1
|
Zulfiqar M, Singh V, Steinbeck C, Sorokina M. Review on computer-assisted biosynthetic capacities elucidation to assess metabolic interactions and communication within microbial communities. Crit Rev Microbiol 2024; 50:1053-1092. [PMID: 38270170 DOI: 10.1080/1040841x.2024.2306465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 11/17/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Microbial communities thrive through interactions and communication, which are challenging to study as most microorganisms are not cultivable. To address this challenge, researchers focus on the extracellular space where communication events occur. Exometabolomics and interactome analysis provide insights into the molecules involved in communication and the dynamics of their interactions. Advances in sequencing technologies and computational methods enable the reconstruction of taxonomic and functional profiles of microbial communities using high-throughput multi-omics data. Network-based approaches, including community flux balance analysis, aim to model molecular interactions within and between communities. Despite these advances, challenges remain in computer-assisted biosynthetic capacities elucidation, requiring continued innovation and collaboration among diverse scientists. This review provides insights into the current state and future directions of computer-assisted biosynthetic capacities elucidation in studying microbial communities.
Collapse
Affiliation(s)
- Mahnoor Zulfiqar
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Vinay Singh
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Jena, Germany
| | - Christoph Steinbeck
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Maria Sorokina
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Jena, Germany
- Data Science and Artificial Intelligence, Research and Development, Pharmaceuticals, Bayer, Berlin, Germany
| |
Collapse
|
2
|
Kundu P, Beura S, Mondal S, Das AK, Ghosh A. Machine learning for the advancement of genome-scale metabolic modeling. Biotechnol Adv 2024; 74:108400. [PMID: 38944218 DOI: 10.1016/j.biotechadv.2024.108400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/13/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
Constraint-based modeling (CBM) has evolved as the core systems biology tool to map the interrelations between genotype, phenotype, and external environment. The recent advancement of high-throughput experimental approaches and multi-omics strategies has generated a plethora of new and precise information from wide-ranging biological domains. On the other hand, the continuously growing field of machine learning (ML) and its specialized branch of deep learning (DL) provide essential computational architectures for decoding complex and heterogeneous biological data. In recent years, both multi-omics and ML have assisted in the escalation of CBM. Condition-specific omics data, such as transcriptomics and proteomics, helped contextualize the model prediction while analyzing a particular phenotypic signature. At the same time, the advanced ML tools have eased the model reconstruction and analysis to increase the accuracy and prediction power. However, the development of these multi-disciplinary methodological frameworks mainly occurs independently, which limits the concatenation of biological knowledge from different domains. Hence, we have reviewed the potential of integrating multi-disciplinary tools and strategies from various fields, such as synthetic biology, CBM, omics, and ML, to explore the biochemical phenomenon beyond the conventional biological dogma. How the integrative knowledge of these intersected domains has improved bioengineering and biomedical applications has also been highlighted. We categorically explained the conventional genome-scale metabolic model (GEM) reconstruction tools and their improvement strategies through ML paradigms. Further, the crucial role of ML and DL in omics data restructuring for GEM development has also been briefly discussed. Finally, the case-study-based assessment of the state-of-the-art method for improving biomedical and metabolic engineering strategies has been elaborated. Therefore, this review demonstrates how integrating experimental and in silico strategies can help map the ever-expanding knowledge of biological systems driven by condition-specific cellular information. This multiview approach will elevate the application of ML-based CBM in the biomedical and bioengineering fields for the betterment of society and the environment.
Collapse
Affiliation(s)
- Pritam Kundu
- School School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Satyajit Beura
- Department of Bioscience and Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Suman Mondal
- P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Amit Kumar Das
- Department of Bioscience and Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Amit Ghosh
- School School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India; P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
3
|
Liu Z, Waters J, Rui B. Metabolomics as a promising tool for improving understanding of multiple sclerosis: A review of recent advances. Biomed J 2022; 45:594-606. [PMID: 35042018 PMCID: PMC9486246 DOI: 10.1016/j.bj.2022.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 12/29/2021] [Accepted: 01/10/2022] [Indexed: 12/23/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system that usually affects young adults. The development of MS is closely related to the changes in the metabolome. Metabolomics studies have been performed using biofluids or tissue samples from rodent models and human patients to reveal metabolic alterations associated with MS progression. This review aims to provide an overview of the applications of metabolomics that for the investigations of the perturbed metabolic pathways in MS and to reveal the potential of metabolomics in personalizing treatments. In conclusion, informative variations of metabolites can be potential biomarkers in advancing our understanding of MS pathogenesis for MS diagnosis, predicting the progression of the disease, and estimating drug effects. Metabolomics will be a promising technique for improving clinical care in MS.
