1
|
Pomyalov S, Minetti CA, Remeta DP, Bonala R, Johnson F, Zaitseva I, Iden C, Golebiewska U, Breslauer KJ, Shoham G, Sidorenko VS, Grollman AP. Structural and mechanistic insights into the transport of aristolochic acids and their active metabolites by human serum albumin. J Biol Chem 2024; 300:107358. [PMID: 38782206 PMCID: PMC11253539 DOI: 10.1016/j.jbc.2024.107358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Aristolochic acids I and II (AA-I/II) are carcinogenic principles of Aristolochia plants, which have been employed in traditional medicinal practices and discovered as food contaminants. While the deleterious effects of AAs are broadly acknowledged, there is a dearth of information to define the mechanisms underlying their carcinogenicity. Following bioactivation in the liver, N-hydroxyaristolactam and N-sulfonyloxyaristolactam metabolites are transported via circulation and elicit carcinogenic effects by reacting with cellular DNA. In this study, we apply DNA adduct analysis, X-ray crystallography, isothermal titration calorimetry, and fluorescence quenching to investigate the role of human serum albumin (HSA) in modulating AA carcinogenicity. We find that HSA extends the half-life and reactivity of N-sulfonyloxyaristolactam-I with DNA, thereby protecting activated AAs from heterolysis. Applying novel pooled plasma HSA crystallization methods, we report high-resolution structures of myristic acid-enriched HSA (HSAMYR) and its AA complexes (HSAMYR/AA-I and HSAMYR/AA-II) at 1.9 Å resolution. While AA-I is located within HSA subdomain IB, AA-II occupies subdomains IIA and IB. ITC binding profiles reveal two distinct AA sites in both complexes with association constants of 1.5 and 0.5 · 106 M-1 for HSA/AA-I versus 8.4 and 9.0 · 105 M-1 for HSA/AA-II. Fluorescence quenching of the HSA Trp214 suggests variable impacts of fatty acids on ligand binding affinities. Collectively, our structural and thermodynamic characterizations yield significant insights into AA binding, transport, toxicity, and potential allostery, critical determinants for elucidating the mechanistic roles of HSA in modulating AA carcinogenicity.
Collapse
Affiliation(s)
- Sergei Pomyalov
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Conceição A Minetti
- Department of Chemistry and Chemical Biology, Rutgers - The State University of New Jersey, Piscataway, New Jersey, USA
| | - David P Remeta
- Department of Chemistry and Chemical Biology, Rutgers - The State University of New Jersey, Piscataway, New Jersey, USA
| | - Radha Bonala
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Francis Johnson
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA; Department of Chemistry, Stony Brook University, Stony Brook, New York, USA
| | - Irina Zaitseva
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Charles Iden
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Urszula Golebiewska
- Department of Physiology, Stony Brook University, Stony Brook, New York, USA; Department of Biological Sciences, Queensborough Community College, Bayside, New York, USA
| | - Kenneth J Breslauer
- Department of Chemistry and Chemical Biology, Rutgers - The State University of New Jersey, Piscataway, New Jersey, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA.
| | - Gil Shoham
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Viktoriya S Sidorenko
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA.
| | - Arthur P Grollman
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA.
| |
Collapse
|
2
|
Khosla D, Misra S, Chu PL, Guan P, Nada R, Gupta R, Kaewnarin K, Ko TK, Heng HL, Srinivasalu VK, Kapoor R, Singh D, Klanrit P, Sampattavanich S, Tan J, Kongpetch S, Jusakul A, Teh BT, Chan JY, Hong JH. Cholangiocarcinoma: Recent Advances in Molecular Pathobiology and Therapeutic Approaches. Cancers (Basel) 2024; 16:801. [PMID: 38398194 PMCID: PMC10887007 DOI: 10.3390/cancers16040801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Cholangiocarcinomas (CCA) pose a complex challenge in oncology due to diverse etiologies, necessitating tailored therapeutic approaches. This review discusses the risk factors, molecular pathology, and current therapeutic options for CCA and explores the emerging strategies encompassing targeted therapies, immunotherapy, novel compounds from natural sources, and modulation of gut microbiota. CCA are driven by an intricate landscape of genetic mutations, epigenetic dysregulation, and post-transcriptional modification, which differs based on geography (e.g., for liver fluke versus non-liver fluke-driven CCA) and exposure to environmental carcinogens (e.g., exposure to aristolochic acid). Liquid biopsy, including circulating cell-free DNA, is a potential diagnostic tool for CCA, which warrants further investigations. Currently, surgical resection is the primary curative treatment for CCA despite the technical challenges. Adjuvant chemotherapy, including cisplatin and gemcitabine, is standard for advanced, unresectable, or recurrent CCA. Second-line therapy options, such as FOLFOX (oxaliplatin and 5-FU), and the significance of radiation therapy in adjuvant, neoadjuvant, and palliative settings are also discussed. This review underscores the need for personalized therapies and demonstrates the shift towards precision medicine in CCA treatment. The development of targeted therapies, including FDA-approved drugs inhibiting FGFR2 gene fusions and IDH1 mutations, is of major research focus. Investigations into immune checkpoint inhibitors have also revealed potential clinical benefits, although improvements in survival remain elusive, especially across patient demographics. Novel compounds from natural sources exhibit anti-CCA activity, while microbiota dysbiosis emerges as a potential contributor to CCA progression, necessitating further exploration of their direct impact and mechanisms through in-depth research and clinical studies. In the future, extensive translational research efforts are imperative to bridge existing gaps and optimize therapeutic strategies to improve therapeutic outcomes for this complex malignancy.
Collapse
Affiliation(s)
- Divya Khosla
- Department of Radiotherapy and Oncology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Shagun Misra
- Department of Radiotherapy and Oncology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Pek Lim Chu
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Peiyong Guan
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
| | - Ritambhra Nada
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Rajesh Gupta
- Department of GI Surgery, HPB, and Liver Transplantation, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Khwanta Kaewnarin
- SingHealth Duke-NUS Institute of Biodiversity Medicine, Singapore 168583, Singapore
| | - Tun Kiat Ko
- Cancer Discovery Hub, National Cancer Center Singapore, Singapore 168583, Singapore
| | - Hong Lee Heng
- Laboratory of Cancer Epigenome, Division of Medical Science, National Cancer Center Singapore, Singapore 168583, Singapore
| | - Vijay Kumar Srinivasalu
- Department of Medical Oncology, Mazumdar Shaw Medical Center, NH Health City Campus, Bommasandra, Bangalore 560099, India
| | - Rakesh Kapoor
- Department of Radiotherapy and Oncology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Deepika Singh
- SingHealth Duke-NUS Institute of Biodiversity Medicine, Singapore 168583, Singapore
| | - Poramate Klanrit
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somponnat Sampattavanich
- Siriraj Center of Research Excellence for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 73170, Thailand
| | - Jing Tan
- Laboratory of Cancer Epigenome, Division of Medical Science, National Cancer Center Singapore, Singapore 168583, Singapore
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Sarinya Kongpetch
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Apinya Jusakul
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Bin Tean Teh
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore 169857, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
- Laboratory of Cancer Epigenome, Division of Medical Science, National Cancer Center Singapore, Singapore 168583, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Jason Yongsheng Chan
- Cancer Discovery Hub, National Cancer Center Singapore, Singapore 168583, Singapore
- Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
- Division of Medical Oncology, National Cancer Center, Singapore 168583, Singapore
| | - Jing Han Hong
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
3
|
Oe Y, Kim YC, Sidorenko VS, Zhang H, Kanoo S, Lopez N, Goodluck HA, Crespo-Masip M, Vallon V. SGLT2 inhibitor dapagliflozin protects the kidney in a murine model of Balkan nephropathy. Am J Physiol Renal Physiol 2024; 326:F227-F240. [PMID: 38031729 PMCID: PMC11198975 DOI: 10.1152/ajprenal.00228.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 12/01/2023] Open
Abstract
Proximal tubular uptake of aristolochic acid (AA) forms aristolactam (AL)-DNA adducts, which cause a p53/p21-mediated DNA damage response and acute tubular injury. Recurrent AA exposure causes kidney function loss and fibrosis in humans (Balkan endemic nephropathy) and mice and is a model of (acute kidney injury) AKI to chronic kidney disease (CKD) transition. Inhibitors of the proximal tubule sodium-glucose transporter SGLT2 can protect against CKD progression, but their effect on AA-induced kidney injury remains unknown. C57BL/6J mice (15-wk-old) were administered vehicle or AA every 3 days for 3 wk (10 and 3 mg/kg ip in females and males, respectively). Dapagliflozin (dapa, 0.01 g/kg diet) or vehicle was initiated 7 days prior to AA injections. All dapa effects were sex independent, including a robust glycosuria. Dapa lowered urinary kidney-injury molecule 1 (KIM-1) and albumin (both normalized to creatinine) after the last AA injection and kidney mRNA expression of early DNA damage response markers (p53 and p21) 3 wk later at the study end. Dapa also attenuated AA-induced increases in plasma creatinine as well as AA-induced up-regulation of renal pro-senescence, pro-inflammatory and pro-fibrotic genes, and kidney collagen staining. When assessed 1 day after a single AA injection, dapa pretreatment attenuated AL-DNA adduct formation by 10 and 20% in kidney and liver, respectively, associated with reduced p21 expression. Initiating dapa application after the last AA injection also improved kidney outcome but in a less robust manner. In conclusion, the first evidence is presented that pretreatment with an SGLT2 inhibitor can attenuate the AA-induced DNA damage response and subsequent nephropathy.NEW & NOTEWORTHY Recurrent exposure to aristolochic acid (AA) causes kidney function loss and fibrosis in mice and in humans, e.g., in the form of the endemic Balkan nephropathy. Inhibitors of the proximal tubule sodium-glucose transporter SGLT2 can protect against CKD progression, but their effect on AA-induced kidney injury remains unknown. Here we provide the first evidence in a murine model that pretreatment with an SGLT2 inhibitor can attenuate the AA-induced DNA damage response and subsequent nephropathy.
Collapse
Affiliation(s)
- Yuji Oe
- Department of Medicine, University of California-San Diego, La Jolla, California, United States
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States
| | - Young Chul Kim
- Department of Medicine, University of California-San Diego, La Jolla, California, United States
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States
| | - Viktoriya S Sidorenko
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States
| | - Haiyan Zhang
- Department of Pathology, University of California-San Diego, San Diego, California, United States
| | - Sadhana Kanoo
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States
| | - Natalia Lopez
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States
| | - Helen A Goodluck
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States
| | - Maria Crespo-Masip
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States
| | - Volker Vallon
- Department of Medicine, University of California-San Diego, La Jolla, California, United States
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States
| |
Collapse
|
4
|
Garaycoechea JI, Quinlan C, Luijsterburg MS. Pathological consequences of DNA damage in the kidney. Nat Rev Nephrol 2023; 19:229-243. [PMID: 36702905 DOI: 10.1038/s41581-022-00671-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2022] [Indexed: 01/27/2023]
Abstract
DNA lesions that evade repair can lead to mutations that drive the development of cancer, and cellular responses to DNA damage can trigger senescence and cell death, which are associated with ageing. In the kidney, DNA damage has been implicated in both acute and chronic kidney injury, and in renal cell carcinoma. The susceptibility of the kidney to chemotherapeutic agents that damage DNA is well established, but an unexpected link between kidney ciliopathies and the DNA damage response has also been reported. In addition, human genetic deficiencies in DNA repair have highlighted DNA crosslinks, DNA breaks and transcription-blocking damage as lesions that are particularly toxic to the kidney. Genetic tools in mice, as well as advances in kidney organoid and single-cell RNA sequencing technologies, have provided important insights into how specific kidney cell types respond to DNA damage. The emerging view is that in the kidney, DNA damage affects the local microenvironment by triggering a damage response and cell proliferation to replenish injured cells, as well as inducing systemic responses aimed at reducing exposure to genotoxic stress. The pathological consequences of DNA damage are therefore key to the nephrotoxicity of DNA-damaging agents and the kidney phenotypes observed in human DNA repair-deficiency disorders.
Collapse
Affiliation(s)
- Juan I Garaycoechea
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Catherine Quinlan
- Department of Paediatrics, University of Melbourne, Parkville, Australia
- Department of Nephrology, Royal Children's Hospital, Melbourne, Australia
- Department of Kidney Regeneration, Murdoch Children's Research Institute, Melbourne, Australia
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands.
| |
Collapse
|
5
|
Au CK, Ham YH, Chan W. Bioaccumulation and DNA Adduct Formation of Aristolactam I: Unmasking a Toxicological Mechanism in the Pathophysiology of Aristolochic Acid Nephropathy. Chem Res Toxicol 2023; 36:322-329. [PMID: 36757010 DOI: 10.1021/acs.chemrestox.2c00415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Prolonged exposure to aristolochic acid (AA) through AA-containing herbal medicines or AA-tainted food is putting a large portion of the global population at risk of developing renal fibrosis and tumors of the upper urinary tract. In an effort to better understand the organotropic property of AA, we studied the cytotoxicity, absorption, oxidative-stress inducing potential, and DNA adduct formation capability of aristolactam I (ALI), one of the major urinary metabolites of aristolochic acid I (AAI) in human cells. Despite ALI having a slightly lower cytotoxicity than that of AAI, the analysis revealed, for the first time, that ALI is bioaccumulated 900 times more than that of AAI inside cultured kidney cells. Furthermore, ALI induced a significantly larger glutathione depletion than that of AAI in the exposed cells. Together with the formation of ALI-DNA adduct at a reasonably high abundance, results of this study unmasked a previously disregarded causative role of ALI in the organotropic tumor-targeting property of AA.
