1
|
Hoffmann T, Hörmann A, Corcokovic M, Zmajkovic J, Hinterndorfer M, Salkanovic J, Spreitzer F, Köferle A, Gitschtaler K, Popa A, Oberndorfer S, Andersch F, Schaefer M, Fellner M, Budano N, Ruppert JG, Chetta P, Wurm M, Zuber J, Neumüller RA. Precision RNAi using synthetic shRNAmir target sites. eLife 2023; 12:RP84792. [PMID: 37552050 PMCID: PMC10409502 DOI: 10.7554/elife.84792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
Loss-of-function genetic tools are widely applied for validating therapeutic targets, but their utility remains limited by incomplete on- and uncontrolled off-target effects. We describe artificial RNA interference (ARTi) based on synthetic, ultra-potent, off-target-free shRNAs that enable efficient and inducible suppression of any gene upon introduction of a synthetic target sequence into non-coding transcript regions. ARTi establishes a scalable loss-of-function tool with full control over on- and off-target effects.
Collapse
Affiliation(s)
- Thomas Hoffmann
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1ViennaAustria
- Vienna BioCenter PhD Program, Doctoral School of the University at Vienna and Medical University of Vienna, Vienna BioCenter (VBC)ViennaAustria
| | - Alexandra Hörmann
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-GasseViennaAustria
| | - Maja Corcokovic
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-GasseViennaAustria
| | - Jakub Zmajkovic
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1ViennaAustria
| | | | - Jasko Salkanovic
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-GasseViennaAustria
| | - Fiona Spreitzer
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-GasseViennaAustria
| | - Anna Köferle
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-GasseViennaAustria
| | - Katrin Gitschtaler
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-GasseViennaAustria
| | - Alexandra Popa
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-GasseViennaAustria
| | - Sarah Oberndorfer
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-GasseViennaAustria
| | - Florian Andersch
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1ViennaAustria
| | - Markus Schaefer
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1ViennaAustria
| | - Michaela Fellner
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1ViennaAustria
| | - Nicole Budano
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-GasseViennaAustria
| | - Jan G Ruppert
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-GasseViennaAustria
| | - Paolo Chetta
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-GasseViennaAustria
| | - Melanie Wurm
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-GasseViennaAustria
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1ViennaAustria
- Medical University of Vienna, Vienna BioCenterViennaAustria
| | - Ralph A Neumüller
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-GasseViennaAustria
| |
Collapse
|
2
|
Harmening N, Johnen S, Izsvák Z, Ivics Z, Kropp M, Bascuas T, Walter P, Kreis A, Pajic B, Thumann G. Enhanced Biosafety of the Sleeping Beauty Transposon System by Using mRNA as Source of Transposase to Efficiently and Stably Transfect Retinal Pigment Epithelial Cells. Biomolecules 2023; 13:biom13040658. [PMID: 37189405 DOI: 10.3390/biom13040658] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Neovascular age-related macular degeneration (nvAMD) is characterized by choroidal neovascularization (CNV), which leads to retinal pigment epithelial (RPE) cell and photoreceptor degeneration and blindness if untreated. Since blood vessel growth is mediated by endothelial cell growth factors, including vascular endothelial growth factor (VEGF), treatment consists of repeated, often monthly, intravitreal injections of anti-angiogenic biopharmaceuticals. Frequent injections are costly and present logistic difficulties; therefore, our laboratories are developing a cell-based gene therapy based on autologous RPE cells transfected ex vivo with the pigment epithelium derived factor (PEDF), which is the most potent natural antagonist of VEGF. Gene delivery and long-term expression of the transgene are enabled by the use of the non-viral Sleeping Beauty (SB100X) transposon system that is introduced into the cells by electroporation. The transposase may have a cytotoxic effect and a low risk of remobilization of the transposon if supplied in the form of DNA. Here, we investigated the use of the SB100X transposase delivered as mRNA and showed that ARPE-19 cells as well as primary human RPE cells were successfully transfected with the Venus or the PEDF gene, followed by stable transgene expression. In human RPE cells, secretion of recombinant PEDF could be detected in cell culture up to one year. Non-viral ex vivo transfection using SB100X-mRNA in combination with electroporation increases the biosafety of our gene therapeutic approach to treat nvAMD while ensuring high transfection efficiency and long-term transgene expression in RPE cells.
Collapse
Affiliation(s)
- Nina Harmening
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Sandra Johnen
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Zoltan Ivics
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Martina Kropp
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Thais Bascuas
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Peter Walter
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Andreas Kreis
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Bojan Pajic
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
- Eye Clinic ORASIS, Swiss Eye Research Foundation, 5734 Reinach, Switzerland
- Faculty of Sciences, Department of Physics, University of Novi Sad, Trg Dositeja Obradovica 4, 21000 Novi Sad, Serbia
- Faculty of Medicine of the Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | - Gabriele Thumann
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
3
|
Mahmoudian RA, Fathi F, Farshchian M, Abbaszadegan MR. Construction and Quantitative Evaluation of a Tissue-Specific Sleeping Beauty by EDL2-Specific Transposase Expression in Esophageal Squamous Carcinoma Cell Line KYSE-30. Mol Biotechnol 2023; 65:350-360. [PMID: 35474410 DOI: 10.1007/s12033-022-00490-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 03/29/2022] [Indexed: 11/24/2022]
Abstract
Gene delivery to esophageal tissue could provide novel treatments for diseases, such as cancer. The Sleeping Beauty (SB) transposon system, as a natural and non-viral tool, is efficient at transferring transgene into the human genome for human cell genetic engineering. The plasmid-based SB transposon can insert into chromosomes through an accurate recombinase-mediated mechanism, providing long-term expression of transgene integrated into the target cells. In this study, we aimed to investigate the activity of ED-L2 tissue-specific promoter that was engineered from the Epstein-Barr Virus (EBV) and combined with the hyperactive SB100X transposase to achieve the stable expression of T2-Onc3 transposon in esophageal squamous epithelial cells. Here we constructed an SB transposon-based plasmid system to obtain the stable expression of transposon upon introduction of a hyperactive SB transposase under the control of tissue-specific ED-L2 promoter via the lipid-based delivery method in the cultured esophageal squamous cell carcinoma cells. Among established human and mouse cell lines, the (ED-L2)-SB100X transposase was active only in human esophageal stratified squamous epithelial and differentiated keratinocytes derived from skin (KYSE-30 and HaCaT cell lines), where it revealed high promoter activity. Data offered that the 782 bp sequence of ED-L2 promoter has a key role in its activity in vitro. The (ED-L2)-SB100X transposase mediated stable integration of T2-Onc3 in KYSE-30 cells, thereby providing further evidence of the tissue specificity of ED-L2 promoter. The KYSE-30 cells modified with the SB system integrate on average 187 copies of the T2-Onc3 transposon in its genome. In aggregate, the (ED-L2)-SB100X transposase can be efficiently applied for the tissue-specific stable expression of a transgene in human KYSE-30 cells using SB transposon.
Collapse
Affiliation(s)
| | - Fardin Fathi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Moein Farshchian
- Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR) Razavi Khorasan, ACECR Central Building, Ferdowsi University Campus, Mashhad- Azadi Square, Mashhad Branch, Mashhad, Iran.
| | - Mohammad Reza Abbaszadegan
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Medical Genetics Research Center, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Transition from Animal-Based to Human Induced Pluripotent Stem Cells (iPSCs)-Based Models of Neurodevelopmental Disorders: Opportunities and Challenges. Cells 2023; 12:cells12040538. [PMID: 36831205 PMCID: PMC9954744 DOI: 10.3390/cells12040538] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) arise from the disruption of highly coordinated mechanisms underlying brain development, which results in impaired sensory, motor and/or cognitive functions. Although rodent models have offered very relevant insights to the field, the translation of findings to clinics, particularly regarding therapeutic approaches for these diseases, remains challenging. Part of the explanation for this failure may be the genetic differences-some targets not being conserved between species-and, most importantly, the differences in regulation of gene expression. This prompts the use of human-derived models to study NDDS. The generation of human induced pluripotent stem cells (hIPSCs) added a new suitable alternative to overcome species limitations, allowing for the study of human neuronal development while maintaining the genetic background of the donor patient. Several hIPSC models of NDDs already proved their worth by mimicking several pathological phenotypes found in humans. In this review, we highlight the utility of hIPSCs to pave new paths for NDD research and development of new therapeutic tools, summarize the challenges and advances of hIPSC-culture and neuronal differentiation protocols and discuss the best way to take advantage of these models, illustrating this with examples of success for some NDDs.
Collapse
|
5
|
van Heuvel Y, Schatz S, Hein M, Dogra T, Kazenmaier D, Tschorn N, Genzel Y, Stitz J. Novel suspension retroviral packaging cells generated by transposition using transposase encoding mRNA advance vector yields and enable production in bioreactors. Front Bioeng Biotechnol 2023; 11:1076524. [PMID: 37082212 PMCID: PMC10112512 DOI: 10.3389/fbioe.2023.1076524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/24/2023] [Indexed: 04/22/2023] Open
Abstract
To date, the establishment of high-titer stable viral packaging cells (VPCs) at large scale for gene therapeutic applications is very time- and cost-intensive. Here we report the establishment of three human suspension 293-F-derived ecotropic MLV-based VPCs. The classic stable transfection of an EGFP-expressing transfer vector resulted in a polyclonal VPC pool that facilitated cultivation in shake flasks of 100 mL volumes and yielded high functional titers of more than 1 × 106 transducing units/mL (TU/mL). When the transfer vector was flanked by transposon terminal inverted repeats (TIRs) and upon co-transfection of a plasmid encoding for the transposase, productivities could be slightly elevated to more than 3 × 106 TU/mL. In contrast and using mRNA encoding for the transposase, as a proof of concept, productivities were drastically improved by more than ten-fold exceeding 5 × 107 TU/mL. In addition, these VPC pools were generated within only 3 weeks. The production volume was successfully scaled up to 500 mL employing a stirred-tank bioreactor (STR). We anticipate that the stable transposition of transfer vectors employing transposase transcripts will be of utility for the future establishment of high-yield VPCs producing pseudotype vector particles with a broader host tropism on a large scale.
