1
|
Oyejobi GK, Yan X, Sliz P, Wang L. Regulating Protein-RNA Interactions: Advances in Targeting the LIN28/Let-7 Pathway. Int J Mol Sci 2024; 25:3585. [PMID: 38612395 PMCID: PMC11011352 DOI: 10.3390/ijms25073585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Originally discovered in C. elegans, LIN28 is an evolutionarily conserved zinc finger RNA-binding protein (RBP) that post-transcriptionally regulates genes involved in developmental timing, stem cell programming, and oncogenesis. LIN28 acts via two distinct mechanisms. It blocks the biogenesis of the lethal-7 (let-7) microRNA (miRNA) family, and also directly binds messenger RNA (mRNA) targets, such as IGF-2 mRNA, and alters downstream splicing and translation events. This review focuses on the molecular mechanism of LIN28 repression of let-7 and current strategies to overcome this blockade for the purpose of cancer therapy. We highlight the value of the LIN28/let-7 pathway as a drug target, as multiple oncogenic proteins that the pathway regulates are considered undruggable due to their inaccessible cellular location and lack of cavities for small molecule binding.
Collapse
Affiliation(s)
- Greater Kayode Oyejobi
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China; (G.K.O.); (X.Y.)
| | - Xiaodan Yan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China; (G.K.O.); (X.Y.)
| | - Piotr Sliz
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Longfei Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China; (G.K.O.); (X.Y.)
| |
Collapse
|
2
|
Di C, Zheng G, Zhang Y, Tong E, Ren Y, Hong Y, Song Y, Chen R, Tan X, Yang L. RTA and LANA Competitively Regulate let-7a/RBPJ Signal to Control KSHV Replication. Front Microbiol 2022; 12:804215. [PMID: 35069510 PMCID: PMC8777081 DOI: 10.3389/fmicb.2021.804215] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
The recombination signal binding protein for immunoglobulin kappa J region (RBPJ) has a dual effect on Kaposi's sarcoma-associated herpesvirus (KSHV) replication. RBPJ interaction with replication and transcription activator (RTA) is essential for lytic replication, while the interaction with latency-associated nuclear antigen (LANA) facilitates latent infection. Furthermore, our previous study found that LANA decreased RBPJ through upregulating miRNA let-7a. However, it is unclear whether RTA regulates the expression of RBPJ. Here, we show RTA increases RBPJ by decreasing let-7a. During KSHV replication, the RBPJ expression level was positively correlated with the RTA expression level and negatively correlated with the LANA expression level. The let-7a expression level was inverse to RBPJ. Knockdown of RBPJ inhibited the self-activation of RTA promoter and LANA promoter and weakened LANA's inhibition of RTA promoter. Collectively, these findings indicate that RTA and LANA compete for let-7a/RBPJ signal to control the KSHV replication. Regulating the RBPJ expression level by RTA and LANA plays an important role during KSHV replication.
Collapse
Affiliation(s)
- Chunhong Di
- Affiliated Hospital, Hangzhou Normal University, Hangzhou, China.,School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Guoxia Zheng
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Yunheng Zhang
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Enyu Tong
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Yanli Ren
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Yu Hong
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Yang Song
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Rong Chen
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Xiaohua Tan
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Lei Yang
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
3
|
Abu-Izneid T, AlHajri N, Ibrahim AM, Javed MN, Salem KM, Pottoo FH, Kamal MA. Micro-RNAs in the regulation of immune response against SARS CoV-2 and other viral infections. J Adv Res 2021; 30:133-145. [PMID: 33282419 PMCID: PMC7708232 DOI: 10.1016/j.jare.2020.11.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 02/06/2023] Open
Abstract
Background Micro-RNAs (miRNAS) are non-coding, small RNAs that have essential roles in different biological processes through silencing genes, they consist of 18-24 nucleotide length RNA molecules. Recently, miRNAs have been viewed as important modulators of viral infections they can function as suppressors of gene expression by targeting cellular or viral RNAs during infection. Aim of review We describe the biological roles and effects of miRNAs on SARS-CoV-2 life-cycle and pathogenicity, and we discuss the modulation of the immune system with micro-RNAs which would serve as a new foundation for the treatment of SARS-CoV-2 and other viral infections. Key scientific concepts of review miRNAs are the key players that regulate the expression of the gene in the post-transcriptional phase and have important effects on viral infections, thus are potential targets in the development of novel therapeutics for the treatment of viral infections. Besides, micro-RNAs (miRNAs) modulation of immune-pathogenesis responses to viral infection is one of the most-known indirect effects, which leads to suppressing of the interferon (IFN-α/β) signalling cascade or upregulation of the IFN-α/β production another IFN-stimulated gene (ISGs) that inhibit replication of the virus. These virus-mediated alterations in miRNA levels lead to an environment that might either enhance or inhibit virus replication.
