1
|
Rahaman MM, Zhang S. RNAMotifProfile: a graph-based approach to build RNA structural motif profiles. NAR Genom Bioinform 2024; 6:lqae128. [PMID: 39328267 PMCID: PMC11426329 DOI: 10.1093/nargab/lqae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/24/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
RNA structural motifs are the recurrent segments in RNA three-dimensional structures that play a crucial role in the functional diversity of RNAs. Understanding the similarities and variations within these recurrent motif groups is essential for gaining insights into RNA structure and function. While recurrent structural motifs are generally assumed to be composed of the same isosteric base interactions, this consistent pattern is not observed across all examples of these motifs. Existing methods for analyzing and comparing RNA structural motifs may overlook variations in base interactions and associated nucleotides. RNAMotifProfile is a novel profile-to-profile alignment algorithm that generates a comprehensive profile from a group of structural motifs, incorporating all base interactions and associated nucleotides at each position. By structurally aligning input motif instances using a guide-tree-based approach, RNAMotifProfile captures the similarities and variations within recurrent motif groups. Additionally, RNAMotifProfile can function as a motif search tool, enabling the identification of instances of a specific motif family by searching with the corresponding profile. The ability to generate accurate and comprehensive profiles for RNA structural motif families, and to search for these motifs, facilitates a deeper understanding of RNA structure-function relationships and potential applications in RNA engineering and therapeutic design.
Collapse
Affiliation(s)
- Md Mahfuzur Rahaman
- Department of Computer Science, University of Central Florida, 4328 Scorpius Street, Orlando, FL 32816-2362, USA
| | - Shaojie Zhang
- Department of Computer Science, University of Central Florida, 4328 Scorpius Street, Orlando, FL 32816-2362, USA
| |
Collapse
|
2
|
De Franceschi N, Hoogenberg B, Katan A, Dekker C. Engineering ssRNA tile filaments for (dis)assembly and membrane binding. NANOSCALE 2024; 16:4890-4899. [PMID: 38323489 DOI: 10.1039/d3nr06423a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Cytoskeletal protein filaments such as actin and microtubules confer mechanical support to cells and facilitate many cellular functions such as motility and division. Recent years have witnessed the development of a variety of molecular scaffolds that mimic such filaments. Indeed, filaments that are programmable and compatible with biological systems may prove useful in studying or substituting such proteins. Here, we explore the use of ssRNA tiles to build and modify filaments in vitro. We engineer a number of functionalities that are crucial to the function of natural proteins filaments into the ssRNA tiles, including the abilities to assemble or disassemble filaments, to tune the filament stiffness, to induce membrane binding, and to bind proteins. This work paves the way for building dynamic cytoskeleton-mimicking systems made out of rationally designed ssRNA tiles that can be transcribed in natural or synthetic cells.
Collapse
Affiliation(s)
- Nicola De Franceschi
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands.
| | - Baukje Hoogenberg
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands.
| | - Allard Katan
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands.
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
3
|
Ma X, Zhang Y, Huang K, Zhu L, Xu W. Multifunctional rolling circle transcription-based nanomaterials for advanced drug delivery. Biomaterials 2023; 301:122241. [PMID: 37451000 DOI: 10.1016/j.biomaterials.2023.122241] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
As the up-and-comer in the development of RNA nanotechnology, RNA nanomaterials based on functionalized rolling circle transcription (RCT) have become promising carriers for drug production and delivery. This is due to RCT technology can self-produce polyvalent tandem nucleic acid prodrugs for intervention in intracellular gene expression and protein production. RNA component strands participating in de novo assembly enable RCT-based nanomaterials to exhibit good mechanical properties, biostability, and biocompatibility as delivery carriers. The biostability makes it to suitable for thermodynamically/kinetically favorable assembly, enzyme resistance and efficient expression in vivo. Controllable RCT system combined with polymers enables customizable and adjustable size, shape, structure, and stoichiometry of RNA building materials, which provide groundwork for the delivery of advanced drugs. Here, we review the assembly strategies and the dynamic regulation of RCT-based nanomaterials, summarize its functional properties referring to the bottom-up design philosophy, and describe its advancements in tumor gene therapy, synergistic chemotherapy, and immunotherapy. Last, we elaborate on the unique and practical value of RCT-based nanomaterials, namely "self-production and self-sale", and their potential challenges in nanotechnology, material science and biomedicine.
Collapse
Affiliation(s)
- Xuan Ma
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, 100083, China
| | - Yangzi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, 100083, China
| | - Kunlun Huang
- College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, 100083, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
4
|
Zhao M, Wang R, Yang K, Jiang Y, Peng Y, Li Y, Zhang Z, Ding J, Shi S. Nucleic acid nanoassembly-enhanced RNA therapeutics and diagnosis. Acta Pharm Sin B 2023; 13:916-941. [PMID: 36970219 PMCID: PMC10031267 DOI: 10.1016/j.apsb.2022.10.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/22/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
RNAs are involved in the crucial processes of disease progression and have emerged as powerful therapeutic targets and diagnostic biomarkers. However, efficient delivery of therapeutic RNA to the targeted location and precise detection of RNA markers remains challenging. Recently, more and more attention has been paid to applying nucleic acid nanoassemblies in diagnosing and treating. Due to the flexibility and deformability of nucleic acids, the nanoassemblies could be fabricated with different shapes and structures. With hybridization, nucleic acid nanoassemblies, including DNA and RNA nanostructures, can be applied to enhance RNA therapeutics and diagnosis. This review briefly introduces the construction and properties of different nucleic acid nanoassemblies and their applications for RNA therapy and diagnosis and makes further prospects for their development.
Collapse
Affiliation(s)
- Mengnan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rujing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kunmeng Yang
- The First Norman Bethune College of Clinical Medicine, Jilin University, Changchun 130061, China
| | - Yuhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yachen Peng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Yuke Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
5
|
Torres-Huerta AL, Antonio-Pérez A, García-Huante Y, Alcázar-Ramírez NJ, Rueda-Silva JC. Biomolecule-Based Optical Metamaterials: Design and Applications. BIOSENSORS 2022; 12:962. [PMID: 36354471 PMCID: PMC9688573 DOI: 10.3390/bios12110962] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Metamaterials are broadly defined as artificial, electromagnetically homogeneous structures that exhibit unusual physical properties that are not present in nature. They possess extraordinary capabilities to bend electromagnetic waves. Their size, shape and composition can be engineered to modify their characteristics, such as iridescence, color shift, absorbance at different wavelengths, etc., and harness them as biosensors. Metamaterial construction from biological sources such as carbohydrates, proteins and nucleic acids represents a low-cost alternative, rendering high quantities and yields. In addition, the malleability of these biomaterials makes it possible to fabricate an endless number of structured materials such as composited nanoparticles, biofilms, nanofibers, quantum dots, and many others, with very specific, invaluable and tremendously useful optical characteristics. The intrinsic characteristics observed in biomaterials make them suitable for biomedical applications. This review addresses the optical characteristics of metamaterials obtained from the major macromolecules found in nature: carbohydrates, proteins and DNA, highlighting their biosensor field use, and pointing out their physical properties and production paths.
Collapse
Affiliation(s)
- Ana Laura Torres-Huerta
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Cd. López Mateos, Atizapán de Zaragoza 52926, Mexico
| | - Aurora Antonio-Pérez
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Cd. López Mateos, Atizapán de Zaragoza 52926, Mexico
| | - Yolanda García-Huante
- Departamento de Ciencias Básicas, Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, Instituto Politécnico Nacional (UPIITA-IPN), Mexico City 07340, Mexico
| | - Nayelhi Julieta Alcázar-Ramírez
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Cd. López Mateos, Atizapán de Zaragoza 52926, Mexico
| | - Juan Carlos Rueda-Silva
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Cd. López Mateos, Atizapán de Zaragoza 52926, Mexico
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| |
Collapse
|
6
|
Zhang M, Hwang IT, Li K, Bai J, Chen JF, Weissman T, Zou JY, Lu Z. Classification and clustering of RNA crosslink-ligation data reveal complex structures and homodimers. Genome Res 2022; 32:968-985. [PMID: 35332099 PMCID: PMC9104705 DOI: 10.1101/gr.275979.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 01/11/2022] [Indexed: 12/04/2022]
Abstract
The recent development and application of methods based on the general principle of "crosslinking and proximity ligation" (crosslink-ligation) are revolutionizing RNA structure studies in living cells. However, extracting structure information from such data presents unique challenges. Here, we introduce a set of computational tools for the systematic analysis of data from a wide variety of crosslink-ligation methods, specifically focusing on read mapping, alignment classification, and clustering. We design a new strategy to map short reads with irregular gaps at high sensitivity and specificity. Analysis of previously published data reveals distinct properties and bias caused by the crosslinking reactions. We perform rigorous and exhaustive classification of alignments and discover eight types of arrangements that provide distinct information on RNA structures and interactions. To deconvolve the dense and intertwined gapped alignments, we develop a network/graph-based tool Crosslinked RNA Secondary Structure Analysis using Network Techniques (CRSSANT), which enables clustering of gapped alignments and discovery of new alternative and dynamic conformations. We discover that multiple crosslinking and ligation events can occur on the same RNA, generating multisegment alignments to report complex high-level RNA structures and multi-RNA interactions. We find that alignments with overlapped segments are produced from potential homodimers and develop a new method for their de novo identification. Analysis of overlapping alignments revealed potential new homodimers in cellular noncoding RNAs and RNA virus genomes in the Picornaviridae family. Together, this suite of computational tools enables rapid and efficient analysis of RNA structure and interaction data in living cells.
