1
|
Yustis JC, Devoucoux M, Côté J. The Functional Relationship Between RNA Splicing and the Chromatin Landscape. J Mol Biol 2024; 436:168614. [PMID: 38762032 DOI: 10.1016/j.jmb.2024.168614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/27/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Chromatin is a highly regulated and dynamic structure that has been shown to play an essential role in transcriptional and co-transcriptional regulation. In the context of RNA splicing, early evidence suggested a loose connection between the chromatin landscape and splicing. More recently, it has been shown that splicing occurs in a co-transcriptional manner, meaning that the splicing process occurs in the context of chromatin. Experimental and computational evidence have also shown that chromatin dynamics can influence the splicing process and vice versa. However, much of this evidence provides mainly correlative relationships between chromatin and splicing with just a few concrete examples providing defined molecular mechanisms by which these two processes are functionally related. Nevertheless, it is clear that chromatin and RNA splicing are tightly interconnected to one another. In this review, we highlight the current state of knowledge of the relationship between chromatin and splicing.
Collapse
Affiliation(s)
- Juan-Carlos Yustis
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of the CHU de Québec-Université Laval Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Maëva Devoucoux
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of the CHU de Québec-Université Laval Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of the CHU de Québec-Université Laval Research Center, Quebec City, Quebec G1R 3S3, Canada.
| |
Collapse
|
2
|
Hu S, Chapski DJ, Gehred ND, Kimball TH, Gromova T, Flores A, Rowat AC, Chen J, Packard RRS, Olszewski E, Davis J, Rau CD, McKinsey TA, Rosa-Garrido M, Vondriska TM. Histone H1.0 couples cellular mechanical behaviors to chromatin structure. NATURE CARDIOVASCULAR RESEARCH 2024; 3:441-459. [PMID: 38765203 PMCID: PMC11101354 DOI: 10.1038/s44161-024-00460-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 03/06/2024] [Indexed: 05/21/2024]
Abstract
Tuning of genome structure and function is accomplished by chromatin-binding proteins, which determine the transcriptome and phenotype of the cell. Here we investigate how communication between extracellular stress and chromatin structure may regulate cellular mechanical behaviors. We demonstrate that histone H1.0, which compacts nucleosomes into higher-order chromatin fibers, controls genome organization and cellular stress response. We show that histone H1.0 has privileged expression in fibroblasts across tissue types and that its expression is necessary and sufficient to induce myofibroblast activation. Depletion of histone H1.0 prevents cytokine-induced fibroblast contraction, proliferation and migration via inhibition of a transcriptome comprising extracellular matrix, cytoskeletal and contractile genes, through a process that involves locus-specific H3K27 acetylation. Transient depletion of histone H1.0 in vivo prevents fibrosis in cardiac muscle. These findings identify an unexpected role of linker histones to orchestrate cellular mechanical behaviors, directly coupling force generation, nuclear organization and gene transcription.
Collapse
Affiliation(s)
- Shuaishuai Hu
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA USA
| | - Douglas J. Chapski
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA USA
| | - Natalie D. Gehred
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA USA
| | - Todd H. Kimball
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA USA
| | - Tatiana Gromova
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA USA
| | - Angelina Flores
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA USA
| | - Amy C. Rowat
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA USA
| | - Junjie Chen
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA USA
| | - René R. Sevag Packard
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA USA
- Department of Physiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA USA
| | - Emily Olszewski
- Department of Bioengineering, University of Washington, Seattle, WA USA
| | - Jennifer Davis
- Department of Bioengineering, University of Washington, Seattle, WA USA
| | - Christoph D. Rau
- Department of Genetics and McAllister Heart Institute, University of North Carolina, Chapel Hill, NC USA
| | - Timothy A. McKinsey
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Manuel Rosa-Garrido
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL USA
| | - Thomas M. Vondriska
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA USA
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA USA
- Department of Physiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA USA
| |
Collapse
|
3
|
Salinas-Pena M, Rebollo E, Jordan A. Imaging analysis of six human histone H1 variants reveals universal enrichment of H1.2, H1.3, and H1.5 at the nuclear periphery and nucleolar H1X presence. eLife 2024; 12:RP91306. [PMID: 38530350 DOI: 10.7554/elife.91306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
Histone H1 participates in chromatin condensation and regulates nuclear processes. Human somatic cells may contain up to seven histone H1 variants, although their functional heterogeneity is not fully understood. Here, we have profiled the differential nuclear distribution of the somatic H1 repertoire in human cells through imaging techniques including super-resolution microscopy. H1 variants exhibit characteristic distribution patterns in both interphase and mitosis. H1.2, H1.3, and H1.5 are universally enriched at the nuclear periphery in all cell lines analyzed and co-localize with compacted DNA. H1.0 shows a less pronounced peripheral localization, with apparent variability among different cell lines. On the other hand, H1.4 and H1X are distributed throughout the nucleus, being H1X universally enriched in high-GC regions and abundant in the nucleoli. Interestingly, H1.4 and H1.0 show a more peripheral distribution in cell lines lacking H1.3 and H1.5. The differential distribution patterns of H1 suggest specific functionalities in organizing lamina-associated domains or nucleolar activity, which is further supported by a distinct response of H1X or phosphorylated H1.4 to the inhibition of ribosomal DNA transcription. Moreover, H1 variants depletion affects chromatin structure in a variant-specific manner. Concretely, H1.2 knock-down, either alone or combined, triggers a global chromatin decompaction. Overall, imaging has allowed us to distinguish H1 variants distribution beyond the segregation in two groups denoted by previous ChIP-Seq determinations. Our results support H1 variants heterogeneity and suggest that variant-specific functionality can be shared between different cell types.
Collapse
Affiliation(s)
| | - Elena Rebollo
- Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Albert Jordan
- Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain
| |
Collapse
|
4
|
Pascal C, Zonszain J, Hameiri O, Gargi-Levi C, Lev-Maor G, Tammer L, Levy T, Tarabeih A, Roy VR, Ben-Salmon S, Elbaz L, Eid M, Hakim T, Abu Rabe'a S, Shalev N, Jordan A, Meshorer E, Ast G. Human histone H1 variants impact splicing outcome by controlling RNA polymerase II elongation. Mol Cell 2023; 83:3801-3817.e8. [PMID: 37922872 DOI: 10.1016/j.molcel.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/17/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023]
Abstract
Histones shape chromatin structure and the epigenetic landscape. H1, the most diverse histone in the human genome, has 11 variants. Due to the high structural similarity between the H1s, their unique functions in transferring information from the chromatin to mRNA-processing machineries have remained elusive. Here, we generated human cell lines lacking up to five H1 subtypes, allowing us to characterize the genomic binding profiles of six H1 variants. Most H1s bind to specific sites, and binding depends on multiple factors, including GC content. The highly expressed H1.2 has a high affinity for exons, whereas H1.3 binds intronic sequences. H1s are major splicing regulators, especially of exon skipping and intron retention events, through their effects on the elongation of RNA polymerase II (RNAPII). Thus, H1 variants determine splicing fate by modulating RNAPII elongation.
Collapse
Affiliation(s)
- Corina Pascal
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jonathan Zonszain
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ofir Hameiri
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chen Gargi-Levi
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Galit Lev-Maor
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Luna Tammer
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tamar Levy
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Anan Tarabeih
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Vanessa Rachel Roy
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Stav Ben-Salmon
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Liraz Elbaz
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Mireille Eid
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tamar Hakim
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Salima Abu Rabe'a
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nana Shalev
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Albert Jordan
- Instituto de Biologia Molecular de Barcelona (IBMB-CSIC), Carrer de Baldiri Reixac, 15, 08028 Barcelona, Spain
| | - Eran Meshorer
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Jerusalem 91904, Israel; Edmond and Lily Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
5
|
Chen Y, Shi J, Wang X, Zhou L, Wang Q, Xie Y, Peng C, Kuang L, Yang D, Yang J, Yang C, Li X, Yuan Y, Zhou Y, Peng A, Zhang Y, Chen H, Liu X, Zheng L, Huang K, Li Y. An antioxidant feedforward cycle coordinated by linker histone variant H1.2 and NRF2 that drives nonsmall cell lung cancer progression. Proc Natl Acad Sci U S A 2023; 120:e2306288120. [PMID: 37729198 PMCID: PMC10523483 DOI: 10.1073/pnas.2306288120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/11/2023] [Indexed: 09/21/2023] Open
Abstract
Nonsmall cell lung cancer (NSCLC) is highly malignant with limited treatment options, platinum-based chemotherapy is a standard treatment for NSCLC with resistance commonly seen. NSCLC cells exploit enhanced antioxidant defense system to counteract excessive reactive oxygen species (ROS), which contributes largely to tumor progression and resistance to chemotherapy, yet the mechanisms are not fully understood. Recent studies have suggested the involvement of histones in tumor progression and cellular antioxidant response; however, whether a major histone variant H1.2 (H1C) plays roles in the development of NSCLC remains unclear. Herein, we demonstrated that H1.2 was increasingly expressed in NSCLC tumors, and its expression was correlated with worse survival. When crossing the H1c knockout allele with a mouse NSCLC model (KrasLSL-G12D/+), H1.2 deletion suppressed NSCLC progression and enhanced oxidative stress and significantly decreased the levels of key antioxidant glutathione (GSH) and GCLC, the catalytic subunit of rate-limiting enzyme for GSH synthesis. Moreover, high H1.2 was correlated with the IC50 of multiple chemotherapeutic drugs and with worse prognosis in NSCLC patients receiving chemotherapy; H1.2-deficient NSCLC cells presented reduced survival and increased ROS levels upon cisplatin treatment, while ROS scavenger eliminated the survival inhibition. Mechanistically, H1.2 interacted with NRF2, a master regulator of antioxidative response; H1.2 enhanced the nuclear level and stability of NRF2 and, thus, promoted NRF2 binding to GCLC promoter and the consequent transcription; while NRF2 also transcriptionally up-regulated H1.2. Collectively, these results uncovered a tumor-driving role of H1.2 in NSCLC and indicate an "H1.2-NRF2" antioxidant feedforward cycle that promotes tumor progression and chemoresistance.