Collapse
Affiliation(s)
- Tareq Abu-Izneid
- Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Noora AlHajri
- Department of Epidemiology and Population Health, College of Medicine, Khalifa University, United Arab Emirates
| | - Abdallah Mohammad Ibrahim
- Fundamentals of Nursing Department, College of Nursing, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Md. Noushad Javed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New-Delhi, India
| | - Khairi Mustafa Salem
- Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammad Amjad Kamal
- West China School of Nursing/Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
- Enzymoics, Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW 2770, Australia
| |
Collapse
|
4
|
Abstract
Protein-RNA interactions have crucial roles in various cellular activities, which, when dysregulated, can lead to a range of human diseases. The identification of small molecules that target the interaction between RNA-binding proteins (RBPs) and RNA is progressing rapidly and represents a novel strategy for the discovery of chemical probes that facilitate understanding of the cellular functions of RBPs and of therapeutic agents with new mechanisms of action. In this Review, I present a current overview of targeting emerging RBPs using small-molecule inhibitors and recent progress in this burgeoning field. Small-molecule inhibitors that were reported for three representative emerging classes of RBPs, the microRNA-binding protein LIN28, the single-stranded or double-stranded RNA-binding Toll-like receptors and the CRISPR-associated (Cas) proteins, are highlighted from a medicinal-chemistry and chemical-biology perspective. However, although this field is burgeoning, challenges remain in the discovery and characterization of small-molecule inhibitors of RBPs.
Collapse
|
5
|
Berk C, Civenni G, Wang Y, Steuer C, Catapano CV, Hall J. Pharmacodynamic and Pharmacokinetic Properties of Full Phosphorothioate Small Interfering RNAs for Gene Silencing In Vivo. Nucleic Acid Ther 2020; 31:237-244. [PMID: 32311310 PMCID: PMC8215415 DOI: 10.1089/nat.2020.0852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
State-of-the-art small interfering RNA (siRNA) therapeutics such as givosiran and fitusiran are constructed from three variable components: a fully-modified RNA core that conveys metabolic stability, a targeting moiety that mediates target-cell uptake, and a linker. This structural complexity poses challenges for metabolite characterization and risk assessment after long-term patient exposure. In this study, we show that basic phosphorothioate modification of a siRNA targeting the oncoprotein Lin28B provides a useful increase in metabolic stability, without greatly compromising potency. We found that its stability in vitro matched that of nanoparticle-free patisiran in serum and surpassed it in liver tritosome extracts, although it did not reach the stability of the fitusiran siRNA core structure. Liver and kidney were the main sites of accumulation after its subcutaneous administration in mice. Despite the lack of a delivery agent-free antitumor effect, we anticipate our study to be a starting point to develop alternative siRNA scaffolds that can be degraded into naturally-occurring metabolites and help alleviate the aforementioned challenges. Furthermore, Lin28B is a promising target for cancers, and the development of such simplified siRNA analogs, possibly together with novel targeting units, holds potential.