Collapse
Affiliation(s)
- Minjie Zhang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Irena T Hwang
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
| | - Kongpan Li
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Jianhui Bai
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Jian-Fu Chen
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, California 90033, USA
| | - Tsachy Weissman
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
| | - James Y Zou
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
- Department of Biomedical Data Science and Chan-Zuckerberg Biohub, Stanford University, Palo Alto, California 94305, USA
| | - Zhipeng Lu
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
7
|
Zhuo B, Ou X, Li J. Structure and Mechanical Stabilities of the Three-Way Junction Motifs in Prohead RNA. J Phys Chem B 2021; 125:12125-12134. [PMID: 34719230 DOI: 10.1021/acs.jpcb.1c04681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The core structure of phi29 prohead RNA (pRNA) is composed of three major helices organized into three-way junction pRNA (3WJ-pRNA) and has stout structural rigidity along the coaxial helices. Prohead RNAs of the other Bacillus subtilis bacteriophages such as GA1 and SF5 share similar secondary structure and function with phi29; whether these pRNAs have similar mechanical rigidity remains to be elucidated. In this study, we constructed the tertiary structures of GA1 and SF5 3WJ-pRNAs by comparative modeling. Both GA1 and SF5 3WJ-pRNAs adopt a similar structure, in which three helices are organized as the three-way junction and two of the three helices are stacked coaxially. Moreover, detailed structural features of GA1 and SF5 3WJ-pRNAs are also similar to those of phi29 3WJ-pRNA: all of the bases of the coaxial helices are paired, and all of the adenines in the junction region are paired, which eliminates the interference of A-minor tertiary interactions. Hence, the coaxial helices tightly join to each other, and the major groove between them is very narrow. Two Mg2+ ions can thus fit into this major groove and form double Mg clamps. A steered molecular dynamics simulation was used to study the mechanical properties of these 3WJ-pRNAs. Both GA1 and SF5 3WJ-pRNAs show strong resistance to applied force in the direction of their coaxial helices. Such mechanical stability can be attributed to the Mg clamps.
Collapse
Affiliation(s)
- Boyang Zhuo
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Xinwen Ou
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Jingyuan Li
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
8
|
Baulin EF. Features and Functions of the A-Minor Motif, the Most Common Motif in RNA Structure. BIOCHEMISTRY (MOSCOW) 2021; 86:952-961. [PMID: 34488572 DOI: 10.1134/s000629792108006x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A-minor motifs are RNA tertiary structure motifs that generally involve a canonical base pair and an adenine base forming hydrogen bonds with the minor groove of the base pair. Such motifs are among the most common tertiary interactions in known RNA structures, comparable in number with the non-canonical base pairs. They are often found in functionally important regions of non-coding RNAs and, in particular, play a central role in protein synthesis. Here, we review local variations of the A-minor geometry and discuss difficulties associated with their annotation, as well as various structural contexts and common A-minor co-motifs, and diverse functions of A-minors in various processes in a living cell.
Collapse
Affiliation(s)
- Eugene F Baulin
- Institute of Mathematical Problems of Biology RAS - the Branch of Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia. .,Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| |
Collapse
|
9
|
Shalybkova AA, Mikhailova DS, Kulakovskiy IV, Fakhranurova LI, Baulin EF. Annotation of the local context of the RNA secondary structure improves the classification and prediction of A-minors. RNA (NEW YORK, N.Y.) 2021; 27:rna.078535.120. [PMID: 34016706 PMCID: PMC8284323 DOI: 10.1261/rna.078535.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/17/2021] [Indexed: 05/15/2023]
Abstract
Non-coding RNAs play a crucial role in various cellular processes in living organisms, and RNA functions heavily depend on molecule structures composed of stems, loops, and various tertiary motifs. Among those, the most frequent are A-minor interactions, which are often involved in the formation of more complex motifs such as kink-turns and pseudoknots. We present a novel classification of A-minors in terms of RNA secondary structure where each nucleotide of an A-minor is attributed to the stem or loop, and each pair of nucleotides is attributed to their relative position within the secondary structure. By analyzing classes of A-minors in known RNA structures, we found that the largest classes are mostly homogeneous and preferably localize with known A-minor co-motifs, e.g. tetraloop-tetraloop receptor and coaxial stacking. Detailed analysis of local A-minors within internal loops revealed a novel recurrent RNA tertiary motif, the across-bulged motif. Interestingly, the motif resembles the previously known GAAA/11nt motif but with the local adenines performing the role of the GAAA-tetraloop. By using machine learning, we show that particular classes of local A-minors can be predicted from sequence and secondary structure. The proposed classification is the first step toward automatic annotation of not only A-minors and their co-motifs but various types of RNA tertiary motifs as well.
Collapse
Affiliation(s)
| | | | - Ivan V Kulakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences; Vavilov Institute of General Genetics, Russian Academy of Sciences; Institute of Protein Research, Russian Academy of Sciences
| | - Liliia I Fakhranurova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences; Shemiakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
| | - Eugene F Baulin
- Institute of Mathematical Problems of Biology RAS; Moscow Institute of Physics and Technology
| |
Collapse
|
10
|
Mori Y, Oi H, Suzuki Y, Hidaka K, Sugiyama H, Endo M, Matsumura S, Ikawa Y. Flexible Assembly of Engineered Tetrahymena Ribozymes Forming Polygonal RNA Nanostructures with Catalytic Ability. Chembiochem 2021; 22:2168-2176. [PMID: 33876531 DOI: 10.1002/cbic.202100109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/11/2021] [Indexed: 11/11/2022]
Abstract
Ribozymes with modular architecture constitute an attractive class of structural platforms for design and construction of nucleic acid nanostructures with biological functions. Through modular engineering of the Tetrahymena ribozyme, we have designed unit RNAs (L-RNAs), assembly of which formed ribozyme-based closed trimers and closed tetramers. Their catalytic activity was dependent on oligomer formation. In this study, the structural variety of L-RNA oligomers was extended by tuning their structural elements, yielding closed pentamers and closed hexamers. Their assembly properties were analyzed by electrophoretic mobility shift assay (EMSA) and atomic force microscopy (AFM).
Collapse
Affiliation(s)
- Yuki Mori
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, 930-8555, Toyama, Japan
| | - Hiroki Oi
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, 930-8555, Toyama, Japan
| | - Yuki Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, 606-8502, Kyoto, Japan
| | - Kumi Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University, 606-8502, Kyoto, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, 606-8502, Kyoto, Japan.,Institute for Integrated Cell-Material Sciences, Kyoto University, 606-8502, Kyoto, Japan
| | - Masayuki Endo
- Department of Chemistry, Graduate School of Science, Kyoto University, 606-8502, Kyoto, Japan
| | - Shigeyoshi Matsumura
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, 930-8555, Toyama, Japan
| | - Yoshiya Ikawa
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, 930-8555, Toyama, Japan
| |
Collapse
|
11
|
Zakrevsky P, Calkins E, Kao YL, Singh G, Keleshian VL, Baudrey S, Jaeger L. In vitro selected GUAA tetraloop-binding receptors with structural plasticity and evolvability towards natural RNA structural modules. Nucleic Acids Res 2021; 49:2289-2305. [PMID: 33524109 PMCID: PMC7913685 DOI: 10.1093/nar/gkab021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/05/2021] [Accepted: 01/26/2021] [Indexed: 11/24/2022] Open
Abstract
GNRA tetraloop-binding receptor interactions are key components in the macromolecular assembly of a variety of functional RNAs. In nature, there is an apparent bias for GAAA/11nt receptor and GYRA/helix interactions, with the former interaction being thermodynamically more stable than the latter. While past in vitro selections allowed isolation of novel GGAA and GUGA receptors, we report herein an in vitro selection that revealed several novel classes of specific GUAA receptors with binding affinities comparable to those from natural GAAA/11nt interactions. These GUAA receptors have structural homology with double-locked bulge RNA modules naturally occurring in ribosomal RNAs. They display mutational robustness that enables exploration of the sequence/phenotypic space associated to GNRA/receptor interactions through epistasis. Their thermodynamic self-assembly fitness landscape is characterized by a rugged neutral network with possible evolutionary trajectories toward natural GNRA/receptor interactions. High throughput sequencing analysis revealed synergetic mutations located away from the tertiary interactions that positively contribute to assembly fitness. Our study suggests that the repertoire of GNRA/receptor interactions is much larger than initially thought from the analysis of natural stable RNA molecules and also provides clues for their evolution towards natural GNRA/receptors.
Collapse
Affiliation(s)
- Paul Zakrevsky
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9510, USA
| | - Erin Calkins
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9510, USA
| | - Yi-Ling Kao
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9510, USA
| | - Gurkeerat Singh
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9510, USA
| | - Vasken L Keleshian
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9510, USA
| | - Stephanie Baudrey
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9510, USA
| | - Luc Jaeger
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9510, USA
| |
Collapse
|
12
|
Mitchell C, Polanco JA, DeWald L, Kress D, Jaeger L, Grabow WW. Responsive self-assembly of tectoRNAs with loop-receptor interactions from the tetrahydrofolate (THF) riboswitch. Nucleic Acids Res 2020; 47:6439-6451. [PMID: 31045210 PMCID: PMC6614920 DOI: 10.1093/nar/gkz304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 03/22/2019] [Accepted: 04/16/2019] [Indexed: 12/17/2022] Open
Abstract
Naturally occurring RNAs are known to exhibit a high degree of modularity, whereby specific structural modules (or motifs) can be mixed and matched to create new molecular architectures. The modular nature of RNA also affords researchers the ability to characterize individual structural elements in controlled synthetic contexts in order to gain new and critical insights into their particular structural features and overall performance. Here, we characterized the binding affinity of a unique loop–receptor interaction found in the tetrahydrofolate (THF) riboswitch using rationally designed self-assembling tectoRNAs. Our work suggests that the THF loop–receptor interaction has been fine-tuned for its particular role as a riboswitch component. We also demonstrate that the thermodynamic stability of this interaction can be modulated by the presence of folinic acid, which induces a local structural change at the level of the loop–receptor. This corroborates the existence of a THF binding site within this tertiary module and paves the way for its potential use as a THF responsive module for RNA nanotechnology and synthetic biology.