Collapse
Affiliation(s)
- Yuchen Chen
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan430030, China
| | - Jiajian Shi
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan430030, China
| | - Xiaomu Wang
- Department of Pharmacy, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang441000, China
| | - Lin Zhou
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Qing Wang
- College of Life Sciences, Wuhan University, Wuhan430072, China
| | - Yunhao Xie
- College of Life Sciences, Wuhan University, Wuhan430072, China
| | - Chentai Peng
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan430030, China
| | - Linwu Kuang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Dong Yang
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan430030, China
| | - Jing Yang
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan430030, China
| | - Chen Yang
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan430030, China
| | - Xi Li
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan430030, China
| | - Yangmian Yuan
- College of Life Sciences, Wuhan University, Wuhan430072, China
| | - Yihao Zhou
- College of Life Sciences, Wuhan University, Wuhan430072, China
| | - Anlin Peng
- Department of Pharmacy, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan430060, China
| | - Yu Zhang
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan430030, China
| | - Hong Chen
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan430030, China
| | - Xinran Liu
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan430030, China
| | - Ling Zheng
- College of Life Sciences, Wuhan University, Wuhan430072, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan430030, China
- Tongji-RongCheng Biomedical Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Yangkai Li
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| |
Collapse
|
6
|
Song L, Soomro MA, Wang L, Song Y, Hu G. Identification and functional analysis of histone 1.2-like in red sea bream (Pagrus major). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 138:104529. [PMID: 36087785 DOI: 10.1016/j.dci.2022.104529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Histone H1 acts as an essential chromatin component and participates in the formation of higher chromatin structures together with core histones. In addition, H1 also has important functions in physiological processes such as gene expression regulation, DNA repair, and the immune response. In this study, the histone homologous protein Pm-H1.2-like was identified from the transcriptome database of Pagrus major we studied previously. Conservatism of evolution was investigated by sequence alignment and phylogenetic analysis. Transcripts of Pm-H1.2-like were detected in P. major tissues. The highest expression level was found in gill and skin tissues. Consistent with the data from the transcriptome database, we observed that the expression of Pm-H1.2-like was rapidly induced in nonspecific cytotoxic cells (NCCs) infected with inactivated Vibrio anguillarum. Gene silencing of Pm-H1.2-like by RNAi significantly suppressed the expression of NK-lysin and GZMB in NCCs at 12 h after pathogen stimulation, but had no significant effect on IFN-γ expression. Next, we obtained the fusion proteins rPm-H1.2-like and rPm-H1.2-like (36-80) through prokaryotic expression. ELISA showed that rPm-H1.2-like bound to oligonucleotide (ODN) in a concentration-dependent manner, while no binding activity of rPm-H1.2-like (36-80) with ODN was observed. This study confirmed that Pm-H1.2-like actively participates in the immune response of NCCs to bacterial infection, deepening the understanding of the immune features of histone H1 in fish.
Collapse
Affiliation(s)
- Lianfei Song
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Maqsood Ahmed Soomro
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Lingshu Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yuting Song
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Guobin Hu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
7
|
The Role of PARP1 and PAR in ATP-Independent Nucleosome Reorganisation during the DNA Damage Response. Genes (Basel) 2022; 14:genes14010112. [PMID: 36672853 PMCID: PMC9859207 DOI: 10.3390/genes14010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
The functioning of the eukaryotic cell genome is mediated by sophisticated protein-nucleic-acid complexes, whose minimal structural unit is the nucleosome. After the damage to genomic DNA, repair proteins need to gain access directly to the lesion; therefore, the initiation of the DNA damage response inevitably leads to local chromatin reorganisation. This review focuses on the possible involvement of PARP1, as well as proteins acting nucleosome compaction, linker histone H1 and non-histone chromatin protein HMGB1. The polymer of ADP-ribose is considered the main regulator during the development of the DNA damage response and in the course of assembly of the correct repair complex.
Collapse
|
8
|
Previously Unidentified Histone H1-Like Protein Is Involved in Cell Division and Ribosome Biosynthesis in Toxoplasma gondii. mSphere 2022; 7:e0040322. [PMID: 36468865 PMCID: PMC9769792 DOI: 10.1128/msphere.00403-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chromatin dynamics can regulate all DNA-dependent processes. Access to DNA within chromatin is orchestrated mainly by histones and their posttranslational modifications (PTMs). Like other eukaryotes, the apicomplexan parasite Toxoplasma gondii encodes four canonical histones and five histone variants. In contrast, the linker histone (H1) has never been identified in apicomplexan parasites. In other eukaryotes, histone H1 compacts the chromatin by linking the nucleosome and increasing the DNA compaction. H1 is a multifunctional protein and can be involved in different steps of DNA metabolism or associated with protein complexes related to distinct biological processes. We have identified a novel protein in T. gondii ("TgH1-like") that, although lacking the globular domain of mammalian H1, is remarkably like the H1-like proteins of bacteria and trypanosomatids. Our results demonstrate that TgH1-like is a nuclear protein associated with chromatin and other histones. Curiously, TgH1-like is also in the nucleolus and associated with ribosomal proteins, indicating a versatile function in this parasite. Although knockout of the tgh1-like gene does not affect the cell cycle, it causes endopolygeny and asynchronous division. Interestingly, mutation of posttranslationally modified amino acids results in defects in cell division like those in the Δtgh1-like mutant, showing that these sites are important for protein function. Furthermore, in the bradyzoite stage, this protein is expressed only in dividing parasites, reinforcing its importance in cell division. Indeed, the absence of TgH1-like decreases compaction of peripheral chromatin, confirming its role in the chromatin modulation in T. gondii. IMPORTANCE Histone H1, or linker histone, is an important protein that binds to the nucleosome, aiding chromatin compaction. Here, we characterize for the first time a linker histone in T. gondii, named TgH1-like. It is a small and basic protein that corresponds only to the C-terminal portion of the human H1 but is similar to histone H1 from trypanosomatids and bacteria. TgH1-like is located in the nucleus, interacts with nucleosome histones, and acts in chromatin structure and cell division. Our findings show for the first time the presence of a histone H1 protein in an apicomplexan parasite and will provide new insights into cell division and chromatin dynamics in T. gondii and related parasites.
Collapse
|
9
|
Fernández-Justel JM, Santa-María C, Martín-Vírgala S, Ramesh S, Ferrera-Lagoa A, Salinas-Pena M, Isoler-Alcaraz J, Maslon MM, Jordan A, Cáceres JF, Gómez M. Histone H1 regulates non-coding RNA turnover on chromatin in a m6A-dependent manner. Cell Rep 2022; 40:111329. [PMID: 36103831 PMCID: PMC7613722 DOI: 10.1016/j.celrep.2022.111329] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 07/04/2022] [Accepted: 08/17/2022] [Indexed: 12/24/2022] Open
Abstract
Linker histones are highly abundant chromatin-associated proteins with well-established structural roles in chromatin and as general transcriptional repressors. In addition, it has been long proposed that histone H1 exerts context-specific effects on gene expression. Here, we identify a function of histone H1 in chromatin structure and transcription using a range of genomic approaches. In the absence of histone H1, there is an increase in the transcription of non-coding RNAs, together with reduced levels of m6A modification leading to their accumulation on chromatin and causing replication-transcription conflicts. This strongly suggests that histone H1 prevents non-coding RNA transcription and regulates non-coding transcript turnover on chromatin. Accordingly, altering the m6A RNA methylation pathway rescues the replicative phenotype of H1 loss. This work unveils unexpected regulatory roles of histone H1 on non-coding RNA turnover and m6A deposition, highlighting the intimate relationship between chromatin conformation, RNA metabolism, and DNA replication to maintain genome performance.
Collapse
Affiliation(s)
- José Miguel Fernández-Justel
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Cristina Santa-María
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Sara Martín-Vírgala
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Shreya Ramesh
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Alberto Ferrera-Lagoa
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Mónica Salinas-Pena
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Carrer de Baldiri Reixac, 15, 08028 Barcelona, Spain
| | - Javier Isoler-Alcaraz
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Magdalena M Maslon
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe South Road, Edinburgh EH4 2XU, UK
| | - Albert Jordan
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Carrer de Baldiri Reixac, 15, 08028 Barcelona, Spain
| | - Javier F Cáceres
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe South Road, Edinburgh EH4 2XU, UK
| | - María Gómez
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Nicolás Cabrera 1, 28049 Madrid, Spain.
| |
Collapse
|
10
|
Serna-Pujol N, Salinas-Pena M, Mugianesi F, Le Dily F, Marti-Renom MA, Jordan A. Coordinated changes in gene expression, H1 variant distribution and genome 3D conformation in response to H1 depletion. Nucleic Acids Res 2022; 50:3892-3910. [PMID: 35380694 PMCID: PMC9023279 DOI: 10.1093/nar/gkac226] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 11/12/2022] Open
Abstract
Up to seven members of the histone H1 family may contribute to chromatin compaction and its regulation in human somatic cells. In breast cancer cells, knock-down of multiple H1 variants deregulates many genes, promotes the appearance of genome-wide accessibility sites and triggers an interferon response via activation of heterochromatic repeats. However, how these changes in the expression profile relate to the re-distribution of H1 variants as well as to genome conformational changes have not been yet studied. Here, we combined ChIP-seq of five endogenous H1 variants with Chromosome Conformation Capture analysis in wild-type and H1.2/H1.4 knock-down T47D cells. The results indicate that H1 variants coexist in the genome in two large groups depending on the local GC content and that their distribution is robust with respect to H1 depletion. Despite the small changes in H1 variants distribution, knock-down of H1 translated into more isolated but de-compacted chromatin structures at the scale of topologically associating domains (TADs). Such changes in TAD structure correlated with a coordinated gene expression response of their resident genes. This is the first report describing simultaneous profiling of five endogenous H1 variants and giving functional evidence of genome topology alterations upon H1 depletion in human cancer cells.