Collapse
Affiliation(s)
- Zhicheng Liu
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs School of Pharmacy, Anhui Medical University, Hefei, China.
| | - Jeffrey Waters
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Bin Rui
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA.
| |
Collapse
|
4
|
Liu Z, Zhang Z, Liang S, Chen Z, Xie X, Shen T. CeCaFLUX: the first web server for standardized and visual instationary 13C metabolic flux analysis. Bioinformatics 2022; 38:3481-3483. [PMID: 35595250 DOI: 10.1093/bioinformatics/btac341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 04/08/2022] [Accepted: 05/16/2022] [Indexed: 11/12/2022] Open
Abstract
SUMMARY The number of instationary 13C-metabolic flux (INST-MFA) studies grows every year, making it more important than ever to ensure the clarity, standardization and reproducibility of each study. We proposed CeCaFLUX, the first user-friendly web server that derives metabolic flux distribution from instationary 13C-labeled data. Flux optimization and statistical analysis are achieved through an evolutionary optimization in a parallel manner. It can visualize the flux optimizing process in real time and the ultimate flux outcome. It will also function as a database to enhance the consistency and to facilitate sharing of flux studies. AVAILABILITY AND IMPLEMENTATION CeCaFLUX is freely available at https://www.cecaflux.net, the source code can be downloaded at https://github.com/zhzhd82/CeCaFLUX. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Zhentao Liu
- Key Laboratory of Information and Computing Science Guizhou Province, Guizhou Normal University, Guiyang, Guizhou, China.,College of Computer Science and Technology, Guizhou University, Guiyang, Guizhou, China
| | - Zhengdong Zhang
- Key Laboratory of Information and Computing Science Guizhou Province, Guizhou Normal University, Guiyang, Guizhou, China.,College of Mathematics and Information Science, Guiyang University, Guiyang, Guizhou, China
| | - Sheng Liang
- College of Mathematics and Information Science, Guiyang University, Guiyang, Guizhou, China
| | - Zhen Chen
- School of Mathematical Science, Guizhou Normal University, Guiyang, Guizhou, China
| | - Xiaoyao Xie
- Key Laboratory of Information and Computing Science Guizhou Province, Guizhou Normal University, Guiyang, Guizhou, China.,College of Computer Science and Technology, Guizhou University, Guiyang, Guizhou, China
| | - Tie Shen
- Key Laboratory of Information and Computing Science Guizhou Province, Guizhou Normal University, Guiyang, Guizhou, China
| |
Collapse
|
5
|
Emwas AH, Szczepski K, Al-Younis I, Lachowicz JI, Jaremko M. Fluxomics - New Metabolomics Approaches to Monitor Metabolic Pathways. Front Pharmacol 2022; 13:805782. [PMID: 35387341 PMCID: PMC8977530 DOI: 10.3389/fphar.2022.805782] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/24/2022] [Indexed: 12/18/2022] Open
Abstract
Fluxomics is an innovative -omics research field that measures the rates of all intracellular fluxes in the central metabolism of biological systems. Fluxomics gathers data from multiple different -omics fields, portraying the whole picture of molecular interactions. Recently, fluxomics has become one of the most relevant approaches to investigate metabolic phenotypes. Metabolic flux using 13C-labeled molecules is increasingly used to monitor metabolic pathways, to probe the corresponding gene-RNA and protein-metabolite interaction networks in actual time. Thus, fluxomics reveals the functioning of multi-molecular metabolic pathways and is increasingly applied in biotechnology and pharmacology. Here, we describe the main fluxomics approaches and experimental platforms. Moreover, we summarize recent fluxomic results in different biological systems.
Collapse
Affiliation(s)
- Abdul-Hamid Emwas
- King Abdullah University of Science and Technology, Core Labs, Thuwal, Saudi Arabia
| | - Kacper Szczepski
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Inas Al-Younis
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences & Engineering Division (BESE), Thuwal, Saudi Arabia
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, Monserrato, Italy
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
6
|
Khaleghi MK, Savizi ISP, Lewis NE, Shojaosadati SA. Synergisms of machine learning and constraint-based modeling of metabolism for analysis and optimization of fermentation parameters. Biotechnol J 2021; 16:e2100212. [PMID: 34390201 DOI: 10.1002/biot.202100212] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/06/2022]
Abstract
Recent noteworthy advances in the development of high-performing microbial and mammalian strains have enabled the sustainable production of bio-economically valuable substances such as bio-compounds, biofuels, and biopharmaceuticals. However, to obtain an industrially viable mass-production scheme, much time and effort are required. The robust and rational design of fermentation processes requires analysis and optimization of different extracellular conditions and medium components, which have a massive effect on growth and productivity. In this regard, knowledge- and data-driven modeling methods have received much attention. Constraint-based modeling (CBM) is a knowledge-driven mathematical approach that has been widely used in fermentation analysis and optimization due to its capabilities of predicting the cellular phenotype from genotype through high-throughput means. On the other hand, machine learning (ML) is a data-driven statistical method that identifies the data patterns within sophisticated biological systems and processes, where there is inadequate knowledge to represent underlying mechanisms. Furthermore, ML models are becoming a viable complement to constraint-based models in a reciprocal manner when one is used as a pre-step of another. As a result, more predictable model is produced. This review highlights the applications of CBM and ML independently and the combination of these two approaches for analyzing and optimizing fermentation parameters. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mohammad Karim Khaleghi
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Iman Shahidi Pour Savizi
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Nathan E Lewis
- Department of Bioengineering, University of California, San Diego, USA.,Department of Pediatrics, University of California, San Diego, USA
| | - Seyed Abbas Shojaosadati
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
7
|
Roth YD, Lian Z, Pochiraju S, Shaikh B, Karr JR. Datanator: an integrated database of molecular data for quantitatively modeling cellular behavior. Nucleic Acids Res 2021; 49:D516-D522. [PMID: 33174603 PMCID: PMC7779073 DOI: 10.1093/nar/gkaa1008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/12/2020] [Accepted: 10/21/2020] [Indexed: 12/23/2022] Open
Abstract
Integrative research about multiple biochemical subsystems has significant potential to help advance biology, bioengineering and medicine. However, it is difficult to obtain the diverse data needed for integrative research. To facilitate biochemical research, we developed Datanator (https://datanator.info), an integrated database and set of tools for finding clouds of multiple types of molecular data about specific molecules and reactions in specific organisms and environments, as well as data about chemically-similar molecules and reactions in phylogenetically-similar organisms in similar environments. Currently, Datanator includes metabolite concentrations, RNA modifications and half-lives, protein abundances and modifications, and reaction rate constants about a broad range of organisms. Going forward, we aim to launch a community initiative to curate additional data. Datanator also provides tools for filtering, visualizing and exporting these data clouds. We believe that Datanator can facilitate a wide range of research from integrative mechanistic models, such as whole-cell models, to comparative data-driven analyses of multiple organisms.
