chemo-enzymatic strategies and ribozymes, and finish with metabolic labeling of nucleic acids. Each section is subdivided into direct (or one-step) and two-step labeling approaches and will start with DNA before treating RNA.
Collapse
Affiliation(s)
- Nils Klöcker
- Institute of Biochemistry, University of Muenster, Corrensstraße 36, D-48149 Münster, Germany.
| | | | | |
Collapse
|
12
|
Solid-Phase Chemical Synthesis of Stable Isotope-Labeled RNA to Aid Structure and Dynamics Studies by NMR Spectroscopy. Molecules 2019; 24:molecules24193476. [PMID: 31557861 PMCID: PMC6804060 DOI: 10.3390/molecules24193476] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 02/05/2023] Open
Abstract
RNA structure and dynamic studies by NMR spectroscopy suffer from chemical shift overlap and line broadening, both of which become worse as RNA size increases. Incorporation of stable isotope labels into RNA has provided several solutions to these limitations. Nevertheless, the only method to circumvent the problem of spectral overlap completely is the solid-phase chemical synthesis of RNA with labeled RNA phosphoramidites. In this review, we summarize the practical aspects of this methodology for NMR spectroscopy studies of RNA. These types of investigations lie at the intersection of chemistry and biophysics and highlight the need for collaborative efforts to tackle the integrative structural biology problems that exist in the RNA world. Finally, examples of RNA structure and dynamic studies using labeled phosphoramidites are highlighted.
Collapse
|
13
|
Simulescu V, Ilia G. Solid-phase Synthesis of Phosphorus Derivatives. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190213112019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The solid-phase synthesis (SPS) of phosphorus-containing compounds is based mainly on the fact that the chemical process is conducted in a two-phase system. One of the components is connected via covalent bonds to a solid support, which is in general an insoluble polymer, representing the solid phase of the process. The other components involved into the process are solubilized in a solution. The method is suitable to be applied to almost any organic compounds. A common example of using solid-phase synthesis is for obtaining products nucleotide containing, similar to nucleic acids. During the whole process, the nucleotide is always on the solid phase, after the condensation reaction, except for the last step, when the synthesis is already finished. Then, the product is released and separated very easily by filtration. The obtained polymer-oligonucleotide product can participate further in condensation reactions as well. Other important biomolecules synthesized by solid-phase approach during the last decades are nucleoside di- and triphosphates, nucleoside diphosphate sugars and dinucleoside polyphosphates. Those products are precursors of deoxysugars, aminodeoxysugars, uronic acids or glycoconjugates, and are also necessary for DNA and RNA synthesis. The use of the solid-phase method in the context of immobilized oligomers is of great interest nowadays. The solid-phase synthesis offers many advantages in comparison with the conventional solution-phase method, because it takes much less time, it is highly stereoselective, the products are separated and purified usually by a simple filtration or decantation, solvents with high boiling points could be used, the whole process is based on solid polymer support and the obtained compounds should not be isolated.