Collapse
Affiliation(s)
- Núria Serna-Pujol
- Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, 08028 Spain
| | - Mónica Salinas-Pena
- Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, 08028 Spain
| | - Francesca Mugianesi
- CNAG-CRG, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Baldiri Reixac 4, Barcelona 08028, Spain
| | - François Le Dily
- Centre for Genomic Regulation, The Barcelona Institute for Science and Technology, Carrer del Doctor Aiguader 88, Barcelona 08003, Spain
| | - Marc A Marti-Renom
- CNAG-CRG, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Baldiri Reixac 4, Barcelona 08028, Spain.,Centre for Genomic Regulation, The Barcelona Institute for Science and Technology, Carrer del Doctor Aiguader 88, Barcelona 08003, Spain.,Pompeu Fabra University, Doctor Aiguader 88, Barcelona 08003, Spain.,ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Albert Jordan
- Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, 08028 Spain
| |
Collapse
|
11
|
Kachaev ZM, Ivashchenko SD, Kozlov EN, Lebedeva LA, Shidlovskii YV. Localization and Functional Roles of Components of the Translation Apparatus in the Eukaryotic Cell Nucleus. Cells 2021; 10:3239. [PMID: 34831461 PMCID: PMC8623629 DOI: 10.3390/cells10113239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022] Open
Abstract
Components of the translation apparatus, including ribosomal proteins, have been found in cell nuclei in various organisms. Components of the translation apparatus are involved in various nuclear processes, particularly those associated with genome integrity control and the nuclear stages of gene expression, such as transcription, mRNA processing, and mRNA export. Components of the translation apparatus control intranuclear trafficking; the nuclear import and export of RNA and proteins; and regulate the activity, stability, and functional recruitment of nuclear proteins. The nuclear translocation of these components is often involved in the cell response to stimulation and stress, in addition to playing critical roles in oncogenesis and viral infection. Many components of the translation apparatus are moonlighting proteins, involved in integral cell stress response and coupling of gene expression subprocesses. Thus, this phenomenon represents a significant interest for both basic and applied molecular biology. Here, we provide an overview of the current data regarding the molecular functions of translation factors and ribosomal proteins in the cell nucleus.
Collapse
Affiliation(s)
- Zaur M. Kachaev
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Sergey D. Ivashchenko
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Eugene N. Kozlov
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Lyubov A. Lebedeva
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Yulii V. Shidlovskii
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| |
Collapse
|
12
|
Lin CYG, Näger AC, Lunardi T, Vančevska A, Lossaint G, Lingner J. The human telomeric proteome during telomere replication. Nucleic Acids Res 2021; 49:12119-12135. [PMID: 34747482 PMCID: PMC8643687 DOI: 10.1093/nar/gkab1015] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Telomere shortening can cause detrimental diseases and contribute to aging. It occurs due to the end replication problem in cells lacking telomerase. Furthermore, recent studies revealed that telomere shortening can be attributed to difficulties of the semi-conservative DNA replication machinery to replicate the bulk of telomeric DNA repeats. To investigate telomere replication in a comprehensive manner, we develop QTIP-iPOND - Quantitative Telomeric chromatin Isolation Protocol followed by isolation of Proteins On Nascent DNA - which enables purification of proteins that associate with telomeres specifically during replication. In addition to the core replisome, we identify a large number of proteins that specifically associate with telomere replication forks. Depletion of several of these proteins induces telomere fragility validating their importance for telomere replication. We also find that at telomere replication forks the single strand telomere binding protein POT1 is depleted, whereas histone H1 is enriched. Our work reveals the dynamic changes of the telomeric proteome during replication, providing a valuable resource of telomere replication proteins. To our knowledge, this is the first study that examines the replisome at a specific region of the genome.
Collapse
Affiliation(s)
- Chih-Yi Gabriela Lin
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Anna Christina Näger
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Thomas Lunardi
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Aleksandra Vančevska
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Gérald Lossaint
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Joachim Lingner
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Höllmüller E, Greiner K, Kienle SM, Scheffner M, Marx A, Stengel F. Interactome of Site-Specifically Acetylated Linker Histone H1. J Proteome Res 2021; 20:4443-4451. [PMID: 34351766 DOI: 10.1021/acs.jproteome.1c00396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Linker histone H1 plays a key role in chromatin organization and maintenance, yet our knowledge of the regulation of H1 functions by post-translational modifications is rather limited. In this study, we report on the generation of site-specifically mono- and di-acetylated linker histone H1.2 by genetic code expansion. We used these modified histones to identify and characterize the acetylation-dependent cellular interactome of H1.2 by affinity purification mass spectrometry and show that site-specific acetylation results in overlapping but distinct groups of interacting partners. Among these, we find multiple translational initiation factors and transcriptional regulators such as the NAD+-dependent deacetylase SIRT1, which we demonstrate to act on acetylated H1.2. Taken together, our data suggest that site-specific acetylation of H1.2 plays a role in modulating protein-protein interactions.
Collapse
|
14
|
Abstract
In this review, Prendergast and Reinberg discuss the likelihood that the family of histone H1 variants may be key to understanding several fundamental processes in chromatin biology and underscore their particular contributions to distinctly significant chromatin-related processes. Major advances in the chromatin and epigenetics fields have uncovered the importance of core histones, histone variants and their post-translational modifications (PTMs) in modulating chromatin structure. However, an acutely understudied related feature of chromatin structure is the role of linker histone H1. Previous assumptions of the functional redundancy of the 11 nonallelic H1 variants are contrasted by their strong evolutionary conservation, variability in their potential PTMs, and increased reports of their disparate functions, sub-nuclear localizations and unique expression patterns in different cell types. The commonly accepted notion that histone H1 functions solely in chromatin compaction and transcription repression is now being challenged by work from multiple groups. These studies highlight histone H1 variants as underappreciated facets of chromatin dynamics that function independently in various chromatin-based processes. In this review, we present notable findings involving the individual somatic H1 variants of which there are seven, underscoring their particular contributions to distinctly significant chromatin-related processes.
Collapse
Affiliation(s)
- Laura Prendergast
- Howard Hughes Medical Institute, New York University Langone Health, New York, New York 10016, USA.,Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical School, New York, New York 10016, USA
| | - Danny Reinberg
- Howard Hughes Medical Institute, New York University Langone Health, New York, New York 10016, USA.,Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical School, New York, New York 10016, USA
| |
Collapse
|
15
|
Lau CI, Rowell J, Yanez DC, Solanki A, Ross S, Ono M, Crompton T. The pioneer transcription factors Foxa1 and Foxa2 regulate alternative RNA splicing during thymocyte positive selection. Development 2021; 148:dev199754. [PMID: 34323272 PMCID: PMC8353164 DOI: 10.1242/dev.199754] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/28/2021] [Indexed: 02/02/2023]
Abstract
During positive selection at the transition from CD4+CD8+ double-positive (DP) to single-positive (SP) thymocyte, TCR signalling results in appropriate MHC restriction and signals for survival and progression. We show that the pioneer transcription factors Foxa1 and Foxa2 are required to regulate RNA splicing during positive selection of mouse T cells and that Foxa1 and Foxa2 have overlapping/compensatory roles. Conditional deletion of both Foxa1 and Foxa2 from DP thymocytes reduced positive selection and development of CD4SP, CD8SP and peripheral naïve CD4+ T cells. Foxa1 and Foxa2 regulated the expression of many genes encoding splicing factors and regulators, including Mbnl1, H1f0, Sf3b1, Hnrnpa1, Rnpc3, Prpf4b, Prpf40b and Snrpd3. Within the positively selecting CD69+DP cells, alternative RNA splicing was dysregulated in the double Foxa1/Foxa2 conditional knockout, leading to >850 differentially used exons. Many genes important for this stage of T-cell development (Ikzf1-3, Ptprc, Stat5a, Stat5b, Cd28, Tcf7) and splicing factors (Hnrnpab, Hnrnpa2b1, Hnrnpu, Hnrnpul1, Prpf8) showed multiple differentially used exons. Thus, Foxa1 and Foxa2 are required during positive selection to regulate alternative splicing of genes essential for T-cell development, and, by also regulating splicing of splicing factors, they exert widespread control of alternative splicing.
Collapse
Affiliation(s)
- Ching-In Lau
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Jasmine Rowell
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Diana C. Yanez
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Anisha Solanki
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Susan Ross
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Masahiro Ono
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Tessa Crompton
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
16
|
DNA methylation and histone variants in aging and cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 364:1-110. [PMID: 34507780 DOI: 10.1016/bs.ircmb.2021.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aging-related diseases such as cancer can be traced to the accumulation of molecular disorder including increased DNA mutations and epigenetic drift. We provide a comprehensive review of recent results in mice and humans on modifications of DNA methylation and histone variants during aging and in cancer. Accumulated errors in DNA methylation maintenance lead to global decreases in DNA methylation with relaxed repression of repeated DNA and focal hypermethylation blocking the expression of tumor suppressor genes. Epigenetic clocks based on quantifying levels of DNA methylation at specific genomic sites is proving to be a valuable metric for estimating the biological age of individuals. Histone variants have specialized functions in transcriptional regulation and genome stability. Their concentration tends to increase in aged post-mitotic chromatin, but their effects in cancer are mainly determined by their specialized functions. Our increased understanding of epigenetic regulation and their modifications during aging has motivated interventions to delay or reverse epigenetic modifications using the epigenetic clocks as a rapid readout for efficacity. Similarly, the knowledge of epigenetic modifications in cancer is suggesting new approaches to target these modifications for cancer therapy.
Collapse
|
17
|
Antagonising Chromatin Remodelling Activities in the Regulation of Mammalian Ribosomal Transcription. Genes (Basel) 2021; 12:genes12070961. [PMID: 34202617 PMCID: PMC8303148 DOI: 10.3390/genes12070961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 12/29/2022] Open
Abstract
Ribosomal transcription constitutes the major energy consuming process in cells and is regulated in response to proliferation, differentiation and metabolic conditions by several signalling pathways. These act on the transcription machinery but also on chromatin factors and ncRNA. The many ribosomal gene repeats are organised in a number of different chromatin states; active, poised, pseudosilent and repressed gene repeats. Some of these chromatin states are unique to the 47rRNA gene repeat and do not occur at other locations in the genome, such as the active state organised with the HMG protein UBF whereas other chromatin state are nucleosomal, harbouring both active and inactive histone marks. The number of repeats in a certain state varies on developmental stage and cell type; embryonic cells have more rRNA gene repeats organised in an open chromatin state, which is replaced by heterochromatin during differentiation, establishing different states depending on cell type. The 47S rRNA gene transcription is regulated in different ways depending on stimulus and chromatin state of individual gene repeats. This review will discuss the present knowledge about factors involved, such as chromatin remodelling factors NuRD, NoRC, CSB, B-WICH, histone modifying enzymes and histone chaperones, in altering gene expression and switching chromatin states in proliferation, differentiation, metabolic changes and stress responses.
