1
|
Shukla S, Bhattacharya A, Sehrawat P, Agarwal P, Shobhawat R, Malik N, Duraisamy K, Rangan NS, Hosur RV, Kumar A. Disorder in CENP-A Cse4 tail-chaperone interaction facilitates binding with Ame1/Okp1 at the kinetochore. Structure 2024; 32:690-705.e6. [PMID: 38565139 DOI: 10.1016/j.str.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 11/16/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
The centromere is epigenetically marked by a histone H3 variant-CENP-A. The budding yeast CENP-A called Cse4, consists of an unusually long N-terminus that is known to be involved in kinetochore assembly. Its disordered chaperone, Scm3 is responsible for the centromeric deposition of Cse4 as well as in the maintenance of a segregation-competent kinetochore. In this study, we show that the Cse4 N-terminus is intrinsically disordered and interacts with Scm3 at multiple sites, and the complex does not gain any substantial structure. Additionally, the complex forms a synergistic association with an essential inner kinetochore component (Ctf19-Mcm21-Okp1-Ame1), and a model has been suggested to this effect. Thus, our study provides mechanistic insights into the Cse4 N-terminus-chaperone interaction and also illustrates how intrinsically disordered proteins mediate assembly of complex multiprotein networks, in general.
Collapse
Affiliation(s)
- Shivangi Shukla
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Mumbai, India
| | | | - Parveen Sehrawat
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Prakhar Agarwal
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Rahul Shobhawat
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Nikita Malik
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Kalaiyarasi Duraisamy
- Centre for Advanced Protein Studies, Syngene International Limited, Bangalore, India
| | | | - Ramakrishna V Hosur
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Ashutosh Kumar
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Mumbai, India.
| |
Collapse
|
2
|
Popchock AR, Larson JD, Dubrulle J, Asbury CL, Biggins S. Direct observation of coordinated assembly of individual native centromeric nucleosomes. EMBO J 2023; 42:e114534. [PMID: 37469281 PMCID: PMC10476280 DOI: 10.15252/embj.2023114534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023] Open
Abstract
Eukaryotic chromosome segregation requires the kinetochore, a megadalton-sized machine that forms on specialized centromeric chromatin containing CENP-A, a histone H3 variant. CENP-A deposition requires a chaperone protein HJURP that targets it to the centromere, but it has remained unclear whether HJURP has additional functions beyond CENP-A targeting and why high AT DNA content, which disfavors nucleosome assembly, is widely conserved at centromeres. To overcome the difficulties of studying nucleosome formation in vivo, we developed a microscopy assay that enables direct observation of de novo centromeric nucleosome recruitment and maintenance with single molecule resolution. Using this assay, we discover that CENP-A can arrive at centromeres without its dedicated centromere-specific chaperone HJURP, but stable incorporation depends on HJURP and additional DNA-binding proteins of the inner kinetochore. We also show that homopolymer AT runs in the yeast centromeres are essential for efficient CENP-A deposition. Together, our findings reveal requirements for stable nucleosome formation and provide a foundation for further studies of the assembly and dynamics of native kinetochore complexes.
Collapse
Affiliation(s)
- Andrew R Popchock
- Basic Sciences Division, Howard Hughes Medical InstituteFred Hutchinson Cancer CenterSeattleWAUSA
| | - Joshua D Larson
- Department of Physiology and BiophysicsUniversity of WashingtonSeattleWAUSA
| | | | - Charles L Asbury
- Department of Physiology and BiophysicsUniversity of WashingtonSeattleWAUSA
| | - Sue Biggins
- Basic Sciences Division, Howard Hughes Medical InstituteFred Hutchinson Cancer CenterSeattleWAUSA
| |
Collapse
|
3
|
Popchock AR, Larson JD, Dubrulle J, Asbury CL, Biggins S. Direct observation of coordinated assembly of individual native centromeric nucleosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524981. [PMID: 36711558 PMCID: PMC9882320 DOI: 10.1101/2023.01.20.524981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Eukaryotic chromosome segregation requires the kinetochore, a megadalton-sized machine that forms on specialized centromeric chromatin containing CENP-A, a histone H3 variant. CENP-A deposition requires a chaperone protein HJURP that targets it to the centromere, but it has remained unclear whether HJURP has additional functions beyond CENP-A targeting and why high AT DNA content, which disfavors nucleosome assembly, is widely conserved at centromeres. To overcome the difficulties of studying nucleosome formation in vivo, we developed a microscopy assay that enables direct observation of de novo centromeric nucleosome recruitment and maintenance with single molecule resolution. Using this assay, we discover that CENP-A can arrive at centromeres without its dedicated centromere-specific chaperone HJURP, but stable incorporation depends on HJURP and additional DNA-binding proteins of the inner kinetochore. We also show that homopolymer AT runs in the yeast centromeres are essential for efficient CENP-A deposition. Together, our findings reveal requirements for stable nucleosome formation and provide a foundation for further studies of the assembly and dynamics of native kinetochore complexes.