Collapse
Affiliation(s)
- Vasile Simulescu
- Institute of Chemistry Timisoara of Romanian Academy, 24 Mihai Viteazul Bvd., 300223 Timisoara, Romania
| | - Gheorghe Ilia
- Institute of Chemistry Timisoara of Romanian Academy, 24 Mihai Viteazul Bvd., 300223 Timisoara, Romania
| |
Collapse
|
14
|
Pfannkuch L, Hurwitz R, Traulsen J, Sigulla J, Poeschke M, Matzner L, Kosma P, Schmid M, Meyer TF. ADP heptose, a novel pathogen-associated molecular pattern identified in Helicobacter pylori. FASEB J 2019; 33:9087-9099. [PMID: 31075211 PMCID: PMC6662969 DOI: 10.1096/fj.201802555r] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The gastric pathogen Helicobacter pylori activates the NF-κB pathway in human epithelial cells via the recently discovered α-kinase 1 TRAF-interacting protein with forkhead-associated domain (TIFA) axis. We and others showed that this pathway can be triggered by heptose 1,7-bisphosphate (HBP), an LPS intermediate produced in gram-negative bacteria that represents a new pathogen-associated molecular pattern (PAMP). Here, we report that our attempts to identify HBP in lysates of H. pylori revealed surprisingly low amounts, failing to explain NF-κB activation. Instead, we identified ADP-glycero-β-D-manno-heptose (ADP heptose), a derivative of HBP, as the predominant PAMP in lysates of H. pylori and other gram-negative bacteria. ADP heptose exhibits significantly higher activity than HBP, and cells specifically sensed the presence of the β-form, even when the compound was added extracellularly. The data lead us to conclude that ADP heptose not only constitutes the key PAMP responsible for H. pylori–induced NF-κB activation in epithelial cells, but it acts as a general gram-negative bacterial PAMP.—Pfannkuch, L., Hurwitz, R., Traulsen, J., Sigulla, J., Poeschke, M., Matzner, L., Kosma, P., Schmid, M., Meyer, T. F. ADP heptose, a novel pathogen-associated molecular pattern identified in Helicobacter pylori.
Collapse
Affiliation(s)
- Lennart Pfannkuch
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany.,Department of Infectious Diseases and Pulmonary Medicine, Charité, University Hospital Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Robert Hurwitz
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Jan Traulsen
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Janine Sigulla
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Marcella Poeschke
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Laura Matzner
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Paul Kosma
- Department of Chemistry, University of Natural Resources and Life Sciences-Vienna, Vienna, Austria
| | - Monika Schmid
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
15
|
Flamme M, McKenzie LK, Sarac I, Hollenstein M. Chemical methods for the modification of RNA. Methods 2019; 161:64-82. [PMID: 30905751 DOI: 10.1016/j.ymeth.2019.03.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023] Open
Abstract
RNA is often considered as being the vector for the transmission of genetic information from DNA to the protein synthesis machinery. However, besides translation RNA participates in a broad variety of fundamental biological roles such as gene expression and regulation, protein synthesis, and even catalysis of chemical reactions. This variety of function combined with intricate three-dimensional structures and the discovery of over 100 chemical modifications in natural RNAs require chemical methods for the modification of RNAs in order to investigate their mechanism, location, and exact biological roles. In addition, numerous RNA-based tools such as ribozymes, aptamers, or therapeutic oligonucleotides require the presence of additional chemical functionalities to strengthen the nucleosidic backbone against degradation or enhance the desired catalytic or binding properties. Herein, the two main methods for the chemical modification of RNA are presented: solid-phase synthesis using phosphoramidite precursors and the enzymatic polymerization of nucleoside triphosphates. The different synthetic and biochemical steps required for each method are carefully described and recent examples of practical applications based on these two methods are discussed.
Collapse
Affiliation(s)
- Marie Flamme
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France; Sorbonne Université, Collège doctoral, F-75005 Paris, France
| | - Luke K McKenzie
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Ivo Sarac
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Marcel Hollenstein
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
16
|
Muttach F, Muthmann N, Rentmeister A. Synthetic mRNA capping. Beilstein J Org Chem 2017; 13:2819-2832. [PMID: 30018667 PMCID: PMC5753152 DOI: 10.3762/bjoc.13.274] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/04/2017] [Indexed: 12/25/2022] Open
Abstract
Eukaryotic mRNA with its 5'-cap is of central importance for the cell. Many studies involving mRNA require reliable preparation and modification of 5'-capped RNAs. Depending on the length of the desired capped RNA, chemical or enzymatic preparation - or a combination of both - can be advantageous. We review state-of-the art methods and give directions for choosing the appropriate approach. We also discuss the preparation and properties of mRNAs with non-natural caps providing novel features such as improved stability or enhanced translational efficiency.
