1
|
Saggau C, Bacher P, Esser D, Rasa M, Meise S, Mohr N, Kohlstedt N, Hutloff A, Schacht SS, Dargvainiene J, Martini GR, Stürner KH, Schröder I, Markewitz R, Hartl J, Hastermann M, Duchow A, Schindler P, Becker M, Bautista C, Gottfreund J, Walter J, Polansky JK, Yang M, Naghavian R, Wendorff M, Schuster EM, Dahl A, Petzold A, Reinhardt S, Franke A, Wieczorek M, Henschel L, Berger D, Heine G, Holtsche M, Häußler V, Peters C, Schmidt E, Fillatreau S, Busch DH, Wandinger KP, Schober K, Martin R, Paul F, Leypoldt F, Scheffold A. Autoantigen-specific CD4 + T cells acquire an exhausted phenotype and persist in human antigen-specific autoimmune diseases. Immunity 2024; 57:2416-2432.e8. [PMID: 39226901 DOI: 10.1016/j.immuni.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/14/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024]
Abstract
Pro-inflammatory autoantigen-specific CD4+ T helper (auto-Th) cells are central orchestrators of autoimmune diseases (AIDs). We aimed to characterize these cells in human AIDs with defined autoantigens by combining human leukocyte antigen (HLA)-tetramer-based and activation-based multidimensional ex vivo analyses. In aquaporin4-antibody-positive neuromyelitis optica spectrum disorder (AQP4-NMOSD) patients, auto-Th cells expressed CD154, but proliferative capacity and pro-inflammatory cytokines were strongly reduced. Instead, exhaustion-associated co-inhibitory receptors were expressed together with FOXP3, the canonical regulatory T cell (Treg) transcription factor. Auto-Th cells responded in vitro to checkpoint inhibition and provided potent B cell help. Cells with the same exhaustion-like (ThEx) phenotype were identified in soluble liver antigen (SLA)-antibody-autoimmune hepatitis and BP180-antibody-positive bullous pemphigoid, AIDs of the liver and skin, respectively. While originally described in cancer and chronic infection, our data point to T cell exhaustion as a common mechanism of adaptation to chronic (self-)stimulation across AID types and link exhausted CD4+ T cells to humoral autoimmune responses, with implications for therapeutic targeting.
Collapse
Affiliation(s)
- Carina Saggau
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany
| | - Petra Bacher
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany; Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Daniela Esser
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Mahdi Rasa
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany; Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Silja Meise
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany
| | - Nicola Mohr
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany
| | - Nora Kohlstedt
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany
| | - Andreas Hutloff
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany; Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Sarah-Sophie Schacht
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany
| | - Justina Dargvainiene
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Gabriela Rios Martini
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany; Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Klarissa H Stürner
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Lübeck, Germany; Department of Neurology, University Hospital Schleswig-Holstein Kiel, Kiel, Germany
| | - Ina Schröder
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Robert Markewitz
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Johannes Hartl
- Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Maria Hastermann
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Ankelien Duchow
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Patrick Schindler
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Mareike Becker
- Institute of Experimental Dermatology, Lübeck, Germany; Department of Pediatric Dermatology, Catholic Children's Hospital Wilhelmstift, Hamburg, Germany
| | - Carolin Bautista
- Department of Dermatology, Allergy and Venerology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Judith Gottfreund
- Department of Genetics and Epigenetics, Saarland University, Saarbrücken, Germany
| | - Jörn Walter
- Department of Genetics and Epigenetics, Saarland University, Saarbrücken, Germany
| | - Julia K Polansky
- Berlin Institute of Health (BIH) at Charité Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Augustenburger Platz 1, 13353 Berlin, Germany; German Rheumatism Research Centre, a Leibniz Institute (DRFZ), Charité Platz 1, 10117 Berlin, Germany
| | - Mingxing Yang
- Berlin Institute of Health (BIH) at Charité Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Reza Naghavian
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, Zurich, Switzerland; Cellerys AG, Wagistrasse 21, 8952 Schlieren, Switzerland
| | - Mareike Wendorff
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany; Leibniz Institute for Science and Mathematics Education, Kiel, Germany
| | - Ev-Marie Schuster
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstr. 3/5, 91054 Erlangen, Germany
| | - Andreas Dahl
- DRESDEN-concept Genome Center, Technology Platform at the Center for Molecular and Cellular Bioengineering (CMCB), Technical University of Dresden, Dresden, Germany
| | - Andreas Petzold
- DRESDEN-concept Genome Center, Technology Platform at the Center for Molecular and Cellular Bioengineering (CMCB), Technical University of Dresden, Dresden, Germany
| | - Susanne Reinhardt
- DRESDEN-concept Genome Center, Technology Platform at the Center for Molecular and Cellular Bioengineering (CMCB), Technical University of Dresden, Dresden, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Marek Wieczorek
- Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany
| | - Lea Henschel
- Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany
| | - Daniel Berger
- Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany
| | - Guido Heine
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Maike Holtsche
- Institute of Experimental Dermatology, University of Lübeck, Department of Dermatology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Vivien Häußler
- Clinic and Polyclinic for Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christian Peters
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany
| | - Enno Schmidt
- Institute of Experimental Dermatology, University of Lübeck, Department of Dermatology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Simon Fillatreau
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, 75015 Paris, France; Université Paris Cité, Faculté de Médecine, Paris, France; AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Munich, Germany
| | - Klaus-Peter Wandinger
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Kilian Schober
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstr. 3/5, 91054 Erlangen, Germany; Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, 91054 Erlangen, Germany
| | - Roland Martin
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, Zurich, Switzerland; Cellerys AG, Wagistrasse 21, 8952 Schlieren, Switzerland; Institute of Experimental Immunology, University of Zurich, Wintherturerstrasse 191, 8057 Zurich, Switzerland; Department of Clinical Neuroscience, Karolinska Institute, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Frank Leypoldt
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Lübeck, Germany; Department of Neurology, University Hospital Schleswig-Holstein Kiel, Kiel, Germany
| | - Alexander Scheffold
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany.
| |
Collapse
|
2
|
Banerjee R, Ajithkumar P, Keestra N, Smith J, Gimenez G, Rodger EJ, Eccles MR, Antony J, Weeks RJ, Chatterjee A. Targeted DNA Methylation Editing Using an All-in-One System Establishes Paradoxical Activation of EBF3. Cancers (Basel) 2024; 16:898. [PMID: 38473261 DOI: 10.3390/cancers16050898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Cutaneous melanoma is rapidly on the rise globally, surpassing the growth rate of other cancers, with metastasis being the primary cause of death in melanoma patients. Consequently, understanding the mechanisms behind this metastatic process and exploring innovative treatments is of paramount importance. Recent research has shown promise in unravelling the role of epigenetic factors in melanoma progression to metastasis. While DNA hypermethylation at gene promoters typically suppresses gene expression, we have contributed to establishing the newly understood mechanism of paradoxical activation of genes via DNA methylation, where high methylation coincides with increased gene activity. This mechanism challenges the conventional paradigm that promoter methylation solely silences genes, suggesting that, for specific genes, it might actually activate them. Traditionally, altering DNA methylation in vitro has involved using global demethylating agents, which is insufficient for studying the mechanism and testing the direct consequence of gene methylation changes. To investigate promoter hypermethylation and its association with gene activation, we employed a novel approach utilising a CRISPR-SunTag All-in-one system. Here, we focused on editing the DNA methylation of a specific gene promoter segment (EBF3) in melanoma cells using the All-in-one system. Using bisulfite sequencing and qPCR with RNA-Seq, we successfully demonstrated highly effective methylation and demethylation of the EBF3 promoter, with subsequent gene expression changes, to establish and validate the paradoxical role of DNA methylation. Further, our study provides novel insights into the function of the EBF3 gene, which remains largely unknown. Overall, this study challenges the conventional view of methylation as solely a gene-silencing mechanism and demonstrates a potential function of EBF3 in IFN pathway signalling, potentially uncovering new insights into epigenetic drivers of malignancy and metastasis.
Collapse
Affiliation(s)
- Rakesh Banerjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Priyadarshana Ajithkumar
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Nicholas Keestra
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Jim Smith
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Gregory Gimenez
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Euan J Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Jisha Antony
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Robert J Weeks
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
- School of Health Sciences and Technology, UPES University, Dehradun 248007, India
| |
Collapse
|
3
|
Tang SB, Zhang TT, Yin S, Shen W, Luo SM, Zhao Y, Zhang CL, Klinger FG, Sun QY, Ge ZJ. Inheritance of perturbed methylation and metabolism caused by uterine malnutrition via oocytes. BMC Biol 2023; 21:43. [PMID: 36829148 PMCID: PMC9960220 DOI: 10.1186/s12915-023-01545-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Undernourishment in utero has deleterious effects on the metabolism of offspring, but the mechanism of the transgenerational transmission of metabolic disorders is not well known. In the present study, we found that undernourishment in utero resulted in metabolic disorders of female F1 and F2 in mouse model. RESULTS Undernutrition in utero induced metabolic disorders of F1 females, which was transmitted to F2 females. The global methylation in oocytes of F1 exposed to undernutrition in utero was decreased compared with the control. KEGG analysis showed that genes with differential methylation regions (DMRs) in promoters were significantly enriched in metabolic pathways. The altered methylation of some DMRs in F1 oocytes located at the promoters of metabolic-related genes were partially observed in F2 tissues, and the expressions of these genes were also changed. Meanwhile, the abnormal DNA methylation of the validated DMRs in F1 oocytes was also observed in F2 oocytes. CONCLUSIONS These results indicate that DNA methylation may mediate the transgenerational inheritance of metabolic disorders induced by undernourishment in utero via female germline.
Collapse
Affiliation(s)
- Shou-Bin Tang
- grid.412608.90000 0000 9526 6338College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109 People’s Republic of China
| | - Ting-Ting Zhang
- grid.412608.90000 0000 9526 6338College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109 People’s Republic of China ,grid.414011.10000 0004 1808 090XReproductive Medicine Center, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, 450003 People’s Republic of China
| | - Shen Yin
- grid.412608.90000 0000 9526 6338College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109 People’s Republic of China
| | - Wei Shen
- grid.412608.90000 0000 9526 6338College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109 People’s Republic of China
| | - Shi-Ming Luo
- grid.413405.70000 0004 1808 0686Fertility Preservation Lab and Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317 People’s Republic of China
| | - Yong Zhao
- grid.464332.4State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Cui-Lian Zhang
- grid.414011.10000 0004 1808 090XReproductive Medicine Center, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, 450003 People’s Republic of China
| | - Francesca Gioia Klinger
- grid.512346.7Histology and Embryology, Saint Camillus International University of Health Sciences, Rome, Italy
| | - Qing-Yuan Sun
- Fertility Preservation Lab and Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People's Republic of China.
| | - Zhao-Jia Ge
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
4
|
Alvizi L, Brito LA, Kobayashi GS, Bischain B, da Silva CBF, Ramos SLG, Wang J, Passos-Bueno MR. m ir152 hypomethylation as a mechanism for non-syndromic cleft lip and palate. Epigenetics 2022; 17:2278-2295. [PMID: 36047706 PMCID: PMC9665146 DOI: 10.1080/15592294.2022.2115606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/06/2022] [Accepted: 08/17/2022] [Indexed: 11/03/2022] Open
Abstract
Non-syndromic cleft lip with or without cleft palate (NSCLP), the most common human craniofacial malformation, is a complex disorder given its genetic heterogeneity and multifactorial component revealed by genetic, epidemiological, and epigenetic findings. Epigenetic variations associated with NSCLP have been identified; however, functional investigation has been limited. Here, we combined a reanalysis of NSCLP methylome data with genetic analysis and used both in vitro and in vivo approaches to dissect the functional effects of epigenetic changes. We found a region in mir152 that is frequently hypomethylated in NSCLP cohorts (21-26%), leading to mir152 overexpression. mir152 overexpression in human neural crest cells led to downregulation of spliceosomal, ribosomal, and adherens junction genes. In vivo analysis using zebrafish embryos revealed that mir152 upregulation leads to craniofacial cartilage impairment. Also, we suggest that zebrafish embryonic hypoxia leads to mir152 upregulation combined with mir152 hypomethylation and also analogous palatal alterations. We therefore propose that mir152 hypomethylation, potentially induced by hypoxia in early development, is a novel and frequent predisposing factor to NSCLP.
Collapse
Affiliation(s)
- Lucas Alvizi
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Universidade de São Paulo, Brasil
| | - Luciano Abreu Brito
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Universidade de São Paulo, Brasil
| | | | - Bárbara Bischain
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Universidade de São Paulo, Brasil
| | | | | | - Jaqueline Wang
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Universidade de São Paulo, Brasil
| | - Maria Rita Passos-Bueno
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Universidade de São Paulo, Brasil
| |
Collapse
|
5
|
Eleftheriou K, Peter A, Fedorenko I, Schmidt K, Wossidlo M, Arand J. A transition phase in late mouse oogenesis impacts DNA methylation of the early embryo. Commun Biol 2022; 5:1047. [PMID: 36184676 PMCID: PMC9527251 DOI: 10.1038/s42003-022-04008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
A well-orchestrated program of oocyte growth and differentiation results in a developmentally competent oocyte. In late oogenesis, germinal vesicle oocytes (GVOs) undergo chromatin remodeling accompanied by transcriptional silencing from an NSN (non-surrounded nucleolus) to an SN (surrounded nucleolus) chromatin state. By analyzing different cytoplasmic and nuclear characteristics, our results indicate that murine NSN-GVOs transition via an intermediate stage into SN-GVOs in vivo. Interestingly, this transition can also be observed ex vivo, including most characteristics seen in vivo, which allows to analyze this transition process in more detail. The nuclear rearrangements during the transition are accompanied by changes in DNA methylation and Tet enzyme-catalyzed DNA modifications. Early parthenogenetic embryos, derived from NSN-GVOs, show lower DNA methylation levels than SN-derived embryos. Together, our data suggest that a successful NSN-SN transition in oogenesis including proper DNA methylation remodeling is important for the establishment of a developmentally competent oocyte for the beginning of life.