Collapse
Affiliation(s)
- Yosef D Roth
- Icahn Institute for Data Science and Genomic Technology and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1255 5th Avenue, Suite C2, New York, NY 10029, USA
| | - Zhouyang Lian
- Icahn Institute for Data Science and Genomic Technology and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1255 5th Avenue, Suite C2, New York, NY 10029, USA
| | - Saahith Pochiraju
- Icahn Institute for Data Science and Genomic Technology and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1255 5th Avenue, Suite C2, New York, NY 10029, USA
| | - Bilal Shaikh
- Icahn Institute for Data Science and Genomic Technology and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1255 5th Avenue, Suite C2, New York, NY 10029, USA
| | - Jonathan R Karr
- Icahn Institute for Data Science and Genomic Technology and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1255 5th Avenue, Suite C2, New York, NY 10029, USA
| |
Collapse
|
8
|
Rivas-Astroza M, Conejeros R. Metabolic flux configuration determination using information entropy. PLoS One 2020; 15:e0243067. [PMID: 33275628 PMCID: PMC7717585 DOI: 10.1371/journal.pone.0243067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 11/14/2020] [Indexed: 11/20/2022] Open
Abstract
Constraint-based models use steady-state mass balances to define a solution space of flux configurations, which can be narrowed down by measuring as many fluxes as possible. Due to loops and redundant pathways, this process typically yields multiple alternative solutions. To address this ambiguity, flux sampling can estimate the probability distribution of each flux, or a flux configuration can be singled out by further minimizing the sum of fluxes according to the assumption that cellular metabolism favors states where enzyme-related costs are economized. However, flux sampling is susceptible to artifacts introduced by thermodynamically infeasible cycles and is it not clear if the economy of fluxes assumption (EFA) is universally valid. Here, we formulated a constraint-based approach, MaxEnt, based on the principle of maximum entropy, which in this context states that if more than one flux configuration is consistent with a set of experimentally measured fluxes, then the one with the minimum amount of unwarranted assumptions corresponds to the best estimation of the non-observed fluxes. We compared MaxEnt predictions to Escherichia coli and Saccharomyces cerevisiae publicly available flux data. We found that the mean square error (MSE) between experimental and predicted fluxes by MaxEnt and EFA-based methods are three orders of magnitude lower than the median of 1,350,000 MSE values obtained using flux sampling. However, only MaxEnt and flux sampling correctly predicted flux through E. coli’s glyoxylate cycle, whereas EFA-based methods, in general, predict no flux cycles. We also tested MaxEnt predictions at increasing levels of overflow metabolism. We found that MaxEnt accuracy is not affected by overflow metabolism levels, whereas the EFA-based methods show a decreasing performance. These results suggest that MaxEnt is less sensitive than flux sampling to artifacts introduced by thermodynamically infeasible cycles and that its predictions are less susceptible to overfitting than EFA-based methods.
Collapse
Affiliation(s)
- Marcelo Rivas-Astroza
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- * E-mail:
| | - Raúl Conejeros
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
9
|
Blanco-Míguez A, Fdez-Riverola F, Sánchez B, Lourenço A. Resources and tools for the high-throughput, multi-omic study of intestinal microbiota. Brief Bioinform 2020; 20:1032-1056. [PMID: 29186315 DOI: 10.1093/bib/bbx156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/23/2017] [Indexed: 12/18/2022] Open
Abstract
The human gut microbiome impacts several aspects of human health and disease, including digestion, drug metabolism and the propensity to develop various inflammatory, autoimmune and metabolic diseases. Many of the molecular processes that play a role in the activity and dynamics of the microbiota go beyond species and genic composition and thus, their understanding requires advanced bioinformatics support. This article aims to provide an up-to-date view of the resources and software tools that are being developed and used in human gut microbiome research, in particular data integration and systems-level analysis efforts. These efforts demonstrate the power of standardized and reproducible computational workflows for integrating and analysing varied omics data and gaining deeper insights into microbe community structure and function as well as host-microbe interactions.