Collapse
Affiliation(s)
- Charles Mitchell
- Department of Chemistry and Biochemistry, Seattle Pacific University, Seattle, WA 918119-1997, USA
| | - Julio A Polanco
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9510, USA
| | - Laura DeWald
- Department of Chemistry and Biochemistry, Seattle Pacific University, Seattle, WA 918119-1997, USA
| | - Dustin Kress
- Department of Chemistry and Biochemistry, Seattle Pacific University, Seattle, WA 918119-1997, USA
| | - Luc Jaeger
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9510, USA
| | - Wade W Grabow
- Department of Chemistry and Biochemistry, Seattle Pacific University, Seattle, WA 918119-1997, USA
| |
Collapse
|
13
|
Abstract
The kink-turn (k-turn) is a widespread structural motif found in functional RNA species. It typically comprises a three-nucleotide bulge followed by tandem trans sugar edge-Hoogsteen G:A base pairs. It introduces a sharp kink into the axis of duplex RNA, juxtaposing the minor grooves. Cross-strand H-bonds form at the interface, accepted by the conserved adenine nucleobases of the G:A basepairs. Alternative acceptors for one of these divides the k-turns into two conformational classes N3 and N1. The base pair that follows the G:A pairs (3b:3n) determines which conformation is adopted by a given k-turn. k-turns often mediate tertiary contacts in folded RNA species and frequently bind proteins. Common k-turn binding proteins include members of the L7Ae family, such as the human 15·5k protein. A recognition helix within these proteins binds in the widened major groove on the outside of the k-turn, that makes specific H-bonds with the conserved guanine nucleobases of the G:A pairs. L7Ae binds with extremely high affinity, and single-molecule data are consistent with folding by conformational selection. The standard, simple k-turn can be elaborated in a variety of ways, that include the complex k-turns and the k-junctions. In free solution in the absence of added metal ions or protein k-turns do not adopt the tightly-kinked conformation. They undergo folding by the binding of proteins, by the formation of tertiary contacts, and some (but not all) will fold on the addition of metal ions. Whether or not folding occurs in the presence of metal ions depends on local sequence, including the 3b:3n position, and the -1b:-1n position (5' to the bulge). In most cases -1b:-1n = C:G, so that the 3b:3n position is critical since it determines both folding properties and conformation. In general, the selection of these sequence matches a given k-turn to its biological requirements. The k-turn structure is now very well understood, to the point at which they can be used as a building block for the formation of RNA nano-objects, including triangles and squares.
Collapse
|
14
|
Calkins ER, Zakrevsky P, Keleshian VL, Aguilar EG, Geary C, Jaeger L. Deducing putative ancestral forms of GNRA/receptor interactions from the ribosome. Nucleic Acids Res 2019; 47:480-494. [PMID: 30418638 PMCID: PMC6326782 DOI: 10.1093/nar/gky1111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/22/2018] [Indexed: 01/02/2023] Open
Abstract
Stable RNAs rely on a vast repertoire of long-range interactions to assist in the folding of complex cellular machineries such as the ribosome. The universally conserved L39/H89 interaction is a long-range GNRA-like/receptor interaction localized in proximity to the peptidyl transferase center of the large subunit of the ribosome. Because of its central location, L39/H89 likely originated at an early evolutionary stage of the ribosome and played a significant role in its early function. However, L39/H89 self-assembly is impaired outside the ribosomal context. Herein, we demonstrate that structural modularity principles can be used to re-engineer L39/H89 to self-assemble in vitro. The new versions of L39/H89 improve affinity and loop selectivity by several orders of magnitude and retain the structural and functional features of their natural counterparts. These versions of L39/H89 are proposed to be ancestral forms of L39/H89 that were capable of assembling and folding independently from proteins and post-transcriptional modifications. This work demonstrates that novel RNA modules can be rationally designed by taking advantage of the modular syntax of RNA. It offers the prospect of creating new biochemical models of the ancestral ribosome and increases the tool kit for RNA nanotechnology and synthetic biology.
Collapse
Affiliation(s)
- Erin R Calkins
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9510, USA
| | - Paul Zakrevsky
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9510, USA
| | - Vasken L Keleshian
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9510, USA
| | - Eduardo G Aguilar
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9510, USA
| | - Cody Geary
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9510, USA
| | - Luc Jaeger
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9510, USA
| |
Collapse
|
15
|
Han Y, Branon TC, Martell JD, Boassa D, Shechner D, Ellisman MH, Ting A. Directed Evolution of Split APEX2 Peroxidase. ACS Chem Biol 2019; 14:619-635. [PMID: 30848125 PMCID: PMC6548188 DOI: 10.1021/acschembio.8b00919] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
APEX is an engineered peroxidase that catalyzes the oxidation of a wide range of substrates, facilitating its use in a variety of applications from subcellular staining for electron microscopy to proximity biotinylation for spatial proteomics and transcriptomics. To further advance the capabilities of APEX, we used directed evolution to engineer a split APEX tool (sAPEX). A total of 20 rounds of fluorescence activated cell sorting (FACS)-based selections from yeast-displayed fragment libraries, using 3 different surface display configurations, produced a 200-amino-acid N-terminal fragment (with 9 mutations relative to APEX2) called "AP" and a 50-amino-acid C-terminal fragment called "EX". AP and EX fragments were each inactive on their own but were reconstituted to give peroxidase activity when driven together by a molecular interaction. We demonstrate sAPEX reconstitution in the mammalian cytosol, on engineered RNA motifs within a non-coding RNA scaffold, and at mitochondria-endoplasmic reticulum contact sites.
Collapse
Affiliation(s)
- Yisu Han
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Genetics, Stanford University, Stanford, California, USA
- Department of Biology, Stanford University, Stanford, California, USA
- Department of Chemistry, Stanford University, Stanford, California, USA
| | - Tess Caroline Branon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Genetics, Stanford University, Stanford, California, USA
- Department of Biology, Stanford University, Stanford, California, USA
- Department of Chemistry, Stanford University, Stanford, California, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Jeffrey D. Martell
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA
| | - Daniela Boassa
- Department of Neuroscience, University of California San Diego, La Jolla, California, USA
| | - David Shechner
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Mark H. Ellisman
- Department of Neuroscience, University of California San Diego, La Jolla, California, USA
| | - Alice Ting
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Genetics, Stanford University, Stanford, California, USA
- Department of Biology, Stanford University, Stanford, California, USA
- Department of Chemistry, Stanford University, Stanford, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
16
|
Omabegho T, Gurel PS, Cheng CY, Kim LY, Ruijgrok PV, Das R, Alushin GM, Bryant Z. Controllable molecular motors engineered from myosin and RNA. NATURE NANOTECHNOLOGY 2018; 13:34-40. [PMID: 29109539 PMCID: PMC5762270 DOI: 10.1038/s41565-017-0005-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 09/19/2017] [Indexed: 05/12/2023]
Abstract
Engineering biomolecular motors can provide direct tests of structure-function relationships and customized components for controlling molecular transport in artificial systems 1 or in living cells 2 . Previously, synthetic nucleic acid motors 3-5 and modified natural protein motors 6-10 have been developed in separate complementary strategies to achieve tunable and controllable motor function. Integrating protein and nucleic-acid components to form engineered nucleoprotein motors may enable additional sophisticated functionalities. However, this potential has only begun to be explored in pioneering work harnessing DNA scaffolds to dictate the spacing, number and composition of tethered protein motors 11-15 . Here, we describe myosin motors that incorporate RNA lever arms, forming hybrid assemblies in which conformational changes in the protein motor domain are amplified and redirected by nucleic acid structures. The RNA lever arm geometry determines the speed and direction of motor transport and can be dynamically controlled using programmed transitions in the lever arm structure 7,9 . We have characterized the hybrid motors using in vitro motility assays, single-molecule tracking, cryo-electron microscopy and structural probing 16 . Our designs include nucleoprotein motors that reversibly change direction in response to oligonucleotides that drive strand-displacement 17 reactions. In multimeric assemblies, the controllable motors walk processively along actin filaments at speeds of 10-20 nm s-1. Finally, to illustrate the potential for multiplexed addressable control, we demonstrate sequence-specific responses of RNA variants to oligonucleotide signals.
Collapse
Affiliation(s)
- Tosan Omabegho
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Pinar S Gurel
- Cell Biology and Physiology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Clarence Y Cheng
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura Y Kim
- Cell Biology and Physiology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Paul V Ruijgrok
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Rhiju Das
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Gregory M Alushin
- Cell Biology and Physiology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Zev Bryant
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
17
|
Geary C, Chworos A, Verzemnieks E, Voss NR, Jaeger L. Composing RNA Nanostructures from a Syntax of RNA Structural Modules. NANO LETTERS 2017; 17:7095-7101. [PMID: 29039189 PMCID: PMC6363482 DOI: 10.1021/acs.nanolett.7b03842] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Natural stable RNAs fold and assemble into complex three-dimensional architectures by relying on the hierarchical formation of intricate, recurrent networks of noncovalent tertiary interactions. These sequence-dependent networks specify RNA structural modules enabling orientational and topological control of helical struts to form larger self-folding domains. Borrowing concepts from linguistics, we defined an extended structural syntax of RNA modules for programming RNA strands to assemble into complex, responsive nanostructures under both thermodynamic and kinetic control. Based on this syntax, various RNA building blocks promote the multimolecular assembly of objects with well-defined three-dimensional shapes as well as the isothermal folding of long RNAs into complex single-stranded nanostructures during transcription. This work offers a glimpse of the limitless potential of RNA as an informational medium for designing programmable and functional nanomaterials useful for synthetic biology, nanomedicine, and nanotechnology.