Collapse
Affiliation(s)
- Yasemin van Heuvel
- Research Group Medical Biotechnology and Bioengineering, Faculty of Applied Natural Sciences, University of Applied Sciences Cologne, Campus Leverkusen, Cologne, Germany
- Institute of Technical Chemistry, Gottfried Wilhelm Leibniz University Hannover, Hanover, Germany
| | - Stefanie Schatz
- Research Group Medical Biotechnology and Bioengineering, Faculty of Applied Natural Sciences, University of Applied Sciences Cologne, Campus Leverkusen, Cologne, Germany
- Institute of Technical Chemistry, Gottfried Wilhelm Leibniz University Hannover, Hanover, Germany
| | - Marc Hein
- Chair of Bioprocess Engineering, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Tanya Dogra
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Daniel Kazenmaier
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
- Faculty of Biotechnology, University of Applied Sciences Mannheim, Mannheim, Germany
| | - Natalie Tschorn
- Research Group Medical Biotechnology and Bioengineering, Faculty of Applied Natural Sciences, University of Applied Sciences Cologne, Campus Leverkusen, Cologne, Germany
- Institute of Technical Chemistry, Gottfried Wilhelm Leibniz University Hannover, Hanover, Germany
| | - Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Jörn Stitz
- Research Group Medical Biotechnology and Bioengineering, Faculty of Applied Natural Sciences, University of Applied Sciences Cologne, Campus Leverkusen, Cologne, Germany
- *Correspondence: Jörn Stitz,
| |
Collapse
|
6
|
Mattern L, Otten K, Miskey C, Fuest M, Izsvák Z, Ivics Z, Walter P, Thumann G, Johnen S. Molecular and Functional Characterization of BDNF-Overexpressing Human Retinal Pigment Epithelial Cells Established by Sleeping Beauty Transposon-Mediated Gene Transfer. Int J Mol Sci 2022; 23:12982. [PMID: 36361771 PMCID: PMC9656812 DOI: 10.3390/ijms232112982] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/30/2022] [Accepted: 10/25/2022] [Indexed: 04/12/2024] Open
Abstract
More and more patients suffer from multifactorial neurodegenerative diseases, such as age-related macular degeneration (AMD). However, their pathological mechanisms are still poorly understood, which complicates the development of effective therapies. To improve treatment of multifactorial diseases, cell-based gene therapy can be used to increase the expression of therapeutic factors. To date, there is no approved therapy for dry AMD, including late-stage geographic atrophy. We present a treatment option for dry AMD that transfers the brain-derived neurotrophic factor (BDNF) gene into retinal pigment epithelial (RPE) cells by electroporation using the plasmid-based Sleeping Beauty (SB) transposon system. ARPE-19 cells and primary human RPE cells were co-transfected with two plasmids encoding the SB100X transposase and the transposon carrying a BDNF transcription cassette. We demonstrated efficient expression and secretion of BDNF in both RPE cell types, which were further increased in ARPE-19 cell cultures exposed to hydrogen peroxide. BDNF-transfected cells exhibited lower apoptosis rates and stimulated neurite outgrowth in human SH-SY5Y cells. This study is an important step in the development of a cell-based BDNF gene therapy that could be applied as an advanced therapy medicinal product to treat dry AMD or other degenerative retinal diseases.
Collapse
Affiliation(s)
- Larissa Mattern
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Katrin Otten
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Csaba Miskey
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Matthias Fuest
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Peter Walter
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Gabriele Thumann
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
| | - Sandra Johnen
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| |
Collapse
|
7
|
Moretti A, Ponzo M, Nicolette CA, Tcherepanova IY, Biondi A, Magnani CF. The Past, Present, and Future of Non-Viral CAR T Cells. Front Immunol 2022; 13:867013. [PMID: 35757746 PMCID: PMC9218214 DOI: 10.3389/fimmu.2022.867013] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022] Open
Abstract
Adoptive transfer of chimeric antigen receptor (CAR) T lymphocytes is a powerful technology that has revolutionized the way we conceive immunotherapy. The impressive clinical results of complete and prolonged response in refractory and relapsed diseases have shifted the landscape of treatment for hematological malignancies, particularly those of lymphoid origin, and opens up new possibilities for the treatment of solid neoplasms. However, the widening use of cell therapy is hampered by the accessibility to viral vectors that are commonly used for T cell transfection. In the era of messenger RNA (mRNA) vaccines and CRISPR/Cas (clustered regularly interspaced short palindromic repeat-CRISPR-associated) precise genome editing, novel and virus-free methods for T cell engineering are emerging as a more versatile, flexible, and sustainable alternative for next-generation CAR T cell manufacturing. Here, we discuss how the use of non-viral vectors can address some of the limitations of the viral methods of gene transfer and allow us to deliver genetic information in a stable, effective and straightforward manner. In particular, we address the main transposon systems such as Sleeping Beauty (SB) and piggyBac (PB), the utilization of mRNA, and innovative approaches of nanotechnology like Lipid-based and Polymer-based DNA nanocarriers and nanovectors. We also describe the most relevant preclinical data that have recently led to the use of non-viral gene therapy in emerging clinical trials, and the related safety and efficacy aspects. We will also provide practical considerations for future trials to enable successful and safe cell therapy with non-viral methods for CAR T cell generation.
Collapse
Affiliation(s)
- Alex Moretti
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione Monza e Brianza per il Bambino e la sua Mamma (MBBM), Monza, Italy
| | - Marianna Ponzo
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione Monza e Brianza per il Bambino e la sua Mamma (MBBM), Monza, Italy
| | | | | | - Andrea Biondi
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione Monza e Brianza per il Bambino e la sua Mamma (MBBM), Monza, Italy
- Department of Pediatrics, University of Milano - Bicocca, Milan, Italy
- Clinica Pediatrica, University of Milano - Bicocca/Fondazione MBBM, Monza, Italy
| | - Chiara F. Magnani
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione Monza e Brianza per il Bambino e la sua Mamma (MBBM), Monza, Italy
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Baron Y, Sens J, Lange L, Nassauer L, Klatt D, Hoffmann D, Kleppa MJ, Barbosa PV, Keisker M, Steinberg V, Suerth JD, Vondran FW, Meyer J, Morgan M, Schambach A, Galla M. Improved alpharetrovirus-based Gag.MS2 particles for efficient and transient delivery of CRISPR-Cas9 into target cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:810-823. [PMID: 35141043 PMCID: PMC8801357 DOI: 10.1016/j.omtn.2021.12.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/29/2021] [Indexed: 12/12/2022]
Abstract
DNA-modifying technologies, such as the CRISPR-Cas9 system, are promising tools in the field of gene and cell therapies. However, high and prolonged expression of DNA-modifying enzymes may cause cytotoxic and genotoxic side effects and is therefore unwanted in therapeutic approaches. Consequently, development of new and potent short-term delivery methods is of utmost importance. Recently, we developed non-integrating gammaretrovirus- and MS2 bacteriophage-based Gag.MS2 (g.Gag.MS2) particles for transient transfer of non-retroviral CRISPR-Cas9 RNA into target cells. In the present study, we further improved the technique by transferring the system to the alpharetroviral vector platform (a.Gag.MS2), which significantly increased CRISPR-Cas9 delivery into target cells and allowed efficient targeted knockout of endogenous TP53/Trp53 genes in primary murine fibroblasts as well as primary human fibroblasts, hepatocytes, and cord-blood-derived CD34+ stem and progenitor cells. Strikingly, co-packaging of Cas9 mRNA and multiple single guide RNAs (sgRNAs) into a.Gag.MS2 chimera displayed efficient targeted knockout of up to three genes. Co-transfection of single-stranded DNA donor oligonucleotides during CRISPR-Cas9 particle production generated all-in-one particles, which mediated up to 12.5% of homology-directed repair in primary cell cultures. In summary, optimized a.Gag.MS2 particles represent a versatile tool for short-term delivery of DNA-modifying enzymes into a variety of target cells, including primary murine and human cells.
Collapse
Affiliation(s)
- Yvonne Baron
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Johanna Sens
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Lucas Lange
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Larissa Nassauer
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Denise Klatt
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Dirk Hoffmann
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Marc-Jens Kleppa
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Philippe Vollmer Barbosa
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover 30625, Germany
| | - Maximilian Keisker
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Viviane Steinberg
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Julia D. Suerth
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Florian W.R. Vondran
- ReMediES, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover 30625, Germany
- German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover Medical School, Hannover 30625, Germany
| | - Johann Meyer
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| |
Collapse
|
9
|
|
10
|
Suzuki T, Katada E, Mizuoka Y, Takagi S, Kazuki Y, Oshimura M, Shindo M, Hara T. A novel all-in-one conditional knockout system uncovered an essential role of DDX1 in ribosomal RNA processing. Nucleic Acids Res 2021; 49:e40. [PMID: 33503245 PMCID: PMC8053084 DOI: 10.1093/nar/gkaa1296] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/09/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
Generation of conditional knockout (cKO) and various gene-modified cells is laborious and time-consuming. Here, we established an all-in-one cKO system, which enables highly efficient generation of cKO cells and simultaneous gene modifications, including epitope tagging and reporter gene knock-in. We applied this system to mouse embryonic stem cells (ESCs) and generated RNA helicase Ddx1 cKO ESCs. The targeted cells displayed endogenous promoter-driven EGFP and FLAG-tagged DDX1 expression, and they were converted to Ddx1 KO via FLP recombinase. We further established TetFE ESCs, which carried a reverse tetracycline transactivator (rtTA) expression cassette and a tetracycline response element (TRE)-regulated FLPERT2 cassette in the Gt(ROSA26)Sor locus for instant and tightly regulated induction of gene KO. By utilizing TetFE Ddx1F/F ESCs, we isolated highly pure Ddx1F/F and Ddx1−/− ESCs and found that loss of Ddx1 caused rRNA processing defects, thereby activating the ribosome stress–p53 pathway. We also demonstrated cKO of various genes in ESCs and homologous recombination-non-proficient human HT1080 cells. The frequency of cKO clones was remarkably high for both cell types and reached up to 96% when EGFP-positive clones were analyzed. This all-in-one cKO system will be a powerful tool for rapid and precise analyses of gene functions.