Collapse
Affiliation(s)
| | | | | | - Anália Lourenço
- Dpto. de Informática - Universidade de Vigo, ESEI - Escuela Superior de Ingeniería Informática, Edificio politécnico, Campus Universitario As Lagoas s/n, 32004 Ourense, Spain
| |
Collapse
|
10
|
Beyß M, Azzouzi S, Weitzel M, Wiechert W, Nöh K. The Design of FluxML: A Universal Modeling Language for 13C Metabolic Flux Analysis. Front Microbiol 2019; 10:1022. [PMID: 31178829 PMCID: PMC6543931 DOI: 10.3389/fmicb.2019.01022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 04/24/2019] [Indexed: 12/16/2022] Open
Abstract
13C metabolic flux analysis (MFA) is the method of choice when a detailed inference of intracellular metabolic fluxes in living organisms under metabolic quasi-steady state conditions is desired. Being continuously developed since two decades, the technology made major contributions to the quantitative characterization of organisms in all fields of biotechnology and health-related research. 13C MFA, however, stands out from other "-omics sciences," in that it requires not only experimental-analytical data, but also mathematical models and a computational toolset to infer the quantities of interest, i.e., the metabolic fluxes. At present, these models cannot be conveniently exchanged between different labs. Here, we present the implementation-independent model description language FluxML for specifying 13C MFA models. The core of FluxML captures the metabolic reaction network together with atom mappings, constraints on the model parameters, and the wealth of data configurations. In particular, we describe the governing design processes that shaped the FluxML language. We demonstrate the utility of FluxML to represent many contemporary experimental-analytical requirements in the field of 13C MFA. The major aim of FluxML is to offer a sound, open, and future-proof language to unambiguously express and conserve all the necessary information for model re-use, exchange, and comparison. Along with FluxML, several powerful computational tools are supplied for easy handling, but also to maintain a maximum of flexibility. Altogether, the FluxML collection is an "all-around carefree package" for 13C MFA modelers. We believe that FluxML improves scientific productivity as well as transparency and therewith contributes to the efficiency and reproducibility of computational modeling efforts in the field of 13C MFA.
Collapse
Affiliation(s)
- Martin Beyß
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Salah Azzouzi
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Michael Weitzel
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Wolfgang Wiechert
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Computational Systems Biotechnology (AVT.CSB), RWTH Aachen University, Aachen, Germany
| | - Katharina Nöh
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
11
|
Presnell KV, Alper HS. Systems Metabolic Engineering Meets Machine Learning: A New Era for Data-Driven Metabolic Engineering. Biotechnol J 2019; 14:e1800416. [PMID: 30927499 DOI: 10.1002/biot.201800416] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/20/2019] [Indexed: 12/30/2022]
Abstract
The recent increase in high-throughput capacity of 'omics datasets combined with advances and interest in machine learning (ML) have created great opportunities for systems metabolic engineering. In this regard, data-driven modeling methods have become increasingly valuable to metabolic strain design. In this review, the nature of 'omics is discussed and a broad introduction to the ML algorithms combining these datasets into predictive models of metabolism and metabolic rewiring is provided. Next, this review highlights recent work in the literature that utilizes such data-driven methods to inform various metabolic engineering efforts for different classes of application including product maximization, understanding and profiling phenotypes, de novo metabolic pathway design, and creation of robust system-scale models for biotechnology. Overall, this review aims to highlight the potential and promise of using ML algorithms with metabolic engineering and systems biology related datasets.
Collapse
Affiliation(s)
- Kristin V Presnell
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, 100 E 24 St., Austin, TX, 78712, USA
| |
Collapse
|
12
|
Oyetunde T, Liu D, Martin HG, Tang YJ. Machine learning framework for assessment of microbial factory performance. PLoS One 2019; 14:e0210558. [PMID: 30645629 PMCID: PMC6333410 DOI: 10.1371/journal.pone.0210558] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 12/27/2018] [Indexed: 01/01/2023] Open
Abstract
Metabolic models can estimate intrinsic product yields for microbial factories, but such frameworks struggle to predict cell performance (including product titer or rate) under suboptimal metabolism and complex bioprocess conditions. On the other hand, machine learning, complementary to metabolic modeling necessitates large amounts of data. Building such a database for metabolic engineering designs requires significant manpower and is prone to human errors and bias. We propose an approach to integrate data-driven methods with genome scale metabolic model for assessment of microbial bio-production (yield, titer and rate). Using engineered E. coli as an example, we manually extracted and curated a data set comprising about 1200 experimentally realized cell factories from ~100 papers. We furthermore augmented the key design features (e.g., genetic modifications and bioprocess variables) extracted from literature with additional features derived from running the genome-scale metabolic model iML1515 simulations with constraints that match the experimental data. Then, data augmentation and ensemble learning (e.g., support vector machines, gradient boosted trees, and neural networks in a stacked regressor model) are employed to alleviate the challenges of sparse, non-standardized, and incomplete data sets, while multiple correspondence analysis/principal component analysis are used to rank influential factors on bio-production. The hybrid framework demonstrates a reasonably high cross-validation accuracy for prediction of E.coli factory performance metrics under presumed bioprocess and pathway conditions (Pearson correlation coefficients between 0.8 and 0.93 on new data not seen by the model).