Collapse
Affiliation(s)
- Fabian Muttach
- University of Münster, Department of Chemistry, Institute of Biochemistry, Wilhelm-Klemm-Str. 2, 48149 Münster, Germany
| | - Nils Muthmann
- University of Münster, Department of Chemistry, Institute of Biochemistry, Wilhelm-Klemm-Str. 2, 48149 Münster, Germany
| | - Andrea Rentmeister
- University of Münster, Department of Chemistry, Institute of Biochemistry, Wilhelm-Klemm-Str. 2, 48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Germany
| |
Collapse
|
17
|
Pradère U, Halloy F, Hall J. Chemical synthesis of long RNAs with terminal 5'-phosphate groups. Chemistry 2017; 23:5210-5213. [PMID: 28295757 PMCID: PMC5413853 DOI: 10.1002/chem.201700514] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Indexed: 01/20/2023]
Abstract
Long structured RNAs are useful biochemical and biological tools. They are usually prepared enzymatically, but this precludes their site-specific modification with functional groups for chemical biology studies. One solution is to perform solid-phase synthesis of multiple RNAs loaded with 5'-terminal phosphate groups, so that RNAs can be concatenated using template ligation reactions. However, there are currently no readily available reagents suitable for the incorporation of the phosphate group into long RNAs by solid-phase synthesis. Here we describe an easy-to-prepare phosphoramidite reagent suitable for the chemical introduction of 5'-terminal phosphate groups into long RNAs. The phosphate is protected by a dinitrobenzhydryl group that serves as an essential lipophilic group for the separation of oligonucleotide by-products. The phosphate is unmasked quantitatively by brief UV irradiation. We demonstrate the value of this reagent in the preparation of a library of long structured RNAs that are site-specifically modified with functional groups.
Collapse
Affiliation(s)
- Ugo Pradère
- Institute of Pharmaceutical SciencesDepartment of Chemistry and Applied BiosciencesETH Zürich8093ZürichSwitzerland
| | - François Halloy
- Institute of Pharmaceutical SciencesDepartment of Chemistry and Applied BiosciencesETH Zürich8093ZürichSwitzerland
| | - Jonathan Hall
- Institute of Pharmaceutical SciencesDepartment of Chemistry and Applied BiosciencesETH Zürich8093ZürichSwitzerland
| |
Collapse
|
18
|
Fuchs AL, Neu A, Sprangers R. A general method for rapid and cost-efficient large-scale production of 5' capped RNA. RNA (NEW YORK, N.Y.) 2016; 22:1454-66. [PMID: 27368341 PMCID: PMC4986899 DOI: 10.1261/rna.056614.116] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/25/2016] [Indexed: 05/03/2023]
Abstract
The eukaryotic mRNA 5' cap structure is indispensible for pre-mRNA processing, mRNA export, translation initiation, and mRNA stability. Despite this importance, structural and biophysical studies that involve capped RNA are challenging and rare due to the lack of a general method to prepare mRNA in sufficient quantities. Here, we show that the vaccinia capping enzyme can be used to produce capped RNA in the amounts that are required for large-scale structural studies. We have therefore designed an efficient expression and purification protocol for the vaccinia capping enzyme. Using this approach, the reaction scale can be increased in a cost-efficient manner, where the yields of the capped RNA solely depend on the amount of available uncapped RNA target. Using a large number of RNA substrates, we show that the efficiency of the capping reaction is largely independent of the sequence, length, and secondary structure of the RNA, which makes our approach generally applicable. We demonstrate that the capped RNA can be directly used for quantitative biophysical studies, including fluorescence anisotropy and high-resolution NMR spectroscopy. In combination with (13)C-methyl-labeled S-adenosyl methionine, the methyl groups in the RNA can be labeled for methyl TROSY NMR spectroscopy. Finally, we show that our approach can produce both cap-0 and cap-1 RNA in high amounts. In summary, we here introduce a general and straightforward method that opens new means for structural and functional studies of proteins and enzymes in complex with capped RNA.