Collapse
Affiliation(s)
- Kristeli Eleftheriou
- Department of Cell and Developmental Biology, Center of Anatomy and Cell Biology, Medical University of Vienna, 1090, Vienna, Austria
| | - Antonia Peter
- Department of Cell and Developmental Biology, Center of Anatomy and Cell Biology, Medical University of Vienna, 1090, Vienna, Austria
| | - Ivanna Fedorenko
- Department of Cell and Developmental Biology, Center of Anatomy and Cell Biology, Medical University of Vienna, 1090, Vienna, Austria
| | - Katy Schmidt
- Department of Cell and Developmental Biology, Center of Anatomy and Cell Biology, Medical University of Vienna, 1090, Vienna, Austria
| | - Mark Wossidlo
- Department of Cell and Developmental Biology, Center of Anatomy and Cell Biology, Medical University of Vienna, 1090, Vienna, Austria.
| | - Julia Arand
- Department of Cell and Developmental Biology, Center of Anatomy and Cell Biology, Medical University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
6
|
Kabekkodu SP, Chakrabarty S, Varghese VK, Ghosh S, Radhakrishnan R, Mallya SP, Kudva A. Salivary DNA methylation markers for cancer of oral cavity. Cancer Biomark 2022; 35:257-268. [PMID: 36245370 DOI: 10.3233/cbm-220028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE: Aberrant DNA methylation plays a crucial role in oral carcinogenesis. Our previous study demonstrated hypermethylation of DAPK1, LRPPRC, RAB6C, and ZNF471 promoters in patients with tongue squamous cell carcinoma compared with normal samples. Methylation profiling using salivary DNA is considered a non-invasive alternative to tissue samples. Hence, the present study tested the DNA methylation status of these four promoters as indicators of oral cancer progression. METHODS: We performed the bisulfite-based targeted next-generation sequencing of four candidate genes in saliva and tissue DNA from normal, premalignant, and squamous cell carcinoma subjects. The clinicopathological association, diagnostic, and prognostic utility of aberrant DNA methylation were evaluated using the TCGA-HNSCC dataset. Using the Xgboost algorithm and logistic regression, CpG sites were prioritized, and Receiver Operating Characteristic was generated. By Log-rank test and Kaplan-Meier (KM) curves, an association between methylation and overall survival (OS), disease-free interval (DFI), and progression-free interval (PFI) were computed. RESULTS: We identified all four genes as significantly hypermethylation in premalignant and malignant samples compared with normal samples. The methylation levels were comparable between saliva and tissue samples with an r-value of 0.6297 to 0.8023 and 0.7823 to 0.9419 between premalignant tissue vs. saliva and OC vs. saliva, respectively. We identified an inverse correlation between DAPK1, LRPPRC, RAB6C, and ZNF471 promoter methylation with its expression. A classifier of 8 differentially methylated CpG sites belonging to DAPK1, RAB6C, and ZNF471 promoters was constructed, showing an AUC of 0.984 to differentiate tumors from normal samples. The differential methylation status of DAPK1, LRPPRC, and ZNF71 promoters was prognostically important. Abnormal expression of all four genes was associated with immune infiltration. CONCLUSIONS: Thus, methylation analysis of these candidate CpG sites from saliva can be helpful as a non-invasive tool for the clinical management of OC.
Collapse
Affiliation(s)
- Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
- Centre for DNA repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
- Centre for DNA repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vinay Koshy Varghese
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Supriti Ghosh
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sandeep P. Mallya
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Adarsh Kudva
- Department of Oral and Maxillofacial Surgery, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
7
|
Gupta A, Nair S. Heritable Epigenomic Modifications Influence Stress Resilience and Rapid Adaptations in the Brown Planthopper ( Nilaparvata lugens). Int J Mol Sci 2022; 23:8728. [PMID: 35955860 PMCID: PMC9368798 DOI: 10.3390/ijms23158728] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/25/2022] Open
Abstract
DNA methylation in insects is integral to cellular differentiation, development, gene regulation, genome integrity, and phenotypic plasticity. However, its evolutionary potential and involvement in facilitating rapid adaptations in insects are enigmatic. Moreover, our understanding of these mechanisms is limited to a few insect species, of which none are pests of crops. Hence, we studied methylation patterns in the brown planthopper (BPH), a major rice pest, under pesticide and nutritional stress, across its life stages. Moreover, as the inheritance of epigenetic changes is fundamentally essential for acclimation, adaptability, and evolution, we determined the heritability and persistence of stress-induced methylation marks in BPH across generations. Our results revealed that DNA methylation pattern(s) in BPH varies/vary with environmental cues and is/are insect life-stage specific. Further, our findings provide novel insights into the heritability of stress-induced methylation marks in BPH. However, it was observed that, though heritable, these marks eventually fade in the absence of the stressors, thereby suggesting the existence of fitness cost(s) associated with the maintenance of the stressed epigenotype. Furthermore, we demonstrate how 5-azacytidine-mediated disruption of BPH methylome influences expression levels of stress-responsive genes and, thereby, highlight demethylation/methylation as a phenomenon underlying stress resilience of BPH.
Collapse
Affiliation(s)
| | - Suresh Nair
- Plant-Insect Interaction Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
8
|
Next-Generation Bisulfite Sequencing for Targeted DNA Methylation Analysis. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2458:47-62. [PMID: 35103961 DOI: 10.1007/978-1-0716-2140-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Bisulfite sequencing is the "gold-standard" technique for DNA methylation analysis. By combining bisulfite sequencing with high-throughput, next-generation sequencing technology, we can document methylation from many thousands of individual reads (equivalent to alleles or "cells"), for multiple target regions and from many samples simultaneously. Here, we describe a next-generation bisulfite-sequencing assay for targeted DNA methylation analysis which offers scope for the simultaneous interrogation of multiple genomic loci across numerous samples.
Collapse
|
9
|
Laqqan MM, Yassin MM. Cigarette heavy smoking alters DNA methylation patterns and gene transcription levels in humans spermatozoa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26835-26849. [PMID: 34855177 DOI: 10.1007/s11356-021-17786-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/23/2021] [Indexed: 05/27/2023]
Abstract
Tobacco smoking is considered the most common reason of death and infertility around the world. This study was designed to assess the impact of tobacco heavy smoking on sperm DNA methylation patterns and to determine whether the transcription level of ALDH3B2, PTGIR, PRICKLE2, and ALS2CR12 genes is different in heavy smokers compared to non-smokers. As a screening study, the 450 K array was used to assess the alteration in DNA methylation patterns between heavy smokers (n = 15) and non-smokers (n = 15). Then, four CpGs that have the highest difference in methylation level (cg16338278, cg08408433, cg05799088, and cg07227024) were selected for validation using deep bisulfite sequencing in an independent cohort of heavy smokers (n = 200) and non-smokers (n = 100). A significant variation was found between heavy smokers and non-smokers in the methylation level at all CpGs within the PRICKLE2 and ALS2CR12 gene amplicon (P < 0.001). Similarly, a significant variation was found in the methylation level at nine out of thirteen CpGs within the ALDH3B2 gene amplicon (P < 0.01). Additionally, eighteen CpGs out of the twenty-six within the PTGIR gene amplicon have a significant difference in the methylation level between heavy smokers and non-smokers (P < 0.01). The study showed a significant difference in sperm global DNA methylation, chromatin non-condensation, and DNA fragmentation (P < 0.001) between heavy smokers and non-smokers. A significant decline was shown in the transcription level of ALDH3B2, PTGIR, PRICKLE2, and ALS2CR12 genes (P < 0.001) in heavy smokers. In conclusion, heavy smoking influences DNA methylation at several CpGs, sperm global DNA methylation, and transcription level of the PRICKLE2, ALS2CR12, ALDH3B2, and PTGIR genes, which affects negatively the semen parameters of heavy smokers.
Collapse
Affiliation(s)
- Mohammed M Laqqan
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Islamic University, Gaza, Palestinian Territories, Palestine.
| | - Maged M Yassin
- Department of Human Physiology, Faculty of Medicine, Islamic University, Gaza, Palestinian Territories, Palestine
| |
Collapse
|
10
|
Tierling S, Jürgens-Wemheuer WM, Leismann A, Becker-Kettern J, Scherer M, Wrede A, Breuskin D, Urbschat S, Sippl C, Oertel J, Schulz-Schaeffer WJ, Walter J. Bisulfite profiling of the MGMT promoter and comparison with routine testing in glioblastoma diagnostics. Clin Epigenetics 2022; 14:26. [PMID: 35180887 PMCID: PMC8857788 DOI: 10.1186/s13148-022-01244-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/07/2022] [Indexed: 11/26/2022] Open
Abstract
Background Promoter methylation of the DNA repair gene O6-methylguanine-DNA methyltransferase (MGMT) is an acknowledged predictive epigenetic marker in glioblastoma multiforme and anaplastic astrocytoma. Patients with methylated CpGs in the MGMT promoter benefit from treatment with alkylating agents, such as temozolomide, and show an improved overall survival and progression-free interval. A precise determination of MGMT promoter methylation is of importance for diagnostic decisions. We experienced that different methods show partially divergent results in a daily routine. For an integrated neuropathological diagnosis of malignant gliomas, we therefore currently apply a combination of methylation-specific PCR assays and pyrosequencing. Results To better rationalize the variation across assays, we compared these standard techniques and assays to deep bisulfite sequencing results in a cohort of 80 malignant astrocytomas. Our deep analysis covers 49 CpG sites of the expanded MGMT promoter, including exon 1, parts of intron 1 and a region upstream of the transcription start site (TSS). We observed that deep sequencing data are in general in agreement with CpG-specific pyrosequencing, while the most widely used MSP assays published by Esteller et al. (N Engl J Med 343(19):1350–1354, 2000. 10.1056/NEJM200011093431901) and Felsberg et al. (Clin Cancer Res 15(21):6683–6693, 2009. 10.1158/1078-0432.CCR-08-2801) resulted in partially discordant results in 22 tumors (27.5%). Local deep bisulfite sequencing (LDBS) revealed that CpGs located in exon 1 are suited best to discriminate methylated from unmethylated samples. Based on LDBS data, we propose an optimized MSP primer pair with 83% and 85% concordance to pyrosequencing and LDBS data. A hitherto neglected region upstream of the TSS, with an overall higher methylation compared to exon 1 and intron 1 of MGMT, is also able to discriminate the methylation status. Conclusion Our integrated analysis allows to evaluate and redefine co-methylation domains within the MGMT promoter and to rationalize the practical impact on assays used in daily routine diagnostics. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01244-4.
Collapse
Affiliation(s)
- Sascha Tierling
- Fak.NT Life Sciences, Department of Genetics/Epigenetics, Saarland University, Campus, Building A2 4, 66041, Saarbrücken, Germany.
| | | | - Alea Leismann
- Fak.NT Life Sciences, Department of Genetics/Epigenetics, Saarland University, Campus, Building A2 4, 66041, Saarbrücken, Germany
| | - Julia Becker-Kettern
- Institute of Neuropathology, Medical Faculty of the Saarland University, Homburg, Germany
| | - Michael Scherer
- Fak.NT Life Sciences, Department of Genetics/Epigenetics, Saarland University, Campus, Building A2 4, 66041, Saarbrücken, Germany.,Department of Bioinformatics and Genomics, Centre for Genomic Regulation, Barcelona, Spain
| | - Arne Wrede
- Institute of Neuropathology, Medical Faculty of the Saarland University, Homburg, Germany
| | - David Breuskin
- Institute for Neurosurgery, Medical Faculty of the Saarland University, Homburg, Germany
| | - Steffi Urbschat
- Institute for Neurosurgery, Medical Faculty of the Saarland University, Homburg, Germany
| | - Christoph Sippl
- Institute for Neurosurgery, Medical Faculty of the Saarland University, Homburg, Germany
| | - Joachim Oertel
- Institute for Neurosurgery, Medical Faculty of the Saarland University, Homburg, Germany
| | | | - Jörn Walter
- Fak.NT Life Sciences, Department of Genetics/Epigenetics, Saarland University, Campus, Building A2 4, 66041, Saarbrücken, Germany
| |
Collapse
|
11
|
Tost J. Current and Emerging Technologies for the Analysis of the Genome-Wide and Locus-Specific DNA Methylation Patterns. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:395-469. [DOI: 10.1007/978-3-031-11454-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Ropret S, Kouter K, Zupanc T, Videtic Paska A. BDNF methylation and mRNA expression in brain and blood of completed suicides in Slovenia. World J Psychiatry 2021; 11:1301-1313. [PMID: 35070779 PMCID: PMC8717036 DOI: 10.5498/wjp.v11.i12.1301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/25/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Suicide is a major public health problem. Worldwide, around 800000 people die by suicide every year. Suicide is a multifactorial disorder, with numerous environmental and genetic risk factors involved. Among the candidate genes, changes in the BDNF locus at the gene, epigenetic, mRNA, and protein expression levels have been implicated in psychiatric disorders, including suicidal behavior and completed suicides.
AIM To investigate changes in BDNF methylation and expression of four alternative BDNF transcripts for association with completed suicide.