Collapse
Affiliation(s)
- Christian Berk
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Gianluca Civenni
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Yuluan Wang
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Christian Steuer
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Carlo V Catapano
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Huang Y, Zhang C, Sun X. Identification of differentially expressed miRNAs on normal cell, fatty liver cell and processed cell by monoammonium glycyrrhizinate from cattle ( Bos indicus) by deep sequencing approach. Anim Biotechnol 2020; 32:688-698. [PMID: 32213006 DOI: 10.1080/10495398.2020.1744617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Cattle fatty liver has caused mass damage in milk production during the past few years. In our study, to identify different miRNAs involved in cell physiological regulation in fatty liver, we performed miRNA deep sequencing on a normal liver cell (S01), fatty liver cell (S02) and processed cell by monoammonium glycyrrhizinate (S03). As a result, a total of 15,277,462, 14,190,360 and 13,771,060 raw reads representing 13,904,074, 12,784,128 and 11,017,604 clean reads per library were obtained separately. Through bioinformatics analysis, a total of 511 known miRNAs were identified when they were aligned with the known animal miRNAs, and 197 novel miRNAs were predicted using mirDeep2 software. A total of 511 miRNAs including 101 known and 51 novel miRNAs were expressed significantly different. Additionally, expression levels of eight randomly selected miRNAs were confirmed using the stem-loop qPCR, and their expression profiles were consistent with the deep sequencing results. For better understanding the functions of miRNAs, a total of 14,231 targets were predicted. These predicted target genes were further analyzed by function annotation and enrichment pathways, the results showed that these targets of the identified miRNAs are involved in a broad range of physiological functions.
Collapse
Affiliation(s)
- Yong Huang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Cai Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Xihong Sun
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
7
|
Linck-Paulus L, Hellerbrand C, Bosserhoff AK, Dietrich P. Dissimilar Appearances Are Deceptive-Common microRNAs and Therapeutic Strategies in Liver Cancer and Melanoma. Cells 2020; 9:E114. [PMID: 31906510 PMCID: PMC7017070 DOI: 10.3390/cells9010114] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
: In this review, we summarize the current knowledge on miRNAs as therapeutic targets in two cancer types that were frequently described to be driven by miRNAs-melanoma and hepatocellular carcinoma (HCC). By focusing on common microRNAs and associated pathways in these-at first sight-dissimilar cancer types, we aim at revealing similar molecular mechanisms that are evolved in microRNA-biology to drive cancer progression. Thereby, we also want to outlay potential novel therapeutic strategies. After providing a brief introduction to general miRNA biology and basic information about HCC and melanoma, this review depicts prominent examples of potent oncomiRs and tumor-suppressor miRNAs, which have been proven to drive diverse cancer types including melanoma and HCC. To develop and apply miRNA-based therapeutics for cancer treatment in the future, it is essential to understand how miRNA dysregulation evolves during malignant transformation. Therefore, we highlight important aspects such as genetic alterations, miRNA editing and transcriptional regulation based on concrete examples. Furthermore, we expand our illustration by focusing on miRNA-associated proteins as well as other regulators of miRNAs which could also provide therapeutic targets. Finally, design and delivery strategies of miRNA-associated therapeutic agents as well as potential drawbacks are discussed to address the question of how miRNAs might contribute to cancer therapy in the future.