Collapse
Affiliation(s)
- Anna-Lisa Fuchs
- Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Ancilla Neu
- Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Remco Sprangers
- Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| |
Collapse
|
19
|
Affiliation(s)
- Natsuhisa Oka
- Department of Biomolecular Science, Faculty of Engineering, Gifu University
| | - Takeshi Wada
- Department of Medicinal and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| |
Collapse
|
20
|
Vallazza B, Petri S, Poleganov MA, Eberle F, Kuhn AN, Sahin U. Recombinant messenger RNA technology and its application in cancer immunotherapy, transcript replacement therapies, pluripotent stem cell induction, and beyond. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:471-99. [DOI: 10.1002/wrna.1288] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/23/2015] [Accepted: 04/28/2015] [Indexed: 12/24/2022]
Affiliation(s)
| | | | | | | | | | - Ugur Sahin
- BioNTech RNA Pharmaceuticals GmbH; Mainz Germany
- TRON gGmbH; Mainz Germany
| |
Collapse
|
21
|
Veliath E, Gaffney BL, Jones RA. Synthesis of capped RNA using a DMT group as a purification handle. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2014; 33:40-52. [PMID: 24588755 DOI: 10.1080/15257770.2013.864417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We report a new method for synthesis of capped RNA or 2'-OMe RNA that uses a N(2-)4,4'-dimethoxytrityl (DMT) group as a lipophilic purification handle to allow convenient isolation and purification of the capped RNA. The DMT group is easily removed under mild conditions without degradation of the cap. We have used this approach to prepare capped 10- and 20-mers. This method is compatible with the many condensation reactions that have been reported for preparation of capped RNA or cap analogues.
Collapse
Affiliation(s)
- Elizabeth Veliath
- a Department of Chemistry and Chemical Biology, Rutgers , The State University of New Jersey , Piscataway , New Jersey , USA
| | | | | |
Collapse
|
22
|
Saito K, Wada T. 3-Nitro-l,2,4-triazol-l-yl-tris(pyrrolidin-1-yl)phosphonium hexafluorophosphate (PyNTP) as a condensing reagent for solid-phase peptide synthesis. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Abstract
Cap analogs are chemically modified derivatives of the unique cap structure present at the 5´ end of all eukaryotic mRNAs and several non-coding RNAs. Until recently, cap analogs have served primarily as tools in the study of RNA metabolism. Continuing advances in our understanding of cap biological functions (including RNA stabilization, pre-mRNA splicing, initiation of mRNA translation, as well as cellular transport of mRNAs and snRNAs) and the consequences of the disruption of these processes - resulting in serious medical disorders - have opened new possibilities for pharmaceutical applications of these compounds. In this review, the medicinal potential of cap analogs in areas, such as cancer treatment (including eIF4E targeting and mRNA-based immunotherapy), spinal muscular atrophy treatment, antiviral therapy and the improvement of the localization of nucleus-targeting drugs, are highlighted. Advances achieved to date, challenges, plausible solutions and prospects for the future development of cap analog-based drug design are described.
Collapse
|
24
|
Nukaga Y, Yamada K, Ogata T, Oka N, Wada T. Stereocontrolled solid-phase synthesis of phosphorothioate oligoribonucleotides using 2'-O-(2-cyanoethoxymethyl)-nucleoside 3'-O-oxazaphospholidine monomers. J Org Chem 2012; 77:7913-22. [PMID: 22931131 DOI: 10.1021/jo301052v] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A method for the synthesis of P-stereodefined phosphorothioate oligoribonucleotides (PS-ORNs) was developed. PS-ORNs of mixed sequence (up to 12mers) were successfully synthesized by this method with sufficient coupling efficiency (94-99%) and diastereoselectivity (≥98:2). The coupling efficiency was greatly improved by the use of 2-cyanoethoxymethyl (CEM) groups in place of the conventional TBS groups for the 2'-O-protection of nucleoside 3'-O-oxazaphospholidine monomers. The resultant diastereopure PS-ORNs allowed us to clearly demonstrate that an ORN containing an all-(Rp)-PS-backbone stabilizes its duplex with the complementary ORN, whereas its all-(Sp)-counterpart has a destabilizing effect.