METHODS This case-control study included 42 unrelated male Caucasian subjects, where 20 were control subjects who died following acute cardiac arrest, and 22 were suicide victims who died by hanging. DNA and RNA were extracted from brain tissue (Brodmann area 9 and hippocampus) and from blood. DNA methylation and mRNA expression levels were determined by targeted bisulfite next-generation sequencing and reverse-transcription quantitative PCR. Statistical analysis was done by use of two-tailed Student’s t tests for two independent samples, and the Benjamini-Hochberg procedure was implemented for correction for multiple comparisons.
RESULTS In DNA from brain tissue, there were no significant differences in BDNF methylation between the study groups. However, data showed significantly reduced DNA methylation of the BDNF region upstream of exon I in blood samples of suicide victims compared to the controls (5.67 ± 0.57 vs 6.83 ± 0.64, Pcorr = 0.01). In Brodmann area 9 of the brain of the suicide victims but not in their hippocampus, there was higher expression of BDNF transcript I-IX (NM_170731.4) compared to the controls (0.077 ± 0.024 vs 0.05 ± 0.013, P = 0.042). In blood, expression analysis for the BDNF transcripts was not feasible due to extensive RNA degradation.
CONCLUSION Despite the limitations of the study, the obtained data further support a role for BDNF in suicidality. However, it should be noted that suicidal behavior is a multifactorial disorder with numerous environmental and genetic risk factors involved.
Collapse
Affiliation(s)
- Sandra Ropret
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana SI-1000, Slovenia
| | - Katarina Kouter
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana SI-1000, Slovenia
| | - Tomaž Zupanc
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana SI-1000, Slovenia
| | - Alja Videtic Paska
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana SI-1000, Slovenia
| |
Collapse
|
13
|
Yamashita H, Tourna A, Akita M, Itoh T, Chokshi S, Ajiki T, Fukumoto T, Youngson NA, Zen Y. Epigenetic upregulation of TET2 is an independent poor prognostic factor for intrahepatic cholangiocarcinoma. Virchows Arch 2021; 480:1077-1085. [PMID: 34905094 PMCID: PMC9033729 DOI: 10.1007/s00428-021-03251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/19/2021] [Accepted: 12/05/2021] [Indexed: 11/28/2022]
Abstract
Mutations in IDH1/2 and the epigenetic silencing of TET2 occur in leukaemia or glioma in a mutually exclusive manner. Although intrahepatic cholangiocarcinoma (iCCA) may harbour IDH1/2 mutations, the contribution of TET2 to carcinogenesis remains unknown. In the present study, the expression and promoter methylation of TET2 were investigated in iCCA. The expression of TET2 was assessed in 52 cases of iCCA (small-duct type, n = 33; large-duct type, n = 19) by quantitative PCR, immunohistochemistry (IHC) and a sequencing-based methylation assay, and its relationships with clinicopathological features and alterations in cancer-related genes (e.g., KRAS and IDH1) were investigated. In contrast to non-neoplastic bile ducts, which were negative for TET2 on IHC, 42 cases (81%) of iCCA showed the nuclear overexpression of TET2. Based on IHC scores (area × intensity), these cases were classified as TET2-high (n = 25) and TET2-low (n = 27). The histological type, tumour size, lymph node metastasis and frequency of mutations in cancer-related genes did not significantly differ between the two groups. Overall and recurrence-free survival were significantly worse in patients with TET2-high iCCA than in those with TET2-low iCCA. A multivariate analysis identified the high expression of TET2 as an independent prognostic factor (HR = 2.94; p = 0.007). The degree of methylation at two promoter CpG sites was significantly less in TET2-high iCCA than in TET2-low iCCA or non-cancer tissue. In conclusion, in contrast to other IDH-related neoplasms, TET2 overexpression is common in iCCA of both subtypes, and its high expression, potentially induced by promoter hypomethylation, is an independent poor prognostic factor.
Collapse
Affiliation(s)
- Hironori Yamashita
- Institute of Liver Studies, King's College Hospital, London, UK.,King's College London, London, UK.,Institute of Hepatology, Foundation for Liver Research, London, UK.,Department of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | - Masayuki Akita
- Department of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoo Itoh
- Department of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shilpa Chokshi
- Institute of Hepatology, Foundation for Liver Research, London, UK
| | - Tetsuo Ajiki
- Department of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takumi Fukumoto
- Department of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Neil A Youngson
- Institute of Hepatology, Foundation for Liver Research, London, UK. .,Faculty of Life Sciences and Medicine, King's College London, London, UK. .,School of Medical Sciences, UNSW Sydney, Sydney, Australia.
| | - Yoh Zen
- Institute of Liver Studies, King's College Hospital, London, UK. .,King's College London, London, UK.
| |
Collapse
|
14
|
Beck MA, Fischer H, Grabner LM, Groffics T, Winter M, Tangermann S, Meischel T, Zaussinger‐Haas B, Wagner P, Fischer C, Folie C, Arand J, Schöfer C, Ramsahoye B, Lagger S, Machat G, Eisenwort G, Schneider S, Podhornik A, Kothmayer M, Reichart U, Glösmann M, Tamir I, Mildner M, Sheibani‐Tezerji R, Kenner L, Petzelbauer P, Egger G, Sibilia M, Ablasser A, Seiser C. DNA hypomethylation leads to cGAS-induced autoinflammation in the epidermis. EMBO J 2021; 40:e108234. [PMID: 34586646 PMCID: PMC8591534 DOI: 10.15252/embj.2021108234] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
DNA methylation is a fundamental epigenetic modification, important across biological processes. The maintenance methyltransferase DNMT1 is essential for lineage differentiation during development, but its functions in tissue homeostasis are incompletely understood. We show that epidermis-specific DNMT1 deletion severely disrupts epidermal structure and homeostasis, initiating a massive innate immune response and infiltration of immune cells. Mechanistically, DNA hypomethylation in keratinocytes triggered transposon derepression, mitotic defects, and formation of micronuclei. DNA release into the cytosol of DNMT1-deficient keratinocytes activated signaling through cGAS and STING, thus triggering inflammation. Our findings show that disruption of a key epigenetic mark directly impacts immune and tissue homeostasis, and potentially impacts our understanding of autoinflammatory diseases and cancer immunotherapy.
Collapse
|
15
|
Methylation patterns of Tf2 retrotransposons linked to rapid adaptive stress response in the brown planthopper (Nilaparvata lugens). Genomics 2021; 113:4214-4226. [PMID: 34774681 DOI: 10.1016/j.ygeno.2021.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/12/2021] [Accepted: 11/07/2021] [Indexed: 11/23/2022]
Abstract
Transposable elements (TEs) exhibit vast diversity across insect orders and are one of the major factors driving insect evolution and speciation. Presence of TEs can be both beneficial and deleterious to their host. While it is well-established that TEs impact life-history traits, adaptations and survivability of insects under hostile environments, the influence of the ecological niche on TE-landscape remains unclear. Here, we analysed the dynamics of Tf2 retrotransposons in the brown planthopper (BPH), under environmental fluctuations. BPH, a major pest of rice, is found in almost all rice-growing ecosystems. We believe genome plasticity, attributed to TEs, has allowed BPH to adapt and colonise novel ecological niches. Our study revealed bimodal age-distribution for Tf2 elements in BPH, indicating the occurrence of two major transpositional events in its evolutionary history and their contribution in shaping BPH genome. While TEs can provide genome flexibility and facilitate adaptations, they impose massive load on the genome. Hence, we investigated the involvement of methylation in modulating transposition in BPH. We performed comparative analyses of the methylation patterns of Tf2 elements in BPH feeding on resistant- and susceptible-rice varieties, and also under pesticide stress, across different life-stages. Results confirmed that methylation, particularly in non-CG context, is involved in TE regulation and dynamics under stress. Furthermore, we observed differential methylation for BPH adults and nymphs, emphasising the importance of screening juvenile life-stages in understanding adaptive-stress-responses in insects. Collectively, this study enhances our understanding of the role of transposons in influencing the evolutionary trajectory and survival strategies of BPH across generations.
Collapse
|
16
|
Laqqan MM, Yassin MM. Influence of tobacco cigarette heavy smoking on DNA methylation patterns and transcription levels of MAPK8IP3, GAA, ANXA2, PRRC2A, and PDE11A genes in human spermatozoa. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2021. [DOI: 10.1186/s43043-021-00084-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
Background
Tobacco smoking is considered as one of the lifestyles factors that influence the sperm DNA methylation and global sperm DNA methylation and that may affect the sperm phenotype. This study was performed to investigate whether tobacco cigarette heavy smoking influences sperm DNA methylation patterns and semen parameters and to determine whether there is an alteration in the transcription level of MAPK8IP3, GAA, ANXA2, PRRC2A, and PDE11A genes in heavy smokers compared to non-smokers. Thirty samples were subjected to 450K arrays as a screening study to assess the variation in sperm DNA methylation levels between heavy smokers and non-smokers. Five CpG sites have the highest difference in methylation levels (cg07869343, cg05813498, cg09785377, cg06833981, and cg02745784), which are located in the MAPK8IP3, GAA, ANXA2, PRRC2A, and PDE11A genes, respectively, and were selected for further analysis using deep bisulfite sequencing in 280 independent samples (120 proven non-smokers and 160 heavy smokers) with a mean age of 33.8 ± 8.4 years. The global sperm DNA methylation, sperm DNA fragmentation, and chromatin non-condensation were evaluated also.
Results
A significant increase was found in the methylation level at seven, three, and seventeen CpGs within the GAA, ANXA2, and MAPK8IP3 genes amplicon, respectively (P< 0.01) in heavy smokers compared to non-smokers. Additionally, a significant increase was found in the methylation levels at all CpGs within PRRC2A and PDE11A gene amplicon (P< 0.01). A significant increase was found in the level of sperm chromatin non-condensation, DNA fragmentation, and global DNA methylation (P < 0.001) in heavy smokers compared to non-smokers.
Conclusion
These results indicate that tobacco cigarette smoking can alter the DNA methylation level at several CpGs, the status of global DNA methylation, and transcription level of the following genes “MAPK8IP3, GAA, ANXA2, PRRC2A, and PDE11A” in human spermatozoa. These findings may affect negatively semen parameters and men’s fertility.
Collapse
|
17
|
Locus-Specific DNA Methylation Editing in Melanoma Cell Lines Using a CRISPR-Based System. Cancers (Basel) 2021; 13:cancers13215433. [PMID: 34771597 PMCID: PMC8582460 DOI: 10.3390/cancers13215433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary DNA methylation is an important modification of the genome that is implicated in the pathogenesis of numerous human diseases, including cancer. DNA methylation changes can alter the expression of critical genes, predisposing to disease progression. Existing techniques that can modify DNA methylation to investigate disease etiology are severely limited with regard to specificity, which means that establishing a causal link between DNA methylation changes and disease progression is difficult. The advent of CRISPR-based technologies has provided a powerful tool for more specific editing of DNA methylation. Here, we describe a comprehensive protocol for the design and application of a CRISPR-dCas9-based tool for editing DNA methylation at a target locus in human melanoma cell lines alongside protocols for downstream techniques used to evaluate subsequent methylation and gene expression changes in methylation-edited cells. Furthermore, we demonstrate highly efficacious methylation and demethylation of the EBF3 promoter across a panel of melanoma cell lines. Abstract DNA methylation is a key epigenetic modification implicated in the pathogenesis of numerous human diseases, including cancer development and metastasis. Gene promoter methylation changes are widely associated with transcriptional deregulation and disease progression. The advent of CRISPR-based technologies has provided a powerful toolkit for locus-specific manipulation of the epigenome. Here, we describe a comprehensive global workflow for the design and application of a dCas9-SunTag-based tool for editing the DNA methylation locus in human melanoma cells alongside protocols for downstream techniques used to evaluate subsequent methylation and gene expression changes in methylation-edited cells. Using transient system delivery, we demonstrate both highly efficacious methylation and demethylation of the EBF3 promoter, which is a putative epigenetic driver of melanoma metastasis, achieving up to a 304.00% gain of methylation and 99.99% relative demethylation, respectively. Furthermore, we employ a novel, targeted screening approach to confirm the minimal off-target activity and high on-target specificity of our designed guide RNA within our target locus.
Collapse
|
18
|
Wei S, Tao J, Xu J, Chen X, Wang Z, Zhang N, Zuo L, Jia Z, Chen H, Sun H, Yan Y, Zhang M, Lv H, Kong F, Duan L, Ma Y, Liao M, Xu L, Feng R, Liu G, Project TEWAS, Jiang Y. Ten Years of EWAS. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100727. [PMID: 34382344 PMCID: PMC8529436 DOI: 10.1002/advs.202100727] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/11/2021] [Indexed: 06/13/2023]
Abstract
Epigenome-wide association study (EWAS) has been applied to analyze DNA methylation variation in complex diseases for a decade, and epigenome as a research target has gradually become a hot topic of current studies. The DNA methylation microarrays, next-generation, and third-generation sequencing technologies have prepared a high-quality platform for EWAS. Here, the progress of EWAS research is reviewed, its contributions to clinical applications, and mainly describe the achievements of four typical diseases. Finally, the challenges encountered by EWAS and make bold predictions for its future development are presented.