Collapse
Affiliation(s)
- Tolutola Oyetunde
- Department of Energy, Environmental and Chemical Engineering, Washington University, Saint Louis, Missouri, United States of America
| | - Di Liu
- Department of Energy, Environmental and Chemical Engineering, Washington University, Saint Louis, Missouri, United States of America
| | - Hector Garcia Martin
- DOE Joint BioEnergy Institute, Emeryville, California, United States of America
- DOE Agile BioFoundry, Emeryville, California, United States of America
- Biological Systems and Engineering Division, Lawrence Berkeley National Lab, Berkeley, California, United States of America
- BCAM, Basque Center for Applied Mathematics, Bilbao, Spain
| | - Yinjie J. Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University, Saint Louis, Missouri, United States of America
| |
Collapse
|
13
|
De Martino D, Mc Andersson A, Bergmiller T, Guet CC, Tkačik G. Statistical mechanics for metabolic networks during steady state growth. Nat Commun 2018; 9:2988. [PMID: 30061556 PMCID: PMC6065372 DOI: 10.1038/s41467-018-05417-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 06/29/2018] [Indexed: 11/09/2022] Open
Abstract
Which properties of metabolic networks can be derived solely from stoichiometry? Predictive results have been obtained by flux balance analysis (FBA), by postulating that cells set metabolic fluxes to maximize growth rate. Here we consider a generalization of FBA to single-cell level using maximum entropy modeling, which we extend and test experimentally. Specifically, we define for Escherichia coli metabolism a flux distribution that yields the experimental growth rate: the model, containing FBA as a limit, provides a better match to measured fluxes and it makes a wide range of predictions: on flux variability, regulation, and correlations; on the relative importance of stoichiometry vs. optimization; on scaling relations for growth rate distributions. We validate the latter here with single-cell data at different sub-inhibitory antibiotic concentrations. The model quantifies growth optimization as emerging from the interplay of competitive dynamics in the population and regulation of metabolism at the level of single cells.
Collapse
Affiliation(s)
- Daniele De Martino
- Institute of Science and Technology Austria, Am Campus 1, A-3400, Klosterneuburg, Austria.
| | - Anna Mc Andersson
- Institute of Science and Technology Austria, Am Campus 1, A-3400, Klosterneuburg, Austria
| | - Tobias Bergmiller
- Institute of Science and Technology Austria, Am Campus 1, A-3400, Klosterneuburg, Austria
| | - Călin C Guet
- Institute of Science and Technology Austria, Am Campus 1, A-3400, Klosterneuburg, Austria
| | - Gašper Tkačik
- Institute of Science and Technology Austria, Am Campus 1, A-3400, Klosterneuburg, Austria
| |
Collapse
|
14
|
Oyetunde T, Bao FS, Chen JW, Martin HG, Tang YJ. Leveraging knowledge engineering and machine learning for microbial bio-manufacturing. Biotechnol Adv 2018; 36:1308-1315. [DOI: 10.1016/j.biotechadv.2018.04.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/27/2018] [Accepted: 04/26/2018] [Indexed: 12/21/2022]
|
15
|
De Martino D. Maximum entropy modeling of metabolic networks by constraining growth-rate moments predicts coexistence of phenotypes. Phys Rev E 2018; 96:060401. [PMID: 29347381 DOI: 10.1103/physreve.96.060401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 11/07/2022]
Abstract
In this work maximum entropy distributions in the space of steady states of metabolic networks are considered upon constraining the first and second moments of the growth rate. Coexistence of fast and slow phenotypes, with bimodal flux distributions, emerges upon considering control on the average growth (optimization) and its fluctuations (heterogeneity). This is applied to the carbon catabolic core of Escherichia coli where it quantifies the metabolic activity of slow growing phenotypes and it provides a quantitative map with metabolic fluxes, opening the possibility to detect coexistence from flux data. A preliminary analysis on data for E. coli cultures in standard conditions shows degeneracy for the inferred parameters that extend in the coexistence region.
Collapse
Affiliation(s)
- Daniele De Martino
- Institute of Science and Technology Austria, Am Campus 1, A-3400 Klosterneuburg, Austria
| |
Collapse
|
16
|
Long MR, Reed JL. Improving flux predictions by integrating data from multiple strains. Bioinformatics 2017; 33:893-900. [PMID: 27998937 DOI: 10.1093/bioinformatics/btw706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 11/08/2016] [Indexed: 11/15/2022] Open
Abstract
Motivation Incorporating experimental data into constraint-based models can improve the quality and accuracy of their metabolic flux predictions. Unfortunately, routinely and easily measured experimental data such as growth rates, extracellular fluxes, transcriptomics and even proteomics are not always sufficient to significantly improve metabolic flux predictions. Results We developed a new method (called REPPS) for incorporating experimental measurements of growth rates and extracellular fluxes from a set of perturbed reference strains (RSs) and a parental strain (PS) to substantially improve the predicted flux distribution of the parental strain. Using data from five single gene knockouts and the wild type strain, we decrease the mean squared error of predicted central metabolic fluxes by ∼47% compared to parsimonious flux balance analysis (pFBA). This decrease in error further improves flux predictions for new knockout strains. Furthermore, REPPS is less sensitive to the completeness of the metabolic network than pFBA. Availability and Implementation Code is available in the Supplementary data available at Bioinformatics online. Contact reed@engr.wisc.edu. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Matthew R Long
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Jennifer L Reed
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
17
|
Dai Z, Locasale JW. Understanding metabolism with flux analysis: From theory to application. Metab Eng 2017; 43:94-102. [PMID: 27667771 PMCID: PMC5362364 DOI: 10.1016/j.ymben.2016.09.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/06/2016] [Accepted: 09/19/2016] [Indexed: 12/27/2022]
Abstract
Quantitative and qualitative knowledge of metabolic rates (i.e. fluxes) over a metabolic network and in specific cellular compartments gives insights into the regulation of metabolism and helps to understand the contribution of metabolic alterations to pathology. In this review we introduce methodology to resolve metabolic fluxes from stable isotope labeling and relevant techniques in model development, model simplification, flux uncertainty analysis and experimental design that together is termed metabolic flux analysis. Finally we discuss applications using metabolic flux analysis to elucidate mechanisms pertinent to tumor cell metabolism. We hope that this review gives the readers a brief introduction of how flux analysis is conducted, how technical issues related to it are addressed, and how its application has contributed to our knowledge of tumor cell metabolism.