Collapse
Affiliation(s)
- Chun-Kit Au
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yat-Hing Ham
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
6
|
Das S, Thakur S, Korenjak M, Sidorenko VS, Chung FFL, Zavadil J. Aristolochic acid-associated cancers: a public health risk in need of global action. Nat Rev Cancer 2022; 22:576-591. [PMID: 35854147 DOI: 10.1038/s41568-022-00494-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/15/2022] [Indexed: 11/09/2022]
Abstract
Aristolochic acids (AAs) are a group of naturally occurring compounds present in many plant species of the Aristolochiaceae family. Exposure to AA is a significant risk factor for severe nephropathy, and urological and hepatobiliary cancers (among others) that are often recurrent and characterized by the prominent mutational fingerprint of AA. However, herbal medicinal products that contain AA continue to be manufactured and marketed worldwide with inadequate regulation, and possible environmental exposure routes receive little attention. As the trade of food and dietary supplements becomes increasingly globalized, we propose that further inaction on curtailing AA exposure will have far-reaching negative effects on the disease trends of AA-associated cancers. Our Review aims to systematically present the historical and current evidence for the mutagenicity and carcinogenicity of AA, and the effect of removing sources of AA exposure on cancer incidence trends. We discuss the persisting challenges of assessing the scale of AA-related carcinogenicity, and the obstacles that must be overcome in curbing AA exposure and preventing associated cancers. Overall, this Review aims to strengthen the case for the implementation of prevention measures against AA's multifaceted, detrimental and potentially fully preventable effects on human cancer development.
Collapse
Affiliation(s)
- Samrat Das
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer WHO, Lyon, France
| | - Shefali Thakur
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer WHO, Lyon, France
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Michael Korenjak
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer WHO, Lyon, France
| | - Viktoriya S Sidorenko
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Felicia Fei-Lei Chung
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer WHO, Lyon, France.
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Malaysia.
| | - Jiri Zavadil
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer WHO, Lyon, France.
| |
Collapse
|
7
|
Naumenko NV, Petruseva IO, Lavrik OI. Bulky Adducts in Clustered DNA Lesions: Causes of Resistance to the NER System. Acta Naturae 2022; 14:38-49. [PMID: 36694906 PMCID: PMC9844087 DOI: 10.32607/actanaturae.11741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/18/2022] [Indexed: 01/22/2023] Open
Abstract
The nucleotide excision repair (NER) system removes a wide range of bulky DNA lesions that cause significant distortions of the regular double helix structure. These lesions, mainly bulky covalent DNA adducts, are induced by ultraviolet and ionizing radiation or the interaction between exogenous/endogenous chemically active substances and nitrogenous DNA bases. As the number of DNA lesions increases, e.g., due to intensive chemotherapy and combination therapy of various diseases or DNA repair impairment, clustered lesions containing bulky adducts may occur. Clustered lesions are two or more lesions located within one or two turns of the DNA helix. Despite the fact that repair of single DNA lesions by the NER system in eukaryotic cells has been studied quite thoroughly, the repair mechanism of these lesions in clusters remains obscure. Identification of the structural features of the DNA regions containing irreparable clustered lesions is of considerable interest, in particular due to a relationship between the efficiency of some antitumor drugs and the activity of cellular repair systems. In this review, we analyzed data on the induction of clustered lesions containing bulky adducts, the potential biological significance of these lesions, and methods for quantification of DNA lesions and considered the causes for the inhibition of NER-catalyzed excision of clustered bulky lesions.
Collapse
Affiliation(s)
- N. V. Naumenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia
| | - I. O. Petruseva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia
| | - O. I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia
| |
Collapse
|
8
|
Tan Y, You C, Park J, Kim HS, Guo S, Schärer OD, Wang Y. Transcriptional Perturbations of 2,6-Diaminopurine and 2-Aminopurine. ACS Chem Biol 2022; 17:1672-1676. [PMID: 35700389 DOI: 10.1021/acschembio.2c00369] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
2,6-Diaminopurine (Z) is a naturally occurring adenine (A) analog that bacteriophages employ in place of A in their genetic alphabet. Recent discoveries of biogenesis pathways of Z in bacteriophages have stimulated substantial research interest in this DNA modification. Here, we systematically examined the effects of Z on the efficiency and fidelity of DNA transcription. Our results showed that Z exhibited no mutagenic yet substantial inhibitory effects on transcription mediated by purified T7 RNA polymerase and by human RNA polymerase II in HeLa nuclear extracts and in human cells. A structurally related adenine analog, 2-aminopurine (2AP), strongly blocked T7 RNA polymerase but did not impede human RNA polymerase II in vitro or in human cells, where no mutant transcript could be detected. The lack of mutagenic consequence and the presence of a strong blockage effect of Z on transcription suggest a role of Z in transcriptional regulation. Z is also subjected to removal by transcription-coupled nucleotide-excision repair (TC-NER), but not global-genome NER in human cells. Our findings provide new insight into the effects of Z on transcription and its potential biological functions.
Collapse
Affiliation(s)
| | | | - Jiyeong Park
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Hyun Suk Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | | | - Orlando D Schärer
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea.,Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | | |
Collapse
|
9
|
Chen S, Dong Y, Qi X, Cao Q, Luo T, Bai Z, He H, Fan Z, Xu L, Xing G, Wang C, Jin Z, Li Z, Chen L, Zhong Y, Wang J, Ge J, Xiao X, Bian X, Wen W, Ren J, Wang H. Aristolochic acids exposure was not the main cause of liver tumorigenesis in adulthood. Acta Pharm Sin B 2022; 12:2252-2267. [PMID: 35646530 PMCID: PMC9136577 DOI: 10.1016/j.apsb.2021.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/15/2022] Open
Abstract
Aristolochic acids (AAs) have long been considered as a potent carcinogen due to its nephrotoxicity. Aristolochic acid I (AAI) reacts with DNA to form covalent aristolactam (AL)–DNA adducts, leading to subsequent A to T transversion mutation, commonly referred as AA mutational signature. Previous research inferred that AAs were widely implicated in liver cancer throughout Asia. In this study, we explored whether AAs exposure was the main cause of liver cancer in the context of HBV infection in mainland China. Totally 1256 liver cancer samples were randomly retrieved from 3 medical centers and a refined bioanalytical method was used to detect AAI–DNA adducts. 5.10% of these samples could be identified as AAI positive exposure. Whole genome sequencing suggested 8.41% of 107 liver cancer patients exhibited the dominant AA mutational signature, indicating a relatively low overall AAI exposure rate. In animal models, long-term administration of AAI barely increased liver tumorigenesis in adult mice, opposite from its tumor-inducing role when subjected to infant mice. Furthermore, AAI induced dose-dependent accumulation of AA–DNA adduct in target organs in adult mice, with the most detected in kidney instead of liver. Taken together, our data indicate that AA exposure was not the major threat of liver cancer in adulthood.
Collapse
Key Words
- AAI, Aristolochic acid I
- AAs, aristolochic acids
- AA–DNA adduct
- AFP, alpha fetoprotein
- AL, aristolactam
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- Aristolochic acids (AAs)
- CHERRY, Chinese Electronic Health Records Research
- COSMIC, Catalogue of Somatic Mutations in Cancer
- CRE, creatinine
- DEN, N-nitrosodiethylamine
- EHBH, Eastern Hepatobiliary Surgery Hospital
- FFPE, formalin-fixed paraffin-embedded
- HBV, hepatitis B virus
- HCC, hepatocellular carcinoma
- Hepatitis B virus (HBV)
- Hepatocellular carcinoma (HCC)
- Liver tumorigenesis
- MVI, microvessel invasion
- Mutational signature
- Risk factors
- SNV, somatic single nucleotide variant
- TCGA, The Cancer Genome Atlas
- Tumor prevention
- WGS, whole genome sequencing
- WT, wild type
- dA-ALI, 7-deoxyadenosin-N6-yl aristolactam I
Collapse
|
10
|
Qu M, Xu H, Chen J, Xu B, Li Z, Ma B, Guo L, Ye Q, Xie J. Differential comparison of genotoxic effects of aristolochic acid I and II in human cells by the mass spectroscopic quantification of γ-H2AX. Toxicol In Vitro 2022; 81:105349. [DOI: 10.1016/j.tiv.2022.105349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/17/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022]
|
11
|
Chan W, Ham YH. Probing the Hidden Role of Mitochondrial DNA Damage and Dysfunction in the Etiology of Aristolochic Acid Nephropathy. Chem Res Toxicol 2021; 34:1903-1909. [PMID: 34255491 DOI: 10.1021/acs.chemrestox.1c00175] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aristolochic acid nephropathy (AAN) is a unique type of progressive renal interstitial fibrotic disease caused by prolonged exposure to aristolochic acids (AAs) through AA-containing herbal medicines or AA-tainted food. Despite decades of research and affecting millions of people around the world, the pathophysiology of AAN remains incompletely understood. In this study, we tested the potential causative role of mitochondrial dysfunction in AAN development. Our findings revealed AA exposure induces an exposure concentration and duration dependent lowering of adenosine triphosphate in both cultured human kidney and liver cells, highlighting an AA exposure effect on mitochondrial energy production in the kidney and liver, which both are highly metabolically active and energy-demanding organs. Analysis with liquid chromatography-tandem mass spectrometry coupled with stable isotope dilution method detected high levels of mutagenic 8-oxo-2'-deoxyguanosine and 7-(deoxyadenosine-N6-yl)-aristolactam adduct on mitochondrial DNA isolated from AA-treated cells, unmasking a potentially important causative, but previously unknown role of mitochondrial DNA mutation in the pathophysiology of AAN development.
Collapse
Affiliation(s)
- Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yat-Hing Ham
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
12
|
Aristolochic acid IVa forms DNA adducts in vitro but is non-genotoxic in vivo. Arch Toxicol 2021; 95:2839-2850. [PMID: 34223934 DOI: 10.1007/s00204-021-03077-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/06/2021] [Indexed: 10/20/2022]
Abstract
Aristolochic acids (AAs) are a family of natural compounds with AA I and AA II being known carcinogens, whose bioactivation causes DNA adducts formation. However, other congeners have rarely been investigated. This study aimed to investigate genotoxicity of AA IVa, which differs from AA I by a hydroxyl group, abundant in Aristolochiaceae plants. AA IVa reacted with 2'-deoxyadenosine (dA) and 2'-deoxyguanosine (dG) to form three dA and five dG adducts as identified by high-resolution mass spectrometry, among which two dA and three dG adducts were detected in reactions of AA IVa with calf thymus DNA (CT DNA). However, no DNA adducts were detected in the kidney, liver, and forestomach of orally dosed mice at 40 mg/kg/day for 2 days, and bone marrow micronucleus assay also yielded negative results. Pharmacokinetic analyses of metabolites in plasma indicated that AA IVa was mainly O-demethylated to produce a metabolite with two hydroxyl groups, probably facilitating its excretion. Meanwhile, no reduced metabolites were detected. The competitive reaction of AA I and AA IVa with CT DNA, with adducts levels varying with pH of reaction revealed that AA IVa was significantly less reactive than AA I, probably by hydroxyl deprotonation of AA IVa, which was explained by theoretical calculations for reaction barriers, energy levels of the molecular orbits, and charges at the reaction sites. In brief, although it could form DNA adducts in vitro, AA IVa was non-genotoxic in vivo, which was attributed to its low reactivity and biotransformation into an easily excreted metabolite rather than bioactivation.
Collapse
|
13
|
Krüppel-like factor 6-mediated loss of BCAA catabolism contributes to kidney injury in mice and humans. Proc Natl Acad Sci U S A 2021; 118:2024414118. [PMID: 34074766 DOI: 10.1073/pnas.2024414118] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Altered cellular metabolism in kidney proximal tubule (PT) cells plays a critical role in acute kidney injury (AKI). The transcription factor Krüppel-like factor 6 (KLF6) is rapidly and robustly induced early in the PT after AKI. We found that PT-specific Klf6 knockdown (Klf6 PTKD) is protective against AKI and kidney fibrosis in mice. Combined RNA and chromatin immunoprecipitation sequencing analysis demonstrated that expression of genes encoding branched-chain amino acid (BCAA) catabolic enzymes was preserved in Klf6 PTKD mice, with KLF6 occupying the promoter region of these genes. Conversely, inducible KLF6 overexpression suppressed expression of BCAA genes and exacerbated kidney injury and fibrosis in mice. In vitro, injured cells overexpressing KLF6 had similar decreases in BCAA catabolic gene expression and were less able to utilize BCAA. Furthermore, knockdown of BCKDHB, which encodes one subunit of the rate-limiting enzyme in BCAA catabolism, resulted in reduced ATP production, while treatment with BCAA catabolism enhancer BT2 increased metabolism. Analysis of kidney function, KLF6, and BCAA gene expression in human chronic kidney disease patients showed significant inverse correlations between KLF6 and both kidney function and BCAA expression. Thus, targeting KLF6-mediated suppression of BCAA catabolism may serve as a key therapeutic target in AKI and kidney fibrosis.