Collapse
Affiliation(s)
- Siyu Wei
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| | - Junxian Tao
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| | - Jing Xu
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| | - Xingyu Chen
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Zhaoyang Wang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Nan Zhang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Lijiao Zuo
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Zhe Jia
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Haiyan Chen
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Hongmei Sun
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Yubo Yan
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Mingming Zhang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Hongchao Lv
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Fanwu Kong
- The EWAS ProjectHarbinChina
- Department of NephrologyThe Second Affiliated HospitalHarbin Medical UniversityHarbin150001China
| | - Lian Duan
- The EWAS ProjectHarbinChina
- The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Ye Ma
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| | - Mingzhi Liao
- The EWAS ProjectHarbinChina
- College of Life SciencesNorthwest A&F UniversityYanglingShanxi712100China
| | - Liangde Xu
- The EWAS ProjectHarbinChina
- School of Biomedical EngineeringWenzhou Medical UniversityWenzhou325035China
| | - Rennan Feng
- The EWAS ProjectHarbinChina
- Department of Nutrition and Food HygienePublic Health CollegeHarbin Medical UniversityHarbin150081China
| | - Guiyou Liu
- The EWAS ProjectHarbinChina
- Beijing Institute for Brain DisordersCapital Medical UniversityBeijing100069China
| | | | - Yongshuai Jiang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| |
Collapse
|
19
|
Scherer M, Gasparoni G, Rahmouni S, Shashkova T, Arnoux M, Louis E, Nostaeva A, Avalos D, Dermitzakis ET, Aulchenko YS, Lengauer T, Lyons PA, Georges M, Walter J. Identification of tissue-specific and common methylation quantitative trait loci in healthy individuals using MAGAR. Epigenetics Chromatin 2021; 14:44. [PMID: 34530905 PMCID: PMC8444396 DOI: 10.1186/s13072-021-00415-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/02/2021] [Indexed: 12/18/2022] Open
Abstract
Background Understanding the influence of genetic variants on DNA methylation is fundamental for the interpretation of epigenomic data in the context of disease. There is a need for systematic approaches not only for determining methylation quantitative trait loci (methQTL), but also for discriminating general from cell type-specific effects. Results Here, we present a two-step computational framework MAGAR (https://bioconductor.org/packages/MAGAR), which fully supports the identification of methQTLs from matched genotyping and DNA methylation data, and additionally allows for illuminating cell type-specific methQTL effects. In a pilot analysis, we apply MAGAR on data in four tissues (ileum, rectum, T cells, B cells) from healthy individuals and demonstrate the discrimination of common from cell type-specific methQTLs. We experimentally validate both types of methQTLs in an independent data set comprising additional cell types and tissues. Finally, we validate selected methQTLs located in the PON1, ZNF155, and NRG2 genes by ultra-deep local sequencing. In line with previous reports, we find cell type-specific methQTLs to be preferentially located in enhancer elements. Conclusions Our analysis demonstrates that a systematic analysis of methQTLs provides important new insights on the influences of genetic variants to cell type-specific epigenomic variation. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00415-6.
Collapse
Affiliation(s)
- Michael Scherer
- Department of Genetics/Epigenetics, Saarland University, Saarbrücken, Germany.,Computational Biology, Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany.,Graduate School of Computer Science, Saarland Informatics Campus, Saarbrücken, Germany.,Department of Bioinformatics and Genomics, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Gilles Gasparoni
- Department of Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| | - Souad Rahmouni
- Unit of Animal Genomics, GIGA-Institute & Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Tatiana Shashkova
- Kurchatov Genomics Center of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Research and Training Center on Bioinformatics, A.A. Kharkevich Institute for Information Transmission Problems, Moscow, Russia
| | - Marion Arnoux
- Department of Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| | - Edouard Louis
- Department of Gastroenterology, Liège University Hospital, CHU Liège, Liège, Belgium
| | | | - Diana Avalos
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,Swiss Institute of Bioinformatics (SIB), University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| | - Emmanouil T Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,Swiss Institute of Bioinformatics (SIB), University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| | - Yurii S Aulchenko
- Kurchatov Genomics Center of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia.,Moscow Institute of Physics and Technology (State University), Moscow, Russia.,PolyKnomics BV, 's-Hertogenbosch, The Netherlands
| | - Thomas Lengauer
- Computational Biology, Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
| | - Paul A Lyons
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.,Cambridge Institute for Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Michel Georges
- Unit of Animal Genomics, GIGA-Institute & Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Jörn Walter
- Department of Genetics/Epigenetics, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
20
|
Gianmoena K, Gasparoni N, Jashari A, Gabrys P, Grgas K, Ghallab A, Nordström K, Gasparoni G, Reinders J, Edlund K, Godoy P, Schriewer A, Hayen H, Hudert CA, Damm G, Seehofer D, Weiss TS, Boor P, Anders HJ, Motrapu M, Jansen P, Schiergens TS, Falk-Paulsen M, Rosenstiel P, Lisowski C, Salido E, Marchan R, Walter J, Hengstler JG, Cadenas C. Epigenomic and transcriptional profiling identifies impaired glyoxylate detoxification in NAFLD as a risk factor for hyperoxaluria. Cell Rep 2021; 36:109526. [PMID: 34433051 DOI: 10.1016/j.celrep.2021.109526] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 05/12/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Epigenetic modifications (e.g. DNA methylation) in NAFLD and their contribution to disease progression and extrahepatic complications are poorly explored. Here, we use an integrated epigenome and transcriptome analysis of mouse NAFLD hepatocytes and identify alterations in glyoxylate metabolism, a pathway relevant in kidney damage via oxalate release-a harmful waste product and kidney stone-promoting factor. Downregulation and hypermethylation of alanine-glyoxylate aminotransferase (Agxt), which detoxifies glyoxylate, preventing excessive oxalate accumulation, is accompanied by increased oxalate formation after metabolism of the precursor hydroxyproline. Viral-mediated Agxt transfer or inhibiting hydroxyproline catabolism rescues excessive oxalate release. In human steatotic hepatocytes, AGXT is also downregulated and hypermethylated, and in NAFLD adolescents, steatosis severity correlates with urinary oxalate excretion. Thus, this work identifies a reduced capacity of the steatotic liver to detoxify glyoxylate, triggering elevated oxalate, and provides a mechanistic explanation for the increased risk of kidney stones and chronic kidney disease in NAFLD patients.
Collapse
Affiliation(s)
- Kathrin Gianmoena
- Department of Toxicology, Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), 44139 Dortmund, Germany
| | - Nina Gasparoni
- Department of Genetics, Saarland University, 66123 Saarbrücken, Germany
| | - Adelina Jashari
- Department of Toxicology, Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), 44139 Dortmund, Germany
| | - Philipp Gabrys
- Department of Toxicology, Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), 44139 Dortmund, Germany
| | - Katharina Grgas
- Department of Toxicology, Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), 44139 Dortmund, Germany
| | - Ahmed Ghallab
- Department of Toxicology, Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), 44139 Dortmund, Germany; Department of Forensic and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, 83523 Qena, Egypt
| | - Karl Nordström
- Department of Genetics, Saarland University, 66123 Saarbrücken, Germany
| | - Gilles Gasparoni
- Department of Genetics, Saarland University, 66123 Saarbrücken, Germany
| | - Jörg Reinders
- Department of Toxicology, Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), 44139 Dortmund, Germany
| | - Karolina Edlund
- Department of Toxicology, Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), 44139 Dortmund, Germany
| | - Patricio Godoy
- Department of Toxicology, Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), 44139 Dortmund, Germany
| | - Alexander Schriewer
- Department of Analytical Chemistry, Institute of Inorganic and Analytical Chemistry, University of Münster, 48149 Münster, Germany
| | - Heiko Hayen
- Department of Analytical Chemistry, Institute of Inorganic and Analytical Chemistry, University of Münster, 48149 Münster, Germany
| | - Christian A Hudert
- Department of Pediatric Gastroenterology, Hepatology and Metabolic Diseases, Charité-University Medicine Berlin, 13353 Berlin, Germany
| | - Georg Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, University of Leipzig, 04103 Leipzig, Germany; Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Daniel Seehofer
- Department of Hepatobiliary Surgery and Visceral Transplantation, University of Leipzig, 04103 Leipzig, Germany; Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Thomas S Weiss
- University Children Hospital (KUNO), University Hospital Regensburg, 93053 Regensburg, Germany
| | - Peter Boor
- Institute of Pathology and Department of Nephrology, University Clinic of RWTH Aachen, 52074 Aachen, Germany
| | - Hans-Joachim Anders
- Department of Medicine IV, Renal Division, University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Manga Motrapu
- Department of Medicine IV, Renal Division, University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Peter Jansen
- Maastricht Centre for Systems Biology, University of Maastricht, 6229 Maastricht, the Netherlands
| | - Tobias S Schiergens
- Biobank of the Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Maren Falk-Paulsen
- Institute of Clinical Molecular Biology (IKMB), Kiel University and University Hospital Schleswig Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology (IKMB), Kiel University and University Hospital Schleswig Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Clivia Lisowski
- Institute of Experimental Immunology, University Hospital Bonn, Rheinische-Friedrich-Wilhelms University Bonn, 53127 Bonn, Germany
| | - Eduardo Salido
- Hospital Universitario de Canarias, Universidad La Laguna, CIBERER, 38320 Tenerife, Spain
| | - Rosemarie Marchan
- Department of Toxicology, Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), 44139 Dortmund, Germany
| | - Jörn Walter
- Department of Genetics, Saarland University, 66123 Saarbrücken, Germany
| | - Jan G Hengstler
- Department of Toxicology, Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), 44139 Dortmund, Germany
| | - Cristina Cadenas
- Department of Toxicology, Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), 44139 Dortmund, Germany.
| |
Collapse
|
21
|
Cristall K, Bidard FC, Pierga JY, Rauh MJ, Popova T, Sebbag C, Lantz O, Stern MH, Mueller CR. A DNA methylation-based liquid biopsy for triple-negative breast cancer. NPJ Precis Oncol 2021; 5:53. [PMID: 34135468 PMCID: PMC8209161 DOI: 10.1038/s41698-021-00198-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Here, we present a next-generation sequencing (NGS) methylation-based blood test called methylation DETEction of Circulating Tumour DNA (mDETECT) designed for the optimal detection and monitoring of metastatic triple-negative breast cancer (TNBC). Based on a highly multiplexed targeted sequencing approach, this assay incorporates features that offer superior performance and included 53 amplicons from 47 regions. Analysis of a previously characterised cohort of women with metastatic TNBC with limited quantities of plasma (<2 ml) produced an AUC of 0.92 for detection of a tumour with a sensitivity of 76% for a specificity of 100%. mDETECTTNBC was quantitative and showed superior performance to an NGS TP53 mutation-based test carried out on the same patients and to the conventional CA15-3 biomarker. mDETECT also functioned well in serum samples from metastatic TNBC patients where it produced an AUC of 0.97 for detection of a tumour with a sensitivity of 93% for a specificity of 100%. An assay for BRCA1 promoter methylation was also incorporated into the mDETECT assay and functioned well but its clinical significance is currently unclear. Clonal Hematopoiesis of Indeterminate Potential was investigated as a source of background in control subjects but was not seen to be significant, though a link to adiposity may be relevant. The mDETECTTNBC assay is a liquid biopsy able to quantitatively detect all TNBC cancers and has the potential to improve the management of patients with this disease.
Collapse
Affiliation(s)
- Katrina Cristall
- Queen's Cancer Research Institute, Queen's University, Kingston, ON, Canada.,Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Francois-Clement Bidard
- Circulating Tumor Biomarkers Laboratory, SiRIC, Translational Research Department, Institut Curie, Paris, France.,Department of Medical Oncology, Institut Curie, Paris, France
| | - Jean-Yves Pierga
- Circulating Tumor Biomarkers Laboratory, SiRIC, Translational Research Department, Institut Curie, Paris, France.,Department of Medical Oncology, Institut Curie, Paris, France.,Université Paris Descartes, Paris, France
| | - Michael J Rauh
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Tatiana Popova
- INSERM U830 Cancer, Heterogeneity, Instability and Plasticity (CHIP), Institut Curie, Paris, France
| | - Clara Sebbag
- Department of Medical Oncology, Institut Curie, Paris, France
| | - Olivier Lantz
- Circulating Tumor Biomarkers Laboratory, SiRIC, Translational Research Department, Institut Curie, Paris, France.,INSERM CIC BT 1428, Institut Curie, Paris, France.,INSERM U932, Institut Curie, Paris, France
| | - Marc-Henri Stern
- INSERM U830 Cancer, Heterogeneity, Instability and Plasticity (CHIP), Institut Curie, Paris, France
| | - Christopher R Mueller
- Queen's Cancer Research Institute, Queen's University, Kingston, ON, Canada. .,Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada. .,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
22
|
Almomani SN, Alsaleh AA, Weeks RJ, Chatterjee A, Day RC, Honda I, Homma H, Fukuzawa R, Slatter TL, Hung NA, Devenish C, Morison IM, Macaulay EC. Identification and validation of DNA methylation changes in pre-eclampsia. Placenta 2021; 110:16-23. [PMID: 34098319 DOI: 10.1016/j.placenta.2021.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/25/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Pre-eclampsia (PE) is a dangerous placental condition that can lead to premature labour, seizures and death of mother and infant. Several studies have identified altered placental DNA methylation in PE; however, there is widespread inconsistency between studies and most findings have not been replicated. This study aimed to identify and validate consistent differences in methylation across multiple PE cohorts. METHODS Seven publicly available 450K methylation array datasets were analysed to identify consistent differentially methylated positions (DMPs) in PE. DMPs were identified based on methylation difference (≥10%) and significance (p-value ≤ 1 × 10-7). Targeted deep bisulfite sequencing was then performed to validate a subset of DMPs in an additional independent PE cohort. RESULTS Stringent analysis of the seven 450K datasets identified 25 DMPs (associated with 11 genes) in only one dataset. Using more relaxed criteria confirmed 19 of the stringent 25 DMPs in at least four of the remaining six datasets. Targeted deep bisulfite sequencing of eight DMPs (associated with three genes; CMIP, ST3GAL1 and DAPK3) in an independent PE cohort validated two DMPs in the CMIP gene. Seven additional CpG sites in CMIP were found to be significantly differentially methylated in PE. DISCUSSION The identification and validation of significant differential methylation in CMIP suggests that the altered DNA methylation of this gene may be associated with the pathogenesis of PE, and may have the potential to serve as diagnostic biomarkers for this dangerous condition of pregnancy.