Collapse
Affiliation(s)
- Teruhiko Suzuki
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Eiji Katada
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yuki Mizuoka
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Satoko Takagi
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yasuhiro Kazuki
- Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishicho, Yonago 683-8503, Japan.,Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Mitsuo Oshimura
- Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishicho, Yonago 683-8503, Japan
| | - Mayumi Shindo
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Takahiko Hara
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.,Graduate School of Science, Department of Biological Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0397, Japan
| |
Collapse
|
11
|
Sandoval-Villegas N, Nurieva W, Amberger M, Ivics Z. Contemporary Transposon Tools: A Review and Guide through Mechanisms and Applications of Sleeping Beauty, piggyBac and Tol2 for Genome Engineering. Int J Mol Sci 2021; 22:ijms22105084. [PMID: 34064900 PMCID: PMC8151067 DOI: 10.3390/ijms22105084] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 01/19/2023] Open
Abstract
Transposons are mobile genetic elements evolved to execute highly efficient integration of their genes into the genomes of their host cells. These natural DNA transfer vehicles have been harnessed as experimental tools for stably introducing a wide variety of foreign DNA sequences, including selectable marker genes, reporters, shRNA expression cassettes, mutagenic gene trap cassettes, and therapeutic gene constructs into the genomes of target cells in a regulated and highly efficient manner. Given that transposon components are typically supplied as naked nucleic acids (DNA and RNA) or recombinant protein, their use is simple, safe, and economically competitive. Thus, transposons enable several avenues for genome manipulations in vertebrates, including transgenesis for the generation of transgenic cells in tissue culture comprising the generation of pluripotent stem cells, the production of germline-transgenic animals for basic and applied research, forward genetic screens for functional gene annotation in model species and therapy of genetic disorders in humans. This review describes the molecular mechanisms involved in transposition reactions of the three most widely used transposon systems currently available (Sleeping Beauty, piggyBac, and Tol2), and discusses the various parameters and considerations pertinent to their experimental use, highlighting the state-of-the-art in transposon technology in diverse genetic applications.
Collapse
Affiliation(s)
| | | | | | - Zoltán Ivics
- Correspondence: ; Tel.: +49-6103-77-6000; Fax: +49-6103-77-1280
| |
Collapse
|
12
|
Kumar D, Anand T, Talluri TR, Kues WA. Potential of transposon-mediated cellular reprogramming towards cell-based therapies. World J Stem Cells 2020; 12:527-544. [PMID: 32843912 PMCID: PMC7415244 DOI: 10.4252/wjsc.v12.i7.527] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/09/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
Induced pluripotent stem (iPS) cells present a seminal discovery in cell biology and promise to support innovative treatments of so far incurable diseases. To translate iPS technology into clinical trials, the safety and stability of these reprogrammed cells needs to be shown. In recent years, different non-viral transposon systems have been developed for the induction of cellular pluripotency, and for the directed differentiation into desired cell types. In this review, we summarize the current state of the art of different transposon systems in iPS-based cell therapies.
Collapse
Affiliation(s)
- Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, India
| | - Taruna Anand
- NCVTC, ICAR-National Research Centre on Equines, Hisar 125001, India
| | - Thirumala R Talluri
- Equine Production Campus, ICAR-National Research Centre on Equines, Bikaner 334001, India
| | - Wilfried A Kues
- Friedrich-Loeffler-Institut, Institute of Farm Animal Genetics, Department of Biotechnology, Mariensee 31535, Germany
| |
Collapse
|
13
|
Larsen LE, Smith MA, Abbey D, Korn A, Reeskamp LF, Hand NJ, Holleboom AG. Hepatocyte-like cells derived from induced pluripotent stem cells: A versatile tool to understand lipid disorders. Atherosclerosis 2020; 303:8-14. [PMID: 32460140 DOI: 10.1016/j.atherosclerosis.2020.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/19/2020] [Accepted: 03/18/2020] [Indexed: 12/12/2022]
Abstract
Dyslipidemias are strongly linked to the development of atherosclerotic cardiovascular disease. Most dyslipidemias find their origin in the liver. In recent years, the differentiation of induced pluripotent stem cells (iPSCs) into hepatocyte-like cells has provided a versatile platform for the functional study of various dyslipidemias, both rare genetic dyslipidemia as well as common lipid disorders associated with insulin resistance or non-alcoholic fatty liver disease. In addition, iPSC-derived hepatocytes can serve as a cell model for developing novel lipid lowering therapies and have the potential of regenerative medicine. This review provides an overview of these developments.
Collapse
Affiliation(s)
- Lars E Larsen
- Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Mikhaila A Smith
- Departments of Genetics and Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Deepti Abbey
- Departments of Genetics and Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Amber Korn
- Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands; Department of Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Laurens F Reeskamp
- Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands; Department of Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Nicholas J Hand
- Departments of Genetics and Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA.
| | - Adriaan G Holleboom
- Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands; Department of Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
14
|
Querques I, Mades A, Zuliani C, Miskey C, Alb M, Grueso E, Machwirth M, Rausch T, Einsele H, Ivics Z, Hudecek M, Barabas O. A highly soluble Sleeping Beauty transposase improves control of gene insertion. Nat Biotechnol 2019; 37:1502-1512. [PMID: 31685959 PMCID: PMC6894935 DOI: 10.1038/s41587-019-0291-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/13/2019] [Indexed: 12/21/2022]
Abstract
The Sleeping Beauty (SB) transposon system is an efficient non-viral gene transfer tool in mammalian cells but its broad use has been hampered by uncontrolled transposase gene activity from DNA vectors, posing a risk for genome instability, and by the inability to use transposase protein directly. Here, we used rational protein design based on the crystal structure of the hyperactive SB100X variant to create an SB transposase (hsSB) with enhanced solubility and stability. We demonstrate that hsSB can be delivered with transposon DNA to genetically modify cell lines and embryonic, hematopoietic and induced pluripotent stem cells (iPSCs), overcoming uncontrolled transposase activity. We used hsSB to generate chimeric antigen receptor (CAR) T-cells, which exhibit potent anti-tumor activity in vitro and in xenograft mice. We found that hsSB spontaneously penetrates cells, enabling modification of iPSCs and generation of CAR-T cells without the use of transfection reagents. Titration of hsSB to modulate genomic integration frequency achieved as few as two integrations per genome.
Collapse
Affiliation(s)
- Irma Querques
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Andreas Mades
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Cecilia Zuliani
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Csaba Miskey
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Miriam Alb
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Esther Grueso
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Markus Machwirth
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Tobias Rausch
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Hermann Einsele
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany.
| | - Orsolya Barabas
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
15
|
Knopp Y, Geis FK, Heckl D, Horn S, Neumann T, Kuehle J, Meyer J, Fehse B, Baum C, Morgan M, Meyer J, Schambach A, Galla M. Transient Retrovirus-Based CRISPR/Cas9 All-in-One Particles for Efficient, Targeted Gene Knockout. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 13:256-274. [PMID: 30317165 PMCID: PMC6187057 DOI: 10.1016/j.omtn.2018.09.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 09/07/2018] [Accepted: 09/07/2018] [Indexed: 12/11/2022]
Abstract
The recently discovered CRISPR/Cas9 system is widely used in basic research and is a useful tool for disease modeling and gene editing therapies. However, long-term expression of DNA-modifying enzymes can be associated with cytotoxicity and is particularly unwanted in clinical gene editing strategies. Because current transient expression methods may still suffer from cytotoxicity and/or low efficiency, we developed non-integrating retrovirus-based CRISPR/Cas9 all-in-one particles for targeted gene knockout. By redirecting the gammaretroviral packaging machinery, we transiently delivered Streptococcus pyogenes Cas9 (SpCas9) mRNA and single-guide RNA transcripts into various (including primary) cell types. Spatiotemporal co-delivery of CRISPR/Cas9 components resulted in efficient disruption of a surrogate reporter gene, as well as functional knockout of endogenous human genes CXCR4 and TP53. Although acting in a hit-and-run fashion, knockout efficiencies of our transient particles corresponded to 52%-80% of those obtained from constitutively active integrating vectors. Stable SpCas9 overexpression at high doses in murine NIH3T3 cells caused a substantial G0/G1 arrest accompanied by reduced cell growth and metabolic activity, which was prevented by transient SpCas9 transfer. In summary, the non-integrating retrovirus-based vector particles introduced here allow efficient and dose-controlled delivery of CRISPR/Cas9 components into target cells.
Collapse
Affiliation(s)
- Yvonne Knopp
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Franziska K Geis
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Dirk Heckl
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover 30625, Germany
| | - Stefan Horn
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Thomas Neumann
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Johannes Kuehle
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Janine Meyer
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Christopher Baum
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany; Presidential Office, Hannover Medical School, Hannover 30625, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Johann Meyer
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany.
| |
Collapse
|
16
|
Haridhasapavalan KK, Borgohain MP, Dey C, Saha B, Narayan G, Kumar S, Thummer RP. An insight into non-integrative gene delivery approaches to generate transgene-free induced pluripotent stem cells. Gene 2018; 686:146-159. [PMID: 30472380 DOI: 10.1016/j.gene.2018.11.069] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/11/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023]
Abstract
Over a decade ago, a landmark study that reported derivation of induced Pluripotent Stem Cells (iPSCs) by reprogramming fibroblasts has transformed stem cell research attracting the interest of the scientific community worldwide. These cells circumvent the ethical and immunological concerns associated with embryonic stem cells, and the limited self-renewal ability and restricted differentiation potential linked to adult stem cells. iPSCs hold great potential for understanding basic human biology, in vitro disease modeling, high-throughput drug testing and discovery, and personalized regenerative medicine. The conventional reprogramming methods involving retro- and lenti-viral vectors to deliver reprogramming factors in somatic cells to generate iPSCs nullify the clinical applicability of these cells. Although these gene delivery systems are efficient and robust, they carry an enormous risk of permanent genetic modifications and are potentially tumorigenic. To evade these safety concerns and derive iPSCs for human therapy, tremendous technological advancements have resulted in the development of non-integrating viral- and non-viral approaches. These gene delivery techniques curtail or eliminate the risk of any genomic alteration and enhance the prospects of iPSCs from bench-to-bedside. The present review provides a comprehensive overview of non-integrating viral (adenoviral vectors, adeno-associated viral vectors, and Sendai virus vectors) and DNA-based, non-viral (plasmid transfection, minicircle vectors, transposon vectors, episomal vectors, and liposomal magnetofection) approaches that have the potential to generate transgene-free iPSCs. The understanding of these techniques could pave the way for the use of iPSCs for various biomedical applications.