Collapse
Affiliation(s)
- Cody Geary
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106-9510, United States
| | - Arkadiusz Chworos
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106-9510, United States
| | - Erik Verzemnieks
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106-9510, United States
| | - Neil R. Voss
- Biological, Chemical, and Physical Sciences Department, Roosevelt University, 1400 North Roosevelt Blvd., Schaumburg, Illinois 60173, United States
| | - Luc Jaeger
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106-9510, United States
| |
Collapse
|
18
|
Jasinski D, Haque F, Binzel DW, Guo P. Advancement of the Emerging Field of RNA Nanotechnology. ACS NANO 2017; 11:1142-1164. [PMID: 28045501 PMCID: PMC5333189 DOI: 10.1021/acsnano.6b05737] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/03/2017] [Indexed: 05/14/2023]
Abstract
The field of RNA nanotechnology has advanced rapidly during the past decade. A variety of programmable RNA nanoparticles with defined shape, size, and stoichiometry have been developed for diverse applications in nanobiotechnology. The rising popularity of RNA nanoparticles is due to a number of factors: (1) removing the concern of RNA degradation in vitro and in vivo by introducing chemical modification into nucleotides without significant alteration of the RNA property in folding and self-assembly; (2) confirming the concept that RNA displays very high thermodynamic stability and is suitable for in vivo trafficking and other applications; (3) obtaining the knowledge to tune the immunogenic properties of synthetic RNA constructs for in vivo applications; (4) increased understanding of the 4D structure and intermolecular interaction of RNA molecules; (5) developing methods to control shape, size, and stoichiometry of RNA nanoparticles; (6) increasing knowledge of regulation and processing functions of RNA in cells; (7) decreasing cost of RNA production by biological and chemical synthesis; and (8) proving the concept that RNA is a safe and specific therapeutic modality for cancer and other diseases with little or no accumulation in vital organs. Other applications of RNA nanotechnology, such as adapting them to construct 2D, 3D, and 4D structures for use in tissue engineering, biosensing, resistive biomemory, and potential computer logic gate modules, have stimulated the interest of the scientific community. This review aims to outline the current state of the art of RNA nanoparticles as programmable smart complexes and offers perspectives on the promising avenues of research in this fast-growing field.
Collapse
Affiliation(s)
| | | | - Daniel W Binzel
- College of Pharmacy, Division
of Pharmaceutics and Pharmaceutical Chemistry; College of Medicine,
Department of Physiology & Cell Biology; and Dorothy M. Davis
Heart and Lung Research Institute, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Peixuan Guo
- College of Pharmacy, Division
of Pharmaceutics and Pharmaceutical Chemistry; College of Medicine,
Department of Physiology & Cell Biology; and Dorothy M. Davis
Heart and Lung Research Institute, The Ohio
State University, Columbus, Ohio 43210, United States
| |
Collapse
|
19
|
Abstract
RNA architectonics offers the possibility to design and assemble RNA into specific shapes, such as nanoscale 3D solids or nanogrids. Combining the minute size of these programmable shapes with precise positioning on a surface further enhances their potential as building blocks in nanotechnology and nanomedicine. Here we describe a bottom-up approach to direct the arrangement of nucleic acid nanostructures by using a supported fluid lipid bilayer as a surface scaffold. The strong attractive electrostatic interactions between RNA polyanions and cationic lipids promote RNA adsorption and self-assembly. Protocol steps for the characterization of assembled RNA complexes via several complementary methods (QCM-D, ellipsometry, confocal fluorescence microscopy, AFM) are also provided. Due to their tunable nature, lipid bilayers can be used to organize RNA laterally on the micrometer scale and thus facilitate the building of more complex 3D structures. The bilayer-based approach can be extended to other programmable RNA or DNA objects to construct intricate structures, such as 2D grids or 3D cages, with high precision.
Collapse
|
20
|
Abstract
Biological RNA architectures are composed of autonomously folding modules which can be tailored as building blocks for the construction of RNA nanostructures. Designed base pair interactions allow complex nano-objects to self-assemble from simple RNA motifs. X-ray crystallography plays an important role in both the design and analysis of such RNA nanostructures. Here, we describe methods for the design and X-ray crystallographic structure analysis of an RNA square and two different triangles, which self-assemble from short oligonucleotides and serve as a platform for building functional nano-sized nucleic acid architectures.
Collapse
Affiliation(s)
- Mark A Boerneke
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Thomas Hermann
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
- Center for Drug Discovery Innovation, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
21
|
Boerneke MA, Dibrov SM, Hermann T. Kristallstruktur-geleitetes Design selbstorganisierender RNA-Nanodreiecke. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201600233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mark A. Boerneke
- Department of Chemistry and Biochemistry; University of California, San Diego; 9500 Gilman Drive La Jolla CA 92093 USA
| | - Sergey M. Dibrov
- Department of Chemistry and Biochemistry; University of California, San Diego; 9500 Gilman Drive La Jolla CA 92093 USA
| | - Thomas Hermann
- Department of Chemistry and Biochemistry; University of California, San Diego; 9500 Gilman Drive La Jolla CA 92093 USA
- Center for Drug Discovery Innovation; University of California, San Diego; 9500 Gilman Drive La Jolla CA 92093 USA
| |
Collapse
|
22
|
Boerneke MA, Dibrov SM, Hermann T. Crystal-Structure-Guided Design of Self-Assembling RNA Nanotriangles. Angew Chem Int Ed Engl 2016; 55:4097-100. [PMID: 26914842 DOI: 10.1002/anie.201600233] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 01/25/2016] [Indexed: 12/11/2022]
Abstract
RNA nanotechnology uses RNA structural motifs to build nanosized architectures that assemble through selective base-pair interactions. Herein, we report the crystal-structure-guided design of highly stable RNA nanotriangles that self-assemble cooperatively from short oligonucleotides. The crystal structure of an 81 nucleotide nanotriangle determined at 2.6 Å resolution reveals the so-far smallest circularly closed nanoobject made entirely of double-stranded RNA. The assembly of the nanotriangle architecture involved RNA corner motifs that were derived from ligand-responsive RNA switches, which offer the opportunity to control self-assembly and dissociation.
Collapse
Affiliation(s)
- Mark A Boerneke
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Sergey M Dibrov
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Thomas Hermann
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA. .,Center for Drug Discovery Innovation, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
23
|
Miao Z, Adamiak RW, Blanchet MF, Boniecki M, Bujnicki JM, Chen SJ, Cheng C, Chojnowski G, Chou FC, Cordero P, Cruz JA, Ferré-D'Amaré AR, Das R, Ding F, Dokholyan NV, Dunin-Horkawicz S, Kladwang W, Krokhotin A, Lach G, Magnus M, Major F, Mann TH, Masquida B, Matelska D, Meyer M, Peselis A, Popenda M, Purzycka KJ, Serganov A, Stasiewicz J, Szachniuk M, Tandon A, Tian S, Wang J, Xiao Y, Xu X, Zhang J, Zhao P, Zok T, Westhof E. RNA-Puzzles Round II: assessment of RNA structure prediction programs applied to three large RNA structures. RNA (NEW YORK, N.Y.) 2015; 21:1066-84. [PMID: 25883046 PMCID: PMC4436661 DOI: 10.1261/rna.049502.114] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 02/12/2015] [Indexed: 05/04/2023]
Abstract
This paper is a report of a second round of RNA-Puzzles, a collective and blind experiment in three-dimensional (3D) RNA structure prediction. Three puzzles, Puzzles 5, 6, and 10, represented sequences of three large RNA structures with limited or no homology with previously solved RNA molecules. A lariat-capping ribozyme, as well as riboswitches complexed to adenosylcobalamin and tRNA, were predicted by seven groups using RNAComposer, ModeRNA/SimRNA, Vfold, Rosetta, DMD, MC-Fold, 3dRNA, and AMBER refinement. Some groups derived models using data from state-of-the-art chemical-mapping methods (SHAPE, DMS, CMCT, and mutate-and-map). The comparisons between the predictions and the three subsequently released crystallographic structures, solved at diffraction resolutions of 2.5-3.2 Å, were carried out automatically using various sets of quality indicators. The comparisons clearly demonstrate the state of present-day de novo prediction abilities as well as the limitations of these state-of-the-art methods. All of the best prediction models have similar topologies to the native structures, which suggests that computational methods for RNA structure prediction can already provide useful structural information for biological problems. However, the prediction accuracy for non-Watson-Crick interactions, key to proper folding of RNAs, is low and some predicted models had high Clash Scores. These two difficulties point to some of the continuing bottlenecks in RNA structure prediction. All submitted models are available for download at http://ahsoka.u-strasbg.fr/rnapuzzles/.