Collapse
|
14
|
Kang YC, Chen MH, Lin CY, Lin CY, Chen YT. Aristolochic acid-associated urinary tract cancers: an updated meta-analysis of risk and oncologic outcomes after surgery and systematic review of molecular alterations observed in human studies. Ther Adv Drug Saf 2021; 12:2042098621997727. [PMID: 33815744 PMCID: PMC7989132 DOI: 10.1177/2042098621997727] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/03/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The risk of primary aristolochic acid (AA)-associated urothelial carcinoma (AA-UC) has been summarized by a 2013-published meta-analysis. Given that additional evidence has been continuously reported by original studies, an updated meta-analysis is needed. Meanwhile, to complete the whole picture, a systematic review of molecular alterations observed in AA-urinary tract cancers (AA-UTC) was also performed. METHODS We searched PubMed, Embase and four Chinese databases up to October 2020. Observational studies comparing risk or oncologic outcomes of UTC between patients with and without AA exposure were eligible for systematic review and meta-analysis. Studies investigating molecular alterations in AA-UTC using human tissue samples were eligible for systematic review. RESULTS In total, 38 and 20 studies were included in the systematic review and meta-analysis, respectively. Exposure to AA led to an overall increased risks of primary UTC [UC and renal cell carcinoma (RCC)] (OR 6.085, 95% CI 3.045-12.160) and postoperatively recurrent UC (RR 1.831, 95% CI 1.528-2.194). Subgroup analysis of postoperative primary AA-upper tract UC (AA-UTUC) showed increased risks of bladder recurrence (adjusted RR 1.949, 95% CI 1.462-2.597) and contralateral UTUC recurrence (crude RR 3.760, 95% CI 2.225-6.353), worse overall survival (adjusted HR 2.025, 95% CI 1.432-2.865) and worse disease-specific survival (adjusted HR 3.061, 95% CI 1.190-7.872), but no effect on cancer-specific survival (adjusted HR 0.772, 95% CI 0.269-2.215). High mutation load with AA mutational signature presenting largely in the putative driver genes was observed in AA-UTUC. In contrast, AA mutational signature is rarely found in the mutated RCC driver genes and the mutation load in AA-RCC is low. Therefore, AA has different roles in the genesis of UTUC and RCC. CONCLUSIONS Implementing effective strategies to completely protect people from exposure to AA is urgently needed. Additionally, more effort should be made in identifying the precise carcinogenic mechanisms of AA to determine the future treatment strategies. PLAIN LANGUAGE SUMMARY Risk, recurrence and survival outcomes after surgery and molecular changes possibly involved in the genesis of aristolochic acid-associated urinary tract cancers Background: The association between aristolochic acid (AA) and primary urothelial carcinoma (UC) has been summarized by a 2013-published meta-analysis. Given that additional evidence has been reported in the past 7 years, an updated meta-analysis is needed. Meanwhile, to complete the whole picture, a systematic review of molecular changes possibly involved in AA-mediated urinary tract carcinogenesis was also performed. Methods: We searched PubMed, Embase and four Chinese databases for human studies up to October 2020. Studies comparing the risk of urinary tract cancer (UTC) between patients with and without AA exposure and studies investigating the molecular changes in AA-associated UTC (AA-UTC) using human tissue samples were eligible for inclusion. Thirty-eight studies were finally included. Results: The results showed that exposure to AA was associated with a 6-fold increased risk of primary UTC (UC and renal cell carcinoma, RCC) and a 1.8-fold increased risk of postoperatively recurrent UC. After studies reporting primary AA-upper tract UC (AA-UTUC) were analyzed, a 1.9-fold increased risk of bladder recurrence and a 3.8-fold increased risk of contralateral UTUC recurrence was observed. Additionally, exposure to AA worsened the postoperative survival of patients with UTUC by a 2-fold increased risk of overall death and a 3-fold increased risk of death from other diseases and recurrences. However, there was no effect on death due to cancer. Lastly, AA seemed to play different roles in the etiology of UTUC and RCC based on the observations of different mutation loads and different distributions of AA-induced mutations in AA-UTUC and AA-RCC samples. Conclusions: Implementing effective strategies to completely protect people from exposure to AA is urgently needed. Moreover, more effort should be made in identifying the precise carcinogenic mechanisms of AA-UTC to determine the future treatment strategies.
Collapse
Affiliation(s)
- Yu-Chan Kang
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung
| | - Ming-Hong Chen
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung
| | - Chung-Ying Lin
- Institute of Allied Health Sciences, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
| | - Chih-Yun Lin
- Biostatistics Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung
| | - Yen-Ta Chen
- Division of Urology, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, No.123, Ta-Pei Road, Niao-Sung District, Kaohsiung City 83301
| |
Collapse
|
15
|
Hu H, Lee-Fong Y, Peng J, Hu B, Li J, Li Y, Huang H. Comparative Research of Chemical Profiling in Different Parts of Fissistigma oldhamii by Ultra-High-Performance Liquid Chromatography Coupled with Hybrid Quadrupole-Orbitrap Mass Spectrometry. Molecules 2021; 26:960. [PMID: 33670350 PMCID: PMC7918369 DOI: 10.3390/molecules26040960] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 11/17/2022] Open
Abstract
The roots of Fissistigma oldhamii (FO) are widely used as medicine with the effect of dispelling wind and dampness, promoting blood circulation and relieving pains, and its fruits are considered delicious. However, Hakka people always utilize its above-ground parts as a famous folk medicine, Xiangteng, with significant differences from literatures. Studies of chemical composition showed there were multiple aristolactams that possessed high nephrotoxicity, pending evaluation research about their distribution in FO. In this study, a sensitive, selective, rapid and reliable method was established to comparatively perform qualitative and semi-quantitative analysis of the constituents in roots, stems, leaves, fruits and insect galls, using an Ultra-High-Performance Liquid Chromatography coupled with Hybrid Quadrupole Orbitrap Mass Spectrometry (UPLC-Q-Exactive Orbitrap MS, or Q-Exactive for short). To make more accurate identification and comparison of FO chemicals, all MS data were aligned and screened by XCMS, then their structures were elucidated according to MSn ion fragments between the detected and standards, published ones or these generated by MS fragmenter. A total of 79 compounds were identified, including 33 alkaloids, 29 flavonoids, 11 phenylpropanoids, etc. There were 54 common components in all five parts, while another 25 components were just detected in some parts. Six toxic aristolactams were detected in this experiment, including aristolactam AII, AIIIa, BII, BIII, FI and FII, of which the relative contents in above-ground stems were much higher than roots. Meanwhile, multivariate statistical analysis was performed and showed significant differences both in type and content of the ingredients within all FO parts. The results implied that above-ground FO parts should be carefully valued for oral administration and eating fruits. This study demonstrated that the high-resolution mass spectrometry coupled with multivariate statistical methods was a powerful tool in compound analysis of complicated herbal extracts, and the results provide the basis for its further application, scientific development of quality standard and utilization.
Collapse
Affiliation(s)
- Haibo Hu
- National Engineering Research Center for Modernization of Traditional Chinese Medicine—Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (H.H.); (J.P.); (B.H.); (J.L.)
- Department of Biology, Animal Physiology and Neurobiology Section, Katholieke Universiteit Leuven, Naamsestraat 59, Box 2465, 3000 Leuven, Belgium
| | - Yau Lee-Fong
- State Key Laboratory of Quality of Traditional Chinese Medicine, Macao University of Science and Technology, Macau 999078, China;
| | - Jinnian Peng
- National Engineering Research Center for Modernization of Traditional Chinese Medicine—Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (H.H.); (J.P.); (B.H.); (J.L.)
| | - Bin Hu
- National Engineering Research Center for Modernization of Traditional Chinese Medicine—Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (H.H.); (J.P.); (B.H.); (J.L.)
| | - Jialin Li
- National Engineering Research Center for Modernization of Traditional Chinese Medicine—Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (H.H.); (J.P.); (B.H.); (J.L.)
| | - Yaoli Li
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hao Huang
- National Engineering Research Center for Modernization of Traditional Chinese Medicine—Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (H.H.); (J.P.); (B.H.); (J.L.)
- State Key Laboratory of Quality of Traditional Chinese Medicine, Macao University of Science and Technology, Macau 999078, China;
| |
Collapse
|
16
|
Baiken Y, Kanayeva D, Taipakova S, Groisman R, Ishchenko AA, Begimbetova D, Matkarimov B, Saparbaev M. Role of Base Excision Repair Pathway in the Processing of Complex DNA Damage Generated by Oxidative Stress and Anticancer Drugs. Front Cell Dev Biol 2021; 8:617884. [PMID: 33553154 PMCID: PMC7862338 DOI: 10.3389/fcell.2020.617884] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/17/2020] [Indexed: 01/22/2023] Open
Abstract
Chemical alterations in DNA induced by genotoxic factors can have a complex nature such as bulky DNA adducts, interstrand DNA cross-links (ICLs), and clustered DNA lesions (including double-strand breaks, DSB). Complex DNA damage (CDD) has a complex character/structure as compared to singular lesions like randomly distributed abasic sites, deaminated, alkylated, and oxidized DNA bases. CDD is thought to be critical since they are more challenging to repair than singular lesions. Although CDD naturally constitutes a relatively minor fraction of the overall DNA damage induced by free radicals, DNA cross-linking agents, and ionizing radiation, if left unrepaired, these lesions cause a number of serious consequences, such as gross chromosomal rearrangements and genome instability. If not tightly controlled, the repair of ICLs and clustered bi-stranded oxidized bases via DNA excision repair will either inhibit initial steps of repair or produce persistent chromosomal breaks and consequently be lethal for the cells. Biochemical and genetic evidences indicate that the removal of CDD requires concurrent involvement of a number of distinct DNA repair pathways including poly(ADP-ribose) polymerase (PARP)-mediated DNA strand break repair, base excision repair (BER), nucleotide incision repair (NIR), global genome and transcription coupled nucleotide excision repair (GG-NER and TC-NER, respectively), mismatch repair (MMR), homologous recombination (HR), non-homologous end joining (NHEJ), and translesion DNA synthesis (TLS) pathways. In this review, we describe the role of DNA glycosylase-mediated BER pathway in the removal of complex DNA lesions.
Collapse
Affiliation(s)
- Yeldar Baiken
- School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan.,National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan.,School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Damira Kanayeva
- School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Sabira Taipakova
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Regina Groisman
- Groupe ≪Mechanisms of DNA Repair and Carcinogenesis≫, Equipe Labellisée LIGUE 2016, CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Cancer Campus, Villejuif, France
| | - Alexander A Ishchenko
- Groupe ≪Mechanisms of DNA Repair and Carcinogenesis≫, Equipe Labellisée LIGUE 2016, CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Cancer Campus, Villejuif, France
| | - Dinara Begimbetova
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Bakhyt Matkarimov
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Murat Saparbaev
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty, Kazakhstan.,Groupe ≪Mechanisms of DNA Repair and Carcinogenesis≫, Equipe Labellisée LIGUE 2016, CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW To acquaint urologists with aristolochic acid nephropathy, an iatrogenic disease that poses a distinct threat to global public health. In China alone, 100 million people may currently be at risk. We illustrate the power of molecular epidemiology in establishing the cause of this disease. RECENT FINDINGS Molecular epidemiologic approaches and novel mechanistic information established a causative linkage between exposure to aristolochic acid and urothelial carcinomas of the bladder and upper urinary tract. Noninvasive tests are available that detect urothelial cancers through the genetic analysis of urinary DNA. Combined with cytology, some of these tests can detect 95% of patients at risk of developing bladder and/or upper urothelial tract cancer. Robust biomarkers, including DNA-adduct and mutational signature analysis, unequivocally identify aristolochic acid-induced tumours. The high mutational load associated with aristolochic acid-induced tumours renders them candidates for immune-checkpoint therapy. SUMMARY Guided by recent developments that facilitate early detection of urothelial cancers, the morbidity and mortality associated with aristolochic acid-induced bladder and upper tract urothelial carcinomas may be substantially reduced. The molecular epidemiology tools that define aristolochic acid-induced tumours may be applicable to other studies assessing potential environmental carcinogens.