Collapse
Affiliation(s)
- Lisa Linck-Paulus
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
| | - Claus Hellerbrand
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany
| | - Anja K. Bosserhoff
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany
| | - Peter Dietrich
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
8
|
Civenni G, Albino D, Shinde D, Vázquez R, Merulla J, Kokanovic A, Mapelli SN, Carbone GM, Catapano CV. Transcriptional Reprogramming and Novel Therapeutic Approaches for Targeting Prostate Cancer Stem Cells. Front Oncol 2019; 9:385. [PMID: 31143708 PMCID: PMC6521702 DOI: 10.3389/fonc.2019.00385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer is the most common malignancy in men and the second cause of cancer-related deaths in western countries. Despite the progress in the treatment of localized prostate cancer, there is still lack of effective therapies for the advanced forms of the disease. Most patients with advanced prostate cancer become resistant to androgen deprivation therapy (ADT), which remains the main therapeutic option in this setting, and progress to lethal metastatic castration-resistant prostate cancer (mCRPC). Current therapies for prostate cancer preferentially target proliferating, partially differentiated, and AR-dependent cancer cells that constitute the bulk of the tumor mass. However, the subpopulation of tumor-initiating or tumor-propagating stem-like cancer cells is virtually resistant to the standard treatments causing tumor relapse at the primary or metastatic sites. Understanding the pathways controlling the establishment, expansion and maintenance of the cancer stem cell (CSC) subpopulation is an important step toward the development of more effective treatment for prostate cancer, which might enable ablation or exhaustion of CSCs and prevent treatment resistance and disease recurrence. In this review, we focus on the impact of transcriptional regulators on phenotypic reprogramming of prostate CSCs and provide examples supporting the possibility of inhibiting maintenance and expansion of the CSC pool in human prostate cancer along with the currently available methodological approaches. Transcription factors are key elements for instructing specific transcriptional programs and inducing CSC-associated phenotypic changes implicated in disease progression and treatment resistance. Recent studies have shown that interfering with these processes causes exhaustion of CSCs with loss of self-renewal and tumorigenic capability in prostate cancer models. Targeting key transcriptional regulators in prostate CSCs is a valid therapeutic strategy waiting to be tested in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Carlo V. Catapano
- Institute of Oncology (IOR), Università della Svizzera Italiana, Bellinzona, Switzerland
| |
Collapse
|
9
|
Qi Y, Zheng G, Di C, Zhang J, Wang X, Hong Y, Song Y, Chen R, Yang Y, Yan Y, Xu L, Tan X, Yang L. Latency-associated nuclear antigen inhibits lytic replication of Kaposi's sarcoma-associated herpesvirus by regulating let-7a/RBPJ signaling. Virology 2019; 531:69-78. [PMID: 30856484 DOI: 10.1016/j.virol.2019.02.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 10/27/2022]
Abstract
Latency-associated nuclear antigen (LANA) is the key factor in the establishment and maintenance of latency of Kaposi's sarcoma-associated herpesvirus (KSHV). A cellular protein, recombination signal binding protein for immunoglobulin kappa J region (RBPJ), is essential for the lytic reactivation of KSHV. However, whether RBPJ expression is regulated by KSHV is not clear. Here, we show that LANA upregulates let-7a and its primary transcripts in parallel with its reduction of RBPJ expression. An increase in notch intracellular domain (NICD) and the downregulation of NF-κB and LIN28B contribute to the upregulation of let-7a by LANA. Let-7a represses RBPJ expression by directly binding the 3' untranslated region of RBPJ. Let-7a overexpression or RBPJ knockdown led to a dose- and time-dependent inhibition of lytic reactivation of KSHV. Collectively, these findings support a model wherein LANA inhibits the lytic replication of KSHV by regulating let-7a/RBPJ signaling.
Collapse
Affiliation(s)
- Yan Qi
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Guoxia Zheng
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Chunhong Di
- Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Jinxia Zhang
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaobo Wang
- Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Yu Hong
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Yang Song
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Rong Chen
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Yi Yang
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Yutao Yan
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Liangwen Xu
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaohua Tan
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China.
| | - Lei Yang
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
10
|
Abstract
MicroRNAs (miRNAs) are important regulators of gene expression that bind complementary target mRNAs and repress their expression. Precursor miRNA molecules undergo nuclear and cytoplasmic processing events, carried out by the endoribonucleases DROSHA and DICER, respectively, to produce mature miRNAs that are loaded onto the RISC (RNA-induced silencing complex) to exert their biological function. Regulation of mature miRNA levels is critical in development, differentiation, and disease, as demonstrated by multiple levels of control during their biogenesis cascade. Here, we will focus on post-transcriptional mechanisms and will discuss the impact of cis-acting sequences in precursor miRNAs, as well as trans-acting factors that bind to these precursors and influence their processing. In particular, we will highlight the role of general RNA-binding proteins (RBPs) as factors that control the processing of specific miRNAs, revealing a complex layer of regulation in miRNA production and function.