Collapse
Affiliation(s)
- Krishna Kumar Haridhasapavalan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India.
| | - Manash P Borgohain
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India.
| | - Chandrima Dey
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India.
| | - Bitan Saha
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India
| | - Gloria Narayan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India.
| | - Sachin Kumar
- Viral Immunology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
17
|
Morgan MA, Schambach A. Chimeric Antigen Receptor T Cells: Extending Translation from Liquid to Solid Tumors. Hum Gene Ther 2018; 29:1083-1097. [PMID: 30156435 DOI: 10.1089/hum.2017.251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Successful translation of chimeric antigen receptor (CAR) T cells designed to target and eradicate CD19+ lymphomas has emboldened scientists and physicians worldwide to explore the possibility of applying CAR T-cell technology to other tumor entities, including solid tumors. Next-generation strategies such as fourth-generation CARs (CAR T cells redirected for universal cytokine killing, also known as TRUCKs) designed to deliver immunomodulatory cytokines to the tumor microenvironment, dual CAR designs to improve tumor control, inclusion of suicide genes as safety switches, and precision genome editing are currently being investigated. One major ongoing goal is to determine how best to generate CAR T cells that modulate the tumor microenvironment, overcome tumor survival mechanisms, and thus allow broader applicability as universal allogeneic T-cell therapeutics. Development of state-of-the-art and beyond viral vector systems to deliver designer CARs coupled with targeted genome editing is expected to generate more effective off-the-shelf CAR T cells with activity against a greater number of cancer types and importantly solid tumors.
Collapse
Affiliation(s)
- Michael A Morgan
- 1 Institute of Experimental Hematology, Hannover Medical School , Hannover, Germany .,2 REBIRTH Cluster of Excellence, Hannover Medical School , Hannover, Germany
| | - Axel Schambach
- 1 Institute of Experimental Hematology, Hannover Medical School , Hannover, Germany .,2 REBIRTH Cluster of Excellence, Hannover Medical School , Hannover, Germany .,3 Division of Hematology/Oncology, Boston Children's Hospital , Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
18
|
Benati D, Cocchiarella F, Recchia A. An Efficient In Vitro Transposition Method by a Transcriptionally Regulated Sleeping Beauty System Packaged into an Integration Defective Lentiviral Vector. J Vis Exp 2018. [PMID: 29364270 DOI: 10.3791/56742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The Sleeping Beauty (SB) transposon is a non-viral integrating system with proven efficacy for gene transfer and functional genomics. To optimize the SB transposon machinery, a transcriptionally regulated hyperactive transposase (SB100X) and T2-based transposon are employed. Typically, the transposase and transposon are provided transiently by plasmid transfection and SB100X expression is driven by a constitutive promoter. Here, we describe an efficient method to deliver the SB components to human cells that are resistant to several physical and chemical transfection methods, to control SB100X expression and stably integrate a gene of interest (GOI) through a "cut and paste" SB mechanism. The expression of hyperactive transposase is tightly controlled by the Tet-ON system, widely used to control gene expression since 1992. The gene of interest is flanked by inverted repeats (IR) of the T2 transposon. Both SB components are packaged in integration defective lentiviral vectors transiently produced in HEK293T cells. Human cells, either cell lines or primary cells from human tissue, are in vitro transiently transduced with viral vectors. Upon addition of doxycycline (dox, tetracycline analog) into the culture medium, a fine-tuning of transposase expression is measured and results in a long-lasting integration of the gene of interest in the genome of the treated cells. This method is efficient and applicable to the cell line (e.g., HeLa cells) and primary cells (e.g., human primary keratinocytes), and thus represents a valuable tool for genetic engineering and therapeutic gene transfer.
Collapse
Affiliation(s)
- Daniela Benati
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia
| | - Fabienne Cocchiarella
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia
| | - Alessandra Recchia
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia;
| |
Collapse
|
19
|
Tipanee J, VandenDriessche T, Chuah MK. Transposons: Moving Forward from Preclinical Studies to Clinical Trials. Hum Gene Ther 2017; 28:1087-1104. [DOI: 10.1089/hum.2017.128] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Jaitip Tipanee
- Department of Gene Therapy and Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
| | - Thierry VandenDriessche
- Department of Gene Therapy and Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Marinee K. Chuah
- Department of Gene Therapy and Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| |
Collapse
|
20
|
Hudecek M, Izsvák Z, Johnen S, Renner M, Thumann G, Ivics Z. Going non-viral: the Sleeping Beauty transposon system breaks on through to the clinical side. Crit Rev Biochem Mol Biol 2017; 52:355-380. [PMID: 28402189 DOI: 10.1080/10409238.2017.1304354] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Molecular medicine has entered a high-tech age that provides curative treatments of complex genetic diseases through genetically engineered cellular medicinal products. Their clinical implementation requires the ability to stably integrate genetic information through gene transfer vectors in a safe, effective and economically viable manner. The latest generation of Sleeping Beauty (SB) transposon vectors fulfills these requirements, and may overcome limitations associated with viral gene transfer vectors and transient non-viral gene delivery approaches that are prevalent in ongoing pre-clinical and translational research. The SB system enables high-level stable gene transfer and sustained transgene expression in multiple primary human somatic cell types, thereby representing a highly attractive gene transfer strategy for clinical use. Here we review several recent refinements of the system, including the development of optimized transposons and hyperactive SB variants, the vectorization of transposase and transposon as mRNA and DNA minicircles (MCs) to enhance performance and facilitate vector production, as well as a detailed understanding of SB's genomic integration and biosafety features. This review also provides a perspective on the regulatory framework for clinical trials of gene delivery with SB, and illustrates the path to successful clinical implementation by using, as examples, gene therapy for age-related macular degeneration (AMD) and the engineering of chimeric antigen receptor (CAR)-modified T cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Michael Hudecek
- a Medizinische Klinik und Poliklinik II , Universitätsklinikum Würzburg , Würzburg , Germany
| | - Zsuzsanna Izsvák
- b Mobile DNA , Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
| | - Sandra Johnen
- c Department of Ophthalmology , University Hospital RWTH Aachen , Aachen , Germany
| | - Matthias Renner
- d Division of Medical Biotechnology , Paul Ehrlich Institute , Langen, Germany
| | - Gabriele Thumann
- e Département des Neurosciences Cliniques Service d'Ophthalmologie , Hôpitaux Universitaires de Genève , Genève , Switzerland
| | - Zoltán Ivics
- d Division of Medical Biotechnology , Paul Ehrlich Institute , Langen, Germany
| |
Collapse
|
21
|
Noyan F, Zimmermann K, Hardtke-Wolenski M, Knoefel A, Schulde E, Geffers R, Hust M, Huehn J, Galla M, Morgan M, Jokuszies A, Manns MP, Jaeckel E. Prevention of Allograft Rejection by Use of Regulatory T Cells With an MHC-Specific Chimeric Antigen Receptor. Am J Transplant 2017; 17:917-930. [PMID: 27997080 DOI: 10.1111/ajt.14175] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 12/02/2016] [Accepted: 12/07/2016] [Indexed: 01/25/2023]
Abstract
CD4+ CD25high FOXP3+ regulatory T cells (Tregs) are involved in graft-specific tolerance after solid organ transplantation. However, adoptive transfer of polyspecific Tregs alone is insufficient to prevent graft rejection even in rodent models, indicating that graft-specific Tregs are required. We developed a highly specific chimeric antigen receptor that recognizes the HLA molecule A*02 (referred to as A2-CAR). Transduction into natural regulatory T cells (nTregs) changes the specificity of the nTregs without alteration of their regulatory phenotype and epigenetic stability. Activation of nTregs via the A2-CAR induced proliferation and enhanced the suppressor function of modified nTregs. Compared with nTregs, A2-CAR Tregs exhibited superior control of strong allospecific immune responses in vitro and in humanized mouse models. A2-CAR Tregs completely prevented rejection of allogeneic target cells and tissues in immune reconstituted humanized mice in the absence of any immunosuppression. Therefore, these modified cells have great potential for incorporation into clinical trials of Treg-supported weaning after allogeneic transplantation.
Collapse
Affiliation(s)
- F Noyan
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany.,Integrated Research and Treatment Center, Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| | - K Zimmermann
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - M Hardtke-Wolenski
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - A Knoefel
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - E Schulde
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - R Geffers
- RG of Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - M Hust
- Department of Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - J Huehn
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - M Galla
- Institute of Experimental Haematology, Hannover Medical School, Hannover, Germany
| | - M Morgan
- Institute of Experimental Haematology, Hannover Medical School, Hannover, Germany
| | - A Jokuszies
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - M P Manns
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - E Jaeckel
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany.,Integrated Research and Treatment Center, Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| |
Collapse
|
22
|
Barbon E, Ferrarese M, van Wittenberghe L, Sanatine P, Ronzitti G, Collaud F, Colella P, Pinotti M, Mingozzi F. Transposon-mediated Generation of Cellular and Mouse Models of Splicing Mutations to Assess the Efficacy of snRNA-based Therapeutics. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e392. [PMID: 27898092 PMCID: PMC5155329 DOI: 10.1038/mtna.2016.97] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/06/2016] [Indexed: 12/21/2022]
Abstract
Disease-causing splicing mutations can be rescued by variants of the U1 small nuclear RNA (U1snRNAs). However, the evaluation of the efficacy and safety of modified U1snRNAs as therapeutic tools is limited by the availability of cellular and animal models specific for a given mutation. Hence, we exploited the hyperactive Sleeping Beauty transposon system (SB100X) to integrate human factor IX (hFIX) minigenes into genomic DNA in vitro and in vivo. We generated stable HEK293 cell lines and C57BL/6 mice harboring splicing-competent hFIX minigenes either wild type (SChFIX-wt) or mutated (SChFIXex5-2C). In both models the SChFIXex5-2C variant, found in patients affected by Hemophilia B, displayed an aberrant splicing pattern characterized by exon 5 skipping. This allowed us to test, for the first time in a genomic DNA context, the efficacy of the snRNA U1-fix9, delivered with an adeno-associated virus (AAV) vector. With this approach, we showed rescue of the correct splicing pattern of hFIX mRNA, leading to hFIX protein expression. These data validate the SB100X as a versatile tool to quickly generate models of human genetic mutations, to study their effect in a stable DNA context and to assess mutation-targeted therapeutic strategies.