Collapse
|
18
|
Abdullah R, Wesseling S, Spenkelink B, Louisse J, Punt A, Rietjens IM. Defining in vivo dose-response curves for kidney DNA adduct formation of aristolochic acid I in rat, mouse and human by an in vitro and physiologically based kinetic modeling approach. J Appl Toxicol 2020; 40:1647-1660. [PMID: 33034907 PMCID: PMC7689901 DOI: 10.1002/jat.4024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/14/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022]
Abstract
Aristolochic acid I (AAI) is a well-known genotoxic kidney carcinogen. Metabolic conversion of AAI into the DNA-reactive aristolactam-nitrenium ion is involved in the mode of action of tumor formation. This study aims to predict in vivo AAI-DNA adduct formation in the kidney of rat, mouse and human by translating the in vitro concentration-response curves for AAI-DNA adduct formation to the in vivo situation using physiologically based kinetic (PBK) modeling-based reverse dosimetry. DNA adduct formation in kidney proximal tubular LLC-PK1 cells exposed to AAI was quantified by liquid chromatography-electrospray ionization-tandem mass spectrometry. Subsequently, the in vitro concentration-response curves were converted to predicted in vivo dose-response curves in rat, mouse and human kidney using PBK models. Results obtained revealed a dose-dependent increase in AAI-DNA adduct formation in the rat, mouse and human kidney and the predicted DNA adduct levels were generally within an order of magnitude compared with values reported in the literature. It is concluded that the combined in vitro PBK modeling approach provides a novel way to define in vivo dose-response curves for kidney DNA adduct formation in rat, mouse and human and contributes to the reduction, refinement and replacement of animal testing.
Collapse
Affiliation(s)
- Rozaini Abdullah
- Division of ToxicologyWageningen UniversityWageningenThe Netherlands
- Department of Environmental & Occupational Health, Faculty of Medicine and Health SciencesUniversiti Putra MalaysiaSelangorMalaysia
| | | | - Bert Spenkelink
- Division of ToxicologyWageningen UniversityWageningenThe Netherlands
| | - Jochem Louisse
- Division of ToxicologyWageningen UniversityWageningenThe Netherlands
| | - Ans Punt
- Division of ToxicologyWageningen UniversityWageningenThe Netherlands
| | | |
Collapse
|
19
|
Feher KM, Kolbanovskiy A, Durandin A, Shim Y, Min JH, Lee YC, Shafirovich V, Mu H, Broyde S, Geacintov NE. The DNA damage-sensing NER repair factor XPC-RAD23B does not recognize bulky DNA lesions with a missing nucleotide opposite the lesion. DNA Repair (Amst) 2020; 96:102985. [PMID: 33035795 PMCID: PMC8423485 DOI: 10.1016/j.dnarep.2020.102985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/27/2020] [Accepted: 09/21/2020] [Indexed: 11/23/2022]
Abstract
The Nucleotide Excision Repair (NER) mechanism removes a wide spectrum of structurally different lesions that critically depend on the binding of the DNA damage sensing NER factor XPC-RAD23B (XPC) to the lesions. The bulky mutagenic benzo[a]pyrene diol epoxide metabolite-derived cis- and trans-B[a]P-dG lesions (G*) adopt base-displaced intercalative (cis) or minor groove (trans) conformations in fully paired DNA duplexes with the canonical C opposite G* (G*:C duplexes). While XPC has a high affinity for binding to these DNA lesions in fully complementary double-stranded DNA, we show here that deleting only the C in the complementary strand opposite the lesion G* embedded in 50-mer duplexes, fully abrogates XPC binding. Accurate values of XPC dissociation constants (KD) were determined by employing an excess of unmodified DNA as a competitor; this approach eliminated the binding and accumulation of multiple XPC molecules to the same DNA duplexes, a phenomenon that prevented the accurate estimation of XPC binding affinities in previous studies. Surprisingly, a detailed comparison of XPC dissociation constants KD of unmodified and lesion-containing G*:Del complexes, showed that the KD values were -2.5-3.6 times greater in the case of G*:Del than in the unmodified G:Del and fully base-paired G:C duplexes. The origins of this unexpected XPC lesion avoidance effect is attributed to the intercalation of the bulky, planar B[a]P aromatic ring system between adjacent DNA bases that thermodynamically stabilize the G*:Del duplexes. The strong lesion-base stacking interactions associated with the absence of the partner base, prevent the DNA structural distortions needed for the binding of the BHD2 and BHD3 β-hairpins of XPC to the deletion duplexes, thus accounting for the loss of XPC binding and the known NER-resistance of G*:Del duplexes.
Collapse
Affiliation(s)
- Katie M Feher
- Chemistry Department, New York University, 100 Washington East, New York, NY, 10003-5180, USA
| | - Alexander Kolbanovskiy
- Chemistry Department, New York University, 100 Washington East, New York, NY, 10003-5180, USA
| | - Alexander Durandin
- Chemistry Department, New York University, 100 Washington East, New York, NY, 10003-5180, USA
| | - Yoonjung Shim
- Department of Chemistry & Biochemistry, Baylor University, Waco, TX, 76706, USA
| | - Jung-Hyun Min
- Department of Chemistry & Biochemistry, Baylor University, Waco, TX, 76706, USA
| | - Yuan Cho Lee
- Chemistry Department, New York University, 100 Washington East, New York, NY, 10003-5180, USA
| | - Vladimir Shafirovich
- Chemistry Department, New York University, 100 Washington East, New York, NY, 10003-5180, USA
| | - Hong Mu
- Department of Biology, New York University, 100 Washington Square East, New York, N.Y., 10003-5180, USA
| | - Suse Broyde
- Department of Biology, New York University, 100 Washington Square East, New York, N.Y., 10003-5180, USA
| | - Nicholas E Geacintov
- Chemistry Department, New York University, 100 Washington East, New York, NY, 10003-5180, USA.
| |
Collapse
|
20
|
Kathuria P, Singh P, Sharma P, Wetmore SD. Replication of the Aristolochic Acid I Adenine Adduct (ALI-N6-A) by a Model Translesion Synthesis DNA Polymerase: Structural Insights on the Induction of Transversion Mutations from Molecular Dynamics Simulations. Chem Res Toxicol 2020; 33:2573-2583. [DOI: 10.1021/acs.chemrestox.0c00183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Preetleen Kathuria
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Prebhleen Singh
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Purshotam Sharma
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Stacey D. Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
21
|
Yang S, Liu JDH, Diem M, Wesseling S, Vervoort J, Oostenbrink C, Rietjens IMCM. Molecular Dynamics and In Vitro Quantification of Safrole DNA Adducts Reveal DNA Adduct Persistence Due to Limited DNA Distortion Resulting in Inefficient Repair. Chem Res Toxicol 2020; 33:2298-2309. [PMID: 32786539 DOI: 10.1021/acs.chemrestox.0c00097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The formation and repair of N2-(trans-isosafrol-3'-yl)-2'-deoxyguanosine (S-3'-N2-dG) DNA adduct derived from the spice and herbal alkenylbenzene constituent safrole were investigated. DNA adduct formation and repair were studied in vitro and using molecular dynamics (MD) simulations. DNA adduct formation was quantified using liquid chromatography-mass spectrometry (LCMS) in wild type and NER (nucleotide excision repair) deficient CHO cells and also in HepaRG cells and primary rat hepatocytes after different periods of repair following exposure to safrole or 1'-hydroxysafrole (1'-OH safrole). The slower repair of the DNA adducts found in NER deficient cells compared to that in CHO wild type cells indicates a role for NER in repair of S-3'-N2-dG DNA adducts. However, DNA repair in liver cell models appeared to be limited, with over 90% of the adducts remaining even after 24 or 48 h recovery. In our further studies, MD simulations indicated that S-3'-N2-dG adduct formation causes only subtle changes in the DNA structure, potentially explaining inefficient activation of NER. Inefficiency of NER mediated repair of S-3'-N2-dG adducts points at persistence and potential bioaccumulation of safrole DNA adducts upon daily dietary exposure.
Collapse
Affiliation(s)
- Shuo Yang
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Jakob D H Liu
- Institute of Molecular Modeling and Simulation, Department of Material Sciences and Process Engineering, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Matthias Diem
- Institute of Molecular Modeling and Simulation, Department of Material Sciences and Process Engineering, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Sebastiaan Wesseling
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Jacques Vervoort
- Division of Biochemistry, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Chris Oostenbrink
- Institute of Molecular Modeling and Simulation, Department of Material Sciences and Process Engineering, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
22
|
Shan H, Tian W, Hong Y, Xu B, Wang C, Yu B, Wang X. Clinicopathologic characteristics and prognosis of upper tract urothelial carcinoma complicated with aristolochic acid nephropathy after radical nephroureterectomy. BMC Complement Med Ther 2020; 20:166. [PMID: 32493345 PMCID: PMC7268428 DOI: 10.1186/s12906-020-2861-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 02/20/2020] [Indexed: 11/24/2022] Open
Abstract
Background The purpose of this study was to identify the clinicopathologic characteristics and prognosis of upper tract urothelial carcinoma (UTUC) patients complicated with aristolochic acid nephropathy(AAN) after radical nephroureterectomy (RNU). Methods The clinical data of 42 UTUC patients with AAN (AAN group) and 238 UTUC patients without AAN (Non-AAN group) were retrospectively reviewed. All patients received a RNU with excision of bladder cuff. Demographic and clinical data, including preoperative indexes, intraoperative indexes and surgical outcomes were compared. Results There were no significant differences in age, tumor location, surgery approach, tumor pathologic grade, stage, the mean operative time and estimated blood loss between the two groups (all p > 0.05). There were more female patients in the AAN group (p < 0.001), and 57.1% were high grade tumors. The AAN group showed a higher complications rate (p = 0.003). The median follow-up time was 43.2 months. The AAN group showed a worse estimated 5-year overall survival rate (35.1% vs. 63.0%, p = 0.014), however, no significant difference was found between the two groups with regard to disease specific survival (63.5% vs. 81.5%, p = 0.091). Multivariate binary logistic regression analysis showed that AAN was an independent factor related with overall and disease specific survival. 38.9% of all patients experienced any types of recurrence, and the estimated 5-year recurrence-free survival rate was lower in the AAN group (37.1% vs. 63.7%, p = 0.001). In the comparison of subgroups stratified by recurrence type, the AAN group had a higher intravesical (p = 0.030) and contralateral recurrence rate (p = 0.040). Conclusion UTUC with AAN occurred more frequently in female patients who were more likely to develop high-grade tumors. However, these patients showed a worse overall survival and a lower recurrence-free survival rate than the other patients. AA-related UTUC might be associate with an increased risk of intravesical and contralateral recurrence after RUN.
Collapse
Affiliation(s)
- Hongli Shan
- Department of clinical laboratory, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Wen Tian
- Department of Blood Transfusion, The Second Hospital of Jinlin University, Changchun, 131000, People's Republic of China
| | - Yazhao Hong
- Department of urology, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Bo Xu
- Department of urology, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Chunxi Wang
- Department of urology, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Bing Yu
- Department of urology, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China.
| | - Xiaoqing Wang
- Department of urology, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China.
| |
Collapse
|
23
|
Volkova NV, Meier B, González-Huici V, Bertolini S, Gonzalez S, Vöhringer H, Abascal F, Martincorena I, Campbell PJ, Gartner A, Gerstung M. Mutational signatures are jointly shaped by DNA damage and repair. Nat Commun 2020; 11:2169. [PMID: 32358516 PMCID: PMC7195458 DOI: 10.1038/s41467-020-15912-7] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/26/2020] [Indexed: 02/08/2023] Open
Abstract
Cells possess an armamentarium of DNA repair pathways to counter DNA damage and prevent mutation. Here we use C. elegans whole genome sequencing to systematically quantify the contributions of these factors to mutational signatures. We analyse 2,717 genomes from wild-type and 53 DNA repair defective backgrounds, exposed to 11 genotoxins, including UV-B and ionizing radiation, alkylating compounds, aristolochic acid, aflatoxin B1, and cisplatin. Combined genotoxic exposure and DNA repair deficiency alters mutation rates or signatures in 41% of experiments, revealing how different DNA alterations induced by the same genotoxin are mended by separate repair pathways. Error-prone translesion synthesis causes the majority of genotoxin-induced base substitutions, but averts larger deletions. Nucleotide excision repair prevents up to 99% of point mutations, almost uniformly across the mutation spectrum. Our data show that mutational signatures are joint products of DNA damage and repair and suggest that multiple factors underlie signatures observed in cancer genomes.
Collapse
Affiliation(s)
- Nadezda V Volkova
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, CB10, 1SD, UK
| | - Bettina Meier
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, DD1 5EH, Scotland
| | - Víctor González-Huici
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, DD1 5EH, Scotland
- Institute for Research in Biomedicine (IRB Barcelona), Parc Científic de Barcelona, 08028, Barcelona, Spain
| | - Simone Bertolini
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, DD1 5EH, Scotland
| | - Santiago Gonzalez
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, CB10, 1SD, UK
- Institute for Research in Biomedicine (IRB Barcelona), Parc Científic de Barcelona, 08028, Barcelona, Spain
| | - Harald Vöhringer
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, CB10, 1SD, UK
| | - Federico Abascal
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Iñigo Martincorena
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Peter J Campbell
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Department of Haematology, University of Cambridge, Cambridge, CB2 0XY, UK
- Department of Haematology, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Anton Gartner
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, DD1 5EH, Scotland.