Collapse
Affiliation(s)
- Gracjan Michlewski
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Zhejiang 314400, P.R. China
| | - Javier F Cáceres
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| |
Collapse
|
11
|
Pan P, Chen T, Zhang Y, Qi Z, Qin J, Cui G, Guo X. LIN28A inhibits lysosome‑associated membrane glycoprotein 1 protein expression in embryonic stem and bladder cancer cells. Mol Med Rep 2018; 18:399-406. [PMID: 29749495 DOI: 10.3892/mmr.2018.8965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 03/14/2018] [Indexed: 11/06/2022] Open
Abstract
Tumor cells and embryonic stem cells (ESCs) have similar transcription mechanisms. LIN28A is an important factor in tumor cells and ESCs, it is an inhibitor of intracellular endoplasmic reticulum (ER)‑related protein translation in ESCs. The present study aimed to examine the effects of LIN28A on an ER‑related protein, lysosome‑associated membrane glycoprotein 1 (LAMP1), in human bladder cancer cells and mouse (m)ESCs, using reverse transcription‑quantitative polymerase chain reaction and western blotting to detect the expression of LAMP1 mRNA and protein, respectively, following LIN28A knockdown. LIN28A was revealed to promote the proliferation, migration and invasion in human bladder cancer cells. These data suggested similarities between ESC cells and cancer cells and may provide novel ideas for the use of induced embryonic stem cell differentiation to treat tumors.
Collapse
Affiliation(s)
- Peng Pan
- Department of Pathology, Guangzhou Medical University, Guangzhou, Guangdong 510182, P.R. China
| | - Ting Chen
- Department of Pathology, Guangzhou Medical University, Guangzhou, Guangdong 510182, P.R. China
| | - Yanmin Zhang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
| | - Zhengyu Qi
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
| | - Jie Qin
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
| | - Guanghui Cui
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
| | - Xin Guo
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
| |
Collapse
|
12
|
Lightfoot HL, Miska EA, Balasubramanian S. Identification of small molecule inhibitors of the Lin28-mediated blockage of pre-let-7g processing. Org Biomol Chem 2018; 14:10208-10216. [PMID: 27731469 PMCID: PMC5433426 DOI: 10.1039/c6ob01945e] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Small molecules enhance Dicer processing of a let-7 miRNA precursor through antagonization of the Lin28–pre-let-7 interaction.
The protein Lin28 and microRNA let-7 play critical roles in mammalian development and human disease. Lin28 inhibits let-7 biogenesis through direct interaction with let-7 precursors (pre-let-7). Accumulating evidence in vitro and in vivo suggests this interaction plays a dominant role in embryonic stem cell self-renewal and tumorigenesis. Thus the Lin28–let-7 interaction might be an attractive drug target, if not for the well-known difficulties in targeting protein–RNA interactions with drugs. The identification and development of suitable probe molecules to further elucidate therapeutic potential, as well as mechanistic details of this pathway will be valuable. We report the development and application of a biophysical high-throughput screening assay for the identification of small molecule inhibitors of the Lin28–pre-let-7 interaction. A library of pharmacologically active small molecules was screened and several small molecule inhibitors were identified and biochemically validated. Of these four validated inhibitors, two compounds successfully restored processing of pre-let-7g in the presence of Lin28, validating the concept. Thus, we have identified examples of small molecule inhibitors of the interaction between Lin28 and pre-let-7. This study provides a proof of concept for small molecule inhibitors that antagonise the effects of Lin28 and enhance processing of let-7 miRNA.