Collapse
Affiliation(s)
| | - Mattia Ferrarese
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Federico Mingozzi
- Genethon, Evry, France
- INSERM U951, Evry, France
- Institute of Myology, University Pierre and Marie Curie – Paris 6, Paris, France
| |
Collapse
|
23
|
Vargas JE, Chicaybam L, Stein RT, Tanuri A, Delgado-Cañedo A, Bonamino MH. Retroviral vectors and transposons for stable gene therapy: advances, current challenges and perspectives. J Transl Med 2016; 14:288. [PMID: 27729044 PMCID: PMC5059932 DOI: 10.1186/s12967-016-1047-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 10/03/2016] [Indexed: 12/15/2022] Open
Abstract
Gene therapy protocols require robust and long-term gene expression. For two decades, retrovirus family vectors have offered several attractive properties as stable gene-delivery vehicles. These vectors represent a technology with widespread use in basic biology and translational studies that require persistent gene expression for treatment of several monogenic diseases. Immunogenicity and insertional mutagenesis represent the main obstacles to a wider clinical use of these vectors. Efficient and safe non-viral vectors are emerging as a promising alternative and facilitate clinical gene therapy studies. Here, we present an updated review for beginners and expert readers on retro and lentiviruses and the latest generation of transposon vectors (sleeping beauty and piggyBac) used in stable gene transfer and gene therapy clinical trials. We discuss the potential advantages and disadvantages of these systems such as cellular responses (immunogenicity or genome modification of the target cell) following exogenous DNA integration. Additionally, we discuss potential implications of these genome modification tools in gene therapy and other basic and applied science contexts.
Collapse
Affiliation(s)
- José Eduardo Vargas
- Centro Infantil-Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Porto Alegre, Brazil
| | - Leonardo Chicaybam
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer (INCA), Rua Andre Cavalcanti 37/6º andar, Centro, Rio de Janeiro, 20231-050, Brazil.,Vice-presidência de Pesquisa e Laboratórios de Referência, Fundação Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Renato Tetelbom Stein
- Centro Infantil-Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Porto Alegre, Brazil
| | - Amilcar Tanuri
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Martin H Bonamino
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer (INCA), Rua Andre Cavalcanti 37/6º andar, Centro, Rio de Janeiro, 20231-050, Brazil. .,Vice-presidência de Pesquisa e Laboratórios de Referência, Fundação Instituto Oswaldo Cruz, Rio de Janeiro, Brazil.
| |
Collapse
|
24
|
Narayanavari SA, Chilkunda SS, Ivics Z, Izsvák Z. Sleeping Beauty transposition: from biology to applications. Crit Rev Biochem Mol Biol 2016; 52:18-44. [PMID: 27696897 DOI: 10.1080/10409238.2016.1237935] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Sleeping Beauty (SB) is the first synthetic DNA transposon that was shown to be active in a wide variety of species. Here, we review studies from the last two decades addressing both basic biology and applications of this transposon. We discuss how host-transposon interaction modulates transposition at different steps of the transposition reaction. We also discuss how the transposon was translated for gene delivery and gene discovery purposes. We critically review the system in clinical, pre-clinical and non-clinical settings as a non-viral gene delivery tool in comparison with viral technologies. We also discuss emerging SB-based hybrid vectors aimed at combining the attractive safety features of the transposon with effective viral delivery. The success of the SB-based technology can be fundamentally attributed to being able to insert fairly randomly into genomic regions that allow stable long-term expression of the delivered transgene cassette. SB has emerged as an efficient and economical toolkit for safe and efficient gene delivery for medical applications.
Collapse
Affiliation(s)
- Suneel A Narayanavari
- a Mobile DNA , Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
| | - Shreevathsa S Chilkunda
- a Mobile DNA , Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
| | - Zoltán Ivics
- b Division of Medical Biotechnology , Paul Ehrlich Institute , Langen , Germany
| | - Zsuzsanna Izsvák
- a Mobile DNA , Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
| |
Collapse
|
25
|
Schott JW, Morgan M, Galla M, Schambach A. Viral and Synthetic RNA Vector Technologies and Applications. Mol Ther 2016; 24:1513-27. [PMID: 27377044 DOI: 10.1038/mt.2016.143] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 06/30/2016] [Indexed: 12/21/2022] Open
Abstract
Use of RNA is an increasingly popular method to transiently deliver genetic information for cell manipulation in basic research and clinical therapy. In these settings, viral and nonviral RNA platforms are employed for delivery of small interfering RNA and protein-coding mRNA. Technological advances allowing RNA modification for increased stability, improved translation and reduced immunogenicity have led to increased use of nonviral synthetic RNA, which is delivered in naked form or upon formulation. Alternatively, highly efficient viral entry pathways are exploited to transfer genes of interest as RNA incorporated into viral particles. Current viral RNA transfer technologies are derived from Retroviruses, nonsegmented negative-strand RNA viruses or positive-stranded Alpha- and Flaviviruses. In retroviral particles, the genes of interest can either be incorporated directly into the viral RNA genome or as nonviral RNA. Nonsegmented negative-strand virus-, Alpha- and Flavivirus-derived vectors support prolonged expression windows through replication of viral RNA encoding genes of interest. Mixed technologies combining viral and nonviral components are also available. RNA transfer is ideal for all settings that do not require permanent transgene expression and excludes potentially detrimental DNA integration into the target cell genome. Thus, RNA-based technologies are successfully applied for reprogramming, transdifferentiation, gene editing, vaccination, tumor therapy, and gene therapy.
Collapse
Affiliation(s)
- Juliane W Schott
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Cocchiarella F, Latella MC, Basile V, Miselli F, Galla M, Imbriano C, Recchia A. Transcriptionally regulated and nontoxic delivery of the hyperactive Sleeping Beauty Transposase. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16038. [PMID: 27574698 PMCID: PMC4985251 DOI: 10.1038/mtm.2016.38] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 12/17/2022]
Abstract
The Sleeping Beauty (SB) transposase and, in particular, its hyperactive variant SB100X raises increasing interest for gene therapy application, including genome modification and, more recently, induced pluripotent stem cells (iPS) reprogramming. The documented cytotoxicity of the transposase, when constitutively expressed by an integrating retroviral vector (iRV), has been circumvented by the transient delivery of SB100X using retroviral mRNA transfer. In this study, we developed an alternative, safe, and efficient transposase delivery system based on a tetracycline-ON regulated expression cassette and the rtTA2(S)-M2 transactivator gene transiently delivered by integration-defective lentiviral vectors (IDLVs). Compared with iRV-mediated delivery, expression of tetracycline-induced SB100X delivered by an IDLV results in more efficient integration of a GFP transposon and reduced toxicity. Tightly regulated expression and reactivation of the transposase was achieved in HeLa cells as wells as in human primary keratinocytes. Based on these properties, the regulated transposase-IDLV vectors may represent a valuable tool for genetic engineering and therapeutic gene transfer.
Collapse
Affiliation(s)
- Fabienne Cocchiarella
- Department of Life Sciences, Centre for Regenerative Medicine, University of Modena and Reggio Emilia , Modena, Italy
| | - Maria Carmela Latella
- Department of Life Sciences, Centre for Regenerative Medicine, University of Modena and Reggio Emilia , Modena, Italy
| | - Valentina Basile
- Department of Life Sciences, University of Modena and Reggio Emilia , Modena, Italy
| | - Francesca Miselli
- Department of Life Sciences, Centre for Regenerative Medicine, University of Modena and Reggio Emilia , Modena, Italy
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School , Hannover, Germany
| | - Carol Imbriano
- Department of Life Sciences, University of Modena and Reggio Emilia , Modena, Italy
| | - Alessandra Recchia
- Department of Life Sciences, Centre for Regenerative Medicine, University of Modena and Reggio Emilia , Modena, Italy
| |
Collapse
|
27
|
Sleeping Beauty Transposon Vectors in Liver-directed Gene Delivery of LDLR and VLDLR for Gene Therapy of Familial Hypercholesterolemia. Mol Ther 2015; 24:620-35. [PMID: 26670130 DOI: 10.1038/mt.2015.221] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/04/2015] [Indexed: 01/12/2023] Open
Abstract
Plasmid-based Sleeping Beauty (SB) transposon vectors were developed and used to deliver genes for low-density lipoprotein and very-low-density lipoprotein receptors (LDLR and VLDLR, respectively) or lacZ reporter into liver of an LDLR-deficient mouse model of familial hypercholesterolemia (FH). SB transposase, SB100x, was used to integrate the therapeutic transposons into mice livers for evaluating the feasibility of the vectors in reducing high blood cholesterol and the progression of atherosclerosis. Hydrodynamic gene delivery of transposon-VLDLR into the livers of the mice resulted in initial 17-19% reductions in plasma cholesterol, and at the later time points, in a significant stabilization of the cholesterol level for the 6.5-month duration of the study compared to the control mice. Transposon-LDLR-treated animals also demonstrated a trend of stabilization in the cholesterol levels in the long term. Vector-treated mice had slightly less lipid accumulation in the liver and reduced aortic atherosclerosis. Clinical chemistry and histological analyses revealed normal liver function and morphology comparable to that of the controls during the follow-up with no safety issues regarding the vector type, transgenes, or the gene transfer method. The study demonstrates the safety and potential benefits of the SB transposon vectors in the treatment of FH.
Collapse
|
28
|
Retrovirus-based vectors for transient and permanent cell modification. Curr Opin Pharmacol 2015; 24:135-46. [PMID: 26433198 DOI: 10.1016/j.coph.2015.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 09/04/2015] [Indexed: 01/19/2023]
Abstract
Retroviral vectors are commonly employed for long-term transgene expression via integrating vector technology. However, three alternative retrovirus-based platforms are currently available that allow transient cell modification. Gene expression can be mediated from either episomal DNA or RNA templates, or selected proteins can be directly transferred through retroviral nanoparticles. The different technologies are functionally graded with respect to safety, expression magnitude and expression duration. Improvement of the initial technologies, including modification of vector designs, targeted increase in expression strength and duration as well as improved safety characteristics, has allowed maturation of retroviral systems into efficient and promising tools that meet the technological demands of a wide variety of potential application areas.
Collapse
|
29
|
Siska EK, Koliakos G, Petrakis S. Stem cell models of polyglutamine diseases and their use in cell-based therapies. Front Neurosci 2015; 9:247. [PMID: 26236184 PMCID: PMC4501170 DOI: 10.3389/fnins.2015.00247] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 06/30/2015] [Indexed: 12/20/2022] Open
Abstract
Polyglutamine diseases are fatal neurological disorders that affect the central nervous system. They are caused by mutations in disease genes that contain CAG trinucleotide expansions in their coding regions. These mutations are translated into expanded glutamine chains in pathological proteins. Mutant proteins induce cytotoxicity, form intranuclear aggregates and cause neuronal cell death in specific brain regions. At the moment there is no cure for these diseases and only symptomatic treatments are available. Here, we discuss novel therapeutic approaches that aim in neuronal cell replacement using induced pluripotent or adult stem cells. Additionally, we present the beneficial effect of genetically engineered mesenchymal stem cells and their use as disease models or RNAi/gene delivery vehicles. In combination with their paracrine and cell-trophic properties, such cells may prove useful for the development of novel therapies against polyglutamine diseases.