Collapse
Affiliation(s)
- Zhichao Miao
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de biologie moléculaire et cellulaire du CNRS, 67000 Strasbourg, France
| | - Ryszard W Adamiak
- Department of Structural Chemistry and Biology of Nucleic Acids, Structural Chemistry of Nucleic Acids Laboratory, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Marc-Frédérick Blanchet
- Institute for Research in Immunology and Cancer (IRIC), Department of Computer Science and Operations Research, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | - Michal Boniecki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland Laboratory of Bioinformatics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Shi-Jie Chen
- Department of Physics and Astronomy, Department of Biochemistry, and Informatics Institute, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Clarence Cheng
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Grzegorz Chojnowski
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Fang-Chieh Chou
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Pablo Cordero
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - José Almeida Cruz
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de biologie moléculaire et cellulaire du CNRS, 67000 Strasbourg, France
| | | | - Rhiju Das
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Feng Ding
- Department of Physics and Astronomy, College of Engineering and Science, Clemson University, Clemson, South Carolina 29634, USA
| | - Nikolay V Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina, School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Stanislaw Dunin-Horkawicz
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Wipapat Kladwang
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Andrey Krokhotin
- Department of Biochemistry and Biophysics, University of North Carolina, School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Grzegorz Lach
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Marcin Magnus
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - François Major
- Institute for Research in Immunology and Cancer (IRIC), Department of Computer Science and Operations Research, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | - Thomas H Mann
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Benoît Masquida
- Génétique Moléculaire Génomique Microbiologie, Institut de physiologie et de la chimie biologique, 67084 Strasbourg, France
| | - Dorota Matelska
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Mélanie Meyer
- Institut de génétique et de biologie moléculaire et cellulaire, 67400 Strasbourg, France
| | - Alla Peselis
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| | - Mariusz Popenda
- Department of Structural Chemistry and Biology of Nucleic Acids, Structural Chemistry of Nucleic Acids Laboratory, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Katarzyna J Purzycka
- Department of Structural Chemistry and Biology of Nucleic Acids, Structural Chemistry of Nucleic Acids Laboratory, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Alexander Serganov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| | - Juliusz Stasiewicz
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Marta Szachniuk
- Poznan University of Technology, Institute of Computing Science, 60-965 Poznan, Poland
| | - Arpit Tandon
- Department of Biochemistry and Biophysics, University of North Carolina, School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Siqi Tian
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Jian Wang
- Department of Physics, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Yi Xiao
- Department of Physics, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Xiaojun Xu
- Department of Physics and Astronomy, Department of Biochemistry, and Informatics Institute, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Jinwei Zhang
- National Heart, Lung and Blood Institute, Bethesda, Maryland 20892-8012, USA
| | - Peinan Zhao
- Department of Physics and Astronomy, Department of Biochemistry, and Informatics Institute, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Tomasz Zok
- Poznan University of Technology, Institute of Computing Science, 60-965 Poznan, Poland
| | - Eric Westhof
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de biologie moléculaire et cellulaire du CNRS, 67000 Strasbourg, France
| |
Collapse
|
24
|
Jones CP, Ferré-D'Amaré AR. RNA quaternary structure and global symmetry. Trends Biochem Sci 2015; 40:211-20. [PMID: 25778613 PMCID: PMC4380790 DOI: 10.1016/j.tibs.2015.02.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 12/16/2022]
Abstract
Many proteins associate into symmetric multisubunit complexes. Structural analyses suggested that, by contrast, virtually all RNAs with complex 3D structures function as asymmetric monomers. Recent crystal structures revealed that several biological RNAs exhibit global symmetry at the level of their tertiary and quaternary structures. Here we survey known examples of global RNA symmetry, including the true quaternary symmetry of the bacteriophage ϕ29 prohead RNA (pRNA) and the internal pseudosymmetry of the single-chain flavin mononucleotide (FMN), glycine, and cyclic di-AMP (c-di-AMP) riboswitches. For these RNAs, global symmetry stabilizes the RNA fold, coordinates ligand-RNA interactions, and facilitates association with symmetric binding partners.
Collapse
Affiliation(s)
- Christopher P Jones
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, 50 South Drive, MSC 8012, Bethesda, MD 20892-8012, USA
| | - Adrian R Ferré-D'Amaré
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, 50 South Drive, MSC 8012, Bethesda, MD 20892-8012, USA.
| |
Collapse
|
25
|
Dabkowska AP, Michanek A, Jaeger L, Rabe M, Chworos A, Höök F, Nylander T, Sparr E. Assembly of RNA nanostructures on supported lipid bilayers. NANOSCALE 2015; 7:583-96. [PMID: 25417592 PMCID: PMC4274363 DOI: 10.1039/c4nr05968a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The assembly of nucleic acid nanostructures with controlled size and shape has large impact in the fields of nanotechnology, nanomedicine and synthetic biology. The directed arrangement of nano-structures at interfaces is important for many applications. In spite of this, the use of laterally mobile lipid bilayers to control RNA three-dimensional nanostructure formation on surfaces remains largely unexplored. Here, we direct the self-assembly of RNA building blocks into three-dimensional structures of RNA on fluid lipid bilayers composed of cationic 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or mixtures of zwitterionic 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) and cationic sphingosine. We demonstrate the stepwise supramolecular assembly of discrete building blocks through specific and selective RNA-RNA interactions, based on results from quartz crystal microbalance with dissipation (QCM-D), ellipsometry, fluorescence recovery after photobleaching (FRAP) and total internal reflection fluorescence microscopy (TIRF) experiments. The assembly can be controlled to give a densely packed single layer of RNA polyhedrons at the fluid lipid bilayer surface. We show that assembly of the 3D structure can be modulated by sequence specific interactions, surface charge and changes in the salt composition and concentration. In addition, the tertiary structure of the RNA polyhedron can be controllably switched from an extended structure to one that is dense and compact. The versatile approach to building up three-dimensional structures of RNA does not require modification of the surface or the RNA molecules, and can be used as a bottom-up means of nanofabrication of functionalized bio-mimicking surfaces.
Collapse
Affiliation(s)
- Aleksandra P Dabkowska
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, 22100 Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Dao BN, Viard M, Martins AN, Kasprzak WK, Shapiro BA, Afonin KA. Triggering RNAi with multifunctional RNA nanoparticles and their delivery. DNA AND RNA NANOTECHNOLOGY 2015; 2:1-12. [PMID: 34322586 PMCID: PMC8315566 DOI: 10.1515/rnan-2015-0001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proteins are considered to be the key players in structure, function, and metabolic regulation of our bodies. The mechanisms used in conventional therapies often rely on inhibition of proteins with small molecules, but another promising method to treat disease is by targeting the corresponding mRNAs. In 1998, Craig Mellow and Andrew Fire discovered dsRNA-mediated gene silencing via RNA interference or RNAi. This discovery introduced almost unlimited possibilities for new gene silencing methods, thus opening new doors to clinical medicine. RNAi is a biological process that inhibits gene expression by targeting the mRNA. RNAi-based therapeutics have several potential advantages (i) a priori ability to target any gene, (ii) relatively simple design process, (iii) site-specificity, (iv) potency, and (v) a potentially safe and selective knockdown of the targeted cells. However, the problem lies within the formulation and delivery of RNAi therapeutics including rapid excretion, instability in the bloodstream, poor cellular uptake, and inefficient intracellular release. In an attempt to solve these issues, different types of RNAi therapeutic delivery strategies including multifunctional RNA nanoparticles are being developed. In this mini-review, we will briefly describe some of the current approaches.
Collapse
Affiliation(s)
- Bich Ngoc Dao
- Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, North Carolina 28223, USA
| | - Mathias Viard
- Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, Maryland, USA; Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Angelica N. Martins
- Department of Biology, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, North Carolina 28223, USA
| | - Wojciech K. Kasprzak
- Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, Maryland, USA; Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Bruce A. Shapiro
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Kirill A. Afonin
- Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, North Carolina 28223, USA
| |
Collapse
|
27
|
Afonin KA, Lindsay B, Shapiro BA. Engineered RNA Nanodesigns for Applications in RNA Nanotechnology. DNA AND RNA NANOTECHNOLOGY 2015; 1:1-15. [PMID: 34322585 PMCID: PMC8315564 DOI: 10.2478/rnan-2013-0001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nucleic acids have emerged as an extremely promising platform for nanotechnological applications because of their unique biochemical properties and functions. RNA, in particular, is characterized by relatively high thermal stability, diverse structural flexibility, and its capacity to perform a variety of functions in nature. These properties make RNA a valuable platform for bio-nanotechnology, specifically RNA Nanotechnology, that can create de novo nanostructures with unique functionalities through the design, integration, and re-engineering of powerful mechanisms based on a variety of existing RNA structures and their fundamental biochemical properties. This review highlights the principles that underlie the rational design of RNA nanostructures, describes the main strategies used to construct self-assembling nanoparticles, and discusses the challenges and possibilities facing the application of RNA Nanotechnology in the future.
Collapse
Affiliation(s)
- Kirill A. Afonin
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Brian Lindsay
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Bruce A. Shapiro
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
28
|
Jones CP, Ferré-D'Amaré AR. Crystal structure of a c-di-AMP riboswitch reveals an internally pseudo-dimeric RNA. EMBO J 2014; 33:2692-703. [PMID: 25271255 PMCID: PMC4282576 DOI: 10.15252/embj.201489209] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 01/13/2023] Open
Abstract
Cyclic diadenosine monophosphate (c-di-AMP) is a second messenger that is essential for growth and homeostasis in bacteria. A recently discovered c-di-AMP-responsive riboswitch controls the expression of genes in a variety of bacteria, including important pathogens. To elucidate the molecular basis for specific binding of c-di-AMP by a gene-regulatory mRNA domain, we have determined the co-crystal structure of this riboswitch. Unexpectedly, the structure reveals an internally pseudo-symmetric RNA in which two similar three-helix-junction elements associate head-to-tail, creating a trough that cradles two c-di-AMP molecules making quasi-equivalent contacts with the riboswitch. The riboswitch selectively binds c-di-AMP and discriminates exquisitely against other cyclic dinucleotides, such as c-di-GMP and cyclic-AMP-GMP, via interactions with both the backbone and bases of its cognate second messenger. Small-angle X-ray scattering experiments indicate that global folding of the riboswitch is induced by the two bound cyclic dinucleotides, which bridge the two symmetric three-helix domains. This structural reorganization likely couples c-di-AMP binding to gene expression.
Collapse
Affiliation(s)
- Christopher P Jones
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Adrian R Ferré-D'Amaré
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| |
Collapse
|
29
|
Geary C, Rothemund PWK, Andersen ES. A single-stranded architecture for cotranscriptional folding of RNA nanostructures. Science 2014; 345:799-804. [PMID: 25124436 DOI: 10.1126/science.1253920] [Citation(s) in RCA: 210] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Artificial DNA and RNA structures have been used as scaffolds for a variety of nanoscale devices. In comparison to DNA structures, RNA structures have been limited in size, but they also have advantages: RNA can fold during transcription and thus can be genetically encoded and expressed in cells. We introduce an architecture for designing artificial RNA structures that fold from a single strand, in which arrays of antiparallel RNA helices are precisely organized by RNA tertiary motifs and a new type of crossover pattern. We constructed RNA tiles that assemble into hexagonal lattices and demonstrated that lattices can be made by annealing and/or cotranscriptional folding. Tiles can be scaled up to 660 nucleotides in length, reaching a size comparable to that of large natural ribozymes.