Collapse
Affiliation(s)
- Ziwei Dai
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
18
|
Jamialahmadi O, Motamedian E, Hashemi-Najafabadi S. BiKEGG: a COBRA toolbox extension for bridging the BiGG and KEGG databases. MOLECULAR BIOSYSTEMS 2017; 12:3459-3466. [PMID: 27714042 DOI: 10.1039/c6mb00532b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Development of an interface tool between the Biochemical, Genetic and Genomic (BiGG) and KEGG databases is necessary for simultaneous access to the features of both databases. For this purpose, we present the BiKEGG toolbox, an open source COBRA toolbox extension providing a set of functions to infer the reaction correspondences between the KEGG reaction identifiers and those in the BiGG knowledgebase using a combination of manual verification and computational methods. Inferred reaction correspondences using this approach are supported by evidence from the literature, which provides a higher number of reconciled reactions between these two databases compared to the MetaNetX and MetRxn databases. This set of equivalent reactions is then used to automatically superimpose the predicted fluxes using COBRA methods on classical KEGG pathway maps or to create a customized metabolic map based on the KEGG global metabolic pathway, and to find the corresponding reactions in BiGG based on the genome annotation of an organism in the KEGG database. Customized metabolic maps can be created for a set of pathways of interest, for the whole KEGG global map or exclusively for all pathways for which there exists at least one flux carrying reaction. This flexibility in visualization enables BiKEGG to indicate reaction directionality as well as to visualize the reaction fluxes for different static or dynamic conditions in an animated manner. BiKEGG allows the user to export (1) the output visualized metabolic maps to various standard image formats or save them as a video or animated GIF file, and (2) the equivalent reactions for an organism as an Excel spreadsheet.
Collapse
Affiliation(s)
- Oveis Jamialahmadi
- Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-114, Tehran, Iran.
| | - Ehsan Motamedian
- Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-114, Tehran, Iran.
| | - Sameereh Hashemi-Najafabadi
- Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-114, Tehran, Iran.
| |
Collapse
|
19
|
Chen X, Gao C, Guo L, Hu G, Luo Q, Liu J, Nielsen J, Chen J, Liu L. DCEO Biotechnology: Tools To Design, Construct, Evaluate, and Optimize the Metabolic Pathway for Biosynthesis of Chemicals. Chem Rev 2017; 118:4-72. [DOI: 10.1021/acs.chemrev.6b00804] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiulai Chen
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liang Guo
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guipeng Hu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qiuling Luo
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jia Liu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jens Nielsen
- Department
of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800 Lyngby, Denmark
| | - Jian Chen
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Department
of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
20
|
Guo W, Sheng J, Feng X. Synergizing 13C Metabolic Flux Analysis and Metabolic Engineering for Biochemical Production. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 162:265-299. [PMID: 28424826 DOI: 10.1007/10_2017_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Metabolic engineering of industrial microorganisms to produce chemicals, fuels, and drugs has attracted increasing interest as it provides an environment-friendly and renewable route that does not depend on depleting petroleum sources. However, the microbial metabolism is so complex that metabolic engineering efforts often have difficulty in achieving a satisfactory yield, titer, or productivity of the target chemical. To overcome this challenge, 13C Metabolic Flux Analysis (13C-MFA) has been developed to investigate rigorously the cell metabolism and quantify the carbon flux distribution in central metabolic pathways. In the past decade, 13C-MFA has been widely used in academic labs and the biotechnology industry to pinpoint the key issues related to microbial-based chemical production and to guide the development of the appropriate metabolic engineering strategies for improving the biochemical production. In this chapter we introduce the basics of 13C-MFA and illustrate how 13C-MFA has been applied to synergize with metabolic engineering to identify and tackle the rate-limiting steps in biochemical production.
Collapse
Affiliation(s)
- Weihua Guo
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Jiayuan Sheng
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Xueyang Feng
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| |
Collapse
|
21
|
Khodayari A, Maranas CD. A genome-scale Escherichia coli kinetic metabolic model k-ecoli457 satisfying flux data for multiple mutant strains. Nat Commun 2016; 7:13806. [PMID: 27996047 PMCID: PMC5187423 DOI: 10.1038/ncomms13806] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 11/03/2016] [Indexed: 01/03/2023] Open
Abstract
Kinetic models of metabolism at a genome scale that faithfully recapitulate the effect of multiple genetic interventions would be transformative in our ability to reliably design novel overproducing microbial strains. Here, we introduce k-ecoli457, a genome-scale kinetic model of Escherichia coli metabolism that satisfies fluxomic data for wild-type and 25 mutant strains under different substrates and growth conditions. The k-ecoli457 model contains 457 model reactions, 337 metabolites and 295 substrate-level regulatory interactions. Parameterization is carried out using a genetic algorithm by simultaneously imposing all available fluxomic data (about 30 measured fluxes per mutant). The Pearson correlation coefficient between experimental data and predicted product yields for 320 engineered strains spanning 24 product metabolites is 0.84. This is substantially higher than that using flux balance analysis, minimization of metabolic adjustment or maximization of product yield exhibiting systematic errors with correlation coefficients of, respectively, 0.18, 0.37 and 0.47 (k-ecoli457 is available for download at http://www.maranasgroup.com).