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 689-798, Republic of Korea.
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 689-798, Republic of Korea.
| | - Moritz Gerstung
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, CB10, 1SD, UK.
- European Molecular Biology Laboratory, Genome Biology Unit, 69177, Heidelberg, Germany.
| |
Collapse
|
24
|
Au CK, Chan CK, Tung KK, Zhang J, Chan W. Quantitation of DNA Adducts of Aristolochic Acids in Repair-Deficient Cells: A Mechanistic Study of the DNA Repair Mechanism. Chem Res Toxicol 2020; 33:1323-1327. [DOI: 10.1021/acs.chemrestox.0c00004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Chun-Kit Au
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Chi-Kong Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ka-Ki Tung
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Jiayin Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
25
|
Sidorenko VS. Biotransformation and Toxicities of Aristolochic Acids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1241:139-166. [PMID: 32383120 DOI: 10.1007/978-3-030-41283-8_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Environmental and iatrogenic exposures contribute significantly to human diseases, including cancer. The list of known human carcinogens has recently been extended by the addition of aristolochic acids (AAs). AAs occur primarily in Aristolochia herbs, which are used extensively in folk medicines, including Traditional Chinese Medicine. Ingestion of AAs results in chronic renal disease and cancer. Despite importation bans imposed by certain countries, herbal remedies containing AAs are readily available for purchase through the internet. With recent advancements in mass spectrometry, next generation sequencing, and the development of integrated organs-on-chips, our knowledge of cancers associated with AA exposure, and of the mechanisms involved in AA toxicities, has significantly improved. DNA adduction plays a central role in AA-induced cancers; however, significant gaps remain in our knowledge as to how cellular enzymes promote activation of AAs and how the reactive species selectively bind to DNA and kidney proteins. In this review, I describe pathways for AAs biotransformation, adduction, and mutagenesis, emphasizing novel methods and ideas contributing to our present understanding of AA toxicities in humans.
Collapse
Affiliation(s)
- Viktoriya S Sidorenko
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
26
|
Okuno Y, Bonala R, Attaluri S, Johnson F, Grollman AP, Sidorenko VS, Oda Y. Bioactivation mechanisms of N-hydroxyaristolactams: Nitroreduction metabolites of aristolochic acids. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:792-806. [PMID: 31374128 PMCID: PMC6899766 DOI: 10.1002/em.22321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/19/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Aristolochic acids (AAs) are human nephrotoxins and carcinogens found in concoctions of Aristolochia plants used in traditional medicinal practices worldwide. Genotoxicity of AAs is associated with the formation of active species catalyzed by metabolic enzymes, the full repertoire of which is unknown. Recently, we provided evidence that sulfonation is important for bioactivation of AAs. Here, we employ Salmonella typhimurium umu tester strains expressing human N-acetyltransferases (NATs) and sulfotransferases (SULTs), to study the role of conjugation reactions in the genotoxicities of N-hydroxyaristolactams (AL-I-NOH and AL-II-NOH), metabolites of AA-I and AA-II. Both N-hydroxyaristolactams show stronger genotoxic effects in umu strains expressing human NAT1 and NAT2, than in the parent strain. Additionally, AL-I-NOH displays increased genotoxicity in strains expressing human SULT1A1 and SULT1A2, whereas AL-II-NOH shows enhanced genotoxicity in SULT1A1/2 and SULT1A3 strains. 2,6-Dichloro-4-nitrophenol, SULTs inhibitor, reduced umuC gene expression induced by N-hydroxyaristolactams in SULT1A2 strain. N-hydroxyaristolactams are also mutagenic in parent strains, suggesting that an additional mechanism(s) may contribute to their genotoxicities. Accordingly, using putative SULT substrates and inhibitors, we found that cytosols obtained from human kidney HK-2 cells activate N-hydroxyaristolactams in aristolactam-DNA adducts with the limited involvement of SULTs. Removal of low-molecular-weight reactants in the 3.5-10 kDa range inhibits the formation of aristolactam-DNA by 500-fold, which could not be prevented by the addition of cofactors for SULTs and NATs. In conclusion, our results demonstrate that the genotoxicities of N-hydroxyaristolactams depend on the cell type and involve not only sulfonation but also N,O-acetyltransfer and an additional yet unknown mechanism(s). Environ. Mol. Mutagen. 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yoshiharu Okuno
- Department of Applied Chemistry and Biochemistry, National Institute of TechnologyWakayama College77 Noshima, Nada, Gobo‐shi, Wakayama644‐0023Japan
- Department of Material Science and Engineering, Material Science and EngineeringWakayama National College of Technology, Gobo‐shiWakayama644‐0023Japan
| | - Radha Bonala
- Department of Pharmacological SciencesStony Brook UniversityStony BrookNew York11794USA
| | - Sivaprasad Attaluri
- Department of Pharmacological SciencesStony Brook UniversityStony BrookNew York11794USA
| | - Francis Johnson
- Department of Pharmacological SciencesStony Brook UniversityStony BrookNew York11794USA
- Department of ChemistryStony Brook UniversityStony BrookNew York11794USA
| | - Arthur P. Grollman
- Department of Pharmacological SciencesStony Brook UniversityStony BrookNew York11794USA
- Department of MedicineStony Brook UniversityStony BrookNew York11794USA
| | | | - Yoshimitsu Oda
- Institute of Life and Environmental SciencesOsaka Shin‐Ai College6‐2‐28 Tsurumi, Tsurumi‐ku, Osaka538‐0053Japan
| |
Collapse
|
27
|
Lans H, Hoeijmakers JHJ, Vermeulen W, Marteijn JA. The DNA damage response to transcription stress. Nat Rev Mol Cell Biol 2019; 20:766-784. [DOI: 10.1038/s41580-019-0169-4] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2019] [Indexed: 12/30/2022]
|
28
|
Chen CJ, Yang YH, Lin MH, Lee CP, Tsan YT, Lai MN, Yang HY, Doyle P, Ho WC, Chen PC. Herbal Medicine Containing Aristolochic Acid and the Risk of Primary Liver Cancer in Patients with Hepatitis C Virus Infection. Cancer Epidemiol Biomarkers Prev 2019; 28:1876-1883. [PMID: 31409611 DOI: 10.1158/1055-9965.epi-19-0023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 04/12/2019] [Accepted: 08/09/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND We investigated the association between taking herbal medicine (HM) containing aristolochic acid (AA) and the risk of primary liver cancer (PLC) among patients with hepatitis C virus (HCV) infection. METHODS This is a prospective study for the long-term follow-up of a nationwide population-based cohort of patients ages 18 years or older diagnosed with HCV infection during 1997 to 2010. A total of 223,467 HCV-infected patients were identified using the National Health Insurance Research Database in Taiwan. The use of HM containing AA was evaluated among patients who had visited traditional Chinese medicine clinics beginning from 1997 to 1 year prior to the diagnosis of PLC or dates censored (2003). We tracked each individual patient from 1997 to 2013 to identify incident cases of PLC since 1999. RESULTS During the follow-up period of 3,052,132 person-years, we identified 25,502 PLC cases; this corresponded to an overall incidence rate of 835.5 PLCs per 100,000 person-years. The adjusted HRs were 1.21 [95% confidence interval (CI), 1.18-1.24], 1.48 (95% CI, 1.37-1.59), 1.50 (95% CI, 1.34-1.68), and 1.88 (95% CI, 1.61-2.19) for estimated AA usage groups: 1 to 250, 251 to 500, 501 to 1,000, and more than 1,000 mg, respectively, relative to no AA exposure (reference group). CONCLUSIONS The current findings suggest that among HCV-positive patients, increasing exposure to AA poses an increased risk of acquiring PLC. IMPACT AA may increase the risk of PLC in HCV-positive populations.
Collapse
Affiliation(s)
- Chi-Jen Chen
- Graduate Institute of Data Science, Taipei Medical University, Taipei, Taiwan
| | - Yao-Hsu Yang
- Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei, Taiwan.,Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Chiayi County, Taiwan.,Health Informatics and Epidemiology Laboratory, Chang Gung Memorial Hospital, Chiayi County, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Meng-Hung Lin
- Health Informatics and Epidemiology Laboratory, Chang Gung Memorial Hospital, Chiayi County, Taiwan
| | - Chuan-Pin Lee
- Health Informatics and Epidemiology Laboratory, Chang Gung Memorial Hospital, Chiayi County, Taiwan
| | - Yu-Tse Tsan
- Division of Occupational Medicine, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Nan Lai
- Department of Statistics, Feng Chia University, Taichung, Taiwan
| | - Hsiao-Yu Yang
- Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei, Taiwan.,Department of Public Health, National Taiwan University College of Public Health, Taipei, Taiwan.,Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pat Doyle
- Department of Non-communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Wen-Chao Ho
- Department of Public Health, China Medical University, Taichung, Taiwan.
| | - Pau-Chung Chen
- Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei, Taiwan. .,Department of Public Health, National Taiwan University College of Public Health, Taipei, Taiwan.,Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Innovation and Policy Centre for Population Health and Sustainable Environment, National Taiwan University College of Public Health, Taipei, Taiwan.,Office of Occupational Safety and Health, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
29
|
Chakraborty S, Steinbach PJ, Paul D, Mu H, Broyde S, Min JH, Ansari A. Enhanced spontaneous DNA twisting/bending fluctuations unveiled by fluorescence lifetime distributions promote mismatch recognition by the Rad4 nucleotide excision repair complex. Nucleic Acids Res 2019; 46:1240-1255. [PMID: 29267981 PMCID: PMC5815138 DOI: 10.1093/nar/gkx1216] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 12/12/2017] [Indexed: 12/15/2022] Open
Abstract
Rad4/XPC recognizes diverse DNA lesions including ultraviolet-photolesions and carcinogen-DNA adducts, initiating nucleotide excision repair. Studies have suggested that Rad4/XPC senses lesion-induced helix-destabilization to flip out nucleotides from damaged DNA sites. However, characterizing how DNA deformability and/or distortions impact recognition has been challenging. Here, using fluorescence lifetime measurements empowered by a maximum entropy algorithm, we mapped the conformational heterogeneities of artificially destabilized mismatched DNA substrates of varying Rad4-binding specificities. The conformational distributions, as probed by FRET between a cytosine-analog pair exquisitely sensitive to DNA twisting/bending, reveal a direct connection between intrinsic DNA deformability and Rad4 recognition. High-specificity CCC/CCC mismatch, free in solution, sampled a strikingly broad range of conformations from B-DNA-like to highly distorted conformations that resembled those observed with Rad4 bound; the extent of these distortions increased with bound Rad4 and with temperature. Conversely, the non-specific TAT/TAT mismatch had a homogeneous, B-DNA-like conformation. Molecular dynamics simulations also revealed a wide distribution of conformations for CCC/CCC, complementing experimental findings. We propose that intrinsic deformability promotes Rad4 damage recognition, perhaps by stalling a diffusing protein and/or facilitating ‘conformational capture’ of pre-distorted damaged sites. Surprisingly, even mismatched DNA specifically bound to Rad4 remains highly dynamic, a feature that may reflect the versatility of Rad4/XPC to recognize many structurally dissimilar lesions.
Collapse
Affiliation(s)
- Sagnik Chakraborty
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Peter J Steinbach
- Center for Molecular Modeling, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Debamita Paul
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Hong Mu
- Department of Biology, New York University, New York, NY 10003, USA
| | - Suse Broyde
- Department of Biology, New York University, New York, NY 10003, USA
| | - Jung-Hyun Min
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Anjum Ansari
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
30
|
Enrichment of AT-TA transversion at 5'-CAG-3' motif is not a unique mutational signature of aristolochic acid. SCIENCE CHINA-LIFE SCIENCES 2019; 62:974-977. [PMID: 31187304 DOI: 10.1007/s11427-019-9566-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/13/2019] [Indexed: 10/26/2022]
|
31
|
Han J, Xian Z, Zhang Y, Liu J, Liang A. Systematic Overview of Aristolochic Acids: Nephrotoxicity, Carcinogenicity, and Underlying Mechanisms. Front Pharmacol 2019; 10:648. [PMID: 31244661 PMCID: PMC6580798 DOI: 10.3389/fphar.2019.00648] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/20/2019] [Indexed: 12/13/2022] Open
Abstract
Aristolochic acids (AAs) are a group of toxins commonly present in the plants of genus Aristolochia and Asarum, which are spread all over the world. Since the 1990s, AA-induced nephropathy (AAN) and upper tract urothelial carcinoma (UTUC) have been reported in many countries. The underlying mechanisms of AAN and AA-induced UTUC have been extensively investigated. AA-derived DNA adducts are recognized as specific biomarkers of AA exposure, and a mutational signature predominantly characterized by A→T transversions has been detected in AA-induced UTUC tumor tissues. In addition, various enzymes and organic anion transporters are involved in AA-induced adverse reactions. The progressive lesions and mutational events initiated by AAs are irreversible, and no effective therapeutic regimen for AAN and AA-induced UTUC has been established until now. Because of several warnings on the toxic effects of AAs by the US Food and Drug Administration and the regulatory authorities of some other countries, the sale and use of AA-containing products have been banned or restricted in most countries. However, AA-related adverse events still occur, especially in the Asian and Balkan regions. Therefore, the use of AA-containing herbal remedies and the consumption of food contaminated by AAs still carry high risk. More strict precautions should be taken to protect the public from AA exposure.