Collapse
Affiliation(s)
- Suzan N Almomani
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand
| | - Abdulmonem A Alsaleh
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Department of Clinical Laboratory Sciences, Mohammed Al-Mana College for Medical Sciences, Dammam, Saudi Arabia
| | - Robert J Weeks
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand
| | - Robert C Day
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Izumi Honda
- Department of Gynecology and Obstetrics, Tokyo Metropolitan Tama Medical Center, 2-8-29 Musashidai, Fuchu, Tokyo, 183-8524, Japan
| | - Hidekazu Homma
- Department of Neonatology, Tokyo Metropolitan Children's Medical Center, 2-8-29 Musashidai, Fuchu, Tokyo, 183-8561, Japan
| | - Ryuji Fukuzawa
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Department of Pathology, International University of Health and Welfare, School of Medicine, Narita, Japan
| | - Tania L Slatter
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Noelyn A Hung
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Celia Devenish
- Women's and Children's Health, Otago Medical School Dunedin Campus, University of Otago, Dunedin, New Zealand
| | - Ian M Morison
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Erin C Macaulay
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
23
|
Chenarani N, Emamjomeh A, Allahverdi A, Mirmostafa S, Afsharinia MH, Zahiri J. Bioinformatic tools for DNA methylation and histone modification: A survey. Genomics 2021; 113:1098-1113. [PMID: 33677056 DOI: 10.1016/j.ygeno.2021.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/10/2020] [Accepted: 03/02/2021] [Indexed: 01/19/2023]
Abstract
Epigenetic inheritance occurs due to different mechanisms such as chromatin and histone modifications, DNA methylation and processes mediated by non-coding RNAs. It leads to changes in gene expressions and the emergence of new traits in different organisms in many diseases such as cancer. Recent advances in experimental methods led to the identification of epigenetic target sites in various organisms. Computational approaches have enabled us to analyze mass data produced by these methods. Next-generation sequencing (NGS) methods have been broadly used to identify these target sites and their patterns. By using these patterns, the emergence of diseases could be prognosticated. In this study, target site prediction tools for two major epigenetic mechanisms comprising histone modification and DNA methylation are reviewed. Publicly accessible databases are reviewed as well. Some suggestions regarding the state-of-the-art methods and databases have been made, including examining patterns of epigenetic changes that are important in epigenotypes detection.
Collapse
Affiliation(s)
- Nasibeh Chenarani
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Abbasali Emamjomeh
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran; Laboratory of Computational Biotechnology and Bioinformatics (CBB), Department of Bioinformatics, Faculty of Basic Sciences, University of Zabol, Zabol, Iran.
| | - Abdollah Allahverdi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - SeyedAli Mirmostafa
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Hossein Afsharinia
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javad Zahiri
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran; Department of Neuroscience, University of California, San Diego, USA.
| |
Collapse
|
24
|
Feiner LK, Tierling S, Holländer S, Glanemann M, Rubie C. An aging and p53 related marker: HOXA5 promoter methylation negatively correlates with mRNA and protein expression in old age. Aging (Albany NY) 2021; 13:4831-4849. [PMID: 33547267 PMCID: PMC7950283 DOI: 10.18632/aging.202621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/04/2021] [Indexed: 12/02/2022]
Abstract
The process of aging has been associated with differential patterns of DNA methylation which relate to changes in gene expression. Hence, we aimed to identify genes with significant age-related methylation differences and to study their mRNA and protein expression profile. Genome-wide DNA methylation analysis was performed with the Illumina Infinium Methylation EPIC BeadChip Microarray on bisulfite-converted DNA prepared from monocytes derived from young (average age: 23.8 yrs) and old (average age: 81.5 yrs) volunteers that are separated by at least 50 years of age difference, n=4, respectively. Differentially methylated CpG sites were assigned to the associated genes and validated by deep sequencing analysis (n=20). Demonstrating an age-associated significant increase of methylation in the promoter region (p=1x10-8), Homeobox A5 (HOXA5), also known to activate p53, emerged as an interesting candidate for further expression analyses by Realtime PCR, ELISA and Western Blot Analysis (n=30, respectively). Consistent with its hypermethylation we observed significant HOXA5 mRNA downregulation (p=0.0053) correlating with significant p53 downregulation (p=0.0431) in the old cohort. Moreover, we observed a significant change in HOXA5 protein expression (p=3x10-5) negatively correlating with age and promoter methylation thus qualifying HOXA5 for an eligible p53-related aging marker.
Collapse
Affiliation(s)
- Laura-Kim Feiner
- Department of General-, Visceral-, Vascular- and Pediatric Surgery, University of Saarland Medical Center, Homburg 66421, Saar, Germany
| | - Sascha Tierling
- Department of Genetics and Epigenetics, Saarland University, Saarbrücken 66123, Germany
| | - Sebastian Holländer
- Department of General-, Visceral-, Vascular- and Pediatric Surgery, University of Saarland Medical Center, Homburg 66421, Saar, Germany
| | - Matthias Glanemann
- Department of General-, Visceral-, Vascular- and Pediatric Surgery, University of Saarland Medical Center, Homburg 66421, Saar, Germany
| | - Claudia Rubie
- Department of General-, Visceral-, Vascular- and Pediatric Surgery, University of Saarland Medical Center, Homburg 66421, Saar, Germany
| |
Collapse
|
25
|
Kressler C, Gasparoni G, Nordström K, Hamo D, Salhab A, Dimitropoulos C, Tierling S, Reinke P, Volk HD, Walter J, Hamann A, Polansky JK. Targeted De-Methylation of the FOXP3-TSDR Is Sufficient to Induce Physiological FOXP3 Expression but Not a Functional Treg Phenotype. Front Immunol 2021; 11:609891. [PMID: 33488615 PMCID: PMC7817622 DOI: 10.3389/fimmu.2020.609891] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/20/2020] [Indexed: 12/22/2022] Open
Abstract
CD4+ regulatory T cells (Tregs) are key mediators of immunological tolerance and promising effector cells for immuno-suppressive adoptive cellular therapy to fight autoimmunity and chronic inflammation. Their functional stability is critical for their clinical utility and has been correlated to the demethylated state of the TSDR/CNS2 enhancer element in the Treg lineage transcription factor FOXP3. However, proof for a causal contribution of the TSDR de-methylation to FOXP3 stability and Treg induction is so far lacking. We here established a powerful transient-transfection CRISPR-Cas9-based epigenetic editing method for the selective de-methylation of the TSDR within the endogenous chromatin environment of a living cell. The induced de-methylated state was stable over weeks in clonal T cell proliferation cultures even after expression of the editing complex had ceased. Epigenetic editing of the TSDR resulted in FOXP3 expression, even in its physiological isoform distribution, proving a causal role for the de-methylated TSDR in FOXP3 regulation. However, successful FOXP3 induction was not associated with a switch towards a functional Treg phenotype, in contrast to what has been reported from FOXP3 overexpression approaches. Thus, TSDR de-methylation is required, but not sufficient for a stable Treg phenotype induction. Therefore, targeted demethylation of the TSDR may be a critical addition to published in vitro Treg induction protocols which so far lack FOXP3 stability.
Collapse
Affiliation(s)
- Christopher Kressler
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany.,Immuno-Epigenetics, German Rheumatism Research Centre (DRFZ), Berlin, Germany
| | | | - Karl Nordström
- Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| | - Dania Hamo
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany.,Immuno-Epigenetics, German Rheumatism Research Centre (DRFZ), Berlin, Germany
| | | | | | - Sascha Tierling
- Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| | - Petra Reinke
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Hans-Dieter Volk
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jörn Walter
- Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| | - Alf Hamann
- Immuno-Epigenetics, German Rheumatism Research Centre (DRFZ), Berlin, Germany
| | - Julia K Polansky
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany.,Immuno-Epigenetics, German Rheumatism Research Centre (DRFZ), Berlin, Germany.,Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
26
|
Berg JL, Perfler B, Hatzl S, Mayer MC, Wurm S, Uhl B, Reinisch A, Klymiuk I, Tierling S, Pregartner G, Bachmaier G, Berghold A, Geissler K, Pichler M, Hoefler G, Strobl H, Wölfler A, Sill H, Zebisch A. Micro-RNA-125a mediates the effects of hypomethylating agents in chronic myelomonocytic leukemia. Clin Epigenetics 2021; 13:1. [PMID: 33407852 PMCID: PMC7789782 DOI: 10.1186/s13148-020-00979-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Chronic myelomonocytic leukemia (CMML) is an aggressive hematopoietic malignancy that arises from hematopoietic stem and progenitor cells (HSPCs). Patients with CMML are frequently treated with epigenetic therapeutic approaches, in particular the hypomethylating agents (HMAs), azacitidine (Aza) and decitabine (Dec). Although HMAs are believed to mediate their efficacy via re-expression of hypermethylated tumor suppressors, knowledge about relevant HMA targets is scarce. As silencing of tumor-suppressive micro-RNAs (miRs) by promoter hypermethylation is a crucial step in malignant transformation, we asked for a role of miRs in HMA efficacy in CMML. RESULTS Initially, we performed genome-wide miR-expression profiling in a KrasG12D-induced CMML mouse model. Selected candidates with prominently decreased expression were validated by qPCR in CMML mice and human CMML patients. These experiments revealed the consistent decrease in miR-125a, a miR with previously described tumor-suppressive function in myeloid neoplasias. Furthermore, we show that miR-125a downregulation is caused by hypermethylation of its upstream region and can be reversed by HMA treatment. By employing both lentiviral and CRISPR/Cas9-based miR-125a modification, we demonstrate that HMA-induced miR-125a upregulation indeed contributes to mediating the anti-leukemic effects of these drugs. These data were validated in a clinical context, as miR-125a expression increased after HMA treatment in CMML patients, a phenomenon that was particularly pronounced in cases showing clinical response to these drugs. CONCLUSIONS Taken together, we report decreased expression of miR-125a in CMML and delineate its relevance as mediator of HMA efficacy within this neoplasia.
Collapse
Affiliation(s)
- Johannes Lorenz Berg
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria
| | - Bianca Perfler
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria
| | - Stefan Hatzl
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria
| | - Marie-Christina Mayer
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria
| | - Sonja Wurm
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria
| | - Barbara Uhl
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria
| | - Andreas Reinisch
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria
| | - Ingeborg Klymiuk
- Core Facility Molecular Biology, Medical University of Graz, Graz, Austria
| | - Sascha Tierling
- Department of Genetics, University of Saarland, Saarbrücken, Germany
| | - Gudrun Pregartner
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Gerhard Bachmaier
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Andrea Berghold
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Klaus Geissler
- 5th Medical Department with Hematology, Oncology and Palliative Medicine, Hospital Hietzing, Vienna, Austria.,Sigmund Freud University, Vienna, Austria
| | - Martin Pichler
- Division of Oncology, Medical University of Graz, Graz, Austria.,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Centre, Houston, TX, USA
| | - Gerald Hoefler
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Herbert Strobl
- Otto Loewi Research Centre, Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Albert Wölfler
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria
| | - Heinz Sill
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria
| | - Armin Zebisch
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria. .,Otto-Loewi Research Centre for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010, Graz, Austria.
| |
Collapse
|
27
|
Mayyas IM, Weeks RJ, Day RC, Magrath HE, O'Connor KM, Kardailsky O, Hore TA, Hampton MB, Morison IM. Hairpin-bisulfite sequencing of cells exposed to decitabine documents the process of DNA demethylation. Epigenetics 2020; 16:1251-1259. [PMID: 33315501 DOI: 10.1080/15592294.2020.1861169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Although the mechanism of DNA demethylating drugs has been understood for many years, the direct effect of these drugs on methylation of the complementary strands of DNA has not been formally demonstrated. By using hairpin-bisulphite sequencing, we describe the kinetics and pattern of DNA methylation following treatment of cells by the DNA methyltransferase 1 (DNMT1) inhibitor, decitabine. As expected, we demonstrate complete loss of methylation on the daughter strand following S-phase in selected densely methylated genes in synchronized Jurkat cells. Thereafter, cells showed a heterogeneous pattern of methylation reflecting replication of the unmethylated strand and restoration of methylation.
Collapse
Affiliation(s)
- Issam M Mayyas
- Department of Pathology, University of Otago, Dunedin, New Zealand
| | - Robert J Weeks
- Department of Pathology, University of Otago, Dunedin, New Zealand
| | - Robert C Day
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Helena E Magrath
- Department of Pathology, University of Otago, Dunedin, New Zealand.,Department of Medical Genetics, University of Pécs, Hungary
| | - Karina M O'Connor
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Olga Kardailsky
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Timothy A Hore
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Mark B Hampton
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Ian M Morison
- Department of Pathology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
28
|
Müller M, Legrand C, Tuorto F, Kelly VP, Atlasi Y, Lyko F, Ehrenhofer-Murray AE. Queuine links translational control in eukaryotes to a micronutrient from bacteria. Nucleic Acids Res 2019; 47:3711-3727. [PMID: 30715423 PMCID: PMC6468285 DOI: 10.1093/nar/gkz063] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/11/2019] [Accepted: 01/24/2019] [Indexed: 12/25/2022] Open
Abstract
In eukaryotes, the wobble position of tRNA with a GUN anticodon is modified to the 7-deaza-guanosine derivative queuosine (Q34), but the original source of Q is bacterial, since Q is synthesized by eubacteria and salvaged by eukaryotes for incorporation into tRNA. Q34 modification stimulates Dnmt2/Pmt1-dependent C38 methylation (m5C38) in the tRNAAsp anticodon loop in Schizosaccharomyces pombe. Here, we show by ribosome profiling in S. pombe that Q modification enhances the translational speed of the C-ending codons for aspartate (GAC) and histidine (CAC) and reduces that of U-ending codons for asparagine (AAU) and tyrosine (UAU), thus equilibrating the genome-wide translation of synonymous Q codons. Furthermore, Q prevents translation errors by suppressing second-position misreading of the glycine codon GGC, but not of wobble misreading. The absence of Q causes reduced translation of mRNAs involved in mitochondrial functions, and accordingly, lack of Q modification causes a mitochondrial defect in S. pombe. We also show that Q-dependent stimulation of Dnmt2 is conserved in mice. Our findings reveal a direct mechanism for the regulation of translational speed and fidelity in eukaryotes by a nutrient originating from bacteria.