Collapse
Affiliation(s)
| | - George Koliakos
- Biohellenika Biotechnology Company Thessaloniki, Greece ; Laboratory of Biochemistry, AHEPA University Hospital, Medical School, Aristotle University of Thessaloniki Thessaloniki, Greece
| | | |
Collapse
|
30
|
Vallazza B, Petri S, Poleganov MA, Eberle F, Kuhn AN, Sahin U. Recombinant messenger RNA technology and its application in cancer immunotherapy, transcript replacement therapies, pluripotent stem cell induction, and beyond. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:471-99. [DOI: 10.1002/wrna.1288] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/23/2015] [Accepted: 04/28/2015] [Indexed: 12/24/2022]
Affiliation(s)
| | | | | | | | | | - Ugur Sahin
- BioNTech RNA Pharmaceuticals GmbH; Mainz Germany
- TRON gGmbH; Mainz Germany
| |
Collapse
|
31
|
Schott JW, Jaeschke NM, Hoffmann D, Maetzig T, Ballmaier M, Godinho T, Cathomen T, Schambach A. Deciphering the impact of parameters influencing transgene expression kinetics after repeated cell transduction with integration-deficient retroviral vectors. Cytometry A 2015; 87:405-18. [DOI: 10.1002/cyto.a.22650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 01/10/2015] [Accepted: 02/10/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Juliane W. Schott
- Institute of Experimental Hematology; Hannover Medical School; Hannover Germany
- Cluster of Excellence REBIRTH; Hannover Medical School; Hannover Germany
| | - Nico M. Jaeschke
- Institute of Experimental Hematology; Hannover Medical School; Hannover Germany
- Institute for Cell and Gene Therapy, University Medical Center Freiburg; Freiburg im Breisgau Germany
| | - Dirk Hoffmann
- Institute of Experimental Hematology; Hannover Medical School; Hannover Germany
- Cluster of Excellence REBIRTH; Hannover Medical School; Hannover Germany
| | - Tobias Maetzig
- Institute of Experimental Hematology; Hannover Medical School; Hannover Germany
- Cluster of Excellence REBIRTH; Hannover Medical School; Hannover Germany
| | - Matthias Ballmaier
- Central Research Facility Cell Sorting; Hannover Medical School; Hannover Germany
| | - Tamaryin Godinho
- Institute of Experimental Hematology; Hannover Medical School; Hannover Germany
- Cluster of Excellence REBIRTH; Hannover Medical School; Hannover Germany
| | - Toni Cathomen
- Institute for Cell and Gene Therapy, University Medical Center Freiburg; Freiburg im Breisgau Germany
- Center for Chronic Immunodeficiency; University Medical Center Freiburg; Freiburg im Breisgau Germany
| | - Axel Schambach
- Institute of Experimental Hematology; Hannover Medical School; Hannover Germany
- Cluster of Excellence REBIRTH; Hannover Medical School; Hannover Germany
- Division of Hematology/Oncology; Boston Children's Hospital, Harvard Medical School; Boston Massachusetts
| |
Collapse
|
32
|
Vector modifications to eliminate transposase expression following piggyBac-mediated transgenesis. Sci Rep 2014; 4:7403. [PMID: 25492703 PMCID: PMC4261183 DOI: 10.1038/srep07403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/19/2014] [Indexed: 12/29/2022] Open
Abstract
Transgene insertion plays an important role in gene therapy and in biological studies. Transposon-based systems that integrate transgenes by transposase-catalyzed “cut-and-paste” mechanism have emerged as an attractive system for transgenesis. Hyperactive piggyBac transposon is particularly promising due to its ability to integrate large transgenes with high efficiency. However, prolonged expression of transposase can become a potential source of genotoxic effects due to uncontrolled transposition of the integrated transgene from one chromosomal locus to another. In this study we propose a vector design to decrease post-transposition expression of transposase and to eliminate the cells that have residual transposase expression. We design a single plasmid construct that combines the transposase and the transpositioning transgene element to share a single polyA sequence for termination. Consequently, the separation of the transposase element from the polyA sequence after transposition leads to its deactivation. We also co-express Herpes Simplex Virus thymidine kinase (HSV-tk) with the transposase. Therefore, cells having residual transposase expression can be eliminated by the administration of ganciclovir. We demonstrate the utility of this combination transposon system by integrating and expressing a model therapeutic gene, human coagulation Factor IX, in HEK293T cells.
Collapse
|
33
|
Turchiano G, Latella MC, Gogol-Döring A, Cattoglio C, Mavilio F, Izsvák Z, Ivics Z, Recchia A. Genomic analysis of Sleeping Beauty transposon integration in human somatic cells. PLoS One 2014; 9:e112712. [PMID: 25390293 PMCID: PMC4229213 DOI: 10.1371/journal.pone.0112712] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/14/2014] [Indexed: 12/21/2022] Open
Abstract
The Sleeping Beauty (SB) transposon is a non-viral integrating vector system with proven efficacy for gene transfer and functional genomics. However, integration efficiency is negatively affected by the length of the transposon. To optimize the SB transposon machinery, the inverted repeats and the transposase gene underwent several modifications, resulting in the generation of the hyperactive SB100X transposase and of the high-capacity “sandwich” (SA) transposon. In this study, we report a side-by-side comparison of the SA and the widely used T2 arrangement of transposon vectors carrying increasing DNA cargoes, up to 18 kb. Clonal analysis of SA integrants in human epithelial cells and in immortalized keratinocytes demonstrates stability and integrity of the transposon independently from the cargo size and copy number-dependent expression of the cargo cassette. A genome-wide analysis of unambiguously mapped SA integrations in keratinocytes showed an almost random distribution, with an overrepresentation in repetitive elements (satellite, LINE and small RNAs) compared to a library representing insertions of the first-generation transposon vector and to gammaretroviral and lentiviral libraries. The SA transposon/SB100X integrating system therefore shows important features as a system for delivering large gene constructs for gene therapy applications.
Collapse
Affiliation(s)
- Giandomenico Turchiano
- Center for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Carmela Latella
- Center for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Andreas Gogol-Döring
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Claudia Cattoglio
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Fulvio Mavilio
- Center for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Genethon, Evry, France
| | | | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Alessandra Recchia
- Center for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- * E-mail:
| |
Collapse
|
34
|
Cai Y, Mikkelsen JG. Driving DNA transposition by lentiviral protein transduction. Mob Genet Elements 2014; 4:e29591. [PMID: 25057443 PMCID: PMC4092313 DOI: 10.4161/mge.29591] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/11/2014] [Accepted: 06/16/2014] [Indexed: 12/16/2022] Open
Abstract
Gene vectors derived from DNA transposable elements have become powerful molecular tools in biomedical research and are slowly moving into the clinic as carriers of therapeutic genes. Conventional uses of DNA transposon-based gene vehicles rely on the intracellular production of the transposase protein from transfected nucleic acids. The transposase mediates mobilization of the DNA transposon, which is typically provided in the context of plasmid DNA. In recent work, we established lentiviral protein transduction from Gag precursors as a new strategy for direct delivery of the transposase protein. Inspired by the natural properties of infecting viruses to carry their own enzymes, we loaded lentivirus-derived particles not only with vector genomes carrying the DNA transposon vector but also with hundreds of transposase subunits. Such particles were found to drive efficient transposition of the piggyBac transposable element in a range of different cell types, including primary cells, and offer a new transposase delivery approach that guarantees short-term activity and limits potential cytotoxicity. DNA transposon vectors, originally developed and launched as a non-viral alternative to viral integrating vectors, have truly become viral. Here, we briefly review our findings and speculate on the perspectives and potential advantages of transposase delivery by lentiviral protein transduction.
Collapse
Affiliation(s)
- Yujia Cai
- Department of Biomedicine; Aarhus University; Aarhus C, Denmark
| | | |
Collapse
|
35
|
Efficient transient genetic manipulation in vitro and in vivo by prototype foamy virus-mediated nonviral RNA transfer. Mol Ther 2014; 22:1460-1471. [PMID: 24814152 DOI: 10.1038/mt.2014.82] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/29/2014] [Indexed: 12/22/2022] Open
Abstract
Vector systems based on different retroviruses are widely used to achieve stable integration and expression of transgenes. More recently, transient genetic manipulation systems were developed that are based on integration- or reverse transcription-deficient retroviruses. Lack of viral genome integration is desirable not only for reducing tumorigenic potential but also for applications requiring transient transgene expression such as reprogramming or genome editing. However, all existing transient retroviral vector systems rely on virus-encoded encapsidation sequences for the transfer of heterologous genetic material. We discovered that the transient transgene expression observed in target cells transduced by reverse transcriptase-deficient foamy virus (FV) vectors is the consequence of subgenomic RNA encapsidation into FV particles. Based on this initial observation, we describe here the establishment of FV vectors that enable the efficient transient expression of various transgenes by packaging, transfer, and de novo translation of nonviral RNAs both in vitro and in vivo. Transient transgene expression levels were comparable to integrase-deficient vectors but, unlike the latter, declined to background levels within a few days. Our results show that this new FV vector system provides a useful, novel tool for efficient transient genetic manipulation of target tissues by transfer of nonviral RNAs.
Collapse
|
36
|
Non-integrating gamma-retroviral vectors as a versatile tool for transient zinc-finger nuclease delivery. Sci Rep 2014; 4:4656. [PMID: 24722320 PMCID: PMC3983605 DOI: 10.1038/srep04656] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 03/14/2014] [Indexed: 12/17/2022] Open
Abstract
Designer nucleases, like zinc-finger nucleases (ZFNs), represent valuable tools for targeted genome editing. Here, we took advantage of the gamma-retroviral life cycle and produced vectors to transfer ZFNs in the form of protein, mRNA and episomal DNA. Transfer efficacy and ZFN activity were assessed in quantitative proof-of-concept experiments in a human cell line and in mouse embryonic stem cells. We demonstrate that retrovirus-mediated protein transfer (RPT), retrovirus-mediated mRNA transfer (RMT), and retrovirus-mediated episome transfer (RET) represent powerful methodologies for transient protein delivery or protein expression. Furthermore, we describe complementary strategies to augment ZFN activity after gamma-retroviral transduction, including serial transduction, proteasome inhibition, and hypothermia. Depending on vector dose and target cell type, gene disruption frequencies of up to 15% were achieved with RPT and RMT, and >50% gene knockout after RET. In summary, non-integrating gamma-retroviral vectors represent a versatile tool to transiently deliver ZFNs to human and mouse cells.