Collapse
Affiliation(s)
- Cody Geary
- Center for DNA Nanotechnology, Interdisciplinary Nanoscience Center, and Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Paul W K Rothemund
- Bioengineering, Computer Science, and Computation and Neural Systems, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ebbe S Andersen
- Center for DNA Nanotechnology, Interdisciplinary Nanoscience Center, and Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark.
| |
Collapse
|
30
|
Khisamutdinov EF, Li H, Jasinski DL, Chen J, Fu J, Guo P. Enhancing immunomodulation on innate immunity by shape transition among RNA triangle, square and pentagon nanovehicles. Nucleic Acids Res 2014; 42:9996-10004. [PMID: 25092921 PMCID: PMC4150753 DOI: 10.1093/nar/gku516] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Modulation of immune response is important in cancer immunotherapy, vaccine adjuvant development and inflammatory or immune disease therapy. Here we report the development of new immunomodulators via control of shape transition among RNA triangle, square and pentagon. Changing one RNA strand in polygons automatically induced the stretching of the interior angle from 60° to 90° or 108°, resulting in self-assembly of elegant RNA triangles, squares and pentagons. When immunological adjuvants were incorporated, their immunomodulation effect for cytokine TNF-α and IL-6 induction was greatly enhanced in vitro and in animals up to 100-fold, while RNA polygon controls induced unnoticeable effect. The RNA nanoparticles were delivered to macrophages specifically. The degree of immunostimulation greatly depended on the size, shape and number of the payload per nanoparticles. Stronger immune response was observed when the number of adjuvants per polygon was increased, demonstrating the advantage of shape transition from triangle to pentagon.
Collapse
Affiliation(s)
- Emil F Khisamutdinov
- Department of Pharmaceutical Sciences, College of Pharmacy, Markey Cancer Center, Nanobiotechnology Center, University of Kentucky, Lexington, KY 40536, USA
| | - Hui Li
- Department of Pharmaceutical Sciences, College of Pharmacy, Markey Cancer Center, Nanobiotechnology Center, University of Kentucky, Lexington, KY 40536, USA
| | - Daniel L Jasinski
- Department of Pharmaceutical Sciences, College of Pharmacy, Markey Cancer Center, Nanobiotechnology Center, University of Kentucky, Lexington, KY 40536, USA
| | - Jiao Chen
- Center for Research on Environmental Disease, Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Jian Fu
- Center for Research on Environmental Disease, Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Peixuan Guo
- Department of Pharmaceutical Sciences, College of Pharmacy, Markey Cancer Center, Nanobiotechnology Center, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
31
|
Abstract
CONSPECTUS: Nanotechnology's central goal involves the direct control of matter at the molecular nanometer scale to build nanofactories, nanomachines, and other devices for potential applications including electronics, alternative fuels, and medicine. In this regard, the nascent use of nucleic acids as a material to coordinate the precise arrangements of specific molecules marked an important milestone in the relatively recent history of nanotechnology. While DNA served as the pioneer building material in nucleic acid nanotechnology, RNA continues to emerge as viable alternative material with its own distinct advantages for nanoconstruction. Several complementary assembly strategies have been used to build a diverse set of RNA nanostructures having unique structural attributes and the ability to self-assemble in a highly programmable and controlled manner. Of the different strategies, the architectonics approach uniquely endeavors to understand integrated structural RNA architectures through the arrangement of their characteristic structural building blocks. Viewed through this lens, it becomes apparent that nature routinely uses thermodynamically stable, recurrent modular motifs from natural RNA molecules to generate unique and more complex programmable structures. With the design principles found in natural structures, a number of synthetic RNAs have been constructed. The synthetic nanostructures constructed to date have provided, in addition to affording essential insights into RNA design, important platforms to characterize and validate the structural self-folding and assembly properties of RNA modules or building blocks. Furthermore, RNA nanoparticles have shown great promise for applications in nanomedicine and RNA-based therapeutics. Nevertheless, the synthetic RNA architectures achieved thus far consist largely of static, rigid particles that are still far from matching the structural and functional complexity of natural responsive structural elements such as the ribosome, large ribozymes, and riboswitches. Thus, the next step in synthetic RNA design will involve new ways to implement these same types of dynamic and responsive architectures into nanostructures functioning as real nanomachines in and outside the cell. RNA nanotechnology will likely garner broader utility and influence with a greater focus on the interplay between thermodynamic and kinetic influences on RNA self-assembly and using natural RNAs as guiding principles.
Collapse
Affiliation(s)
- Wade W. Grabow
- Department
of Chemistry and Biochemistry, Seattle Pacific University, 3307 Third
Avenue West, Seattle, Washington 98119, United States
| | - Luc Jaeger
- Department
of Chemistry and Biochemistry, Bio-Molecular Science and Engineering
Program, University of California, Santa Barbara, California 93106-9510, United States
| |
Collapse
|
32
|
Mustoe AM, Al-Hashimi HM, Brooks CL. Coarse grained models reveal essential contributions of topological constraints to the conformational free energy of RNA bulges. J Phys Chem B 2014; 118:2615-27. [PMID: 24547945 PMCID: PMC3983386 DOI: 10.1021/jp411478x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
![]()
Recent studies have shown that simple
stereochemical constraints
encoded at the RNA secondary structure level significantly restrict
the orientation of RNA helices across two-way junctions and yield
physically reasonable distributions of RNA 3D conformations. Here
we develop a new coarse-grain model, TOPRNA, that is optimized for
exploring detailed aspects of these topological constraints in complex
RNA systems. Unlike prior models, TOPRNA effectively treats RNAs as
collections of semirigid helices linked by freely rotatable single
strands, allowing us to isolate the effects of secondary structure
connectivity and sterics on 3D structure. Simulations of bulge junctions
show that TOPRNA captures new aspects of topological constraints,
including variations arising from deviations in local A-form structure,
translational displacements of the helices, and stereochemical constraints
imposed by bulge-linker nucleotides. Notably, these aspects of topological
constraints define free energy landscapes that coincide with the distribution
of bulge conformations in the PDB. Our simulations also quantitatively
reproduce NMR RDC measurements made on HIV-1 TAR at low salt concentrations,
although not for different TAR mutants or at high salt concentrations.
Our results confirm that topological constraints are an important
determinant of bulge conformation and dynamics and demonstrate the
utility of TOPRNA for studying the topological constraints of complex
RNAs.
Collapse
Affiliation(s)
- Anthony M Mustoe
- Departments of Biophysics and ‡Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | | | | |
Collapse
|
33
|
Wang J, Daldrop P, Huang L, Lilley DMJ. The k-junction motif in RNA structure. Nucleic Acids Res 2014; 42:5322-31. [PMID: 24531930 PMCID: PMC4005666 DOI: 10.1093/nar/gku144] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The k-junction is a structural motif in RNA comprising a three-way helical junction based upon kink turn (k-turn) architecture. A computer program written to examine relative helical orientation identified the three-way junction of the Arabidopsis TPP riboswitch as an elaborated k-turn. The Escherichia coli TPP riboswitch contains a related k-junction, and analysis of >11 000 sequences shows that the structure is common to these riboswitches. The k-junction exhibits all the key features of an N1-class k-turn, including the standard cross-strand hydrogen bonds. The third helix of the junction is coaxially aligned with the C (canonical) helix, while the k-turn loop forms the turn into the NC (non-canonical) helix. Analysis of ligand binding by ITC and global folding by gel electrophoresis demonstrates the importance of the k-turn nucleotides. Clearly the basic elements of k-turn structure are structurally well suited to generate a three-way helical junction, retaining all the key features and interactions of the k-turn.
Collapse
Affiliation(s)
- Jia Wang
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | | | | | | |
Collapse
|
34
|
Shu Y, Pi F, Sharma A, Rajabi M, Haque F, Shu D, Leggas M, Evers BM, Guo P. Stable RNA nanoparticles as potential new generation drugs for cancer therapy. Adv Drug Deliv Rev 2014; 66:74-89. [PMID: 24270010 DOI: 10.1016/j.addr.2013.11.006] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 10/11/2013] [Accepted: 11/13/2013] [Indexed: 12/13/2022]
Abstract
Human genome sequencing revealed that only ~1.5% of the DNA sequence coded for proteins. More and more evidence has uncovered that a substantial part of the 98.5% so-called "junk" DNAs actually code for noncoding RNAs. Two milestones, chemical drugs and protein drugs, have already appeared in the history of drug development, and it is expected that the third milestone in drug development will be RNA drugs or drugs that target RNA. This review focuses on the development of RNA therapeutics for potential cancer treatment by applying RNA nanotechnology. A therapeutic RNA nanoparticle is unique in that its scaffold, ligand, and therapeutic component can all be composed of RNA. The special physicochemical properties lend to the delivery of siRNA, miRNA, ribozymes, or riboswitches; imaging using fluogenenic RNA; and targeting using RNA aptamers. With recent advances in solving the chemical, enzymatic, and thermodynamic stability issues, RNA nanoparticles have been found to be advantageous for in vivo applications due to their uniform nano-scale size, precise stoichiometry, polyvalent nature, low immunogenicity, low toxicity, and target specificity. In vivo animal studies have revealed that RNA nanoparticles can specifically target tumors with favorable pharmacokinetic and pharmacodynamic parameters without unwanted accumulation in normal organs. This review summarizes the key studies that have led to the detailed understanding of RNA nanoparticle formation as well as chemical and thermodynamic stability issue. The methods for RNA nanoparticle construction, and the current challenges in the clinical application of RNA nanotechnology, such as endosome trapping and production costs, are also discussed.