Collapse
Affiliation(s)
- Helen L Lightfoot
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Eric A Miska
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Rd, Cambridge, CB2 1QN, UK.
| | - Shankar Balasubramanian
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK. and Cancer Research UK, Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| |
Collapse
|
13
|
A small molecule screen to identify regulators of let-7 targets. Sci Rep 2017; 7:15973. [PMID: 29162914 PMCID: PMC5698460 DOI: 10.1038/s41598-017-16258-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/09/2017] [Indexed: 01/11/2023] Open
Abstract
The let-7 family of miRNAs has been shown to be crucial in many aspects of biology, from the regulation of developmental timing to cancer. The available methods to regulate this family of miRNAs have so far been mostly genetic and therefore not easily performed experimentally. Here, we describe a small molecule screen designed to identify regulators of let-7 targets in human cells. In particular, we focused our efforts on the identification of small molecules that could suppress let-7 targets, as these could serve to potentially intercede in tumors driven by loss of let-7 activity. After screening through roughly 36,000 compounds, we identified a class of phosphodiesterase inhibitors that suppress let-7 targets. These compounds stimulate cAMP levels and raise mature let-7 levels to suppress let-7 target genes in multiple cancer cell lines such as HMGA2 and MYC. As a result, these compounds also show growth inhibitory activity on cancer cells.
Collapse
|
14
|
Roos M, Pradère U, Ngondo RP, Behera A, Allegrini S, Civenni G, Zagalak JA, Marchand JR, Menzi M, Towbin H, Scheuermann J, Neri D, Caflisch A, Catapano CV, Ciaudo C, Hall J. A Small-Molecule Inhibitor of Lin28. ACS Chem Biol 2016; 11:2773-2781. [PMID: 27548809 DOI: 10.1021/acschembio.6b00232] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
New discoveries in RNA biology underscore a need for chemical tools to clarify their roles in pathophysiological mechanisms. In certain cancers, synthesis of the let-7 microRNA tumor suppressor is blocked by an RNA binding protein (RBP) Lin28, which docks onto a conserved sequence in let-7 precursor RNA molecules and prevents their maturation. Thus, the Lin28/let-7 interaction might be an attractive drug target, if not for the well-known difficulty in targeting RNA-protein interactions with drugs. Here, we describe a protein/RNA FRET assay using a GFP-Lin28 donor and a black-hole quencher (BHQ)-labeled let-7 acceptor, a fluorescent protein/quencher combination which is rarely used in screening despite favorable spectral properties. We tested 16 000 molecules and identified N-methyl-N-[3-(3-methyl[1,2,4]triazolo[4,3-b]pyridazin-6-yl)phenyl]acetamide, which blocked the Lin28/let-7 interaction, rescued let-7 processing and function in Lin28-expressing cancer cells, induced differentiation of mouse embryonic stem cells, and reduced tumor-sphere formation by 22Rv1 and Huh7 cells. A biotinylated derivative captured Lin28 from cell lysates consistent with an on-target mechanism in cells, though the compound also showed some activity against bromodomains in selectivity assays. The Lin28/let-7 axis is presently of high interest not only for its role as a bistable switch in stem-cell biology but also because of its prominent roles in numerous diseases. We anticipate that much can be learned from the use of this first reported small molecule antagonist of Lin28, including the potential of the Lin28/let-7 interaction as a new drug target for selected cancers. Furthermore, this approach to assay development may be used to identify antagonists of other RBP/RNA interactions suspected to be operative in pathophysiological mechanisms.