Collapse
|
18
|
Höllmüller E, Geigges S, Niedermeier ML, Kammer KM, Kienle SM, Rösner D, Scheffner M, Marx A, Stengel F. Site-specific ubiquitylation acts as a regulator of linker histone H1. Nat Commun 2021; 12:3497. [PMID: 34108453 PMCID: PMC8190259 DOI: 10.1038/s41467-021-23636-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 05/03/2021] [Indexed: 01/05/2023] Open
Abstract
Decoding the role of histone posttranslational modifications (PTMs) is key to understand the fundamental process of epigenetic regulation. This is well studied for PTMs of core histones but not for linker histone H1 in general and its ubiquitylation in particular due to a lack of proper tools. Here, we report on the chemical synthesis of site-specifically mono-ubiquitylated H1.2 and identify its ubiquitin-dependent interactome on a proteome-wide scale. We show that site-specific ubiquitylation of H1 at position K64 modulates interactions with deubiquitylating enzymes and the deacetylase SIRT1. Moreover, it affects H1-dependent chromatosome assembly and phase separation resulting in a more open chromatosome conformation generally associated with a transcriptionally active chromatin state. In summary, we propose that site-specific ubiquitylation plays a general regulatory role for linker histone H1. While the role of specific posttranslational modifications (PTMs) is increasingly well understood for core histones, this is not the case for linker histone H1. Here the authors show that site-specific ubiquitylation of H1 results in distinct interactomes, regulates phase separation, and modulates assembly of chromatosomes.
Collapse
Affiliation(s)
- Eva Höllmüller
- Department of Chemistry, University of Konstanz, Konstanz, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Simon Geigges
- Department of Chemistry, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Marie L Niedermeier
- Department of Biology, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Kai-Michael Kammer
- Department of Biology, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Simon M Kienle
- Department of Biology, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Daniel Rösner
- Department of Chemistry, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Martin Scheffner
- Department of Biology, University of Konstanz, Konstanz, Germany. .,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany.
| | - Andreas Marx
- Department of Chemistry, University of Konstanz, Konstanz, Germany. .,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany.
| | - Florian Stengel
- Department of Biology, University of Konstanz, Konstanz, Germany. .,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
19
|
Faoro C, Ataide SF. Noncanonical Functions and Cellular Dynamics of the Mammalian Signal Recognition Particle Components. Front Mol Biosci 2021; 8:679584. [PMID: 34113652 PMCID: PMC8185352 DOI: 10.3389/fmolb.2021.679584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/29/2021] [Indexed: 12/24/2022] Open
Abstract
The signal recognition particle (SRP) is a ribonucleoprotein complex fundamental for co-translational delivery of proteins to their proper membrane localization and secretory pathways. Literature of the past two decades has suggested new roles for individual SRP components, 7SL RNA and proteins SRP9, SRP14, SRP19, SRP54, SRP68 and SRP72, outside the SRP cycle. These noncanonical functions interconnect SRP with a multitude of cellular and molecular pathways, including virus-host interactions, stress response, transcriptional regulation and modulation of apoptosis in autoimmune diseases. Uncovered novel properties of the SRP components present a new perspective for the mammalian SRP as a biological modulator of multiple cellular processes. As a consequence of these findings, SRP components have been correlated with a growing list of diseases, such as cancer progression, myopathies and bone marrow genetic diseases, suggesting a potential for development of SRP-target therapies of each individual component. For the first time, here we present the current knowledge on the SRP noncanonical functions and raise the need of a deeper understanding of the molecular interactions between SRP and accessory cellular components. We examine diseases associated with SRP components and discuss the development and feasibility of therapeutics targeting individual SRP noncanonical functions.
Collapse
Affiliation(s)
- Camilla Faoro
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Sandro F Ataide
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
20
|
Woods DC, Rodríguez-Ropero F, Wereszczynski J. The Dynamic Influence of Linker Histone Saturation within the Poly-Nucleosome Array. J Mol Biol 2021; 433:166902. [PMID: 33667509 DOI: 10.1016/j.jmb.2021.166902] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 02/08/2023]
Abstract
Linker histones bind to nucleosomes and modify chromatin structure and dynamics as a means of epigenetic regulation. Biophysical studies have shown that chromatin fibers can adopt a plethora of conformations with varying levels of compaction. Linker histone condensation, and its specific binding disposition, has been associated with directly tuning this ensemble of states. However, the atomistic dynamics and quantification of this mechanism remains poorly understood. Here, we present molecular dynamics simulations of octa-nucleosome arrays, based on a cryo-EM structure of the 30-nm chromatin fiber, with and without the globular domains of the H1 linker histone to determine how they influence fiber structures and dynamics. Results show that when bound, linker histones inhibit DNA flexibility and stabilize repeating tetra-nucleosomal units, giving rise to increased chromatin compaction. Furthermore, upon the removal of H1, there is a significant destabilization of this compact structure as the fiber adopts less strained and untwisted states. Interestingly, linker DNA sampling in the octa-nucleosome is exaggerated compared to its mono-nucleosome counterparts, suggesting that chromatin architecture plays a significant role in DNA strain even in the absence of linker histones. Moreover, H1-bound states are shown to have increased stiffness within tetra-nucleosomes, but not between them. This increased stiffness leads to stronger long-range correlations within the fiber, which may result in the propagation of epigenetic signals over longer spatial ranges. These simulations highlight the effects of linker histone binding on the internal dynamics and global structure of poly-nucleosome arrays, while providing physical insight into a mechanism of chromatin compaction.
Collapse
Affiliation(s)
- Dustin C Woods
- Department of Chemistry and the Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, IL 60616, United States
| | - Francisco Rodríguez-Ropero
- Department of Physics and the Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, IL 60616, United States
| | - Jeff Wereszczynski
- Department of Physics and the Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, IL 60616, United States.
| |
Collapse
|
21
|
Kowalski A. A survey of human histone H1 subtypes interaction networks: Implications for histones H1 functioning. Proteins 2021; 89:792-810. [PMID: 33550666 DOI: 10.1002/prot.26059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/23/2020] [Accepted: 01/31/2021] [Indexed: 11/08/2022]
Abstract
To show a spectrum of histone H1 subtypes (H1.1-H1.5) activity realized through the protein-protein interactions, data selected from APID resources were processed with sequence-based bioinformatics approaches. Histone H1 subtypes participate in over half a thousand interactions with nuclear and cytosolic proteins (ComPPI database) engaged in the enzymatic activity and binding of nucleic acids and proteins (SIFTER tool). Small-scale networks of H1 subtypes (STRING network) have similar topological parameters (P > .05) which are, however, different for networks hubs between subtype H1.1 and H1.4 and subtype H1.3 and H1.5 (P < .05) (Cytoscape software). Based on enriched GO terms (g:Profiler toolset) of interacting proteins, molecular function and biological process of networks hubs is related to RNA binding and ribosome biogenesis (subtype H1.1 and H1.4), cell cycle and cell division (subtype H1.3 and H1.5) and protein ubiquitination and degradation (subtype H1.2). The residue propensity (BIPSPI predictor) and secondary structures of interacting surfaces (GOR algorithm) as well as a value of equilibrium dissociation constant (ISLAND predictor) indicate that a type of H1 subtypes interactions is transient in term of the stability and medium-strong in relation to the strength of binding. Histone H1 subtypes bind interacting partners in the intrinsic disorder-dependent mode (FoldIndex, PrDOS predictor), according to the coupled folding and binding and mutual synergistic folding mechanism. These results evidence that multifunctional H1 subtypes operate via protein interactions in the networks of crucial cellular processes and, therefore, confirm a new histone H1 paradigm relating to its functioning in the protein-protein interaction networks.
Collapse
Affiliation(s)
- Andrzej Kowalski
- Division of Medical Biology, Institute of Biology, Jan Kochanowski University in Kielce, Kielce, Poland
| |
Collapse
|
22
|
Lyubitelev AV, Kirpichnikov MP, Studitsky VM. The Role of Linker Histones in Carcinogenesis. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Peng Y, Markov Y, Goncearenco A, Landsman D, Panchenko AR. Human Histone Interaction Networks: An Old Concept, New Trends. J Mol Biol 2020; 433:166684. [PMID: 33098859 DOI: 10.1016/j.jmb.2020.10.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022]
Abstract
To elucidate the properties of human histone interactions on the large scale, we perform a comprehensive mapping of human histone interaction networks by using data from structural, chemical cross-linking and various high-throughput studies. Histone interactomes derived from different data sources show limited overlap and complement each other. It inspires us to integrate these data into the combined histone global interaction network which includes 5308 proteins and 10,330 interactions. The analysis of topological properties of the human histone interactome reveals its scale free behavior and high modularity. Our study of histone binding interfaces uncovers a remarkably high number of residues involved in interactions between histones and non-histone proteins, 80-90% of residues in histones H3 and H4 have at least one binding partner. Two types of histone binding modes are detected: interfaces conserved in most histone variants and variant specific interfaces. Finally, different types of chromatin factors recognize histones in nucleosomes via distinct binding modes, and many of these interfaces utilize acidic patches among other sites. Interaction networks are available at https://github.com/Panchenko-Lab/Human-histone-interactome.