Collapse
Affiliation(s)
- Jiayin Han
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhong Xian
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yushi Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aihua Liang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
32
|
Zhou Q, Pei J, Poon J, Lau AY, Zhang L, Wang Y, Liu C, Huang L. Worldwide research trends on aristolochic acids (1957-2017): Suggestions for researchers. PLoS One 2019; 14:e0216135. [PMID: 31048858 PMCID: PMC6497264 DOI: 10.1371/journal.pone.0216135] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/15/2019] [Indexed: 12/24/2022] Open
Abstract
Aristolochic acids and their derivatives are components of many traditional medicines that have been used for thousands of years, particularly in Asian countries. To study the trends of research into aristolochic acids and provide suggestions for future study, we performed the following work. In this paper, we performed a bibliometric analysis using CiteSpace and HistCite software. We reviewed the three phases of the development of aristolochic acids by using bibliometrics. In addition, we performed a longitudinal review of published review articles over 60 years: 1,217 articles and 189 review articles on the history of aristolochic acid research published between 1957 and 2017 were analyzed. The performances of relevant countries, institutions, and authors are presented; the evolutionary trends of different categories are revealed; the history of research into aristolochic acids is divided into three phases, each of which has unique characteristics; and a roadmap of the historical overview of aristolochic acid research is finally established. Finally, five pertinent suggestions for future research into aristolochic acid are offered: (1) The study of the antitumor efficacy of aristolochic acids is of value; (2) The immune activity of aristolochic acids should be explored further; (3) Researchers should perform a thorough overview of the discovery of naturally occurring aristolochic acids; (4) More efforts should be directed toward exploring the correlation between aristolochic acid mutational signature and various cancers; (5) Further efforts should be devoted to the research and review work related to analytical chemistry. Our study is expected to benefit researchers in shaping future research directions.
Collapse
Affiliation(s)
- Qiang Zhou
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jin Pei
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Josiah Poon
- School of Information Technologies, The University of Sydney, Sydney, Australia.,Analytic and Clinical Cooperative Laboratory of Integrative Medicine, Chinese University of Hong Kong and The University of Sydney, Sydney, Australia
| | - Alexander Y Lau
- Analytic and Clinical Cooperative Laboratory of Integrative Medicine, Chinese University of Hong Kong and The University of Sydney, Sydney, Australia.,Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Li Zhang
- College of Science, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Yuhua Wang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Chang Liu
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Linfang Huang
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
33
|
Bastek H, Zubel T, Stemmer K, Mangerich A, Beneke S, Dietrich DR. Comparison of Aristolochic acid I derived DNA adduct levels in human renal toxicity models. Toxicology 2019; 420:29-38. [DOI: 10.1016/j.tox.2019.03.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/22/2019] [Accepted: 03/28/2019] [Indexed: 01/28/2023]
|
34
|
Mu H, Geacintov NE, Broyde S, Yeo JE, Schärer OD. Molecular basis for damage recognition and verification by XPC-RAD23B and TFIIH in nucleotide excision repair. DNA Repair (Amst) 2018; 71:33-42. [PMID: 30174301 DOI: 10.1016/j.dnarep.2018.08.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Global genome nucleotide excision repair (GG-NER) is the main pathway for the removal of bulky lesions from DNA and is characterized by an extraordinarily wide substrate specificity. Remarkably, the efficiency of lesion removal varies dramatically and certain lesions escape repair altogether and are therefore associated with high levels of mutagenicity. Central to the multistep mechanism of damage recognition in NER is the sensing of lesion-induced thermodynamic and structural alterations of DNA by the XPC-RAD23B protein and the verification of the damage by the transcription/repair factor TFIIH. Additional factors contribute to the process: UV-DDB, for the recognition of certain UV-induced lesions in particular in the context of chromatin, while the XPA protein is believed to have a role in damage verification and NER complex assembly. Here we consider the molecular mechanisms that determine repair efficiency in GG-NER based on recent structural, computational, biochemical, cellular and single molecule studies of XPC-RAD23B and its yeast ortholog Rad4. We discuss how the actions of XPC-RAD23B are integrated with those of other NER proteins and, based on recent high-resolution structures of TFIIH, present a structural model of how XPC-RAD23B and TFIIH cooperate in damage recognition and verification.
Collapse
Affiliation(s)
- Hong Mu
- Department of Biology, New York University, New York, NY 10003, USA
| | | | - Suse Broyde
- Department of Biology, New York University, New York, NY 10003, USA
| | - Jung-Eun Yeo
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| | - Orlando D Schärer
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea; Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| |
Collapse
|
35
|
Ng AWT, Poon SL, Huang MN, Lim JQ, Boot A, Yu W, Suzuki Y, Thangaraju S, Ng CCY, Tan P, Pang ST, Huang HY, Yu MC, Lee PH, Hsieh SY, Chang AY, Teh BT, Rozen SG. Aristolochic acids and their derivatives are widely implicated in liver cancers in Taiwan and throughout Asia. Sci Transl Med 2018; 9:9/412/eaan6446. [PMID: 29046434 DOI: 10.1126/scitranslmed.aan6446] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/31/2017] [Accepted: 09/25/2017] [Indexed: 12/21/2022]
Abstract
Many traditional pharmacopeias include Aristolochia and related plants, which contain nephrotoxins and mutagens in the form of aristolochic acids and similar compounds (collectively, AA). AA is implicated in multiple cancer types, sometimes with very high mutational burdens, especially in upper tract urothelial cancers (UTUCs). AA-associated kidney failure and UTUCs are prevalent in Taiwan, but AA's role in hepatocellular carcinomas (HCCs) there remains unexplored. Therefore, we sequenced the whole exomes of 98 HCCs from two hospitals in Taiwan and found that 78% showed the distinctive mutational signature of AA exposure, accounting for most of the nonsilent mutations in known cancer driver genes. We then searched for the AA signature in 1400 HCCs from diverse geographic regions. Consistent with exposure through known herbal medicines, 47% of Chinese HCCs showed the signature, albeit with lower mutation loads than in Taiwan. In addition, 29% of HCCs from Southeast Asia showed the signature. The AA signature was also detected in 13 and 2.7% of HCCs from Korea and Japan as well as in 4.8 and 1.7% of HCCs from North America and Europe, respectively, excluding one U.S. hospital where 22% of 87 "Asian" HCCs had the signature. Thus, AA exposure is geographically widespread. Asia, especially Taiwan, appears to be much more extensively affected, which is consistent with other evidence of patterns of AA exposure. We propose that additional measures aimed at primary prevention through avoidance of AA exposure and investigation of possible approaches to secondary prevention are warranted.
Collapse
Affiliation(s)
- Alvin W T Ng
- Centre for Computational Biology, Duke-NUS Medical School, Singapore 169857, Singapore.,Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, Singapore 117456, Singapore
| | - Song Ling Poon
- Laboratory of Cancer Epigenome, Division of Medical Science, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Mi Ni Huang
- Centre for Computational Biology, Duke-NUS Medical School, Singapore 169857, Singapore.,Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jing Quan Lim
- Laboratory of Cancer Epigenome, Division of Medical Science, National Cancer Centre Singapore, Singapore 169610, Singapore.,Lymphoma Genomic Translational Research Laboratory, Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Arnoud Boot
- Centre for Computational Biology, Duke-NUS Medical School, Singapore 169857, Singapore.,Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Willie Yu
- Centre for Computational Biology, Duke-NUS Medical School, Singapore 169857, Singapore.,Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Yuka Suzuki
- Centre for Computational Biology, Duke-NUS Medical School, Singapore 169857, Singapore.,Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Saranya Thangaraju
- Laboratory of Cancer Epigenome, Division of Medical Science, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Cedric C Y Ng
- Laboratory of Cancer Epigenome, Division of Medical Science, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Patrick Tan
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.,SingHealth/Duke-NUS Precision Medicine Institute, Singapore 169609, Singapore.,Genome Institute of Singapore, Singapore 138672, Singapore
| | - See-Tong Pang
- Division of Urooncology, Department of Urology, Chang Gung University and Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
| | - Hao-Yi Huang
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
| | - Ming-Chin Yu
- Department of General Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
| | - Po-Huang Lee
- Department of Surgery, National Taiwan University, Taipei 10051, Taiwan
| | - Sen-Yung Hsieh
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan.
| | - Alex Y Chang
- Johns Hopkins Singapore, Singapore 308433, Singapore.
| | - Bin T Teh
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore. .,Laboratory of Cancer Epigenome, Division of Medical Science, National Cancer Centre Singapore, Singapore 169610, Singapore.,SingHealth/Duke-NUS Precision Medicine Institute, Singapore 169609, Singapore.,Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - Steven G Rozen
- Centre for Computational Biology, Duke-NUS Medical School, Singapore 169857, Singapore. .,Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, Singapore 117456, Singapore.,SingHealth/Duke-NUS Precision Medicine Institute, Singapore 169609, Singapore
| |
Collapse
|
36
|
Chen CJ, Yang YH, Lin MH, Lee CP, Tsan YT, Lai MN, Yang HY, Ho WC, Chen PC. Herbal medicine containing aristolochic acid and the risk of hepatocellular carcinoma in patients with hepatitis B virus infection. Int J Cancer 2018; 143:1578-1587. [PMID: 29667191 DOI: 10.1002/ijc.31544] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/27/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
It was suspected that aristolochic acid-induced mutations may be associated with hepatitis B virus (HBV), playing an important role in liver carcinogenesis. The purpose of this study was to investigate the association between the use of Chinese herbs containing aristolochic acid and the risk of hepatocellular carcinoma (HCC) among HBV-infected patients. We conducted a retrospective, population-based, cohort study on patients older than 18 years who had a diagnosis of HBV infection between January 1, 1997 and December 31, 2010 and had visited traditional Chinese medicine clinics before one year before the diagnosis of HCC or the censor dates. A total of 802,642 HBV-infected patients were identified by using the National Health Insurance Research Database in Taiwan. The use of Chinese herbal products containing aristolochic acid was identified between 1997 and 2003. Each patient was individually tracked from 1997 to 2013 to identify incident cases of HCC since 1999. There were 33,982 HCCs during the follow-up period of 11,643,790 person-years and the overall incidence rate was 291.8 HCCs per 100,000 person-years. The adjusted hazard ratios (HRs) were 1.13 (95% confidence interval [CI], 1.11-1.16), 1.21 (95% CI, 1.13-1.29), 1.37 (95% CI, 1.24-1.50) and 1.61 (95% CI, 1.40-1.84) for estimated aristolochic acid of 1-250, 251-500, 501-1,000 and more than 1,000 mg, respectively, relative to no aristolochic acid exposure. Our study found a significant dose-response relationship between the consumption of aristolochic acid and HCC in patients with HBV infection, suggesting that aristolochic acid which may be associated with HBV plays an important role in the pathogenesis of HCC.
Collapse
Affiliation(s)
- Chi-Jen Chen
- Health Information and Epidemiology Laboratory, Chang Gung Memorial Hospital, Chiayi County, Taiwan.,Graduate Institute of Data Science, Taipei Medical University, Taipei, Taiwan
| | - Yao-Hsu Yang
- Health Information and Epidemiology Laboratory, Chang Gung Memorial Hospital, Chiayi County, Taiwan.,Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Chiayi County, Taiwan.,Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Meng-Hung Lin
- Health Information and Epidemiology Laboratory, Chang Gung Memorial Hospital, Chiayi County, Taiwan
| | - Chuan-Pin Lee
- Health Information and Epidemiology Laboratory, Chang Gung Memorial Hospital, Chiayi County, Taiwan
| | - Yu-Tse Tsan
- Division of Occupational Medicine, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Nan Lai
- Department of Statistics, Feng Chia University, Taichung, Taiwan
| | - Hsiao-Yu Yang
- Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei, Taiwan.,Department of Public Health, National Taiwan University College of Public Health, Taipei, Taiwan
| | - Wen-Chao Ho
- Department of Public Health, China Medical University, Taichung, Taiwan
| | - Pau-Chung Chen
- Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei, Taiwan.,Department of Public Health, National Taiwan University College of Public Health, Taipei, Taiwan.,Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | | |
Collapse
|
37
|
Feng Y, Wang S, Wang H, Peng Y, Zheng J. Urinary Methyleugenol-deoxyadenosine Adduct as a Potential Biomarker of Methyleugenol Exposure in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1258-1263. [PMID: 29328669 DOI: 10.1021/acs.jafc.7b05186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Methyleugenol (ME), a natural ingredient of several herbs and spices used in the human diet, is hepatocarcinogenic in rodents. Following metabolic activation to the reactive carbocation intermediate, ME can bind covalently to DNA, which is directly associated with its carcinogenicity. In this work, a non-invasive approach to determine ME exposure was established by monitoring the urinary N6-(methylisoeugenol-3'-yl)-2'-deoxyadenosine (ME-dA) adduct. The developed method entails liquid-liquid extraction enrichment of urinary ME-dA, incorporation of deuterated ME-dA as an internal standard, and analysis by liquid chromatography coupled tandem mass spectrometry. Male rats (10-12 weeks, 180-200 g) were treated (p.o.) with ME, and ME-dA was excreted in urine in a dose- and time-dependent manner. The non-invasive approach enabled us to successfully determine exposure to ME-containing herbs and spices. These results suggest that ME-dA can potentially serve as an effective biomarker of ME exposure in rats. It is expected that the developed approach of detecting urinary ME-dA will facilitate the investigation of ME carcinogenesis.