Collapse
Affiliation(s)
- Martina Roos
- Institute
of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Ugo Pradère
- Institute
of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Richard P. Ngondo
- Institute
of Molecular Health Sciences, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Alok Behera
- Institute
of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Sara Allegrini
- Institute
of Oncology Research, Oncology Institute of Southern Switzerland, 6500 Bellinzona, Switzerland
| | - Gianluca Civenni
- Institute
of Oncology Research, Oncology Institute of Southern Switzerland, 6500 Bellinzona, Switzerland
| | - Julian A. Zagalak
- Institute
of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Jean-Rémy Marchand
- Department
of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Mirjam Menzi
- Institute
of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Harry Towbin
- Institute
of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Jörg Scheuermann
- Institute
of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Dario Neri
- Institute
of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Amedeo Caflisch
- Department
of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Carlo V. Catapano
- Institute
of Oncology Research, Oncology Institute of Southern Switzerland, 6500 Bellinzona, Switzerland
| | - Constance Ciaudo
- Institute
of Molecular Health Sciences, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Jonathan Hall
- Institute
of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
15
|
Lim D, Byun WG, Koo JY, Park H, Park SB. Discovery of a Small-Molecule Inhibitor of Protein–MicroRNA Interaction Using Binding Assay with a Site-Specifically Labeled Lin28. J Am Chem Soc 2016; 138:13630-13638. [DOI: 10.1021/jacs.6b06965] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Donghyun Lim
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul 08826, Korea
| | - Wan Gi Byun
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Ja Young Koo
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Hankum Park
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul 08826, Korea
| | - Seung Bum Park
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul 08826, Korea
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
16
|
Albino D, Civenni G, Dallavalle C, Roos M, Jahns H, Curti L, Rossi S, Pinton S, D'Ambrosio G, Sessa F, Hall J, Catapano CV, Carbone GM. Activation of the Lin28/let-7 Axis by Loss of ESE3/EHF Promotes a Tumorigenic and Stem-like Phenotype in Prostate Cancer. Cancer Res 2016; 76:3629-43. [PMID: 27197175 DOI: 10.1158/0008-5472.can-15-2665] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 03/30/2016] [Indexed: 11/16/2022]
Abstract
Although cancer stem-like cells (CSC) are thought to be the most tumorigenic, metastatic, and therapy-resistant cell subpopulation within human tumors, current therapies target bulk tumor cells while tending to spare CSC. In seeking to understand mechanisms needed to acquire and maintain a CSC phenotype in prostate cancer, we investigated connections between the ETS transcription factor ESE3/EHF, the Lin28/let-7 microRNA axis, and the CSC subpopulation in this malignancy. In normal cells, we found that ESE3/EHF bound and repressed promoters for the Lin28A and Lin28B genes while activating transcription and maturation of the let-7 microRNAs. In cancer cells, reduced expression of ESE3/EHF upregulated Lin28A and Lin28B and downregulated the let-7 microRNAs. Notably, we found that deregulation of the Lin28/let-7 axis with reduced production of let-7 microRNAs was critical for cell transformation and expansion of prostate CSC. Moreover, targeting Lin28A/Lin28B in cell lines and tumor xenografts mimicked the effects of ESE3/EHF and restrained tumor-initiating and self-renewal properties of prostate CSC both in vitro and in vivo These results establish that tight control by ESE3/EHF over the Lin28/let-7 axis is a critical barrier to malignant transformation, and they also suggest new strategies to antagonize CSC in human prostate cancer for therapeutic purposes. Cancer Res; 76(12); 3629-43. ©2016 AACR.
Collapse
Affiliation(s)
- Domenico Albino
- Tumor Biology and Experimental Therapeutics Program, Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Gianluca Civenni
- Tumor Biology and Experimental Therapeutics Program, Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Cecilia Dallavalle
- Tumor Biology and Experimental Therapeutics Program, Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Martina Roos
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Hartmut Jahns
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Laura Curti
- Tumor Biology and Experimental Therapeutics Program, Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Simona Rossi
- Tumor Biology and Experimental Therapeutics Program, Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Sandra Pinton
- Tumor Biology and Experimental Therapeutics Program, Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | | | - Fausto Sessa
- Department of Pathology, University of Insubria, Varese, Italy
| | - Jonathan Hall
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Carlo V Catapano
- Tumor Biology and Experimental Therapeutics Program, Institute of Oncology Research (IOR), Bellinzona, Switzerland. Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland. Department of Oncology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| | - Giuseppina M Carbone
- Tumor Biology and Experimental Therapeutics Program, Institute of Oncology Research (IOR), Bellinzona, Switzerland. Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland.