Collapse
Affiliation(s)
- Martin Müller
- Institut für Biologie, Molekulare Zellbiologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carine Legrand
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Francesca Tuorto
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Vincent P Kelly
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College Dublin, Dublin, Ireland
| | - Yaser Atlasi
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Ann E Ehrenhofer-Murray
- Institut für Biologie, Molekulare Zellbiologie, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
29
|
Czepukojc B, Abuhaliema A, Barghash A, Tierling S, Naß N, Simon Y, Körbel C, Cadenas C, van Hul N, Sachinidis A, Hengstler JG, Helms V, Laschke MW, Walter J, Haybaeck J, Leclercq I, Kiemer AK, Kessler SM. IGF2 mRNA Binding Protein 2 Transgenic Mice Are More Prone to Develop a Ductular Reaction and to Progress Toward Cirrhosis. Front Med (Lausanne) 2019; 6:179. [PMID: 31555647 PMCID: PMC6737005 DOI: 10.3389/fmed.2019.00179] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 07/23/2019] [Indexed: 12/21/2022] Open
Abstract
The insulin-like growth factor 2 (IGF2) mRNA binding proteins (IMPs/IGF2BPs) IMP1 and 3 are regarded as oncofetal proteins, whereas the hepatic IMP2 expression in adults is controversially discussed. The splice variant IMP2-2/p62 promotes steatohepatitis and hepatocellular carcinoma. Aim of this study was to clarify whether IMP2 is expressed in the adult liver and influences progression toward cirrhosis. IMP2 was expressed at higher levels in embryonic compared to adult tissues as quantified in embryonic, newborn, and adult C57BL/6J mouse livers and suggested by analysis of publicly available human data. In an IMP2-2 transgenic mouse model microarray and qPCR analyses revealed increased expression of liver progenitor cell (LPC) markers Bex1, Prom1, Spp1, and Cdh1 indicating a de-differentiated liver cell phenotype. Induction of these LPC markers was confirmed in human cirrhotic tissue datasets. The LPC marker SPP1 has been described to play a major role in fibrogenesis. Thus, DNA methylation was investigated in order to decipher the regulatory mechanism of Spp1 induction. In IMP2-2 transgenic mouse livers single CpG sites were differentially methylated, as quantified by amplicon sequencing, whereas human HCC samples of a human publicly available dataset showed promoter hypomethylation. In order to study the impact of IMP2 on fibrogenesis in the context of steatohepatitis wild-type or IMP2-2 transgenic mice were fed either a methionine-choline deficient (MCD) or a control diet for 2-12 weeks. MCD-fed IMP2-2 transgenic mice showed a higher incidence of ductular reaction (DR), accompanied by hepatic stellate cell activation, extracellular matrix (ECM) deposition, and induction of the LPC markers Spp1, Cdh1, and Afp suggesting the occurrence of de-differentiated cells in transgenic livers. In human cirrhotic samples IMP2 overexpression correlated with LPC marker and ECM component expression. Progression of liver disease was induced by combined MCD and diethylnitrosamine (DEN) treatment. Combined MCD-DEN treatment resulted in shorter survival of IMP2-2 transgenic compared to wild-type mice. Only IMP2-2 transgenic livers progressed to cirrhosis, which was accompanied by strong DR. In conclusion, IMP2 is an oncofetal protein in the liver that promotes DR characterized by de-differentiated cells toward steatohepatitis-associated cirrhosis development with poor survival.
Collapse
Affiliation(s)
- Beate Czepukojc
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Ali Abuhaliema
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Ahmad Barghash
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany.,Department of Computer Science, German Jordanian University, Amman, Jordan
| | - Sascha Tierling
- Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| | - Norbert Naß
- Department of Pathology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Yvette Simon
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Christina Körbel
- Institute of Clinical-Experimental Surgery, Saarland University Hospital, Homburg, Germany
| | - Cristina Cadenas
- Systems Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo) at the TU Dortmund, Dortmund, Germany
| | - Noemi van Hul
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Agapios Sachinidis
- Center for Molecular Medicine Cologne (CMMC), Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Jan G Hengstler
- Systems Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo) at the TU Dortmund, Dortmund, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Matthias W Laschke
- Institute of Clinical-Experimental Surgery, Saarland University Hospital, Homburg, Germany
| | - Jörn Walter
- Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| | - Johannes Haybaeck
- Department of Pathology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Institute of Pathology, Medical University of Graz, Graz, Austria.,Department of Pathology, Medical University Innsbruck, Innsbruck, Austria
| | - Isabelle Leclercq
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Alexandra K Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Sonja M Kessler
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany.,Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.,Institute of Pathology, Medical University of Graz, Graz, Austria
| |
Collapse
|
30
|
Giehr P, Kyriakopoulos C, Lepikhov K, Wallner S, Wolf V, Walter J. Two are better than one: HPoxBS - hairpin oxidative bisulfite sequencing. Nucleic Acids Res 2019; 46:e88. [PMID: 29912476 PMCID: PMC6125676 DOI: 10.1093/nar/gky422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/13/2018] [Indexed: 12/30/2022] Open
Abstract
The controlled and stepwise oxidation of 5mC to 5hmC, 5fC and 5caC by Tet enzymes is influencing the chemical and biological properties of cytosine. Besides direct effects on gene regulation, oxidised forms influence the dynamics of demethylation and re-methylation processes. So far, no combined methods exist which allow to precisely determine the strand specific localisation of cytosine modifications along with their CpG symmetric distribution. Here we describe a comprehensive protocol combining conventional hairpin bisulfite with oxidative bisulfite sequencing (HPoxBS) to determine the strand specific distribution of 5mC and 5hmC at base resolution. We apply this method to analyse the contribution of local oxidative effects on DNA demethylation in mouse ES cells. Our method includes the HPoxBS workflow and subsequent data analysis using our developed software tools. Besides a precise estimation and display of strand specific 5mC and 5hmC levels at base resolution we apply the data to predict region specific activities of Dnmt and Tet enzymes. Our experimental and computational workflow provides a precise double strand display of 5mC and 5hmC modifications at single base resolution. Based on our data we predict region specific Tet and Dnmt enzyme efficiencies shaping the distinct locus levels and patterns of 5hmC and 5mC.
Collapse
Affiliation(s)
- Pascal Giehr
- Department of Biological Sciences, Saarland University, Campus A2.4, 66123 Saarbrücken, Saarland, Germany
| | | | - Konstantin Lepikhov
- Department of Biological Sciences, Saarland University, Campus A2.4, 66123 Saarbrücken, Saarland, Germany
| | - Stefan Wallner
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Bayern, Germany
| | - Verena Wolf
- Computer Science Department, Saarland University, Campus E1.3, 66123 Saarbrücken, Saarland, Germany
| | - Jörn Walter
- Department of Biological Sciences, Saarland University, Campus A2.4, 66123 Saarbrücken, Saarland, Germany
| |
Collapse
|
31
|
Leitão E, Beygo J, Zeschnigk M, Klein-Hitpass L, Bargull M, Rahmann S, Horsthemke B. Locus-Specific DNA Methylation Analysis by Targeted Deep Bisulfite Sequencing. Methods Mol Biol 2019. [PMID: 29524145 DOI: 10.1007/978-1-4939-7774-1_19] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
DNA methylation, i.e., the methylation of cytosine at carbon atom C5, has an important role in the regulation of gene expression. The methylation status of each cytosine in a specific genomic region can be determined by targeted deep bisulfite sequencing at single-molecule resolution. Here we describe the design of PCR primers that are used to amplify specific sequences from bisulfite-converted DNA, the preparation of sequencing libraries, the sequencing of these libraries on the MiSeq system, as well as the analysis of the sequence reads. Using appropriate software tools such as amplikyzer2, it is easy to analyze complex multiplexed samples with several regions of interest, to determine the mean methylation values of all CpG dinucleotides in a region or of each CpG dinucleotide across all or selected reads, and to compare these values between different samples and between different alleles within a sample.
Collapse
Affiliation(s)
- Elsa Leitão
- Institute of Human Genetics, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Jasmin Beygo
- Institute of Human Genetics, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Michael Zeschnigk
- Institute of Human Genetics, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Ludger Klein-Hitpass
- Institute of Cell Biology, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Marcel Bargull
- Genome Informatics, Institute of Human Genetics, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Sven Rahmann
- Genome Informatics, Institute of Human Genetics, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Bernhard Horsthemke
- Institute of Human Genetics, University of Duisburg-Essen, University Hospital Essen, Essen, Germany.
| |
Collapse
|
32
|
Müller M, Samel-Pommerencke A, Legrand C, Tuorto F, Lyko F, Ehrenhofer-Murray AE. Division of labour: tRNA methylation by the NSun2 tRNA methyltransferases Trm4a and Trm4b in fission yeast. RNA Biol 2019; 16:249-256. [PMID: 30646830 PMCID: PMC6380293 DOI: 10.1080/15476286.2019.1568819] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Enzymes of the cytosine-5 RNA methyltransferase Trm4/NSun2 family methylate tRNAs at C48 and C49 in multiple tRNAs, as well as C34 and C40 in selected tRNAs. In contrast to most other organisms, fission yeast Schizosaccharomyces pombe carries two Trm4/NSun2 homologs, Trm4a (SPAC17D4.04) and Trm4b (SPAC23C4.17). Here, we have employed tRNA methylome analysis to determine the dependence of cytosine-5 methylation (m5C) tRNA methylation in vivo on the two enzymes. Remarkably, Trm4a is responsible for all C48 methylation, which lies in the tRNA variable loop, as well as for C34 in tRNALeuCAA and tRNAProCGG, which are at the anticodon wobble position. Conversely, Trm4b methylates C49 and C50, which both lie in the TΨC-stem. Thus, S. pombe show an unusual separation of activities of the NSun2/Trm4 enzymes that are united in a single enzyme in other eukaryotes like humans, mice and Saccharomyces cerevisiae. Furthermore, in vitro activity assays showed that Trm4a displays intron-dependent methylation of C34, whereas Trm4b activity is independent of the intron. The absence of Trm4a, but not Trm4b, causes a mild resistance of S. pombe to calcium chloride.
Collapse
Affiliation(s)
- Martin Müller
- a Institut für Biologie, Molekulare Zellbiologie , Humboldt-Universität zu Berlin , Berlin , Germany
| | - Anke Samel-Pommerencke
- a Institut für Biologie, Molekulare Zellbiologie , Humboldt-Universität zu Berlin , Berlin , Germany
| | - Carine Legrand
- b Division of Epigenetics, DKFZ-ZMBH Alliance , German Cancer Research Center , Heidelberg , Germany
| | - Francesca Tuorto
- b Division of Epigenetics, DKFZ-ZMBH Alliance , German Cancer Research Center , Heidelberg , Germany
| | - Frank Lyko
- b Division of Epigenetics, DKFZ-ZMBH Alliance , German Cancer Research Center , Heidelberg , Germany
| | - Ann E Ehrenhofer-Murray
- a Institut für Biologie, Molekulare Zellbiologie , Humboldt-Universität zu Berlin , Berlin , Germany
| |
Collapse
|
33
|
Veron V, Marandel L, Liu J, Vélez EJ, Lepais O, Panserat S, Skiba S, Seiliez I. DNA methylation of the promoter region of bnip3 and bnip3l genes induced by metabolic programming. BMC Genomics 2018; 19:677. [PMID: 30223788 PMCID: PMC6142374 DOI: 10.1186/s12864-018-5048-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/31/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Environmental changes of biotic or abiotic nature during critical periods of early development may exert a profound influence on physiological functions later in life. This process, named developmental programming can also be driven through parental nutrition. At molecular level, epigenetic modifications are the most likely candidate for persistent modulation of genes expression in later life. RESULTS In order to investigate epigenetic modifications induced by programming in rainbow trout, we focused on bnip3 and bnip3l paralogous genes known to be sensitive to environmental changes but also regulated by epigenetic modifications. Two specific stimuli were used: (i) early acute hypoxia applied at embryo stage and (ii) broodstock and fry methionine deficient diet, considering methionine as one of the main methyl-group donor needed for DNA methylation. We observed a programming effect of hypoxia with an increase of bnip3a and the four paralogs of bnip3l expression level in fry. In addition, parental methionine nutrition was correlated to bnip3a and bnip3lb1 expression showing evidence for early fry programming. We highlighted that both stimuli modified DNA methylation levels at some specific loci of bnip3a and bnip3lb1. CONCLUSION Overall, these data demonstrate that methionine level and hypoxia stimulus can be of critical importance in metabolic programming. Both stimuli affected DNA methylation of specific loci, among them, an interesting CpG site have been identified, namely - 884 bp site of bnip3a, and may be positively related with mRNA levels.