Collapse
Affiliation(s)
- Yunhui Peng
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD 20894, USA
| | - Yaroslav Markov
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD 20894, USA; Computational Biology and Bioinformatics, Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT 06520, USA
| | - Alexander Goncearenco
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD 20894, USA; VantAI, New York, NY 10003, USA
| | - David Landsman
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD 20894, USA.
| | - Anna R Panchenko
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, ON K7L 3N6, Canada.
| |
Collapse
|
24
|
Chikhirzhina EV, Starkova TY, Polyanichko AM. The Role of Linker Histones in Chromatin Structural Organization. 2. Interaction with DNA and Nuclear Proteins. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920020049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
25
|
Glaich O, Leader Y, Lev Maor G, Ast G. Histone H1.5 binds over splice sites in chromatin and regulates alternative splicing. Nucleic Acids Res 2019; 47:6145-6159. [PMID: 31076740 PMCID: PMC6614845 DOI: 10.1093/nar/gkz338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 04/17/2019] [Accepted: 04/27/2019] [Indexed: 12/11/2022] Open
Abstract
Chromatin organization and epigenetic markers influence splicing, though the magnitudes of these effects and the mechanisms are largely unknown. Here, we demonstrate that linker histone H1.5 influences mRNA splicing. We observed that linker histone H1.5 binds DNA over splice sites of short exons in human lung fibroblasts (IMR90 cells). We found that association of H1.5 with these splice sites correlated with the level of inclusion of alternatively spliced exons. Exons marked by H1.5 had more RNA polymerase II (RNAP II) stalling near the 3' splice site than did exons not associated with H1.5. In cells depleted of H1.5, we showed that the inclusion of five exons evaluated decreased and that RNAP II levels over these exons were also reduced. Our findings indicate that H1.5 is involved in regulation of splice site selection and alternative splicing, a function not previously demonstrated for linker histones.
Collapse
Affiliation(s)
- Ohad Glaich
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Yodfat Leader
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Galit Lev Maor
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
26
|
Disordered domains in chromatin-binding proteins. Essays Biochem 2019; 63:147-156. [PMID: 30940742 DOI: 10.1042/ebc20180068] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/04/2019] [Accepted: 03/11/2019] [Indexed: 02/08/2023]
Abstract
Chromatin comprises proteins, DNA and RNA, and its function is to condense and package the genome in a way that allows the necessary transactions such as transcription, replication and repair to occur in a highly organised and regulated manner. The packaging of chromatin is often thought of in a hierarchical fashion starting from the most basic unit of DNA packaging, the nucleosome, to the condensation of nucleosomal 'beads on a string' by linker histones to form the 30-nm fibre and eventually large chromatin domains. However, a picture of a more heterogeneous, dynamic and liquid-like assembly is emerging, in which intrinsically disordered proteins (IDPs) and proteins containing intrinsically disordered regions (IDRs) play a central role. Disorder features at all levels of chromatin organisation, from the histone tails, which are sites of extensive post-translational modification (PTM) that change the fate of the underlying genomic information, right through to transcription hubs, and the recently elucidated roles of IDPs and IDRs in the condensation of large regions of the genome through liquid-liquid phase separation.
Collapse
|
27
|
Chaves-Arquero B, Pantoja-Uceda D, Roque A, Ponte I, Suau P, Jiménez MA. A CON-based NMR assignment strategy for pro-rich intrinsically disordered proteins with low signal dispersion: the C-terminal domain of histone H1.0 as a case study. JOURNAL OF BIOMOLECULAR NMR 2018; 72:139-148. [PMID: 30414042 DOI: 10.1007/s10858-018-0213-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/24/2018] [Indexed: 05/23/2023]
Abstract
The C-terminal domain of histone H1.0 (C-H1.0) is involved in DNA binding and is a main determinant of the chromatin condensing properties of histone H1.0. Phosphorylation at the (S/T)-P-X-(K/R) motifs affects DNA binding and is crucial for regulation of C-H1.0 function. Since C-H1.0 is an intrinsically disordered domain, solution NMR is an excellent approach to characterize the effect of phosphorylation on the structural and dynamic properties of C-H1.0. However, its very repetitive, low-amino acid-diverse and Pro-rich sequence, together with the low signal dispersion observed at the 1H-15N HSQC spectra of both non- and tri-phosphorylated C-H1.0 preclude the use of standard 1H-detected assignment strategies. We have achieved an essentially complete assignment of the heavy backbone atoms (15N, 13C' and 13Cα), as well as 1HN and 13Cβ nuclei, of non- and tri-phosphorylated C-H1.0 by applying a novel 13C-detected CON-based strategy. No C-H1.0 region with a clear secondary structure tendency was detected by chemical shift analyses, confirming at residue level that C-H1.0 is disordered in aqueous solution. Phosphorylation only affected the chemical shifts of phosphorylated Thr's, and their adjacent residues. Heteronuclear {1H}-15N NOEs were also essentially equal in the non- and tri-phosphorylated states. Hence, structural tendencies and dynamic properties of C-H1.0 free in aqueous solution are unmodified by phosphorylation. We propose that the assignment strategy used for C-H1.0, which is based on the acquisition of only a few 3D spectra, is an excellent choice for short-lived intrinsically disordered proteins with repetitive sequences.
Collapse
Affiliation(s)
- Belén Chaves-Arquero
- Departamento de Química-Física Biológica, Instituto de Química Física Rocasolano (IQFR-CSIC), Serrano 119, 28006, Madrid, Spain
| | - David Pantoja-Uceda
- Departamento de Química-Física Biológica, Instituto de Química Física Rocasolano (IQFR-CSIC), Serrano 119, 28006, Madrid, Spain
| | - Alicia Roque
- Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias, Universidad Autónoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Inmaculada Ponte
- Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias, Universidad Autónoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Pedro Suau
- Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias, Universidad Autónoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - M Angeles Jiménez
- Departamento de Química-Física Biológica, Instituto de Química Física Rocasolano (IQFR-CSIC), Serrano 119, 28006, Madrid, Spain.
| |
Collapse
|
28
|
Sen Gupta A, Joshi G, Pawar S, Sengupta K. Nucleolin modulates compartmentalization and dynamics of histone 2B-ECFP in the nucleolus. Nucleus 2018; 9:350-367. [PMID: 29943658 PMCID: PMC6165600 DOI: 10.1080/19491034.2018.1471936] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Eukaryotic cells have 2 to 3 discrete nucleoli required for ribosome synthesis. Nucleoli are phase separated nuclear sub-organelles. Here we examined the role of nuclear Lamins and nucleolar factors in modulating the compartmentalization and dynamics of histone 2B (H2B-ECFP) in the nucleolus. Live imaging and Fluorescence Recovery After Photobleaching (FRAP) of labelled H2B, showed that the depletion of Lamin B1, Fibrillarin (FBL) or Nucleostemin (GNL3), enhances H2B-ECFP mobility in the nucleolus. Furthermore, Nucleolin knockdown significantly decreases H2B-ECFP compartmentalization in the nucleolus, while H2B-ECFP residence and mobility in the nucleolus was prolonged upon Nucleolin overexpression. Co-expression of N-terminal and RNA binding domain (RBD) deletion mutants of Nucleolin or inhibiting 45S rRNA synthesis reduces the sequestration of H2B-ECFP in the nucleolus. Taken together, these studies reveal a crucial role of Nucleolin-rRNA complex in modulating the compartmentalization, stability and dynamics of H2B within the nucleolus.
Collapse
Affiliation(s)
- Ayantika Sen Gupta
- Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Gaurav Joshi
- Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Sumit Pawar
- Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Kundan Sengupta
- Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| |
Collapse
|
29
|
H1.0 Linker Histone as an Epigenetic Regulator of Cell Proliferation and Differentiation. Genes (Basel) 2018; 9:genes9060310. [PMID: 29925815 PMCID: PMC6027317 DOI: 10.3390/genes9060310] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 06/18/2018] [Indexed: 12/16/2022] Open
Abstract
H1 linker histones are a class of DNA-binding proteins involved in the formation of supra-nucleosomal chromatin higher order structures. Eleven non-allelic subtypes of H1 are known in mammals, seven of which are expressed in somatic cells, while four are germ cell-specific. Besides having a general structural role, H1 histones also have additional epigenetic functions related to DNA replication and repair, genome stability, and gene-specific expression regulation. Synthesis of the H1 subtypes is differentially regulated both in development and adult cells, thus suggesting that each protein has a more or less specific function. The somatic variant H1.0 is a linker histone that was recognized since long ago to be involved in cell differentiation. Moreover, it has been recently found to affect generation of epigenetic and functional intra-tumor heterogeneity. Interestingly, H1.0 or post-translational forms of it have been also found in extracellular vesicles (EVs) released from cancer cells in culture, thus suggesting that these cells may escape differentiation at least in part by discarding H1.0 through the EV route. In this review we will discuss the role of H1.0 in development, differentiation, and stem cell maintenance, also in relation with tumorigenesis, and EV production.
Collapse
|
30
|
Murthy T, Bluemn T, Gupta AK, Reimer M, Rao S, Pillai MM, Minella AC. Cyclin-dependent kinase 1 (CDK1) and CDK2 have opposing roles in regulating interactions of splicing factor 3B1 with chromatin. J Biol Chem 2018; 293:10220-10234. [PMID: 29764937 DOI: 10.1074/jbc.ra118.001654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/11/2018] [Indexed: 11/06/2022] Open
Abstract
Splicing factor 3B1 (SF3B1) is a core splicing protein that stabilizes the interaction between the U2 snRNA and the branch point in the mRNA target during splicing. SF3B1 is heavily phosphorylated at its N terminus and a substrate of cyclin-dependent kinases (CDKs). Although SF3B1 phosphorylation coincides with splicing catalysis, the functional significance of SF3B1 phosphorylation is largely undefined. Here, we show that SF3B1 phosphorylation follows a dynamic pattern during cell cycle progression that depends on CDK activity. SF3B1 is known to interact with chromatin, and we found that SF3B1 maximally interacts with nucleosomes during G1/S and that this interaction requires CDK2 activity. In contrast, SF3B1 disassociates from nucleosomes at G2/M, coinciding with a peak in CDK1-mediated SF3B1 phosphorylation. Thus, CDK1 and CDK2 appear to have opposing roles in regulating SF3B1-nucleosome interactions. Importantly, these interactions were modified by the presence and phosphorylation status of linker histone H1, particularly the H1.4 isoform. Performing genome-wide analysis of SF3B1-chromatin binding in synchronized cells, we observed that SF3B1 preferentially bound exons. Differences in SF3B1 chromatin binding to specific sites, however, did not correlate with changes in RNA splicing, suggesting that the SF3B1-nucleosome interaction does not determine cell cycle-dependent changes to mRNA splicing. Our results define a cell cycle stage-specific interaction between SF3B1 and nucleosomes that is mediated by histone H1 and depends on SF3B1 phosphorylation. Importantly, this interaction does not seem to be related to SF3B1's splicing function and, rather, points toward its potential role as a chromatin modifier.