| |
Collapse
|
17
|
Sczepanski JT, Joyce GF. Specific Inhibition of MicroRNA Processing Using L-RNA Aptamers. J Am Chem Soc 2015; 137:16032-7. [PMID: 26652064 DOI: 10.1021/jacs.5b06696] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In vitro selection was used to obtain l-RNA aptamers that bind the distal stem-loop of various precursor microRNAs (pre-miRs). These l-aptamers, termed "aptamiRs", bind their corresponding pre-miR target through highly specific tertiary interactions rather than Watson-Crick pairing. Formation of a pre-miR-aptamiR complex inhibits Dicer-mediated processing of the pre-miR, which is required to form the mature functional microRNA. One of the aptamiRs, which was selected to bind oncogenic pre-miR-155, inhibits Dicer processing under simulated physiological conditions, with an IC50 of 87 nM. Given that l-RNAs are intrinsically resistant to nuclease degradation, these results suggest that aptamiRs might be pursued as a new class of miR inhibitors.
Collapse
Affiliation(s)
- Jonathan T Sczepanski
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Gerald F Joyce
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
18
|
Jeker LT, Marone R. Targeting microRNAs for immunomodulation. Curr Opin Pharmacol 2015; 23:25-31. [PMID: 26021286 DOI: 10.1016/j.coph.2015.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 05/04/2015] [Accepted: 05/06/2015] [Indexed: 12/29/2022]
Abstract
microRNAs (miRNA) are small regulatory RNAs exerting pleiotropic functions in virtually any immune cell-type. Dozens of miRNAs with a known function in the immune system constitute interesting drug targets for immunomodulation. Chemical modifications of nucleic acid-based miRNA mimics and inhibitors largely solved instability issues but delivery to immune cells remains a major challenge. However, recent success targeting the acidic tumor microenvironment is very promising for inflammatory diseases. Moreover, small molecules are being explored as an interesting alternative. Although RNA is often considered 'undruggable' by small molecules recent progress modulating miRNA function through small molecules is encouraging. Computational approaches even allow predictions about specific small molecule/RNA interactions. Finally, recent clinical success demonstrates that drugs targeting RNAs work in humans.
Collapse
Affiliation(s)
- Lukas T Jeker
- Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland.
| | - Romina Marone
- Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| |
Collapse
|
19
|
Sinkovics JG. The cell survival pathways of the primordial RNA-DNA complex remain conserved in the extant genomes and may function as proto-oncogenes. Eur J Microbiol Immunol (Bp) 2015; 5:25-43. [PMID: 25883792 PMCID: PMC4397846 DOI: 10.1556/eujmi-d-14-00034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/22/2014] [Indexed: 01/09/2023] Open
Abstract
Malignantly transformed (cancer) cells of multicellular hosts, including human cells, operate activated biochemical pathways that recognizably derived from unicellular ancestors. The descendant heat shock proteins of thermophile archaea now chaperon oncoproteins. The ABC cassettes of toxin-producer zooxantella Symbiodinia algae pump out the cytoplasmic toxin molecules; malignantly transformed cells utilize the derivatives of these cassettes to get rid of chemotherapeuticals. High mobility group helix-loop-helix proteins, protein arginine methyltransferases, proliferating cell nuclear antigens, and Ki-67 nuclear proteins, that protect and repair DNA in unicellular life forms, support oncogenes in transformed cells. The cell survival pathways of Wnt-β-catenin, Hedgehog, PI3K, MAPK-ERK, STAT, Ets, JAK, Pak, Myb, achaete scute, circadian rhythms, Bruton kinase and others, which are physiological in uni- and early multicellular eukaryotic life forms, are constitutively encoded in complex oncogenic pathways in selected single cells of advanced multicellular eukaryotic hosts. Oncogenes and oncoproteins in advanced multicellular hosts recreate selected independently living and immortalized unicellular life forms, which are similar to extinct and extant protists. These unicellular life forms are recognized at the clinics as autologous "cancer cells".
Collapse
Affiliation(s)
- J G Sinkovics
- St. Joseph's Hospital Cancer Institute Affiliated with the H. L. Moffitt Comprehensive Cancer Center, Morsani College of Medicine, Department of Molecular Medicine, The University of South Florida Tampa, FL USA
| |
Collapse
|