Collapse
Affiliation(s)
- Yukun Feng
- Wuya College of Innovation, Shenyang Pharmaceutical University , Shenyang, Liaoning 110016, People's Republic of China
| | - Saide Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University , Shenyang, Liaoning 110016, People's Republic of China
| | - Hui Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University , Shenyang, Liaoning 110016, People's Republic of China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University , Shenyang, Liaoning 110016, People's Republic of China
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University , Shenyang, Liaoning 110016, People's Republic of China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province and Guizhou Medical University , Guiyang, Guizhou 550004, People's Republic of China
| |
Collapse
|
38
|
A Carcinogen-induced mouse model recapitulates the molecular alterations of human muscle invasive bladder cancer. Oncogene 2018; 37:1911-1925. [PMID: 29367767 PMCID: PMC5886988 DOI: 10.1038/s41388-017-0099-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 10/21/2017] [Accepted: 12/03/2017] [Indexed: 12/16/2022]
Abstract
The N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN) mouse model is an attractive model system of muscle-invasive bladder cancer (MIBC) as it recapitulates the histology of human tumors in a background with intact immune system. However, it was unknown whether this carcinogen-induced model also mimicked human MIBC at the molecular and mutational level. In our study, we analyzed gene expression and mutational landscape of the BBN model by next-generation sequencing followed by a bioinformatic comparison to human MIBC using data from The Cancer Genome Atlas and other repositories. BBN tumors showed overexpression of markers of basal cancer subtype, and had a high mutation burden with frequent Trp53 (80%), Kmt2d (70%), and Kmt2c (90%) mutations by exome sequencing, similar to human MIBC. Many variants corresponded to human cancer hotspot mutations, supporting their role as driver mutations. We extracted two novel mutational signatures from the BBN mouse genomes. The integrated analysis of mutation frequencies and signatures highlighted the contribution of aberrations to chromatin regulators and genetic instability in the BBN tumors. Together, our study revealed several similarities between human MIBC and the BBN mouse model, providing a strong rationale for its use in molecular and drug discovery studies.
Collapse
|
39
|
DNA Adducts Formed by Aristolochic Acid Are Unique Biomarkers of Exposure and Explain the Initiation Phase of Upper Urothelial Cancer. Int J Mol Sci 2017; 18:ijms18102144. [PMID: 29036902 PMCID: PMC5666826 DOI: 10.3390/ijms18102144] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 09/29/2017] [Accepted: 10/11/2017] [Indexed: 02/06/2023] Open
Abstract
Aristolochic acid (AA) is a plant alkaloid that causes aristolochic acid nephropathy (AAN) and Balkan endemic nephropathy (BEN), unique renal diseases frequently associated with upper urothelial cancer (UUC). This review summarizes the significance of AA-derived DNA adducts in the aetiology of UUC leading to specific A:T to T:A transversion mutations (mutational signature) in AAN/BEN-associated tumours, which are otherwise rare in individuals with UCC not exposed to AA. Therefore, such DNA damage produced by AA-DNA adducts is one rare example of the direct association of exposure and cancer development (UUC) in humans, confirming that the covalent binding of carcinogens to DNA is causally related to tumourigenesis. Although aristolochic acid I (AAI), the major component of the natural plant extract AA, might directly cause interstitial nephropathy, enzymatic activation of AAI to reactive intermediates capable of binding to DNA is a necessary step leading to the formation of AA-DNA adducts and subsequently AA-induced malignant transformation. Therefore, AA-DNA adducts can not only be utilized as biomarkers for the assessment of AA exposure and markers of AA-induced UUC, but also be used for the mechanistic evaluation of its enzymatic activation and detoxification. Differences in AA metabolism might be one of the reasons for an individual’s susceptibility in the multi-step process of AA carcinogenesis and studying associations between activities and/or polymorphisms of the enzymes metabolising AA is an important determinant to identify individuals having a high risk of developing AA-mediated UUC.
Collapse
|
40
|
Abstract
The eukaryotic global genomic nucleotide excision repair (GG-NER) pathway is the major mechanism that removes most bulky and some nonbulky lesions from cellular DNA. There is growing evidence that certain DNA lesions are repaired slowly or are entirely resistant to repair in cells, tissues, and in cell extract model assay systems. It is well established that the eukaryotic DNA lesion-sensing proteins do not detect the damaged nucleotide, but recognize the distortions/destabilizations in the native DNA structure caused by the damaged nucleotides. In this article, the nature of the structural features of certain bulky DNA lesions that render them resistant to NER, or cause them to be repaired slowly, is compared to that of those that are good-to-excellent NER substrates. Understanding the structural features that distinguish NER-resistant DNA lesions from good NER substrates may be useful for interpreting the biological significance of biomarkers of exposure of human populations to genotoxic environmental chemicals. NER-resistant lesions can survive to replication and cause mutations that can initiate cancer and other diseases. Furthermore, NER diminishes the efficacy of certain chemotherapeutic drugs, and the design of more potent pharmaceuticals that resist repair can be advanced through a better understanding of the structural properties of DNA lesions that engender repair-resistance.
Collapse
Affiliation(s)
- Nicholas E. Geacintov
- Chemistry and Biology Departments, New York University, New York, New York 10003-5180, United States
| | - Suse Broyde
- Chemistry and Biology Departments, New York University, New York, New York 10003-5180, United States
| |
Collapse
|
41
|
Talhaoui I, Matkarimov BT, Tchenio T, Zharkov DO, Saparbaev MK. Aberrant base excision repair pathway of oxidatively damaged DNA: Implications for degenerative diseases. Free Radic Biol Med 2017; 107:266-277. [PMID: 27890638 DOI: 10.1016/j.freeradbiomed.2016.11.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 02/06/2023]
Abstract
In cellular organisms composition of DNA is constrained to only four nucleobases A, G, T and C, except for minor DNA base modifications such as methylation which serves for defence against foreign DNA or gene expression regulation. Interestingly, this severe evolutionary constraint among other things demands DNA repair systems to discriminate between regular and modified bases. DNA glycosylases specifically recognize and excise damaged bases among vast majority of regular bases in the base excision repair (BER) pathway. However, the mismatched base pairs in DNA can occur from a spontaneous conversion of 5-methylcytosine to thymine and DNA polymerase errors during replication. To counteract these mutagenic threats to genome stability, cells evolved special DNA repair systems that target the non-damaged DNA strand in a duplex to remove mismatched regular DNA bases. Mismatch-specific adenine- and thymine-DNA glycosylases (MutY/MUTYH and TDG/MBD4, respectively) initiated BER and mismatch repair (MMR) pathways can recognize and remove normal DNA bases in mismatched DNA duplexes. Importantly, in DNA repair deficient cells bacterial MutY, human TDG and mammalian MMR can act in the aberrant manner: MutY and TDG removes adenine and thymine opposite misincorporated 8-oxoguanine and damaged adenine, respectively, whereas MMR removes thymine opposite to O6-methylguanine. These unusual activities lead either to mutations or futile DNA repair, thus indicating that the DNA repair pathways which target non-damaged DNA strand can act in aberrant manner and introduce genome instability in the presence of unrepaired DNA lesions. Evidences accumulated showing that in addition to the accumulation of oxidatively damaged DNA in cells, the aberrant DNA repair can also contribute to cancer, brain disorders and premature senescence. For example, the aberrant BER and MMR pathways for oxidized guanine residues can lead to trinucleotide expansion that underlies Huntington's disease, a severe hereditary neurodegenerative syndrome. This review summarises the present knowledge about the aberrant DNA repair pathways for oxidized base modifications and their possible role in age-related diseases.
Collapse
Affiliation(s)
- Ibtissam Talhaoui
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale Contre le Cancer, CNRS UMR8200, Université Paris-Sud, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France
| | - Bakhyt T Matkarimov
- National laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Thierry Tchenio
- LBPA, UMR8113 ENSC - CNRS, Ecole Normale Supérieure de Cachan, Cachan, France
| | - Dmitry O Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Murat K Saparbaev
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale Contre le Cancer, CNRS UMR8200, Université Paris-Sud, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France.
| |
Collapse
|
42
|
Matkarimov BT, Saparbaev MK. Aberrant DNA glycosylase-initiated repair pathway of free radicals in-duced DNA damage: implications for age-related diseases and natural aging. ACTA ACUST UNITED AC 2017. [DOI: 10.7124/bc.000943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
43
|
Otto C, Spivak G, Aloisi CMN, Menigatti M, Naegeli H, Hanawalt PC, Tanasova M, Sturla SJ. Modulation of Cytotoxicity by Transcription-Coupled Nucleotide Excision Repair Is Independent of the Requirement for Bioactivation of Acylfulvene. Chem Res Toxicol 2017; 30:769-776. [PMID: 28076683 DOI: 10.1021/acs.chemrestox.6b00240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bioactivation as well as DNA repair affects the susceptibility of cancer cells to the action of DNA-alkylating chemotherapeutic drugs. However, information is limited with regard to the relative contributions of these processes to the biological outcome of metabolically activated DNA alkylating agents. We evaluated the influence of cellular bioactivation capacity and DNA repair on cytotoxicity of the DNA alkylating agent acylfulvene (AF). We compared the cytotoxicity and RNA synthesis inhibition by AF and its synthetic activated analogue iso-M0 in a panel of fibroblast cell lines with deficiencies in transcription-coupled (TC-NER) or global genome nucleotide excision repair (GG-NER). We related these data to the inherent bioactivation capacity of each cell type on the basis of mRNA levels. We demonstrated that specific inactivation of TC-NER by siRNA had the largest positive impact on AF activity in a cancer cell line. These findings establish that transcription-coupled DNA repair reduces cellular sensitivity to AF, independent of the requirement for bioactivation.
Collapse
Affiliation(s)
- Claudia Otto
- Department of Health Sciences and Technology, ETH Zurich , 8092 Zurich, Switzerland
| | - Graciela Spivak
- Department of Biology, Stanford University , Stanford, California 94305, United States
| | - Claudia M N Aloisi
- Department of Health Sciences and Technology, ETH Zurich , 8092 Zurich, Switzerland
| | - Mirco Menigatti
- Institute of Molecular Cancer Research, University of Zurich , 8057 Zurich, Switzerland
| | - Hanspeter Naegeli
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse , 8057 Zurich, Switzerland
| | - Philip C Hanawalt
- Department of Biology, Stanford University , Stanford, California 94305, United States
| | - Marina Tanasova
- Department of Health Sciences and Technology, ETH Zurich , 8092 Zurich, Switzerland.,Department of Chemistry, Michigan Technological University , Houghton, Michigan 49932, United States
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zurich , 8092 Zurich, Switzerland
| |
Collapse
|
44
|
Stiborová M, Arlt VM, Schmeiser HH. Balkan endemic nephropathy: an update on its aetiology. Arch Toxicol 2016; 90:2595-2615. [PMID: 27538407 PMCID: PMC5065591 DOI: 10.1007/s00204-016-1819-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/04/2016] [Indexed: 02/02/2023]
Abstract
Balkan endemic nephropathy (BEN) is a unique, chronic renal disease frequently associated with upper urothelial cancer (UUC). It only affects residents of specific farming villages located along tributaries of the Danube River in Bosnia-Herzegovina, Croatia, Macedonia, Serbia, Bulgaria, and Romania where it is estimated that ~100,000 individuals are at risk of BEN, while ~25,000 have the disease. This review summarises current findings on the aetiology of BEN. Over the last 50 years, several hypotheses on the cause of BEN have been formulated, including mycotoxins, heavy metals, viruses, and trace-element insufficiencies. However, recent molecular epidemiological studies provide a strong case that chronic dietary exposure to aristolochic acid (AA) a principal component of Aristolochia clematitis which grows as a weed in the wheat fields of the endemic regions is the cause of BEN and associated UUC. One of the still enigmatic features of BEN that need to be resolved is why the prevalence of BEN is only 3-7 %. This suggests that individual genetic susceptibilities to AA exist in humans. In fact dietary ingestion of AA along with individual genetic susceptibility provides a scenario that plausibly can explain all the peculiarities of BEN such as geographical distribution and high risk of urothelial cancer. For the countries harbouring BEN implementing public health measures to avoid AA exposure is of the utmost importance because this seems to be the best way to eradicate this once mysterious disease to which the residents of BEN villages have been completely and utterly at mercy for so long.