Collapse
Affiliation(s)
- Tushar Murthy
- From the Driskill Graduate Program, Northwestern University, Chicago, Illinois 60611
| | - Theresa Bluemn
- the Medical College of Wisconsin, Milwaukee, Wisconsin 53226.,the Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin 53201, and
| | - Abhishek K Gupta
- the Section of Hematology, Yale Cancer Center and Yale University School of Medicine, New Haven, Connecticut 06510
| | - Michael Reimer
- the Medical College of Wisconsin, Milwaukee, Wisconsin 53226.,the Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin 53201, and
| | - Sridhar Rao
- the Medical College of Wisconsin, Milwaukee, Wisconsin 53226.,the Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin 53201, and
| | - Manoj M Pillai
- the Section of Hematology, Yale Cancer Center and Yale University School of Medicine, New Haven, Connecticut 06510
| | - Alex C Minella
- the Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin 53201, and
| |
Collapse
|
31
|
FACT complex is required for DNA demethylation at heterochromatin during reproduction in Arabidopsis. Proc Natl Acad Sci U S A 2018; 115:E4720-E4729. [PMID: 29712855 PMCID: PMC5960277 DOI: 10.1073/pnas.1713333115] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The DEMETER (DME) DNA glycosylase catalyzes genome-wide DNA demethylation and is required for endosperm genomic imprinting and embryo viability. Targets of DME-mediated DNA demethylation reside in small, euchromatic, AT-rich transposons and at the boundaries of large transposons, but how DME interacts with these diverse chromatin states is unknown. The STRUCTURE SPECIFIC RECOGNITION PROTEIN 1 (SSRP1) subunit of the chromatin remodeler FACT (facilitates chromatin transactions), was previously shown to be involved in the DME-dependent regulation of genomic imprinting in Arabidopsis endosperm. Therefore, to investigate the interaction between DME and chromatin, we focused on the activity of the two FACT subunits, SSRP1 and SUPPRESSOR of TY16 (SPT16), during reproduction in Arabidopsis We found that FACT colocalizes with nuclear DME in vivo, and that DME has two classes of target sites, the first being euchromatic and accessible to DME, but the second, representing over half of DME targets, requiring the action of FACT for DME-mediated DNA demethylation genome-wide. Our results show that the FACT-dependent DME targets are GC-rich heterochromatin domains with high nucleosome occupancy enriched with H3K9me2 and H3K27me1. Further, we demonstrate that heterochromatin-associated linker histone H1 specifically mediates the requirement for FACT at a subset of DME-target loci. Overall, our results demonstrate that FACT is required for DME targeting by facilitating its access to heterochromatin.
Collapse
|
32
|
Chen J, Teo BHD, Cai Y, Wee SYK, Lu J. The linker histone H1.2 is a novel component of the nucleolar organizer regions. J Biol Chem 2018; 293:2358-2369. [PMID: 29301938 DOI: 10.1074/jbc.m117.810184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/18/2017] [Indexed: 01/27/2023] Open
Abstract
The nucleoli accumulate rRNA genes and are the sites of rRNA synthesis and rRNA assembly into ribosomes. During mitosis, nucleoli dissociate, but nucleolar remnants remain on the rRNA gene loci, forming distinct nucleolar organizer regions (NORs). Little is known about the composition and structure of NORs, but upstream binding factor (UBF) has been established as its master organizer. In this study, we sought to establish new proteins in NORs. Using UBF-Sepharose to isolate UBF-binding proteins, we identified histone H1.2 as a candidate partner but were puzzled by this observation, given that UBF is known to be located predominantly in nucleoli, whereas H1.2 distributed broadly among the chromatins in interphase nuclei. We then examined cells undergoing mitosis and saw that both H1.2 and UBF were recruited into NORs in this state, reconciling the results of our UBF pulldowns. Inhibiting rRNA synthesis in interphase nuclei also induced NOR-like structures containing both UBF and H1.2. When chromosomes were isolated and spread on coverslips, NORs appeared separated from the chromosomes containing both UBF and H1.2. After chromosomes were fragmented by homogenization, intact NORs remained visible. Results collectively suggest that NORs are independent structures and that the linker histone H1.2 is a novel component of this structure.
Collapse
Affiliation(s)
- Junjie Chen
- From the Department of Microbiology and Immunology, Yong Loo Lin School of Medicine and Immunology Programme, National University of Singapore, Singapore 117697
| | - Boon Heng Dennis Teo
- From the Department of Microbiology and Immunology, Yong Loo Lin School of Medicine and Immunology Programme, National University of Singapore, Singapore 117697
| | - Yitian Cai
- From the Department of Microbiology and Immunology, Yong Loo Lin School of Medicine and Immunology Programme, National University of Singapore, Singapore 117697
| | - Seng Yin Kelly Wee
- From the Department of Microbiology and Immunology, Yong Loo Lin School of Medicine and Immunology Programme, National University of Singapore, Singapore 117697
| | - Jinhua Lu
- From the Department of Microbiology and Immunology, Yong Loo Lin School of Medicine and Immunology Programme, National University of Singapore, Singapore 117697
| |
Collapse
|
33
|
Emerging roles of linker histones in regulating chromatin structure and function. Nat Rev Mol Cell Biol 2017; 19:192-206. [PMID: 29018282 DOI: 10.1038/nrm.2017.94] [Citation(s) in RCA: 286] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Together with core histones, which make up the nucleosome, the linker histone (H1) is one of the five main histone protein families present in chromatin in eukaryotic cells. H1 binds to the nucleosome to form the next structural unit of metazoan chromatin, the chromatosome, which may help chromatin to fold into higher-order structures. Despite their important roles in regulating the structure and function of chromatin, linker histones have not been studied as extensively as core histones. Nevertheless, substantial progress has been made recently. The first near-atomic resolution crystal structure of a chromatosome core particle and an 11 Å resolution cryo-electron microscopy-derived structure of the 30 nm nucleosome array have been determined, revealing unprecedented details about how linker histones interact with the nucleosome and organize higher-order chromatin structures. Moreover, several new functions of linker histones have been discovered, including their roles in epigenetic regulation and the regulation of DNA replication, DNA repair and genome stability. Studies of the molecular mechanisms of H1 action in these processes suggest a new paradigm for linker histone function beyond its architectural roles in chromatin.
Collapse
|
34
|
Perišić O, Schlick T. Dependence of the Linker Histone and Chromatin Condensation on the Nucleosome Environment. J Phys Chem B 2017; 121:7823-7832. [PMID: 28732449 DOI: 10.1021/acs.jpcb.7b04917] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The linker histone (LH), an auxiliary protein that can bind to chromatin and interact with the linker DNA to form stem motifs, is a key element of chromatin compaction. By affecting the chromatin condensation level, it also plays an active role in gene expression. However, the presence and variable concentration of LH in chromatin fibers with different DNA linker lengths indicate that its folding and condensation are highly adaptable and dependent on the immediate nucleosome environment. Recent experimental studies revealed that the behavior of LH in mononucleosomes markedly differs from that in small nucleosome arrays, but the associated mechanism is unknown. Here we report a structural analysis of the behavior of LH in mononucleosomes and oligonucleosomes (2-6 nucleosomes) using mesoscale chromatin simulations. We show that the adapted stem configuration heavily depends on the strength of electrostatic interactions between LH and its parental DNA linkers, and that those interactions tend to be asymmetric in small oligonucleosome systems. Namely, LH in oligonucleosomes dominantly interacts with one DNA linker only, as opposed to mononucleosomes where LH has similar interactions with both linkers and forms a highly stable nucleosome stem. Although we show that the LH condensation depends sensitively on the electrostatic interactions with entering and exiting DNA linkers, other interactions, especially by nonparental cores and nonparental linkers, modulate the structural condensation by softening LH and thus making oligonucleosomes more flexible, in comparison to to mono- and dinucleosomes. We also find that the overall LH/chromatin interactions sensitively depend on the linker length because the linker length determines the maximal nucleosome stem length. For mononucleosomes with DNA linkers shorter than LH, LH condenses fully, while for DNA linkers comparable or longer than LH, the LH extension in mononucleosomes strongly follows the length of DNA linkers, unhampered by neighboring linker histones. Thus, LH is more condensed for mononucleosomes with short linkers, compared to oligonucleosomes, and its orientation is variable and highly environment-dependent. More generally, the work underscores the agility of LH whose folding dynamics critically controls genomic packaging and gene expression.
Collapse
Affiliation(s)
- Ognjen Perišić
- Big Blue Genomics , Vojvode Brane 32, 11000 Belgrade, Serbia
| | - Tamar Schlick
- Department of Chemistry, New York University , 1001 Silver, 100 Washington Square East, New York, New York 10003, United States.,Courant Institute of Mathematical Sciences, New York University , 251 Mercer Street, New York, New York 10012, United States
| |
Collapse
|
35
|
Yan Q, Xia X, Sun Z, Fang Y. Depletion of Arabidopsis SC35 and SC35-like serine/arginine-rich proteins affects the transcription and splicing of a subset of genes. PLoS Genet 2017; 13:e1006663. [PMID: 28273088 PMCID: PMC5362245 DOI: 10.1371/journal.pgen.1006663] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 03/22/2017] [Accepted: 02/28/2017] [Indexed: 12/23/2022] Open
Abstract
Serine/arginine-rich (SR) proteins are important splicing factors which play significant roles in spliceosome assembly and splicing regulation. However, little is known regarding their biological functions in plants. Here, we analyzed the phenotypes of mutants upon depleting different subfamilies of Arabidopsis SR proteins. We found that loss of the functions of SC35 and SC35-like (SCL) proteins cause pleiotropic changes in plant morphology and development, including serrated leaves, late flowering, shorter roots and abnormal silique phyllotaxy. Using RNA-seq, we found that SC35 and SCL proteins play roles in the pre-mRNA splicing. Motif analysis revealed that SC35 and SCL proteins preferentially bind to a specific RNA sequence containing the AGAAGA motif. In addition, the transcriptions of a subset of genes are affected by the deletion of SC35 and SCL proteins which interact with NRPB4, a specific subunit of RNA polymerase II. The splicing of FLOWERING LOCUS C (FLC) intron1 and transcription of FLC were significantly regulated by SC35 and SCL proteins to control Arabidopsis flowering. Therefore, our findings provide mechanistic insight into the functions of plant SC35 and SCL proteins in the regulation of splicing and transcription in a direct or indirect manner to maintain the proper expression of genes and development. SR proteins were identified to be important splicing factors. This work generated mutants of different subfamilies of the classic Arabidopsis SR proteins. Genetic analysis revealed that loss of the function of SC35/SCL proteins influences the plant development. This study revealed SC35/SCL proteins regulate alternative splicing, preferentially bind a specific RNA motif, interact with NRPB4, and affect the transcription of a subset of genes. This study further revealed that SC35/SCL proteins control flowering by regulating the splicing and transcription of FLC. These results shed light on the functions of SR proteins in plants.