Collapse
|
37
|
Skipper KA, Andersen PR, Sharma N, Mikkelsen JG. DNA transposon-based gene vehicles - scenes from an evolutionary drive. J Biomed Sci 2013; 20:92. [PMID: 24320156 PMCID: PMC3878927 DOI: 10.1186/1423-0127-20-92] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 11/27/2013] [Indexed: 12/12/2022] Open
Abstract
DNA transposons are primitive genetic elements which have colonized living organisms from plants to bacteria and mammals. Through evolution such parasitic elements have shaped their host genomes by replicating and relocating between chromosomal loci in processes catalyzed by the transposase proteins encoded by the elements themselves. DNA transposable elements are constantly adapting to life in the genome, and self-suppressive regulation as well as defensive host mechanisms may assist in buffering ‘cut-and-paste’ DNA mobilization until accumulating mutations will eventually restrict events of transposition. With the reconstructed Sleeping Beauty DNA transposon as a powerful engine, a growing list of transposable elements with activity in human cells have moved into biomedical experimentation and preclinical therapy as versatile vehicles for delivery and genomic insertion of transgenes. In this review, we aim to link the mechanisms that drive transposon evolution with the realities and potential challenges we are facing when adapting DNA transposons for gene transfer. We argue that DNA transposon-derived vectors may carry inherent, and potentially limiting, traits of their mother elements. By understanding in detail the evolutionary journey of transposons, from host colonization to element multiplication and inactivation, we may better exploit the potential of distinct transposable elements. Hence, parallel efforts to investigate and develop distinct, but potent, transposon-based vector systems will benefit the broad applications of gene transfer. Insight and clever optimization have shaped new DNA transposon vectors, which recently debuted in the first DNA transposon-based clinical trial. Learning from an evolutionary drive may help us create gene vehicles that are safer, more efficient, and less prone for suppression and inactivation.
Collapse
Affiliation(s)
| | | | | | - Jacob Giehm Mikkelsen
- Department of Biomedicine, Aarhus University, Wilh, Meyers Allé 4, DK-8000, Aarhus C, Denmark.
| |
Collapse
|
38
|
Cai Y, Bak RO, Krogh LB, Staunstrup NH, Moldt B, Corydon TJ, Schrøder LD, Mikkelsen JG. DNA transposition by protein transduction of the piggyBac transposase from lentiviral Gag precursors. Nucleic Acids Res 2013; 42:e28. [PMID: 24270790 PMCID: PMC3936723 DOI: 10.1093/nar/gkt1163] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
DNA transposon-based vectors have emerged as gene vehicles with a wide biomedical and therapeutic potential. So far, genomic insertion of such vectors has relied on the co-delivery of genetic material encoding the gene-inserting transposase protein, raising concerns related to persistent expression, insertional mutagenesis and cytotoxicity. This report describes potent DNA transposition achieved by direct delivery of transposase protein. By adapting integrase-deficient lentiviral particles (LPs) as carriers of the hyperactive piggyBac transposase protein (hyPBase), we demonstrate rates of DNA transposition that are comparable with the efficiency of a conventional plasmid-based strategy. Embedded in the Gag polypeptide, hyPBase is robustly incorporated into LPs and liberated from the viral proteins by the viral protease during particle maturation. We demonstrate lentiviral co-delivery of the transposase protein and vector RNA carrying the transposon sequence, allowing robust DNA transposition in a variety of cell types. Importantly, this novel delivery method facilitates a balanced cellular uptake of hyPBase, as shown by confocal microscopy, and allows high-efficiency production of clones harboring a single transposon insertion. Our findings establish engineered LPs as a new tool for transposase delivery. We believe that protein transduction methods will increase applicability and safety of DNA transposon-based vector technologies.
Collapse
Affiliation(s)
- Yujia Cai
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark and Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
This unit describes a feeder-free protocol for deriving induced pluripotent stem cells (iPSCs) from human fibroblasts by transfection of synthetic mRNA. The reprogramming of somatic cells requires transient expression of a set of transcription factors that collectively activate an endogenous gene regulatory network specifying the pluripotent phenotype. The necessary ectopic factor expression was first effected using retroviruses; however, as viral integration into the genome is problematic for cell therapy applications, the use of footprint-free vectors such as mRNA is increasingly preferred. Strong points of the mRNA approach include high efficiency, rapid kinetics, and obviation of a clean-up phase to purge the vector. Still, the method is relatively laborious and has, up to now, involved the use of feeder cells, which brings drawbacks including poor applicability to clinically oriented iPSC derivation. Using the methods described here, mRNA reprogramming can be performed without feeders at much-reduced labor and material costs relative to established protocols.
Collapse
|
40
|
Zhang W, Muck-Hausl M, Wang J, Sun C, Gebbing M, Miskey C, Ivics Z, Izsvak Z, Ehrhardt A. Integration profile and safety of an adenovirus hybrid-vector utilizing hyperactive sleeping beauty transposase for somatic integration. PLoS One 2013; 8:e75344. [PMID: 24124483 PMCID: PMC3790794 DOI: 10.1371/journal.pone.0075344] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 08/11/2013] [Indexed: 12/18/2022] Open
Abstract
We recently developed adenovirus/transposase hybrid-vectors utilizing the previously described hyperactive Sleeping Beauty (SB) transposase HSB5 for somatic integration and we could show stabilized transgene expression in mice and a canine model for hemophilia B. However, the safety profile of these hybrid-vectors with respect to vector dose and genotoxicity remains to be investigated. Herein, we evaluated this hybrid-vector system in C57Bl/6 mice with escalating vector dose settings. We found that in all mice which received the hyperactive SB transposase, transgene expression levels were stabilized in a dose-dependent manner and that the highest vector dose was accompanied by fatalities in mice. To analyze potential genotoxic side-effects due to somatic integration into host chromosomes, we performed a genome-wide integration site analysis using linker-mediated PCR (LM-PCR) and linear amplification-mediated PCR (LAM-PCR). Analysis of genomic DNA samples obtained from HSB5 treated female and male mice revealed a total of 1327 unique transposition events. Overall the chromosomal distribution pattern was close-to-random and we observed a random integration profile with respect to integration into gene and non-gene areas. Notably, when using the LM-PCR protocol, 27 extra-chromosomal integration events were identified, most likely caused by transposon excision and subsequent transposition into the delivered adenoviral vector genome. In total, this study provides a careful evaluation of the safety profile of adenovirus/Sleeping Beauty transposase hybrid-vectors. The obtained information will be useful when designing future preclinical studies utilizing hybrid-vectors in small and large animal models.
Collapse
Affiliation(s)
- Wenli Zhang
- Max von Pettenkofer-Institute, Department of Virology, Ludwig-Maximilians-University Munich, Munich, Germany
- Northwest Agriculture and Forestry University, Yangling, China
| | - Martin Muck-Hausl
- Max von Pettenkofer-Institute, Department of Virology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jichang Wang
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Chuanbo Sun
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Csaba Miskey
- Paul-Ehrlich-Institute, Division of Medical Biotechnology, Langen, Germany
| | - Zoltan Ivics
- Paul-Ehrlich-Institute, Division of Medical Biotechnology, Langen, Germany
| | | | - Anja Ehrhardt
- Max von Pettenkofer-Institute, Department of Virology, Ludwig-Maximilians-University Munich, Munich, Germany
- Institute for Virology and Microbiology, Center for Biomedical Education and Research, Department of Human Medicine, Faculty of Health, University Witten/Herdecke, Witten, Germany
- * E-mail:
| |
Collapse
|
41
|
Bayart E, Cohen-Haguenauer O. Technological overview of iPS induction from human adult somatic cells. Curr Gene Ther 2013; 13:73-92. [PMID: 23320476 PMCID: PMC3788326 DOI: 10.2174/1566523211313020002] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 01/03/2013] [Accepted: 01/04/2013] [Indexed: 02/07/2023]
Abstract
The unlimited proliferation capacity of embryonic stem cells (ESCs) combined with their pluripotent differentiation potential in various lineages raised great interest in both the scientific community and the public at large with hope for future prospects of regenerative medicine. However, since ESCs are derived from human embryos, their use is associated with significant ethical issues preventing broad studies and therapeutic applications. To get around this bottleneck, Takahashi and Yamanaka have recently achieved the conversion of adult somatic cells into ES-like cells via the forced expression of four transcription factors: Oct3/4, Sox2, Klf4 and c-Myc. This first demonstration attracted public attention and opened a new field of stem cells research with both cognitive - such as disease modeling - and therapeutic prospects. This pioneer work just received the 2012 Nobel Prize in Physiology or Medicine. Many methods have been reported since 2006, for the generation of induced pluripotent stem (iPS) cells. Most strategies currently under use are based on gene delivery via gamma-retroviral or lentiviral vectors; some experiments have also been successful using plasmids or transposons- based systems and few with adenovirus. However, most experiments involve integration in the host cell genome with an identified risk for insertional mutagenesis and oncogenic transformation. To circumvent such risks which are deemed incompatible with therapeutic prospects, significant progress has been made with transgene-free reprogramming methods based on e.g.: sendai virus or direct mRNA or protein delivery to achieve conversion of adult cells into iPS. In this review we aim to cover current knowledge relating to both delivery systems and combinations of inducing factors including chemicals which are used to generate human iPS cells. Finally, genetic instability resulting from the reprogramming process is also being considered as a safety bottleneck for future clinical translation and stem cell-therapy prospects based on iPS.