Collapse
Affiliation(s)
- Yohei Nukaga
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bioscience Building 702, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | | | | | | | | |
Collapse
|
25
|
Thillier Y, Decroly E, Morvan F, Canard B, Vasseur JJ, Debart F. Synthesis of 5' cap-0 and cap-1 RNAs using solid-phase chemistry coupled with enzymatic methylation by human (guanine-N⁷)-methyl transferase. RNA (NEW YORK, N.Y.) 2012; 18:856-68. [PMID: 22334760 PMCID: PMC3312571 DOI: 10.1261/rna.030932.111] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 11/19/2011] [Indexed: 05/19/2023]
Abstract
The 5' end of eukaryotic mRNA carries a N(7)-methylguanosine residue linked by a 5'-5' triphosphate bond. This cap moiety ((7m)GpppN) is an essential RNA structural modification allowing its efficient translation, limiting its degradation by cellular 5' exonucleases and avoiding its recognition as "nonself" by the innate immunity machinery. In vitro synthesis of capped RNA is an important bottleneck for many biological studies. Moreover, the lack of methods allowing the synthesis of large amounts of RNA starting with a specific 5'-end sequence have hampered biological and structural studies of proteins recognizing the cap structure or involved in the capping pathway. Due to the chemical nature of N(7)-methylguanosine, the synthesis of RNAs possessing a cap structure at the 5' end is still a significant challenge. In the present work, we combined a chemical synthesis method and an enzymatic methylation assay in order to produce large amounts of RNA oligonucleotides carrying a cap-0 or cap-1. Short RNAs were synthesized on solid support by the phosphoramidite 2'-O-pivaloyloxymethyl chemistry. The cap structure was then coupled by the addition of GDP after phosphorylation of the terminal 5'-OH and activation by imidazole. After deprotection and release from the support, GpppN-RNAs or GpppN(2'-Om)-RNAs were purified before the N(7)-methyl group was added by enzymatic means using the human (guanine-N(7))-methyl transferase to yield (7m)GpppN-RNAs (cap-0) or (7m)GpppN(2'-Om)-RNAs (cap-1). The RNAs carrying different cap structures (cap, cap-0 or, cap-1) act as bona fide substrates mimicking cellular capped RNAs and can be used for biochemical and structural studies.
Collapse
Affiliation(s)
- Yann Thillier
- IBMM, UMR 5247 CNRS-UM1-UM2, Université Montpellier 2, 34095 Montpellier cedex 05, France
| | - Etienne Decroly
- AFMB, UMR 6098 CNRS-Universités d'Aix-Marseille I et II, 13288 Marseille cedex 9, France
| | - François Morvan
- IBMM, UMR 5247 CNRS-UM1-UM2, Université Montpellier 2, 34095 Montpellier cedex 05, France
| | - Bruno Canard
- AFMB, UMR 6098 CNRS-Universités d'Aix-Marseille I et II, 13288 Marseille cedex 9, France
| | - Jean-Jacques Vasseur
- IBMM, UMR 5247 CNRS-UM1-UM2, Université Montpellier 2, 34095 Montpellier cedex 05, France
| | - Françoise Debart
- IBMM, UMR 5247 CNRS-UM1-UM2, Université Montpellier 2, 34095 Montpellier cedex 05, France
| |
Collapse
|
26
|
Loakes D. Nucleotides and nucleic acids; oligo- and polynucleotides. ORGANOPHOSPHORUS CHEMISTRY 2012. [DOI: 10.1039/9781849734875-00169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- David Loakes
- Medical Research Council Laboratory of Molecular Biology, Hills Road Cambridge CB2 2QH UK
| |
Collapse
|