Collapse
Affiliation(s)
- Qingqing Yan
- National key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Xi Xia
- National key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Zhenfei Sun
- National key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Yuda Fang
- National key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
36
|
Lyubitelev AV, Nikitin DV, Shaytan AK, Studitsky VM, Kirpichnikov MP. Structure and Functions of Linker Histones. BIOCHEMISTRY (MOSCOW) 2017; 81:213-23. [PMID: 27262190 DOI: 10.1134/s0006297916030032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Linker histones such as variants H1, H5, and other similar proteins play an important role in regulation of chromatin structure and dynamics. However, interactions of linker histones with DNA and proteins, as well as specific functions of their different variants, are poorly studied. This is because they acquire tertiary structure only when interacting with a nucleosome, and because of limitations of currently available methods. However, deeper investigation of linker histones and their interactions with other proteins will address a number of important questions - from structure of compacted chromatin to regulation of early embryogenesis. In this review, structures of histone H1 variants and its interaction with chromatin DNA are considered. A possible functional significance of different H1 variants, a role of these proteins in maintaining interphase chromatin structure, and interactions of linker histones with other cellular proteins are also discussed.
Collapse
Affiliation(s)
- A V Lyubitelev
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia.
| | | | | | | | | |
Collapse
|
37
|
Zhang P, Branson OE, Freitas MA, Parthun MR. Identification of replication-dependent and replication-independent linker histone complexes: Tpr specifically promotes replication-dependent linker histone stability. BMC BIOCHEMISTRY 2016; 17:18. [PMID: 27716023 PMCID: PMC5045598 DOI: 10.1186/s12858-016-0074-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 09/20/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND There are 11 variants of linker histone H1 in mammalian cells. Beyond their shared abilities to stabilize and condense chromatin, the H1 variants have been found to have non-redundant functions, the mechanisms of which are not fully understood. Like core histones, there are both replication-dependent and replication-independent linker histone variants. The histone chaperones and other factors that regulate linker histone dynamics in the cell are largely unknown. In particular, it is not known whether replication-dependent and replication-independent linker histones interact with distinct or common sets of proteins. To better understand linker histone dynamics and assembly, we used chromatography and mass spectrometry approaches to identify proteins that are associated with replication-dependent and replication-independent H1 variants. We then used a variety of in vivo analyses to validate the functional relevance of identified interactions. RESULTS We identified proteins that bind to all linker histone variants and proteins that are specific for only one class of variant. The factors identified include histone chaperones, transcriptional regulators, RNA binding proteins and ribosomal proteins. The nuclear pore complex protein Tpr, which was found to associate with only replication-dependent linker histones, specifically promoted their stability. CONCLUSION Replication-dependent and replication-independent linker histone variants can interact with both common and distinct sets of proteins. Some of these factors are likely to function as histone chaperones while others may suggest novel links between linker histones and RNA metabolism. The nuclear pore complex protein Tpr specifically interacts with histone H1.1 and H1.2 but not H1x and can regulate the stability of these replication-dependent linker histones.
Collapse
Affiliation(s)
- Pei Zhang
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210 USA
| | - Owen E. Branson
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210 USA
| | - Michael A. Freitas
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210 USA
| | - Mark R. Parthun
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210 USA
| |
Collapse
|
38
|
Kowalski A, Pałyga J. Modulation of chromatin function through linker histone H1 variants. Biol Cell 2016; 108:339-356. [PMID: 27412812 DOI: 10.1111/boc.201600007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 07/08/2016] [Accepted: 07/08/2016] [Indexed: 12/30/2022]
Abstract
In this review, the structural aspects of linker H1 histones are presented as a background for characterization of the factors influencing their function in animal and human chromatin. The action of H1 histone variants is largely determined by dynamic alterations of their intrinsically disordered tail domains, posttranslational modifications and allelic diversification. The interdependent effects of these factors can establish dynamic histone H1 states that may affect the organization and function of chromatin regions.
Collapse
Affiliation(s)
- Andrzej Kowalski
- Department of Biochemistry and Genetics, Institute of Biology, Jan Kochanowski University, 25-406 Kielce, Poland
| | - Jan Pałyga
- Department of Biochemistry and Genetics, Institute of Biology, Jan Kochanowski University, 25-406 Kielce, Poland
| |
Collapse
|
39
|
Kowalski A. Nuclear and nucleolar activity of linker histone variant H1.0. Cell Mol Biol Lett 2016; 21:15. [PMID: 28536618 PMCID: PMC5414669 DOI: 10.1186/s11658-016-0014-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/28/2016] [Indexed: 12/31/2022] Open
Abstract
Histone H1.0 belongs to the class of linker histones (H1), although it is substantially distinct from other histone H1 family members. The differences can be observed in the chromosomal location and organization of the histone H1.0 encoding gene, as well as in the length and composition of its amino acid chain. Whereas somatic (H1.1-H1.5) histone H1 variants are synthesized in the cell cycle S-phase, histone H1.0 is synthesized throughout the cell cycle. By replacing somatic H1 variants during cell maturation, histone H1.0 is gradually deposited in low dividing cells and achieves the highest level of expression in the terminally differentiated cells. Compared to other differentiation-specific H1 histone (H5) characteristic for unique tissue and organisms, the distribution of histone H1.0 remains non-specific. Classic investigations emphasize that histone H1.0 is engaged in the organization of nuclear chromatin accounting for formation and maintenance of its nucleosomal and higher-order structure, and thus influences gene expression. However, the recent data confirmed histone H1.0 peculiar localization in the nucleolus and unexpectedly revealed its potential for regulation of nucleolar, RNA-dependent, activity via interaction with other proteins. According to such findings, histone H1.0 participates in the formation of gene-coded information through its control at both transcriptional and translational levels. In order to reappraise the biological significance of histone H1.0, both aspects of its activity are presented in this review.
Collapse
Affiliation(s)
- Andrzej Kowalski
- Department of Biochemistry and Genetics, Institute of Biology, Jan Kochanowski University, Świętokrzyska 15, 25-406 Kielce, Poland
| |
Collapse
|
40
|
Hollander D, Naftelberg S, Lev-Maor G, Kornblihtt AR, Ast G. How Are Short Exons Flanked by Long Introns Defined and Committed to Splicing? Trends Genet 2016; 32:596-606. [PMID: 27507607 DOI: 10.1016/j.tig.2016.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 07/19/2016] [Accepted: 07/22/2016] [Indexed: 11/19/2022]
Abstract
The splice sites (SSs) delimiting an intron are brought together in the earliest step of spliceosome assembly yet it remains obscure how SS pairing occurs, especially when introns are thousands of nucleotides long. Splicing occurs in vivo in mammals within minutes regardless of intron length, implying that SS pairing can instantly follow transcription. Also, factors required for SS pairing, such as the U1 small nuclear ribonucleoprotein (snRNP) and U2AF65, associate with RNA polymerase II (RNAPII), while nucleosomes preferentially bind exonic sequences and associate with U2 snRNP. Based on recent publications, we assume that the 5' SS-bound U1 snRNP can remain tethered to RNAPII until complete synthesis of the downstream intron and exon. An additional U1 snRNP then binds the downstream 5' SS, whereas the RNAPII-associated U2AF65 binds the upstream 3' SS to facilitate SS pairing along with exon definition. Next, the nucleosome-associated U2 snRNP binds the branch site to advance splicing complex assembly. This may explain how RNAPII and chromatin are involved in spliceosome assembly and how introns lengthened during evolution with a relatively minimal compromise in splicing.
Collapse
Affiliation(s)
- Dror Hollander
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Shiran Naftelberg
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Galit Lev-Maor
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Alberto R Kornblihtt
- IFIBYNE-UBA-CONICET and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, C1428EHA Buenos Aires, Argentina
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel.
| |
Collapse
|
41
|
Cutter AR, Hayes JJ. Linker histones: novel insights into structure-specific recognition of the nucleosome. Biochem Cell Biol 2016; 95:171-178. [PMID: 28177778 DOI: 10.1139/bcb-2016-0097] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Linker histones (H1s) are a primary component of metazoan chromatin, fulfilling numerous functions, both in vitro and in vivo, including stabilizing the wrapping of DNA around the nucleosome, promoting folding and assembly of higher order chromatin structures, influencing nucleosome spacing on DNA, and regulating specific gene expression. However, many molecular details of how H1 binds to nucleosomes and recognizes unique structural features on the nucleosome surface remain undefined. Numerous, confounding studies are complicated not only by experimental limitations, but the use of different linker histone isoforms and nucleosome constructions. This review summarizes the decades of research that has resulted in several models of H1 association with nucleosomes, with a focus on recent advances that suggest multiple modes of H1 interaction in chromatin, while highlighting the remaining questions.
Collapse
Affiliation(s)
- Amber R Cutter
- Department of Biochemistry & Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA.,Department of Biochemistry & Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jeffrey J Hayes
- Department of Biochemistry & Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA.,Department of Biochemistry & Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
42
|
Staneva D, Georgieva M, Miloshev G. Kluyveromyces lactis genome harbours a functional linker histone encoding gene. FEMS Yeast Res 2016; 16:fow034. [PMID: 27189369 DOI: 10.1093/femsyr/fow034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2016] [Indexed: 11/14/2022] Open
Abstract
Linker histones are essential components of chromatin in eukaryotes. Through interactions with linker DNA and nucleosomes they facilitate folding and maintenance of higher-order chromatin structures and thus delicately modulate gene activity. The necessity of linker histones in lower eukaryotes appears controversial and dubious. Genomic data have shown that Schizosaccharomyces pombe does not possess genes encoding linker histones while Kluyveromyces lactis has been reported to have a pseudogene. Regarding this controversy, we have provided the first direct experimental evidence for the existence of a functional linker histone gene, KlLH1, in K. lactis genome. Sequencing of KlLH1 from both genomic DNA and copy DNA confirmed the presence of an intact open reading frame. Transcription and splicing of the KlLH1 sequence as well as translation of its mRNA have been studied. In silico analysis revealed homology of KlLH1p to the histone H1/H5 protein family with predicted three domain structure characteristic for the linker histones of higher eukaryotes. This strongly proves that the yeast K. lactis does indeed possess a functional linker histone gene thus entailing the evolutionary preservation and significance of linker histones. The nucleotide sequences of KlLH1 are deposited in the GenBank under accession numbers KT826576, KT826577 and KT826578.