Collapse
Affiliation(s)
- Ali Khodayari
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Costas D. Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
22
|
He L, Wu SG, Zhang M, Chen Y, Tang YJ. WUFlux: an open-source platform for 13C metabolic flux analysis of bacterial metabolism. BMC Bioinformatics 2016; 17:444. [PMID: 27814681 PMCID: PMC5096001 DOI: 10.1186/s12859-016-1314-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 10/26/2016] [Indexed: 12/21/2022] Open
Abstract
Background Flux analyses, including flux balance analysis (FBA) and 13C-metabolic flux analysis (13C-MFA), offer direct insights into cell metabolism, and have been widely used to characterize model and non-model microbial species. Nonetheless, constructing the 13C-MFA model and performing flux calculation are demanding for new learners, because they require knowledge of metabolic networks, carbon transitions, and computer programming. To facilitate and standardize the 13C-MFA modeling work, we set out to publish a user-friendly and programming-free platform (WUFlux) for flux calculations in MATLAB®. Results We constructed an open-source platform for steady-state 13C-MFA. Using GUIDE (graphical user interface design environment) in MATLAB, we built a user interface that allows users to modify models based on their own experimental conditions. WUFlux is capable of directly correcting mass spectrum data of TBDMS (N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide)-derivatized proteinogenic amino acids by removing background noise. To simplify 13C-MFA of different prokaryotic species, the software provides several metabolic network templates, including those for chemoheterotrophic bacteria and mixotrophic cyanobacteria. Users can modify the network and constraints, and then analyze the microbial carbon and energy metabolisms of various carbon substrates (e.g., glucose, pyruvate/lactate, acetate, xylose, and glycerol). WUFlux also offers several ways of visualizing the flux results with respect to the constructed network. To validate our model’s applicability, we have compared and discussed the flux results obtained from WUFlux and other MFA software. We have also illustrated how model constraints of cofactor and ATP balances influence fluxome results. Conclusion Open-source software for 13C-MFA, WUFlux, with a user-friendly interface and easy-to-modify templates, is now available at http://www.13cmfa.org/or (http://tang.eece.wustl.edu/ToolDevelopment.htm). We will continue documenting curated models of non-model microbial species and improving WUFlux performance. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1314-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lian He
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, 63130, USA.
| | - Stephen G Wu
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, 63130, USA
| | - Muhan Zhang
- Department of Computer Science and Engineering, Washington University, St. Louis, MO, 63130, USA
| | - Yixin Chen
- Department of Computer Science and Engineering, Washington University, St. Louis, MO, 63130, USA
| | - Yinjie J Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, 63130, USA.
| |
Collapse
|
23
|
Wu SG, Wang Y, Jiang W, Oyetunde T, Yao R, Zhang X, Shimizu K, Tang YJ, Bao FS. Rapid Prediction of Bacterial Heterotrophic Fluxomics Using Machine Learning and Constraint Programming. PLoS Comput Biol 2016; 12:e1004838. [PMID: 27092947 PMCID: PMC4836714 DOI: 10.1371/journal.pcbi.1004838] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 03/01/2016] [Indexed: 12/17/2022] Open
Abstract
13C metabolic flux analysis (13C-MFA) has been widely used to measure in vivo enzyme reaction rates (i.e., metabolic flux) in microorganisms. Mining the relationship between environmental and genetic factors and metabolic fluxes hidden in existing fluxomic data will lead to predictive models that can significantly accelerate flux quantification. In this paper, we present a web-based platform MFlux (http://mflux.org) that predicts the bacterial central metabolism via machine learning, leveraging data from approximately 100 13C-MFA papers on heterotrophic bacterial metabolisms. Three machine learning methods, namely Support Vector Machine (SVM), k-Nearest Neighbors (k-NN), and Decision Tree, were employed to study the sophisticated relationship between influential factors and metabolic fluxes. We performed a grid search of the best parameter set for each algorithm and verified their performance through 10-fold cross validations. SVM yields the highest accuracy among all three algorithms. Further, we employed quadratic programming to adjust flux profiles to satisfy stoichiometric constraints. Multiple case studies have shown that MFlux can reasonably predict fluxomes as a function of bacterial species, substrate types, growth rate, oxygen conditions, and cultivation methods. Due to the interest of studying model organism under particular carbon sources, bias of fluxome in the dataset may limit the applicability of machine learning models. This problem can be resolved after more papers on 13C-MFA are published for non-model species.