Collapse
Affiliation(s)
- Marie Stiborová
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40, Prague 2, Czech Republic.
| | - Volker M Arlt
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environmental and Health, King's College London, 150 Stamford Street, London, SE1 9NH, UK
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards at King's College London in partnership with Public Health England, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Heinz H Schmeiser
- Division of Radiopharmaceutical Chemistry (E030), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|
45
|
Reshetnikova G, Sidorenko VS, Whyard T, Lukin M, Waltzer W, Takamura-Enye T, Romanov V. Genotoxic and cytotoxic effects of the environmental pollutant 3-nitrobenzanthrone on bladder cancer cells. Exp Cell Res 2016; 349:101-108. [PMID: 27720671 DOI: 10.1016/j.yexcr.2016.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/01/2016] [Accepted: 10/03/2016] [Indexed: 11/28/2022]
Abstract
3-Nitrobenzanthrone (3-NBA), a potential human carcinogen, is present in diesel exhaust. The main metabolite of 3-NBA, 3-aminobenzanthrone, was detected in urine of miners occupationally exposed to diesel emissions. Environmental and occupational factors play an important role in development of bladder cancer (BC), one of the most frequent malignancies. It is expected that exposure of urothelium to 3-NBA and its metabolites may induce BC initiation and/or progression. To test this hypothesis, we studied geno- and cytotoxicity of 3-NBA using an in vitro BC model. 3-NBA induced higher levels of DNA adducts, reactive oxygen species and DNA breaks in aggressive T24 cells than in more differentiated RT4 cells. To understand the nature of this difference we examined the role of several enzymes that were identified as 3-NBA bio activators. However, the difference in DNA adduct formation cannot be directly linked to the different activity of any of the examined enzymes. Conversely, the difference of tested cell lines in p53 status can partly explain the distinct levels of 3-NBA-DNA adducts and DNA damage induced by 3-NBA. Therefore, we assume that more aggressive T24 cells are more predisposed for DNA adduct formation, DNA damage and, possibly, mutations and as a result further tumorigenesis.
Collapse
Affiliation(s)
| | | | - Terry Whyard
- Department of Urology, SUNY at Stony Brook, 11794, USA
| | - Mark Lukin
- Department of Pharmacological Sciences, SUNY at Stony Brook, 11794, USA
| | - Wayne Waltzer
- Department of Urology, SUNY at Stony Brook, 11794, USA
| | - Takeji Takamura-Enye
- Department of Applied Chemistry, Kanagawa Institute of Technology, 1030 Shimo-ogino, Atsugi, Kanagawa 243-0292, Japan
| | | |
Collapse
|
46
|
Hoang ML, Chen CH, Chen PC, Roberts NJ, Dickman KG, Yun BH, Turesky RJ, Pu YS, Vogelstein B, Papadopoulos N, Grollman AP, Kinzler KW, Rosenquist TA. Aristolochic Acid in the Etiology of Renal Cell Carcinoma. Cancer Epidemiol Biomarkers Prev 2016; 25:1600-1608. [PMID: 27555084 DOI: 10.1158/1055-9965.epi-16-0219] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Aristolochia species used in the practice of traditional herbal medicine contains aristolochic acid (AA), an established human carcinogen contributing to urothelial carcinomas of the upper urinary tract. AA binds covalently to genomic DNA, forming aristolactam (AL)-DNA adducts. Here we investigated whether AA is also an etiologic factor in clear cell renal cell carcinoma (ccRCC). METHODS We conducted a population-based case-control study to investigate the linkage between Aristolochia prescription history, cumulative AA consumption, and ccRCC incidence in Taiwan (5,709 cases and 22,836 matched controls). The presence and level of mutagenic dA-AL-I adducts were determined in the kidney DNA of 51 Taiwanese ccRCC patients. The whole-exome sequences of ccRCC tumors from 10 Taiwanese ccRCC patients with prior exposure to AA were determined. RESULTS Cumulative ingestion of more than 250 mg of AA increased risk of ccRCC (OR, 1.25), and we detected dA-AL-I adducts in 76% of Taiwanese ccRCC patients. Furthermore, the distinctive AA mutational signature was evident in six of 10 sequenced ccRCC exomes from Taiwanese patients. CONCLUSIONS This study strongly suggests that AA contributes to the etiology of certain RCCs. IMPACT The current study offers compelling evidence implicating AA in a significant fraction of the RCC arising in Taiwan and illustrates the power of integrating epidemiologic, molecular, and genetic data in the investigation of cancer etiology. Cancer Epidemiol Biomarkers Prev; 25(12); 1600-8. ©2016 AACR.
Collapse
Affiliation(s)
- Margaret L Hoang
- Ludwig Center for Cancer Genetics and Therapeutics and The Howard Hughes Medical Institute at Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland
| | - Chung-Hsin Chen
- Department of Urology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Pau-Chung Chen
- Department of Occupational and Environmental Medicine, National Taiwan University Hospital and Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University, Taipei, Taiwan
| | - Nicholas J Roberts
- Ludwig Center for Cancer Genetics and Therapeutics and The Howard Hughes Medical Institute at Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland
| | - Kathleen G Dickman
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York.,Department of Medicine, Stony Brook University, Stony Brook, New York
| | - Byeong Hwa Yun
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota
| | - Robert J Turesky
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota
| | - Yeong-Shiau Pu
- Department of Urology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Bert Vogelstein
- Ludwig Center for Cancer Genetics and Therapeutics and The Howard Hughes Medical Institute at Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland
| | - Nickolas Papadopoulos
- Ludwig Center for Cancer Genetics and Therapeutics and The Howard Hughes Medical Institute at Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland
| | - Arthur P Grollman
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York.,Department of Medicine, Stony Brook University, Stony Brook, New York
| | - Kenneth W Kinzler
- Ludwig Center for Cancer Genetics and Therapeutics and The Howard Hughes Medical Institute at Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland.
| | - Thomas A Rosenquist
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York.
| |
Collapse
|
47
|
Abstract
Nucleotide excision repair (NER) is a versatile pathway that removes helix-distorting DNA lesions from the genomes of organisms across the evolutionary scale, from bacteria to humans. The serial steps in NER involve recognition of lesions, adducts or structures that disrupt the DNA double helix, removal of a short oligonucleotide containing the offending lesion, synthesis of a repair patch copying the opposite undamaged strand, and ligation, to restore the DNA to its original form. Transcription-coupled repair (TCR) is a subpathway of NER dedicated to the repair of lesions that, by virtue of their location on the transcribed strands of active genes, encumber elongation by RNA polymerases. In this review, I report on recent findings that contribute to the elucidation of TCR mechanisms in the bacterium Escherichia coli, the yeast Saccharomyces cerevisiae and human cells. I review general models for the biochemical pathways and how and when cells might choose to utilize TCR or other pathways for repair or bypass of transcription-blocking DNA alterations.
Collapse
Affiliation(s)
- Graciela Spivak
- Biology Department, Stanford University, 385 Serra Mall, Stanford, CA, 94305-5020, USA.
| |
Collapse
|
48
|
Rosenquist TA, Grollman AP. Mutational signature of aristolochic acid: Clue to the recognition of a global disease. DNA Repair (Amst) 2016; 44:205-211. [PMID: 27237586 DOI: 10.1016/j.dnarep.2016.05.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mutational signatures associated with specific forms of DNA damage have been identified in several forms of human cancer. Such signatures provide information regarding mechanisms of tumor induction which, in turn, can reduce exposure to carcinogens by shaping public health policy. Using a molecular epidemiologic approach that takes advantage of recent advances in genome sequencing while applying sensitive and specific analytical methods to characterize DNA damage, it has become increasingly possible to establish causative linkages between certain environmental mutagens and disease risk. In this perspective, we use aristolochic acid, a human carcinogen and nephrotoxin found in Aristolochia herbs, to illustrate the power and effectiveness of this multidisciplinary approach. The genome-wide mutational signature for this toxin, detected initially in cancers of the upper urinary tract, has subsequently been associated with cancers of the liver and kidney. These findings have significant implications for global public health, especially in China, where millions of individuals have used Aristolochia herbal remedies as part of traditional Chinese medicine and, thus, are at risk of developing aristolochic acid nephropathy and/or upper urinary tract carcinomas. The studies reported here set the stage for research into prevention and early detection, both of which will be required to manage a potentially devastating global disease.
Collapse
Affiliation(s)
- Thomas A Rosenquist
- Stony Brook University School of Medicine, Department of Pharmacological Sciences, Laboratory of Chemical Biology, Stony Brook, NY, 11794, United States
| | - Arthur P Grollman
- Stony Brook University School of Medicine, Department of Pharmacological Sciences, Laboratory of Chemical Biology, Stony Brook, NY, 11794, United States.
| |
Collapse
|
49
|
Hashimoto K, Zaitseva IN, Bonala R, Attaluri S, Ozga K, Iden CR, Johnson F, Moriya M, Grollman AP, Sidorenko VS. Sulfotransferase-1A1-dependent bioactivation of aristolochic acid I and N-hydroxyaristolactam I in human cells. Carcinogenesis 2016; 37:647-655. [PMID: 27207664 DOI: 10.1093/carcin/bgw045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 04/12/2016] [Indexed: 11/14/2022] Open
Abstract
Aristolochic acids (AA) are implicated in the development of chronic renal disease and upper urinary tract carcinoma in humans. Using in vitro approaches, we demonstrated that N-hydroxyaristolactams, metabolites derived from partial nitroreduction of AA, require sulfotransferase (SULT)-catalyzed conjugation with a sulfonyl group to form aristolactam-DNA adducts. Following up on this observation, bioactivation of AA-I and N-hydroxyaristolactam I (AL-I-NOH) was studied in human kidney (HK-2) and skin fibroblast (GM00637) cell lines. Pentachlorophenol, a known SULT inhibitor, significantly reduced cell death and aristolactam-DNA adduct levels in HK-2 cells following exposure to AA-I and AL-I-NOH, suggesting a role for Phase II metabolism in AA activation. A gene knockdown, siRNA approach was employed to establish the involvement of selected SULTs and nitroreductases in AA-I bioactivation. Silencing of SULT1A1 and PAPSS2 led to a significant decrease in aristolactam-DNA levels in both cell lines following exposure to AA-I, indicating the critical role for sulfonation in the activation of AA-I in vivo Since HK-2 cells proved relatively resistant to knockdown with siRNAs, gene silencing of xanthine oxidoreductase, cytochrome P450 oxidoreductase and NADPH:quinone oxidoreductase was conducted in GM00637 cells, showing a significant increase, decrease and no effect on aristolactam-DNA levels, respectively. In GM00637 cells exposed to AL-I-NOH, suppressing the SULT pathway led to a significant decrease in aristolactam-DNA formation, mirroring data obtained for AA-I. We conclude from these studies that SULT1A1 is involved in the bioactivation of AA-I through the sulfonation of AL-I-NOH, contributing significantly to the toxicities of AA observed in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Francis Johnson
- Department of Pharmacological Sciences.,Department of Chemistry and
| | | | - Arthur P Grollman
- Department of Pharmacological Sciences.,Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | | |
Collapse
|
50
|
Pu XY, Shen JY, Deng ZP, Zhang ZA. Oral exposure to aristolochic acid I induces gastric histological lesions with non-specific renal injury in rat. ACTA ACUST UNITED AC 2016; 68:315-20. [PMID: 27019954 DOI: 10.1016/j.etp.2016.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/26/2016] [Accepted: 03/21/2016] [Indexed: 10/22/2022]
Abstract
Many Aristolochia species herbal drugs, used for diseases treatment since antiquity, contain active component aristolochic acid mixture, which consists of aristolochic acid I and II. However, it remains unclear whether aristolochic acid I is gastrotoxic, though evidence has shown that aristolochic acid mixture is nephrotoxic, carcinogenic, and genotoxic. The present study aimed to investigate the gastrotoxicity in rats treated with aristolochic acid I alone. Four groups of rats were orally administrated with vehicle (1% NaHCO3), or 30mg, 60mg, and 90mg/kg/day of aristolochic acid I for twelve days. The results showed that aristolochic acid I can induce obvious body weight loss, forestomach injury characterized by necrosis, ulcer, hyperkeratosis, and hyperplasia of epithelial cells. The severity of these forestomach lesions was presented in a dose-dependent mode. Meanwhile, only non-specific, slight renal tubule degeneration, and occasionally single necrotic epithelial cell were found in aristolochic acid I-treated rats' kidney. These resulst indicated aristolochic acid I had obvious gastrotoxicity, and such aristolochic acid I-induced forestomach toxicity probably presented much prior to kidney injury. Such irritation lesions may play a partial role in gastric cancer development of rats induced by aristolochic acid. Therefore, these results expanded our understanding on the digestive system toxicity of aristolochic acid I.
Collapse
Affiliation(s)
- Xue-Yan Pu
- Center for Drug Safety Evaluation and Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Jia-Ying Shen
- Center for Drug Safety Evaluation and Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Zhong-Ping Deng
- Center for Drug Safety Evaluation and Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Ze-An Zhang
- Center for Drug Safety Evaluation and Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China.
| |
Collapse
|