Collapse
Affiliation(s)
- Dessislava Staneva
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology, Bulgarian Academy of Sciences, 'Acad. Roumen Tsanev', Sofia 1113, Bulgaria
| | - Milena Georgieva
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology, Bulgarian Academy of Sciences, 'Acad. Roumen Tsanev', Sofia 1113, Bulgaria
| | - George Miloshev
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology, Bulgarian Academy of Sciences, 'Acad. Roumen Tsanev', Sofia 1113, Bulgaria
| |
Collapse
|
43
|
Roque A, Ponte I, Suau P. Post-translational modifications of the intrinsically disordered terminal domains of histone H1: effects on secondary structure and chromatin dynamics. Chromosoma 2016; 126:83-91. [DOI: 10.1007/s00412-016-0591-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/05/2016] [Accepted: 04/07/2016] [Indexed: 01/14/2023]
|
44
|
Kalashnikova AA, Rogge RA, Hansen JC. Linker histone H1 and protein-protein interactions. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1859:455-61. [PMID: 26455956 PMCID: PMC4775371 DOI: 10.1016/j.bbagrm.2015.10.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/21/2015] [Accepted: 10/05/2015] [Indexed: 01/11/2023]
Abstract
Linker histones H1 are ubiquitous chromatin proteins that play important roles in chromatin compaction, transcription regulation, nucleosome spacing and chromosome spacing. H1 function in DNA and chromatin structure stabilization is well studied and established. The current paradigm of linker histone mode of function considers all other cellular roles of linker histones to be a consequence from H1 chromatin compaction and repression. Here we review the multiple processes regulated by linker histones and the emerging importance of protein interactions in H1 functioning. We propose a new paradigm which explains the multi functionality of linker histones through linker histones protein interactions as a way to directly regulate recruitment of proteins to chromatin.
Collapse
Affiliation(s)
- Anna A Kalashnikova
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Ryan A Rogge
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Jeffrey C Hansen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA.
| |
Collapse
|
45
|
Millán-Ariño L, Izquierdo-Bouldstridge A, Jordan A. Specificities and genomic distribution of somatic mammalian histone H1 subtypes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:510-9. [DOI: 10.1016/j.bbagrm.2015.10.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 11/15/2022]
|
46
|
Speranzini V, Pilotto S, Sixma TK, Mattevi A. Touch, act and go: landing and operating on nucleosomes. EMBO J 2016; 35:376-88. [PMID: 26787641 DOI: 10.15252/embj.201593377] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/10/2015] [Indexed: 12/16/2022] Open
Abstract
Chromatin-associated enzymes are responsible for the installation, removal and reading of precise post-translation modifications on DNA and histone proteins. They are specifically recruited to the target gene by associated factors, and as a result of their activity, they contribute in modulating cell identity and differentiation. Structural and biophysical approaches are broadening our knowledge on these processes, demonstrating that DNA, histone tails and histone surfaces can each function as distinct yet functionally interconnected anchoring points promoting nucleosome binding and modification. The mechanisms underlying nucleosome recognition have been described for many histone modifiers and related readers. Here, we review the recent literature on the structural organization of these nucleosome-associated proteins, the binding properties that drive nucleosome modification and the methodological advances in their analysis. The overarching conclusion is that besides acting on the same substrate (the nucleosome), each system functions through characteristic modes of action, which bring about specific biological functions in gene expression regulation.
Collapse
Affiliation(s)
| | - Simona Pilotto
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Titia K Sixma
- Division of Biochemistry and Cancer Genomics Center, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
47
|
A quantitative investigation of linker histone interactions with nucleosomes and chromatin. Sci Rep 2016; 6:19122. [PMID: 26750377 PMCID: PMC4707517 DOI: 10.1038/srep19122] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/07/2015] [Indexed: 12/20/2022] Open
Abstract
Linker histones such as H1 are abundant basic proteins that bind tightly to nucleosomes, thereby acting as key organizers of chromatin structure. The molecular details of linker histone interactions with the nucleosome, and in particular the contributions of linker DNA and of the basic C-terminal tail of H1, are controversial. Here we combine rigorous solution-state binding assays with native gel electrophoresis and Atomic Force Microscopy, to quantify the interaction of H1 with chromatin. We find that H1 binds nucleosomes and nucleosomal arrays with very tight affinity by recognizing a specific DNA geometry minimally consisting of a solitary nucleosome with a single ~18 base pair DNA linker arm. The association of H1 alters the conformation of trinucleosomes so that only one H1 can bind to the two available linker DNA regions. Neither incorporation of the histone variant H2A.Z, nor the presence of neighboring nucleosomes affects H1 affinity. Our data provide a comprehensive thermodynamic framework for this ubiquitous chromatin architectural protein.
Collapse
|
48
|
Prusov AN, Smirnova TA, Kolomijtseva GY. Extraction of histone H1 and decondensation of nuclear chromatin with various Mg-dependent organization levels under treatment with polyglutamic acid and distamycin. BIOCHEMISTRY (MOSCOW) 2015; 80:356-65. [PMID: 25761689 DOI: 10.1134/s0006297915030104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chromatin in rat liver nuclei under conditions of low ionic strength (20-25 mM) and [Mg2+] from 2 to 5 mM has a condensed structure (100-200 nm globules) and gives the same CD signal (320-340 nm) at interaction with the antibiotic distamycin A (DM). Reducing [Mg2+] to 1 mM leads to chromatin decondensation to 30 nm structures and increases the CD signal. Poly-L-glutamic acid (PG) at weight ratio PG/DNA = 6 and in the presence of 5 mM Mg2+ extracts only about 1/8 of nuclear histone H1, preserving a condensed chromatin structure. Removal of about 1/4 of H1 at 3 mM Mg2+ leads to chromatin decondensation to 30 nm fibrils. Extraction of about half of histone H1 at [Mg2+] ≤ 2 mM results in chromatin refolding to nucleosome fibrils. PG-decondensation leads to a significant increase in the CD signal. The main H1 extraction occurs in 1-2 min, but at all Mg2+ concentrations the more slowly PG extracted fraction is found comprising 5-7% of nuclear H1. About 25% of leaving nuclear H1 can be extracted by PG in the presence of saturating DM concentration (molar DM/DNA = 0.1). H1 release depends significantly on the PG concentration. However, even at high weight ratio PG/DNA = 30 and DM/DNA = 0.1, about 5-10% of histone H1 remained in the nuclei. Decondensation of chromatin in the nucleus is not always proportional to the yield of extracted histone H1 and is weakened in the presence of positively charged DM or high concentrations of PG. Our results show that the interaction of DM with chromatin depends primarily on chromatin packaging, while PG extraction depends on [Mg2+] supporting this packaging.
Collapse
Affiliation(s)
- A N Prusov
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, 119991, Russia.
| | | | | |
Collapse
|
49
|
Pan C, Fan Y. Role of H1 linker histones in mammalian development and stem cell differentiation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:496-509. [PMID: 26689747 DOI: 10.1016/j.bbagrm.2015.12.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/09/2015] [Accepted: 12/09/2015] [Indexed: 12/19/2022]
Abstract
H1 linker histones are key chromatin architectural proteins facilitating the formation of higher order chromatin structures. The H1 family constitutes the most heterogeneous group of histone proteins, with eleven non-allelic H1 variants in mammals. H1 variants differ in their biochemical properties and exhibit significant sequence divergence from one another, yet most of them are highly conserved during evolution from mouse to human. H1 variants are differentially regulated during development and their cellular compositions undergo dramatic changes in embryogenesis, gametogenesis, tissue maturation and cellular differentiation. As a group, H1 histones are essential for mouse development and proper stem cell differentiation. Here we summarize our current knowledge on the expression and functions of H1 variants in mammalian development and stem cell differentiation. Their diversity, sequence conservation, complex expression and distinct functions suggest that H1s mediate chromatin reprogramming and contribute to the large variations and complexity of chromatin structure and gene expression in the mammalian genome.
Collapse
Affiliation(s)
- Chenyi Pan
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA; The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yuhong Fan
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA; The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
50
|
Parseghian MH. What is the role of histone H1 heterogeneity? A functional model emerges from a 50 year mystery. AIMS BIOPHYSICS 2015; 2:724-772. [PMID: 31289748 PMCID: PMC6615755 DOI: 10.3934/biophy.2015.4.724] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
For the past 50 years, understanding the function of histone H1 heterogeneity has been mired in confusion and contradiction. Part of the reason for this is the lack of a working model that tries to explain the large body of data that has been collected about the H1 subtypes so far. In this review, a global model is described largely based on published data from the author and other researchers over the past 20 years. The intrinsic disorder built into H1 protein structure is discussed to help the reader understand that these histones are multi-conformational and adaptable to interactions with different targets. We discuss the role of each structural section of H1 (as we currently understand it), but we focus on the H1's C-terminal domain and its effect on each subtype's affinity, mobility and compaction of chromatin. We review the multiple ways these characteristics have been measured from circular dichroism to FRAP analysis, which has added to the sometimes contradictory assumptions made about each subtype. Based on a tabulation of these measurements, we then organize the H1 variants according to their ability to condense chromatin and produce nucleosome repeat lengths amenable to that compaction. This subtype variation generates a continuum of different chromatin states allowing for fine regulatory control and some overlap in the event one or two subtypes are lost to mutation. We also review the myriad of disparate observations made about each subtype, both somatic and germline specific ones, that lend support to the proposed model. Finally, to demonstrate its adaptability as new data further refines our understanding of H1 subtypes, we show how the model can be applied to experimental observations of telomeric heterochromatin in aging cells.
Collapse
|