Collapse
Affiliation(s)
- Yi Shu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Fengmei Pi
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Ashwani Sharma
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Mehdi Rajabi
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Farzin Haque
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Dan Shu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Markos Leggas
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - B Mark Evers
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Peixuan Guo
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
35
|
Mohammed S, Phelan MM, Rasul U, Ramesh V. NMR elucidation of the role of Mg2+ in the structure and stability of the conserved RNA motifs of the EMCV IRES element. Org Biomol Chem 2014; 12:1495-509. [DOI: 10.1039/c3ob41840e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Andersen ES. The art of editing RNA structural alignments. Methods Mol Biol 2014; 1097:379-394. [PMID: 24639168 DOI: 10.1007/978-1-62703-709-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Manual editing of RNA structural alignments may be considered more art than science, since it still requires an expert biologist to take multiple levels of information into account and be slightly creative when constructing high-quality alignments. Even though the task is rather tedious, it is rewarded by great insight into the evolution of structure and function of your favorite RNA molecule. In this chapter I will review the methods and considerations that go into constructing RNA structural alignments at the secondary and tertiary structure level; introduce software, databases, and algorithms that have proven useful in semiautomating the work process; and suggest future directions towards full automatization.
Collapse
|
37
|
Zheng HN, Ma YZ, Xiao SJ. Periodical assembly of repetitive RNA sequences synthesized by rolling circle transcription with short DNA staple strands to RNA–DNA hybrid nanowires. Chem Commun (Camb) 2014; 50:2100-3. [DOI: 10.1039/c3cc48808j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Geary CW, Andersen ES. Design Principles for Single-Stranded RNA Origami Structures. LECTURE NOTES IN COMPUTER SCIENCE 2014. [DOI: 10.1007/978-3-319-11295-4_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
Abstract
RNA molecules are highly modular components that can be used in a variety of contexts for building new metabolic, regulatory and genetic circuits in cells. The majority of synthetic RNA systems to date predominately rely on two-dimensional modularity. However, a better understanding and integration of three-dimensional RNA modularity at structural and functional levels is critical to the development of more complex, functional bio-systems and molecular machines for synthetic biology applications.
Collapse
Affiliation(s)
- Wade Grabow
- Department of Chemistry and Biochemistry, Seattle Pacific University3307 Third Avenue West, Seattle, WA 98119USA
| | - Luc Jaeger
- Department of Chemistry and Biochemistry, Bio-Molecular Science and Engineering Program, University of CaliforniaSanta Barbara, CA 93106-9510USA
| |
Collapse
|
40
|
Qiu M, Khisamutdinov E, Zhao Z, Pan C, Choi JW, Leontis NB, Guo P. RNA nanotechnology for computer design and in vivo computation. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2013; 371:20120310. [PMID: 24000362 PMCID: PMC3758167 DOI: 10.1098/rsta.2012.0310] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Molecular-scale computing has been explored since 1989 owing to the foreseeable limitation of Moore's law for silicon-based computation devices. With the potential of massive parallelism, low energy consumption and capability of working in vivo, molecular-scale computing promises a new computational paradigm. Inspired by the concepts from the electronic computer, DNA computing has realized basic Boolean functions and has progressed into multi-layered circuits. Recently, RNA nanotechnology has emerged as an alternative approach. Owing to the newly discovered thermodynamic stability of a special RNA motif (Shu et al. 2011 Nat. Nanotechnol. 6, 658-667 (doi:10.1038/nnano.2011.105)), RNA nanoparticles are emerging as another promising medium for nanodevice and nanomedicine as well as molecular-scale computing. Like DNA, RNA sequences can be designed to form desired secondary structures in a straightforward manner, but RNA is structurally more versatile and more thermodynamically stable owing to its non-canonical base-pairing, tertiary interactions and base-stacking property. A 90-nucleotide RNA can exhibit 4⁹⁰ nanostructures, and its loops and tertiary architecture can serve as a mounting dovetail that eliminates the need for external linking dowels. Its enzymatic and fluorogenic activity creates diversity in computational design. Varieties of small RNA can work cooperatively, synergistically or antagonistically to carry out computational logic circuits. The riboswitch and enzymatic ribozyme activities and its special in vivo attributes offer a great potential for in vivo computation. Unique features in transcription, termination, self-assembly, self-processing and acid resistance enable in vivo production of RNA nanoparticles that harbour various regulators for intracellular manipulation. With all these advantages, RNA computation is promising, but it is still in its infancy. Many challenges still exist. Collaborations between RNA nanotechnologists and computer scientists are necessary to advance this nascent technology.
Collapse
Affiliation(s)
- Meikang Qiu
- Department of Computer Engineering, San Jose State University, San Jose, CA 95192, USA
| | - Emil Khisamutdinov
- Department of Pharmaceutical Science, University of Kentucky, Lexington, KY 40506, USA
| | - Zhengyi Zhao
- Department of Pharmaceutical Science, University of Kentucky, Lexington, KY 40506, USA
| | - Cheryl Pan
- Department of Electrical and Computer Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 121-742, Korea
| | - Neocles B. Leontis
- Department of Chemistry, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Peixuan Guo
- Department of Pharmaceutical Science, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
41
|
Endo M, Yamamoto S, Tatsumi K, Emura T, Hidaka K, Sugiyama H. RNA-templated DNA origami structures. Chem Commun (Camb) 2013; 49:2879-81. [PMID: 23446278 DOI: 10.1039/c3cc38804b] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Using the RNA transcript as a template, RNA-templated DNA origami structures were constructed by annealing with designed DNA staple strands. RNA-templated DNA origami structures were folded to form seven-helix bundled rectangular structures and six-helix bundled tubular structures. The chemically modified RNA-DNA hybrid origami structures were prepared by using RNA templates containing modified uracils.
Collapse
Affiliation(s)
- Masayuki Endo
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | | | | | | | |
Collapse
|
42
|
Grabow WW, Zhuang Z, Shea JE, Jaeger L. The GA-minor submotif as a case study of RNA modularity, prediction, and design. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:181-203. [PMID: 23378290 DOI: 10.1002/wrna.1153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Complex natural RNAs such as the ribosome, group I and group II introns, and RNase P exemplify the fact that three-dimensional (3D) RNA structures are highly modular and hierarchical in nature. Tertiary RNA folding typically takes advantage of a rather limited set of recurrent structural motifs that are responsible for controlling bends or stacks between adjacent helices. Herein, the GA minor and related structural motifs are presented as a case study to highlight several structural and folding principles, to gain further insight into the structural evolution of naturally occurring RNAs, as well as to assist the rational design of artificial RNAs.
Collapse
Affiliation(s)
- Wade W Grabow
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | | | | | | |
Collapse
|
43
|
Donghi D, Pechlaner M, Finazzo C, Knobloch B, Sigel RKO. The structural stabilization of the κ three-way junction by Mg(II) represents the first step in the folding of a group II intron. Nucleic Acids Res 2012; 41:2489-504. [PMID: 23275550 PMCID: PMC3575829 DOI: 10.1093/nar/gks1179] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Folding of group II introns is characterized by a first slow compaction of domain 1 (D1) followed by the rapid docking of other domains to this scaffold. D1 compaction initiates in a small subregion encompassing the κ and ζ elements. These two tertiary elements are also the major interaction sites with domain 5 to form the catalytic core. Here, we provide the first characterization of the structure adopted at an early folding step and show that the folding control element can be narrowed down to the three-way junction with the κ motif. In our nuclear magnetic resonance studies of this substructure derived from the yeast mitochondrial group II intron Sc.ai5γ, we show that a high affinity Mg(II) ion stabilizes the κ element and enables coaxial stacking between helices d′ and d′′, favoring a rigid duplex across the three-way junction. The κ-element folds into a stable GAAA-tetraloop motif and engages in A-minor interactions with helix d′. The addition of cobalt(III)hexammine reveals three distinct binding sites. The Mg(II)-promoted structural rearrangement and rigidification of the D1 core can be identified as the first micro-step of D1 folding.
Collapse
Affiliation(s)
- Daniela Donghi
- Institute of Inorganic Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
44
|
Guo P, Haque F, Hallahan B, Reif R, Li H. Uniqueness, advantages, challenges, solutions, and perspectives in therapeutics applying RNA nanotechnology. Nucleic Acid Ther 2012; 22:226-45. [PMID: 22913595 DOI: 10.1089/nat.2012.0350] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The field of RNA nanotechnology is rapidly emerging. RNA can be manipulated with the simplicity characteristic of DNA to produce nanoparticles with a diversity of quaternary structures by self-assembly. Additionally RNA is tremendously versatile in its function and some RNA molecules display catalytic activities much like proteins. Thus, RNA has the advantage of both worlds. However, the instability of RNA has made many scientists flinch away from RNA nanotechnology. Other concerns that have deterred the progress of RNA therapeutics include the induction of interferons, stimulation of cytokines, and activation of other immune systems, as well as short pharmacokinetic profiles in vivo. This review will provide some solutions and perspectives on the chemical and thermodynamic stability, in vivo half-life and biodistribution, yield and production cost, in vivo toxicity and side effect, specific delivery and targeting, as well as endosomal trapping and escape.