Collapse
Affiliation(s)
- Emilie Bayart
- Laboratoire de Biologie & Pharmacologie Appliquée LBPA CliniGene, ENS – Cachan CNRS UMR 8113, 94235 Cachan, Paris, France
| | | |
Collapse
|
42
|
Abstract
mRNA has become an important alternative to DNA as a tool for cell reprogramming. To be expressed, exogenous DNA must be transmitted through the cell cytoplasm and placed into the nucleus. In contrast, exogenous mRNA simply has to be delivered into the cytoplasm. This can result in a highly uniform transfection of the whole population of cells, an advantage that has not been observed with DNA transfer. The use of mRNA, instead of DNA, in medical applications increases protocol safety by abolishing the risk of transgene insertion into host genomes. In this chapter, we review the aspects of mRNA structure and function that are important for its "transgenic" behavior, such as the composition of mRNA molecules and complexes with RNA binding proteins, localization of mRNA in cytoplasmic compartments, translation, and the duration of mRNA expression. In immunotherapy, mRNA is employed in reprogramming of antigen presenting cells (vaccination) and cytolytic lymphocytes. Other applications include generation of induced pluripotent stem (iPS) cells, and genome engineering with modularly assembled nucleases. The most investigated applications of mRNA technology are also reviewed here.
Collapse
|
43
|
Prel A, Sensébé L, Pagès JC. Influence of untranslated regions on retroviral mRNA transfer and expression. BMC Biotechnol 2013; 13:35. [PMID: 23586982 PMCID: PMC3640953 DOI: 10.1186/1472-6750-13-35] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 04/12/2013] [Indexed: 12/16/2022] Open
Abstract
Background Deliberate cellular reprogramming is becoming a realistic objective in the clinic. While the origin of the target cells is critical, delivery of bioactive molecules to trigger a shift in cell-fate remains the major hurdle. To date, several strategies based either on non-integrative vectors, protein transfer or mRNA delivery have been investigated. In a recent study, a unique modification in the retroviral genome was shown to enable RNA transfer and its expression. Results Here, we used the retroviral mRNA delivery approach to study the impact of modifying gene-flanking sequences on RNA transfer. We designed modified mRNAs for retroviral packaging and used the quantitative luciferase assay to compare mRNA expression following viral transduction of cells. Cloning the untranslated regions of the vimentin or non-muscular myosin heavy chain within transcripts improved expression and stability of the reporter gene while slightly modifying reporter-RNA retroviral delivery. We also observed that while the modified retroviral platform was the most effective for retroviral mRNA packaging, the highest expression in target cells was achieved by the addition of a non-viral UTR to mRNAs containing the packaging signal. Conclusions Through molecular engineering we have assayed a series of constructs to improve retroviral mRNA transfer. We showed that an authentic RNA retroviral genomic platform was most efficiently transferred but that adding UTR sequences from highly expressed genes could improve expression upon transfection while having only a slight effect on expression from transferred RNA. Together, these data should contribute to the optimisation of retroviral mRNA-delivery systems that test combinations of UTRs and packaging platforms.
Collapse
Affiliation(s)
- Anne Prel
- INSERM U966, Faculté de Médecine, Université François Rabelais, Tours 37000, France
| | | | | |
Collapse
|
44
|
Chicaybam L, Sodre AL, Curzio BA, Bonamino MH. An efficient low cost method for gene transfer to T lymphocytes. PLoS One 2013; 8:e60298. [PMID: 23555950 PMCID: PMC3608570 DOI: 10.1371/journal.pone.0060298] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 02/25/2013] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED Gene transfer to T lymphocytes has historically relied on retro and lentivirus, but recently transposon-based gene transfer is rising as a simpler and straight forward approach to achieve stable transgene expression. Transfer of expression cassettes to T lymphocytes remains challenging, being based mainly on commercial kits. AIMS We herein report a convenient and affordable method based on in house made buffers, generic cuvettes and utilization of the widely available Lonza nucleofector II device to promote efficient gene transfer to T lymphocytes. RESULTS This approach renders high transgene expression levels in primary human T lymphocytes (mean 45%, 41-59%), the hard to transfect murine T cells (mean 38%, 36-42% for C57/BL6 strain) and human Jurkat T cell line. Cell viability levels after electroporation allowed further manipulations such as in vitro expansion and Chimeric Antigen Receptor (CAR) mediated gain of function for target cell lysis. CONCLUSIONS We describe here an efficient general protocol for electroporation based modification of T lymphocytes. By opening access to this protocol, we expect that efficient gene transfer to T lymphocytes, for transient or stable expression, may be achieved by an increased number of laboratories at lower and affordable costs.
Collapse
Affiliation(s)
- Leonardo Chicaybam
- Programa de Carcinogênese Molecular, Coordenação de Pesquisa (CPQ), Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
- Instituto de Pesquisa Clínica Evandro Chagas (IPEC), Fundação Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Andressa Laino Sodre
- Programa de Carcinogênese Molecular, Coordenação de Pesquisa (CPQ), Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | - Bianca Azevedo Curzio
- Programa de Carcinogênese Molecular, Coordenação de Pesquisa (CPQ), Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | - Martin Hernan Bonamino
- Programa de Carcinogênese Molecular, Coordenação de Pesquisa (CPQ), Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| |
Collapse
|
45
|
Abstract
Retrovirus-mediated mRNA transfer (RMT) combines the advantageous features of retrovirus-mediated cell targeting and entry with the controlled transfer of mRNAs. We have recently exploited this strategy for the dose-controlled transfer of recombinases and DNA transposases, avoiding cytotoxicity and potential insertional mutagenesis. Further applications can be envisaged, especially when low expression levels are sufficient to modify cell fate or function. Here we describe a step-by-step protocol for the generation of RMT vector particles, their titration and their application in a model cell line.
Collapse
Affiliation(s)
- Melanie Galla
- Hannover Medical School, Institute of Experimental Hematology, Hannover, Germany
| | | | | |
Collapse
|
46
|
Di Matteo M, Belay E, Chuah MK, Vandendriessche T. Recent developments in transposon-mediated gene therapy. Expert Opin Biol Ther 2012; 12:841-58. [PMID: 22679910 DOI: 10.1517/14712598.2012.684875] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The continuous improvement of gene transfer technologies has broad implications for stem cell biology, gene discovery, and gene therapy. Although viral vectors are efficient gene delivery vehicles, their safety, immunogenicity and manufacturing challenges hamper clinical progress. In contrast, non-viral gene delivery systems are less immunogenic and easier to manufacture. AREAS COVERED In this review, we explore the emerging potential of transposons in gene and cell therapy. The safety, efficiency, and biology of novel hyperactive Sleeping Beauty (SB) and piggyBac (PB) transposon systems will be highlighted for ex vivo gene therapy in clinically relevant adult stem/progenitor cells, particularly hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs), myoblasts, and induced pluripotent stem (iPS) cells. Moreover, efforts toward in vivo transposon-based gene therapy will be discussed. EXPERT OPINION The latest generation SB and PB transposons currently represent some of the most attractive systems for stable non-viral genetic modification of primary cells, particularly adult stem cells. This paves the way toward the use of transposons as a non-viral gene therapy approach to correct hereditary disorders including those that affect the hematopoietic system. The development of targeted integration into "safe harbor" genetic loci may further improve their safety profile.
Collapse
Affiliation(s)
- Mario Di Matteo
- Free University of Brussels, Division of Gene Therapy & Regenerative Medicine, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | | | | | | |
Collapse
|
47
|
Suerth JD, Schambach A, Baum C. Genetic modification of lymphocytes by retrovirus-based vectors. Curr Opin Immunol 2012; 24:598-608. [PMID: 22995202 DOI: 10.1016/j.coi.2012.08.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/23/2012] [Indexed: 01/02/2023]
Abstract
The genetic modification of lymphocytes is an important topic in the emerging field of gene therapy. Many clinical trials targeting immunodeficiency syndromes or cancer have shown therapeutic benefit; further applications address inflammatory and infectious disorders. Retroviral vector development requires a detailed understanding of the interactions with the host. Most researchers have used simple gammaretroviral vectors to modify lymphocytes, either directly or via hematopoietic stem and progenitor cells. Lentiviral, spumaviral (foamyviral) and alpharetroviral vectors were designed to reduce the necessity for cell stimulation and to utilize potentially safer integration properties. Novel surface modifications (pseudotyping) and transgenes, built using synthetic components, expand the retroviral toolbox, altogether promising increased specificity and potency. Product consistency will be an important criterion for routine clinical use.
Collapse
Affiliation(s)
- Julia D Suerth
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Straße 1, D-30625 Hannover, Germany
| | | | | |
Collapse
|
48
|
Song G, Li Q, Long Y, Hackett PB, Cui Z. Effective Expression-Independent Gene Trapping and Mutagenesis Mediated by Sleeping Beauty Transposon. J Genet Genomics 2012; 39:503-20. [DOI: 10.1016/j.jgg.2012.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 05/21/2012] [Accepted: 05/28/2012] [Indexed: 01/12/2023]
|
49
|
Effective gene trapping mediated by Sleeping Beauty transposon. PLoS One 2012; 7:e44123. [PMID: 22952894 PMCID: PMC3432063 DOI: 10.1371/journal.pone.0044123] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 07/30/2012] [Indexed: 01/14/2023] Open
Abstract
Gene trapping is a high-throughput approach to elucidate gene functions by disrupting and recapitulating expression of genes in a target genome. A number of transposon-based gene-trapping systems are developed for mutagenesis in cells and model organisms, but there is still much room for the improvement of their efficiency in gene disruption and mutation. Herein, a gene-trapping system mediated by Sleeping Beauty (SB) transposon was developed by inclusion of three functional cassettes. The mutation cassette can abrogate the splice of trapped genes and terminate their translation. Once an endogenous gene is captured, the finding cassette independently drives the translation of reporter gene in HeLa cells and zebrafish embryos. The efficiency cassette controls the remobilization of integrated traps through inducible expression of SB gene. Analysis of transposon-genome junctions indicate that most of trap cassettes are integrated into an intron without an obvious 3′ bias. The transcription of trapped genes was abrogated by alternative splicing of the mutation cassette. In addition, integrated transposons can be induced to excise from their original insertion sites. Furthermore, the Cre/LoxP system was introduced to delete the efficiency cassette for stabilization of gene interruption and bio-safety. Thus, this gene-trap vector is an alternative and effective tool for the capture and disruption of endogenous genes in vitro and in vivo.
Collapse
|
50
|
Petrakis S, Raskó T, Mátés L, Ivics Z, Izsvák Z, Kouzi-Koliakou K, Koliakos G. Gateway-compatible transposon vector to genetically modify human embryonic kidney and adipose-derived stromal cells. Biotechnol J 2012; 7:891-7. [DOI: 10.1002/biot.201100471] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 01/25/2012] [Accepted: 02/08/2012] [Indexed: 01/17/2023]
|