Collapse
Affiliation(s)
- Vincent Veron
- INRA, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
| | - Lucie Marandel
- INRA, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
| | - Jingwei Liu
- INRA, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
| | - Emilio J Vélez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Olivier Lepais
- INRA, Univ Pau & Pays de l'Adour, UMR Ecobiop, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
| | - Stéphane Panserat
- INRA, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
| | - Sandrine Skiba
- INRA, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
| | - Iban Seiliez
- INRA, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France.
| |
Collapse
|
34
|
Decreased DNA methylation of a CpG site in the HBAP1 gene in plasma DNA from pregnant women. PLoS One 2018; 13:e0198165. [PMID: 29795670 PMCID: PMC5967787 DOI: 10.1371/journal.pone.0198165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/15/2018] [Indexed: 12/03/2022] Open
Abstract
Objective The objective of this study is to identify potential CpG site(s) or DNA methylation pattern(s) in the pseudo α-globin 1 gene (HBAP1 gene), the gene which locates in α-thalassemia-1 deletion mutation, to differentiate plasma DNA between pregnant and non-pregnant women. Method DNA methylation profiles of placenta and peripheral blood from the MethBase database were compared to screen differentially methylated regions. This region was confirmed the differential by methylation-sensitive high resolution melt (MS-HRM) analysis. The differential region was used to compare DNA methylation profile of plasma DNA between pregnant and non-pregnant women by bisulfite amplicon sequencing in three levels: overall, individual CpG sites and individual molecules (DNA methylation patterns). Result Using MethBase data, four consecutive CpG sites in the HBAP1 gene were identified as regions of differential DNA methylation between placenta and peripheral blood. The confirmation by MS-HRM showed the differential DNA methylation profile between the placenta and plasma from non-pregnant women. The comparison of DNA methylation profiles between the plasma of pregnant and non-pregnant women showed that, in the overall levels of the four CpG sites, DNA methylation of pregnant women was detected at lower levels than non-pregnant women. In the individual CpG site level, only the second CpG site showed differential DNA methylation between the groups. In the DNA methylation pattern level, there was no strongly significant differences in DNA methylation patterns between the pregnant and non-pregnant groups. Conclusion Our result demonstrated that, in the plasma from pregnant women, only one of the four CpG sites displays a decrease in DNA methylation compared with non-pregnant women. It indicates that this CpG site might be useful for determining the presence or absence of fetal wild-type α-globin gene cluster allele in maternal plasma.
Collapse
|
35
|
Alkhaled Y, Laqqan M, Tierling S, Lo Porto C, Hammadeh ME. DNA methylation level of spermatozoa from subfertile and proven fertile and its relation to standard sperm parameters. Andrologia 2018; 50:e13011. [DOI: 10.1111/and.13011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2018] [Indexed: 02/06/2023] Open
Affiliation(s)
- Y. Alkhaled
- Department of Obstetrics; Gynecology & Assisted Reproduction Laboratory; University of Saarland; Homburg Germany
| | - M. Laqqan
- Department of Obstetrics; Gynecology & Assisted Reproduction Laboratory; University of Saarland; Homburg Germany
| | - S. Tierling
- FR8.3 Life Science; Department of Genetics& Epigenetics; Saarland University; Homburg Germany
| | - C. Lo Porto
- FR8.3 Life Science; Department of Genetics& Epigenetics; Saarland University; Homburg Germany
| | - M. E. Hammadeh
- Department of Obstetrics; Gynecology & Assisted Reproduction Laboratory; University of Saarland; Homburg Germany
| |
Collapse
|
36
|
Nowak A, Lock D, Bacher P, Hohnstein T, Vogt K, Gottfreund J, Giehr P, Polansky JK, Sawitzki B, Kaiser A, Walter J, Scheffold A. CD137+CD154- Expression As a Regulatory T Cell (Treg)-Specific Activation Signature for Identification and Sorting of Stable Human Tregs from In Vitro Expansion Cultures. Front Immunol 2018; 9:199. [PMID: 29467769 PMCID: PMC5808295 DOI: 10.3389/fimmu.2018.00199] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/23/2018] [Indexed: 01/30/2023] Open
Abstract
Regulatory T cells (Tregs) are an attractive therapeutic tool for several different immune pathologies. Therapeutic Treg application often requires prolonged in vitro culture to generate sufficient Treg numbers or to optimize their functionality, e.g., via genetic engineering of their antigen receptors. However, purity of clinical Treg expansion cultures is highly variable, and currently, it is impossible to identify and separate stable Tregs from contaminating effector T cells, either ex vivo or after prior expansion. This represents a major obstacle for quality assurance of expanded Tregs and raises significant safety concerns. Here, we describe a Treg activation signature that allows identification and sorting of epigenetically imprinted Tregs even after prolonged in vitro culture. We show that short-term reactivation resulted in expression of CD137 but not CD154 on stable FoxP3+ Tregs that displayed a demethylated Treg-specific demethylated region, high suppressive potential, and lack of inflammatory cytokine expression. We also applied this Treg activation signature for rapid testing of chimeric antigen receptor functionality in human Tregs and identified major differences in the signaling requirements regarding CD137 versus CD28 costimulation. Taken together, CD137+CD154- expression emerges as a universal Treg activation signature ex vivo and upon in vitro expansion allowing the identification and isolation of epigenetically stable antigen-activated Tregs and providing a means for their rapid functional testing in vitro.
Collapse
Affiliation(s)
- Anna Nowak
- German Rheumatism Research Centre (DRFZ) Berlin, Leibniz Association, Berlin, Germany
| | - Dominik Lock
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - Petra Bacher
- Department of Cellular Immunology, Clinic for Rheumatology and Clinical Immunology, Charité - University Medicine, Berlin, Germany
| | - Thordis Hohnstein
- Department of Cellular Immunology, Clinic for Rheumatology and Clinical Immunology, Charité - University Medicine, Berlin, Germany
| | - Katrin Vogt
- Institute for Medical Immunology, Charité - University Medicine, Berlin, Germany
| | - Judith Gottfreund
- Department of Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| | - Pascal Giehr
- Department of Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| | - Julia K Polansky
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - University Medicine, Berlin, Germany
| | - Birgit Sawitzki
- Institute for Medical Immunology, Charité - University Medicine, Berlin, Germany
| | | | - Jörn Walter
- Department of Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| | - Alexander Scheffold
- German Rheumatism Research Centre (DRFZ) Berlin, Leibniz Association, Berlin, Germany.,Department of Cellular Immunology, Clinic for Rheumatology and Clinical Immunology, Charité - University Medicine, Berlin, Germany
| |
Collapse
|
37
|
de Boni L, Gasparoni G, Haubenreich C, Tierling S, Schmitt I, Peitz M, Koch P, Walter J, Wüllner U, Brüstle O. DNA methylation alterations in iPSC- and hESC-derived neurons: potential implications for neurological disease modeling. Clin Epigenetics 2018; 10:13. [PMID: 29422978 PMCID: PMC5789607 DOI: 10.1186/s13148-018-0440-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/04/2018] [Indexed: 12/21/2022] Open
Abstract
Background Genetic predisposition and epigenetic alterations are both considered to contribute to sporadic neurodegenerative diseases (NDDs) such as Parkinson's disease (PD). Since cell reprogramming and the generation of induced pluripotent stem cells (iPSCs) are themselves associated with major epigenetic remodeling, it remains unclear to what extent iPSC-derived neurons lend themselves to model epigenetic disease-associated changes. A key question to be addressed in this context is whether iPSC-derived neurons exhibit epigenetic signatures typically observed in neurons derived from non-reprogrammed human embryonic stem cells (hESCs). Results Here, we compare mature neurons derived from hESC and isogenic human iPSC generated from hESC-derived neural stem cells. Genome-wide 450 K-based DNA methylation and HT12v4 gene array expression analyses were complemented by a deep analysis of selected genes known to be involved in NDD. Our studies show that DNA methylation and gene expression patterns of isogenic hESC- and iPSC-derived neurons are markedly preserved on a genome-wide and single gene level. Conclusions Overall, iPSC-derived neurons exhibit similar DNA methylation patterns compared to isogenic hESC-derived neurons. Further studies will be required to explore whether the epigenetic patterns observed in iPSC-derived neurons correspond to those detectable in native brain neurons.
Collapse
Affiliation(s)
- Laura de Boni
- Department of Neurology, University Hospital of Bonn, Bonn, Germany
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Gilles Gasparoni
- Institute for Genetics/Epigenetics, FR8.3 Life Sciences, Saarland University, Saarbrücken, Germany
| | - Carolin Haubenreich
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Sascha Tierling
- Institute for Genetics/Epigenetics, FR8.3 Life Sciences, Saarland University, Saarbrücken, Germany
| | - Ina Schmitt
- Department of Neurology, University Hospital of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Bonn, Bonn, Germany
| | - Michael Peitz
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Bonn, Bonn, Germany
| | - Philipp Koch
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Jörn Walter
- Institute for Genetics/Epigenetics, FR8.3 Life Sciences, Saarland University, Saarbrücken, Germany
| | - Ullrich Wüllner
- Department of Neurology, University Hospital of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Bonn, Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn, Bonn, Germany
| |
Collapse
|
38
|
Alkhaled Y, Laqqan M, Tierling S, Lo Porto C, Amor H, Hammadeh ME. Impact of cigarette-smoking on sperm DNA methylation and its effect on sperm parameters. Andrologia 2018; 50:e12950. [PMID: 29315717 DOI: 10.1111/and.12950] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2017] [Indexed: 12/15/2022] Open
Abstract
DNA methylation is an epigenetic modification of the genome. The purpose of this study was to determine the influence of cigarette-smoking on sperm DNA methylation from a genomewide survey of sperm samples and to ascertain its effect on sperm parameters. Twenty-eight sperm DNA samples (from 14 fertile smokers as a case study and 14 proven fertile nonsmokers as controls) were subjected to Infinium 450K BeadChip arrays to identify the changes in the DNA methylation level between the two groups. Then, deep bisulphite sequencing was used to validate five CpGs on 78 samples. The results from the Infinium 450K found that only 11 CpGs showed a significant difference in DNA methylation between the case and the control groups. Five CpGs of the eleven (cg00648582, cg0932376, cg19169023, cg23841288 and cg27391564) underwent deep bisulphite sequencing where cg00648582, related to the PGAM5 gene, and the cg23841288 CpGs, related to the PTPRN2 gene amplicons, showed a significant increase in their DNA methylation level in more than one CpG in the case group. In contrast, a significant decrease was found at cg19169023 and at its various neighbouring CpGs in the TYRO3 gene-related amplicons. Furthermore, this study demonstrated a significant correlation between the variation in sperm DNA methylation level and standard sperm parameters in the case group.
Collapse
Affiliation(s)
- Y Alkhaled
- Department of Obstetrics & Gynecology, University of Saarland, Saarbrucken, Germany
| | - M Laqqan
- Department of Obstetrics & Gynecology, University of Saarland, Saarbrucken, Germany
| | - S Tierling
- FR8.3 Life Science, Department of Genetics & Epigenetics, Saarland University, Saarbrucken, Germany
| | - C Lo Porto
- FR8.3 Life Science, Department of Genetics & Epigenetics, Saarland University, Saarbrucken, Germany
| | - H Amor
- Department of Obstetrics & Gynecology, University of Saarland, Saarbrucken, Germany
| | - M E Hammadeh
- Department of Obstetrics & Gynecology, University of Saarland, Saarbrucken, Germany
| |
Collapse
|
39
|
Giehr P, Walter J. Hairpin Bisulfite Sequencing: Synchronous Methylation Analysis on Complementary DNA Strands of Individual Chromosomes. Methods Mol Biol 2018; 1708:573-586. [PMID: 29224164 DOI: 10.1007/978-1-4939-7481-8_29] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The accurate and quantitative detection of 5-methylcytosine is of great importance in the field of epigenetics. The method of choice is usually bisulfite sequencing because of the high resolution and the possibility to combine it with next generation sequencing. Nevertheless, also this method has its limitations. Following the bisulfite treatment DNA strands are no longer complementary such that in a subsequent PCR amplification the DNA methylation patterns information of only one of the two DNA strand is preserved. Several years ago Hairpin Bisulfite sequencing was developed as a method to obtain the pattern information on complementary DNA strands. The method requires fragmentation (usually by enzymatic cleavage) of genomic DNA followed by a covalent linking of both DNA strands through ligation of a short DNA hairpin oligonucleotide to both strands. The ligated covalently linked dsDNA products are then subjected to a conventional bisulfite treatment during which all unmodified cytosines are converted to uracils. During the treatment the DNA is denatured forming noncomplementary ssDNA circles. These circles serve as a template for a locus specific PCR to amplify chromosomal patterns of the region of interest. As a result one ends up with a linearized product, which contains the methylation information of both complementary DNA strands.
Collapse
Affiliation(s)
- Pascal Giehr
- Department of Biological Sciences, Genetics/Epigenetics, Saarland University, Saarbrücken, Saarland, Germany
| | - Jörn Walter
- Department of Biological Sciences, Genetics/Epigenetics, Saarland University, Saarbrücken, Saarland, Germany.
| |
Collapse
|
40
|
Abstract
Various methodologies are available to interrogate specific components of epigenetic mechanisms such as DNA methylation or nucleosome occupancy at both the locus-specific and the genome-wide level. It has become increasingly clear, however, that comprehension of the functional interactions between epigenetic mechanisms is critical for understanding how cellular transcription programs are regulated or deregulated during normal and disease development. The Nucleosome Occupancy and Methylome sequencing (NOMe-seq) assay allows us to directly measure the relationship between DNA methylation and nucleosome occupancy by taking advantage of the methyltransferase M.CviPI, which methylates unprotected GpC dinucleotides to create a footprint of chromatin accessibility. This assay generates dual nucleosome occupancy and DNA methylation information at a single-DNA molecule resolution using as little as 200,000 cells and in as short as 15 min reaction time. DNA methylation levels and nucleosome occupancy status of genomic regions of interest can be subsequently interrogated by cloning PCR-amplified bisulfite DNA and sequencing individual clones. Alternatively, NOMe-seq can be combined with next-generation sequencing in order to generate an integrated global map of DNA methylation and nucleosome occupancy, which allows for comprehensive examination as to how these epigenetic components correlate with each other.