Collapse
Affiliation(s)
- Peixuan Guo
- Nanobiotechnology Center, Markey Cancer Center and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536, USA.
| | | | | | | | | |
Collapse
|
45
|
Grabow WW, Zhuang Z, Swank ZN, Shea JE, Jaeger L. The right angle (RA) motif: a prevalent ribosomal RNA structural pattern found in group I introns. J Mol Biol 2012; 424:54-67. [PMID: 22999957 DOI: 10.1016/j.jmb.2012.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 09/11/2012] [Accepted: 09/12/2012] [Indexed: 12/16/2022]
Abstract
The right angle (RA) motif, previously identified in the ribosome and used as a structural module for nano-construction, is a recurrent structural motif of 13 nucleotides that establishes a 90° bend between two adjacent helices. Comparative sequence analysis was used to explore the sequence space of the RA motif within ribosomal RNAs in order to define its canonical sequence space signature. We investigated the sequence constraints associated with the RA signature using several artificial self-assembly systems. Thermodynamic and topological investigations of sequence variants associated with the RA motif in both minimal and expanded structural contexts reveal that the presence of a helix at the 3' end of the RA motif increases the thermodynamic stability and rigidity of the resulting three-helix junction domain. A search for the RA in naturally occurring RNAs as well as its experimental characterization led to the identification of the RA in groups IC1 and ID intron ribozymes, where it is suggested to play an integral role in stabilizing peripheral structural domains. The present study exemplifies the need of empirical analysis of RNA structural motifs for facilitating the rational design and structure prediction of RNAs.
Collapse
Affiliation(s)
- Wade W Grabow
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106-9510, USA
| | | | | | | | | |
Collapse
|
46
|
Guo P, Haque F, Hallahan B, Reif R, Li H. Uniqueness, advantages, challenges, solutions, and perspectives in therapeutics applying RNA nanotechnology. Nucleic Acid Ther 2012. [PMID: 22913595 DOI: 10.1201/b15152-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
The field of RNA nanotechnology is rapidly emerging. RNA can be manipulated with the simplicity characteristic of DNA to produce nanoparticles with a diversity of quaternary structures by self-assembly. Additionally RNA is tremendously versatile in its function and some RNA molecules display catalytic activities much like proteins. Thus, RNA has the advantage of both worlds. However, the instability of RNA has made many scientists flinch away from RNA nanotechnology. Other concerns that have deterred the progress of RNA therapeutics include the induction of interferons, stimulation of cytokines, and activation of other immune systems, as well as short pharmacokinetic profiles in vivo. This review will provide some solutions and perspectives on the chemical and thermodynamic stability, in vivo half-life and biodistribution, yield and production cost, in vivo toxicity and side effect, specific delivery and targeting, as well as endosomal trapping and escape.
Collapse
Affiliation(s)
- Peixuan Guo
- Nanobiotechnology Center, Markey Cancer Center and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536, USA.
| | | | | | | | | |
Collapse
|
47
|
Vander Meulen KA, Butcher SE. Characterization of the kinetic and thermodynamic landscape of RNA folding using a novel application of isothermal titration calorimetry. Nucleic Acids Res 2012; 40:2140-51. [PMID: 22058128 PMCID: PMC3300012 DOI: 10.1093/nar/gkr894] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 09/29/2011] [Accepted: 10/03/2011] [Indexed: 01/23/2023] Open
Abstract
A novel isothermal titration calorimetry (ITC) method was applied to investigate RNA helical packing driven by the GAAA tetraloop-receptor interaction in magnesium and potassium solutions. Both the kinetics and thermodynamics were obtained in individual ITC experiments, and analysis of the kinetic data over a range of temperatures provided Arrhenius activation energies (ΔH(‡)) and Eyring transition state entropies (ΔS(‡)). The resulting rich dataset reveals strongly contrasting kinetic and thermodynamic profiles for this RNA folding system when stabilized by potassium versus magnesium. In potassium, association is highly exothermic (ΔH(25°C) = -41.6 ± 1.2 kcal/mol in 150 mM KCl) and the transition state is enthalpically barrierless (ΔH(‡) = -0.6 ± 0.5). These parameters are significantly positively shifted in magnesium (ΔH(25°C) = -20.5 ± 2.1 kcal/mol, ΔH(‡) = 7.3 ± 2.2 kcal/mol in 0.5 mM MgCl(2)). Mixed salt solutions approximating physiological conditions exhibit an intermediate thermodynamic character. The cation-dependent thermodynamic landscape may reflect either a salt-dependent unbound receptor conformation, or alternatively and more generally, it may reflect a small per-cation enthalpic penalty associated with folding-coupled magnesium uptake.
Collapse
Affiliation(s)
- Kirk A. Vander Meulen
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr Madison, WI 53706, USA
| | - Samuel E. Butcher
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr Madison, WI 53706, USA
| |
Collapse
|
48
|
Bindewald E, Afonin K, Jaeger L, Shapiro BA. Multistrand RNA secondary structure prediction and nanostructure design including pseudoknots. ACS NANO 2011; 5:9542-51. [PMID: 22067111 PMCID: PMC3263976 DOI: 10.1021/nn202666w] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We are presenting NanoFolder, a method for the prediction of the base pairing of potentially pseudoknotted multistrand RNA nanostructures. We show that the method outperforms several other structure prediction methods when applied to RNA complexes with non-nested base pairs. We extended this secondary structure prediction capability to allow RNA sequence design. Using native PAGE, we experimentally confirm that four in silico designed RNA strands corresponding to a triangular RNA structure form the expected stable complex.
Collapse
Affiliation(s)
- Eckart Bindewald
- Basic Science Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland, USA
| | - Kirill Afonin
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, Maryland, USA
| | - Luc Jaeger
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| | - Bruce A. Shapiro
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, Maryland, USA
| |
Collapse
|
49
|
Butcher SE, Pyle AM. The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks. Acc Chem Res 2011; 44:1302-11. [PMID: 21899297 DOI: 10.1021/ar200098t] [Citation(s) in RCA: 239] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RNA molecules adopt specific three-dimensional structures critical to their function. Many essential metabolic processes, including protein synthesis and RNA splicing, are carried out by RNA molecules with elaborate tertiary structures (e.g. 3QIQ, right). Indeed, the ribosome and self-splicing introns are complex RNA machines. But even the coding regions in messenger RNAs and viral RNAs are flanked by highly structured untranslated regions, which provide regulatory information necessary for gene expression. RNA tertiary structure is defined as the three-dimensional arrangement of RNA building blocks, which include helical duplexes, triple-stranded structures, and other components that are held together through connections collectively termed RNA tertiary interactions. The structural diversity of these interactions is now a subject of intense investigation, involving the techniques of NMR, X-ray crystallography, chemical genetics, and phylogenetic analysis. At the same time, many investigators are using biophysical techniques to elucidate the driving forces for tertiary structure formation and the mechanisms for its stabilization. RNA tertiary folding is promoted by maximization of base stacking, much like the hydrophobic effect that drives protein folding. RNA folding also requires electrostatic stabilization, both through charge screening and site binding of metals, and it is enhanced by desolvation of the phosphate backbone. In this Account, we provide an overview of the features that specify and stabilize RNA tertiary structure. A major determinant for overall tertiary RNA architecture is local conformation in secondary-structure junctions, which are regions from which two or more duplexes project. At junctions and other structures, such as pseudoknots and kissing loops, adjacent helices stack on one another, and these coaxial stacks play a major role in dictating the overall architectural form of an RNA molecule. In addition to RNA junction topology, a second determinant for RNA tertiary structure is the formation of sequence-specific interactions. Networks of triple helices, tetraloop-receptor interactions, and other sequence-specific contacts establish the framework for the overall tertiary fold. The third determinant of tertiary structure is the formation of stabilizing stacking and backbone interactions, and many are not sequence specific. For example, ribose zippers allow 2'-hydroxyl groups on different RNA strands to form networks of interdigitated hydrogen bonds, serving to seal strands together and thereby stabilize adjacent substructures. These motifs often require monovalent and divalent cations, which can interact diffusely or through chelation to specific RNA functional groups. As we learn more about the components of RNA tertiary structure, we will be able to predict the structures of RNA molecules from their sequences, thereby obtaining key information about biological function. Understanding and predicting RNA structure is particularly important given the recent discovery that although most of our genome is transcribed into RNA molecules, few of them have a known function. The prevalence of RNA viruses and pathogens with RNA genomes makes RNA drug discovery an active area of research. Finally, knowledge of RNA structure will facilitate the engineering of supramolecular RNA structures, which can be used as nanomechanical components for new materials. But all of this promise depends on a better understanding of the RNA parts list, and how the pieces fit together.
Collapse
Affiliation(s)
- Samuel E. Butcher
- Department of Biochemistry, University of Wisconsin—Madison, 433 Babcock
Drive, Madison, Wisconsin 53706-1544, United States
| | - Anna Marie Pyle
- Department of Molecular, Cellular
and Developmental Biology and Department of Chemistry, Yale University, New Haven, Connecticut, United States
- Howard Hughes Medical Institute
| |
Collapse
|
50
|
Afonin KA, Lin YP, Calkins ER, Jaeger L. Attenuation of loop-receptor interactions with pseudoknot formation. Nucleic Acids Res 2011; 40:2168-80. [PMID: 22080507 PMCID: PMC3300017 DOI: 10.1093/nar/gkr926] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
RNA tetraloops can recognize receptors to mediate long-range interactions in stable natural RNAs. In vitro selected GNRA tetraloop/receptor interactions are usually more ‘G/C-rich’ than their ‘A/U-rich’ natural counterparts. They are not as widespread in nature despite comparable biophysical and chemical properties. Moreover, while AA, AC and GU dinucleotide platforms occur in natural GAAA/11 nt receptors, the AA platform is somewhat preferred to the others. The apparent preference for ‘A/U-rich’ GNRA/receptor interactions in nature might stem from an evolutionary adaptation to avoid folding traps at the level of the larger molecular context. To provide evidences in favor of this hypothesis, several riboswitches based on natural and artificial GNRA receptors were investigated in vitro for their ability to prevent inter-molecular GNRA/receptor interactions by trapping the receptor sequence into an alternative intra-molecular pseudoknot. Extent of attenuation determined by native gel-shift assays and co-transcriptional assembly is correlated to the G/C content of the GNRA receptor. Our results shed light on the structural evolution of natural long-range interactions and provide design principles for RNA-based attenuator devices to be used in synthetic biology and RNA nanobiotechnology.
Collapse
Affiliation(s)
- Kirill A Afonin
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106-9510, USA
| | | | | | | |
Collapse
|