Collapse
Affiliation(s)
- Stephen Gang Wu
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Yuxuan Wang
- Department of Computer Science and Engineering, Ohio State University, Columbus, Ohio, United States of America
| | - Wu Jiang
- Boxed Wholesale, Edison, New Jersey, United States of America
| | - Tolutola Oyetunde
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Ruilian Yao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, People’s Republic of China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, People’s Republic of China
| | - Kazuyuki Shimizu
- Institute of Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Yinjie J. Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
- * E-mail: (YJT); (FSB)
| | - Forrest Sheng Bao
- Department of Electrical and Computer Engineering, University of Akron, Akron, Ohio, United States of America
- * E-mail: (YJT); (FSB)
| |
Collapse
|
24
|
13C-Metabolic Flux Analysis: An Accurate Approach to Demystify Microbial Metabolism for Biochemical Production. Bioengineering (Basel) 2015; 3:bioengineering3010003. [PMID: 28952565 PMCID: PMC5597161 DOI: 10.3390/bioengineering3010003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/10/2015] [Accepted: 12/18/2015] [Indexed: 12/15/2022] Open
Abstract
Metabolic engineering of various industrial microorganisms to produce chemicals, fuels, and drugs has raised interest since it is environmentally friendly, sustainable, and independent of nonrenewable resources. However, microbial metabolism is so complex that only a few metabolic engineering efforts have been able to achieve a satisfactory yield, titer or productivity of the target chemicals for industrial commercialization. In order to overcome this challenge, 13C Metabolic Flux Analysis (13C-MFA) has been continuously developed and widely applied to rigorously investigate cell metabolism and quantify the carbon flux distribution in central metabolic pathways. In the past decade, many 13C-MFA studies have been performed in academic labs and biotechnology industries to pinpoint key issues related to microbe-based chemical production. Insightful information about the metabolic rewiring has been provided to guide the development of the appropriate metabolic engineering strategies for improving the biochemical production. In this review, we will introduce the basics of 13C-MFA and illustrate how 13C-MFA has been applied via integration with metabolic engineering to identify and tackle the rate-limiting steps in biochemical production for various host microorganisms
Collapse
|
25
|
Misra BB, van der Hooft JJJ. Updates in metabolomics tools and resources: 2014-2015. Electrophoresis 2015; 37:86-110. [DOI: 10.1002/elps.201500417] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 10/04/2015] [Accepted: 10/05/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Biswapriya B. Misra
- Department of Biology, Genetics Institute; University of Florida; Gainesville FL USA
| | | |
Collapse
|
26
|
Hollinshead WD, Henson WR, Abernathy M, Moon TS, Tang YJ. Rapid metabolic analysis of
Rhodococcus opacus
PD630 via parallel
13
C‐metabolite fingerprinting. Biotechnol Bioeng 2015; 113:91-100. [DOI: 10.1002/bit.25702] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 07/04/2015] [Accepted: 07/07/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Whitney D. Hollinshead
- Department of Energy, Environmental and Chemical EngineeringWashington University in St. LouisSt. LouisMissouri63130
| | - William R. Henson
- Department of Energy, Environmental and Chemical EngineeringWashington University in St. LouisSt. LouisMissouri63130
| | - Mary Abernathy
- Department of Energy, Environmental and Chemical EngineeringWashington University in St. LouisSt. LouisMissouri63130
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical EngineeringWashington University in St. LouisSt. LouisMissouri63130
| | - Yinjie J. Tang
- Department of Energy, Environmental and Chemical EngineeringWashington University in St. LouisSt. LouisMissouri63130
| |
Collapse
|
27
|
Antoniewicz MR. Parallel labeling experiments for pathway elucidation and (13)C metabolic flux analysis. Curr Opin Biotechnol 2015; 36:91-7. [PMID: 26322734 DOI: 10.1016/j.copbio.2015.08.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/07/2015] [Accepted: 08/09/2015] [Indexed: 12/21/2022]
Abstract
Metabolic pathway models provide the foundation for quantitative studies of cellular physiology through the measurement of intracellular metabolic fluxes. For model organisms metabolic models are well established, with many manually curated genome-scale model reconstructions, gene knockout studies and stable-isotope tracing studies. However, for non-model organisms a similar level of knowledge is often lacking. Compartmentation of cellular metabolism in eukaryotic systems also presents significant challenges for quantitative (13)C-metabolic flux analysis ((13)C-MFA). Recently, innovative (13)C-MFA approaches have been developed based on parallel labeling experiments, the use of multiple isotopic tracers and integrated data analysis, that allow more rigorous validation of pathway models and improved quantification of metabolic fluxes. Applications of these approaches open new research directions in metabolic engineering, biotechnology and medicine.
Collapse
Affiliation(s)
- Maciek R Antoniewicz
- Department of Chemical and Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
28
|
Antoniewicz MR. Methods and advances in metabolic flux analysis: a mini-review. J Ind Microbiol Biotechnol 2015; 42:317-25. [PMID: 25613286 DOI: 10.1007/s10295-015-1585-x] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/09/2015] [Indexed: 01/12/2023]
Abstract
Metabolic flux analysis (MFA) is one of the pillars of metabolic engineering. Over the past three decades, it has been widely used to quantify intracellular metabolic fluxes in both native (wild type) and engineered biological systems. Through MFA, changes in metabolic pathway fluxes are quantified that result from genetic and/or environmental interventions. This information, in turn, provides insights into the regulation of metabolic pathways and may suggest new targets for further metabolic engineering of the strains. In this mini-review, we discuss and classify the various methods of MFA that have been developed, which include stoichiometric MFA, (13)C metabolic flux analysis, isotopic non-stationary (13)C metabolic flux analysis, dynamic metabolic flux analysis, and (13)C dynamic metabolic flux analysis. For each method, we discuss key advantages and limitations and conclude by highlighting important recent advances in flux analysis approaches.
Collapse
Affiliation(s)
- Maciek R Antoniewicz
- Department of Chemical and Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, 150 Academy St, Newark, DE, 19716, USA,
| |
Collapse
|