Collapse
Affiliation(s)
- Fides D Lay
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Program in Genetic, Molecular and Cellular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | | | - Peter A Jones
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, USA.
| |
Collapse
|
41
|
Abstract
Self-sustained and synchronized to environmental stimuli, circadian clocks are under genetic and epigenetic regulation. Recent findings have greatly increased our understanding of epigenetic plasticity governed by circadian clock. Thus, the link between circadian clock and epigenetic machinery is reciprocal. Circadian clock can affect epigenetic features including genomic DNA methylation, noncoding RNA, mainly miRNA expression, and histone modifications resulted in their 24-h rhythms. Concomitantly, these epigenetic events can directly modulate cyclic system of transcription and translation of core circadian genes and indirectly clock output genes. Significant findings interlocking circadian clock, epigenetics, and cancer have been revealed, particularly in breast, colorectal, and blood cancers. Aberrant methylation of circadian gene promoter regions and miRNA expression affected circadian gene expression, together with 24-h expression oscillation pace have been frequently observed.
Collapse
|
42
|
Laqqan M, Hammadeh ME. Alterations in DNA methylation patterns and gene expression in spermatozoa of subfertile males. Andrologia 2017; 50. [DOI: 10.1111/and.12934] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2017] [Indexed: 02/06/2023] Open
Affiliation(s)
- M. Laqqan
- Department of Obstetrics & Gynecology; Assisted Reproduction Laboratory; Saarland University; Homburg Germany
| | - M. E. Hammadeh
- Department of Obstetrics & Gynecology; Assisted Reproduction Laboratory; Saarland University; Homburg Germany
| |
Collapse
|
43
|
Laqqan M, Tierling S, Alkhaled Y, LoPorto C, Hammadeh ME. Alterations in sperm DNA methylation patterns of oligospermic males. Reprod Biol 2017; 17:396-400. [DOI: 10.1016/j.repbio.2017.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/28/2017] [Accepted: 10/28/2017] [Indexed: 12/12/2022]
|
44
|
Gut memories do not fade: epigenetic regulation of lasting gut homing receptor expression in CD4 + memory T cells. Mucosal Immunol 2017; 10:1443-1454. [PMID: 28198363 DOI: 10.1038/mi.2017.7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 01/17/2017] [Indexed: 02/04/2023]
Abstract
The concept of a "topographical memory" in lymphocytes implies a stable expression of homing receptors mediating trafficking of lymphocytes back to the tissue of initial activation. However, a significant plasticity of the gut-homing receptor α4β7 was found in CD8+ T cells, questioning the concept. We now demonstrate that α4β7 expression in murine CD4+ memory T cells is, in contrast, imprinted and remains stable in the absence of the inducing factor retinoic acid (RA) or other stimuli from mucosal environments. Repetitive rounds of RA treatment enhanced the stability of de novo induced α4β7. A novel enhancer element in the murine Itga4 locus was identified that showed, correlating to stability, selective DNA demethylation in mucosa-seeking memory cells and methylation-dependent transcriptional activity in a reporter gene assay. This implies that epigenetic mechanisms contribute to the stabilization of α4β7 expression. Analogous DNA methylation patterns could be observed in the human ITGA4 locus, suggesting that its epigenetic regulation is conserved between mice and men. These data prove that mucosa-specific homing mediated by α4β7 is imprinted in CD4+ memory T cells, reinstating the validity of the concept of "topographical memory" for mucosal tissues, and imply a critical role of epigenetic mechanisms.
Collapse
|
45
|
Laqqan M, Hammadeh ME. Aberrations in sperm DNA methylation patterns of males suffering from reduced fecundity. Andrologia 2017; 50. [PMID: 29072328 DOI: 10.1111/and.12913] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2017] [Indexed: 01/06/2023] Open
Abstract
The purpose of this study was to evaluate the aberrations in sperm DNA methylation patterns of males suffering from reduced fecundity. A total of 108 males (65 males suffering from reduced fecundity as cases and 43 proven fertile males as a control) were included in the study. Thirty samples were subjected to 450K arrays as a screening phase, and then, three CpG sites located in the following genes: TYRO3, CGβ and FAM189A1 were selected to validate on 78 samples using deep bisulphite sequencing. A significant difference in the methylation level was found between cases and controls at all CpGs in TYRO3 gene-related amplicon (CpG1, p ≤ .003, CpG2, p ≤ .0001, CpG3, p ≤ .003 and CpG4, p ≤ .030) and CpG1 in CGβ gene-related amplicon (p ≤ .0001). Besides, a significant difference was found at two CpGs (CpG1, p ≤ .004 and CpG2, p ≤ .002) tested in the FAM189A1 gene-related amplicon. A significant correlation was found between the methylation level at CpG1 in the FAM189A1 gene and the different types of sperm motility. In conclusion, an alteration in the methylation levels of sperm DNA from males with reduced fecundity was showed. In addition, a relationship between variations in the methylation level of these CpGs and sperm motility has been observed.
Collapse
Affiliation(s)
- M Laqqan
- Department of Obstetrics & Gynecology, Assisted Reproduction Laboratory, Saarland University, Homburg, Germany
| | - M E Hammadeh
- Department of Obstetrics & Gynecology, Assisted Reproduction Laboratory, Saarland University, Homburg, Germany
| |
Collapse
|
46
|
Laqqan M, Solomayer EF, Hammadeh M. Aberrations in sperm DNA methylation patterns are associated with abnormalities in semen parameters of subfertile males. Reprod Biol 2017; 17:246-251. [DOI: 10.1016/j.repbio.2017.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/15/2017] [Accepted: 05/18/2017] [Indexed: 01/07/2023]
|
47
|
Morandi L, Gissi D, Tarsitano A, Asioli S, Gabusi A, Marchetti C, Montebugnoli L, Foschini MP. CpG location and methylation level are crucial factors for the early detection of oral squamous cell carcinoma in brushing samples using bisulfite sequencing of a 13-gene panel. Clin Epigenetics 2017; 9:85. [PMID: 28814981 PMCID: PMC5558660 DOI: 10.1186/s13148-017-0386-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/07/2017] [Indexed: 02/08/2023] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is usually diagnosed at an advanced stage and is commonly preceded by oral premalignant lesions. The mortality rates have remained unchanged (50% within 5 years after diagnosis), and it is related to tobacco smoking and alcohol intake. Novel molecular markers for early diagnosis are urgently needed. The purpose of this study was to evaluate the diagnostic value of methylation level in a set of 18 genes by bisulfite next-generation sequencing. Methods With minimally invasive oral brushing, 28 consecutive OSCC, one squamous cell carcinoma with sarcomatoid features, six high-grade squamous intraepithelial lesions (HGSIL), 30 normal contralateral mucosa from the same patients, and 65 healthy donors were evaluated for DNA methylation analyzing 18 target genes by quantitative bisulfite next-generation sequencing. We further evaluated an independent cohort (validation dataset) made of 20 normal donors, one oral fibroma, 14 oral lichen planus (OLP), three proliferative verrucous leukoplakia (PVL), and two OSCC. Results Comparing OSCC with normal healthy donors and contralateral mucosa in 355 CpGs, we identified the following epigenetically altered genes: ZAP70, ITGA4, KIF1A, PARP15, EPHX3, NTM, LRRTM1, FLI1, MIR193, LINC00599, PAX1, and MIR137HG showing hypermethylation and MIR296, TERT, and GP1BB showing hypomethylation. The behavior of ZAP70, GP1BB, H19, EPHX3, and MIR193 fluctuated among different interrogated CpGs. The gap between normal and OSCC samples remained mostly the same (Kruskal-Wallis P values < 0.05), but the absolute values changed conspicuously. ROC curve analysis identified the most informative CpGs, and we correctly stratified OSCC and HGSIL from normal donors using a multiclass linear discriminant analysis in a 13-gene panel (AUC 0.981). Only the OSCC with sarcomatoid features was negative. Three contralateral mucosa were positive, a sign of a possible field cancerization. Among imprinted genes, only MIR296 showed loss of imprinting. DNMT1, TERC, and H19 together with the global methylation of long interspersed element 1 were unchanged. In the validation dataset, values over the threshold were detected in 2/2 OSCC, in 3/3 PVL, and in 2/14 OLP. Conclusions Our data highlight the importance of CpG location and correct estimation of DNA methylation level for highly accurate early diagnosis of OSCC. Electronic supplementary material The online version of this article (doi:10.1186/s13148-017-0386-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luca Morandi
- "M. Malpighi" Section of Anatomic Pathology, Department of Biomedical and Neuromotor Sciences, Bellaria Hospital, University of Bologna, via Altura n.3, 40137 Bologna, Italy
| | - Davide Gissi
- Section of Oral Science, Department of Biomedical and Neuromuscular Sciences, University of Bologna, Bologna, Italy
| | - Achille Tarsitano
- Unit of Maxillofacial Surgery, S. Orsola Hospital Bologna, Bologna, Italy
| | - Sofia Asioli
- "M. Malpighi" Section of Anatomic Pathology, Department of Biomedical and Neuromotor Sciences, Bellaria Hospital, University of Bologna, via Altura n.3, 40137 Bologna, Italy
| | - Andrea Gabusi
- Section of Oral Science, Department of Biomedical and Neuromuscular Sciences, University of Bologna, Bologna, Italy
| | - Claudio Marchetti
- Unit of Maxillofacial Surgery, S. Orsola Hospital Bologna, Bologna, Italy
| | - Lucio Montebugnoli
- Section of Oral Science, Department of Biomedical and Neuromuscular Sciences, University of Bologna, Bologna, Italy
| | - Maria Pia Foschini
- "M. Malpighi" Section of Anatomic Pathology, Department of Biomedical and Neuromotor Sciences, Bellaria Hospital, University of Bologna, via Altura n.3, 40137 Bologna, Italy
| |
Collapse
|
48
|
Aberrant DNA methylation patterns of human spermatozoa in current smoker males. Reprod Toxicol 2017; 71:126-133. [DOI: 10.1016/j.reprotox.2017.05.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/21/2017] [Accepted: 05/23/2017] [Indexed: 12/11/2022]
|
49
|
Laqqan M, Solomayer EF, Hammadeh M. Association between alterations in DNA methylation level of spermatozoa at CpGs dinucleotide and male subfertility problems. Andrologia 2017; 50. [DOI: 10.1111/and.12832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2017] [Indexed: 01/01/2023] Open
Affiliation(s)
- M. Laqqan
- Gynecology & Assisted Reproduction Laboratory; Department of Obstetrics; Saarland University; Saarland Germany
| | - E. F. Solomayer
- Gynecology & Assisted Reproduction Laboratory; Department of Obstetrics; Saarland University; Saarland Germany
| | - M. Hammadeh
- Gynecology & Assisted Reproduction Laboratory; Department of Obstetrics; Saarland University; Saarland Germany
| |
Collapse
|
50
|
Alvizi L, Ke X, Brito LA, Seselgyte R, Moore GE, Stanier P, Passos-Bueno MR. Differential methylation is associated with non-syndromic cleft lip and palate and contributes to penetrance effects. Sci Rep 2017; 7:2441. [PMID: 28550290 PMCID: PMC5446392 DOI: 10.1038/s41598-017-02721-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 04/18/2017] [Indexed: 01/09/2023] Open
Abstract
Non-syndromic cleft lip and/or palate (NSCLP) is a common congenital malformation with a multifactorial model of inheritance. Although several at-risk alleles have been identified, they do not completely explain the high heritability. We postulate that epigenetic factors as DNA methylation might contribute to this missing heritability. Using a Methylome-wide association study in a Brazilian cohort (67 NSCLP, 59 controls), we found 578 methylation variable positions (MVPs) that were significantly associated with NSCLP. MVPs were enriched in regulatory and active regions of the genome and in pathways already implicated in craniofacial development. In an independent UK cohort (171 NSCLP, 177 controls), we replicated 4 out of 11 tested MVPs. We demonstrated a significant positive correlation between blood and lip tissue DNA methylation, indicating blood as a suitable tissue for NSCLP methylation studies. Next, we quantified CDH1 promoter methylation levels in CDH1 mutation-positive families, including penetrants, non-penetrants or non-carriers for NSCLP. We found methylation levels to be significantly higher in the penetrant individuals. Taken together, our results demonstrated the association of methylation at specific genomic locations as contributing factors to both non-familial and familial NSCLP and altered DNA methylation may be a second hit contributing to penetrance.
Collapse
Affiliation(s)
- Lucas Alvizi
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Xiayi Ke
- Genetics and Genomic Medicine, Institute of Child Health, University College of London, London, UK
| | - Luciano Abreu Brito
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Rimante Seselgyte
- Genetics and Genomic Medicine, Institute of Child Health, University College of London, London, UK
| | - Gudrun E Moore
- Genetics and Genomic Medicine, Institute of Child Health, University College of London, London, UK
| | - Philip Stanier
- Genetics and Genomic Medicine, Institute of Child Health, University College of London, London, UK.
| | - Maria Rita Passos-Bueno
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|