Collapse
Affiliation(s)
- Andrew R. Popchock
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Joshua D. Larson
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Julien Dubrulle
- Shared Resources, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Charles L. Asbury
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Sue Biggins
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
4
|
The ATAD2/ANCCA homolog Yta7 cooperates with Scm3 HJURP to deposit Cse4 CENP-A at the centromere in yeast. Proc Natl Acad Sci U S A 2020; 117:5386-5393. [PMID: 32079723 DOI: 10.1073/pnas.1917814117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The AAA+ ATPase and bromodomain factor ATAD2/ANCCA is overexpressed in many types of cancer, but how it contributes to tumorigenesis is not understood. Here, we report that the Saccharomyces cerevisiae homolog Yta7ATAD2 is a deposition factor for the centromeric histone H3 variant Cse4CENP-A at the centromere in yeast. Yta7ATAD2 regulates the levels of centromeric Cse4CENP-A in that yta7∆ causes reduced Cse4CENP-A deposition, whereas YTA7 overexpression causes increased Cse4CENP-A deposition. Yta7ATAD2 coimmunoprecipitates with Cse4CENP-A and is associated with the centromere, arguing for a direct role of Yta7ATAD2 in Cse4CENP-A deposition. Furthermore, increasing centromeric Cse4CENP-A levels by YTA7 overexpression requires the activity of Scm3HJURP, the centromeric nucleosome assembly factor. Importantly, Yta7ATAD2 interacts in vivo with Scm3HJURP, indicating that Yta7ATAD2 is a cochaperone for Scm3HJURP The absence of Yta7 causes defects in growth and chromosome segregation with mutations in components of the inner kinetochore (CTF19/CCAN, Mif2CENP-C, Cbf1). Since Yta7ATAD2 is an AAA+ ATPase and potential hexameric unfoldase, our results suggest that it may unfold the Cse4CENP-A histone and hand it over to Scm3HJURP for subsequent deposition in the centromeric nucleosome. Furthermore, our findings suggest that ATAD2 overexpression may enhance malignant transformation in humans by misregulating centromeric CENP-A levels, thus leading to defects in kinetochore assembly and chromosome segregation.
Collapse
|
5
|
Malik N, Dantu SC, Shukla S, Kombrabail M, Ghosh SK, Krishnamoorthy G, Kumar A. Conformational flexibility of histone variant CENP-A Cse4 is regulated by histone H4: A mechanism to stabilize soluble Cse4. J Biol Chem 2018; 293:20273-20284. [PMID: 30381395 PMCID: PMC6311523 DOI: 10.1074/jbc.ra118.004141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/23/2018] [Indexed: 11/06/2022] Open
Abstract
The histone variant CENP-ACse4 is a core component of the specialized nucleosome at the centromere in budding yeast and is required for genomic integrity. Accordingly, the levels of Cse4 in cells are tightly regulated, primarily by ubiquitin-mediated proteolysis. However, structural transitions in Cse4 that regulate its centromeric localization and interaction with regulatory components are poorly understood. Using time-resolved fluorescence, NMR, and molecular dynamics simulations, we show here that soluble Cse4 can exist in a "closed" conformation, inaccessible to various regulatory components. We further determined that binding of its obligate partner, histone H4, alters the interdomain interaction within Cse4, enabling an "open" state that is susceptible to proteolysis. This dynamic model allows kinetochore formation only in the presence of H4, as the Cse4 N terminus, which is required for interaction with other centromeric components, is unavailable in the absence of H4. The specific requirement of H4 binding for the conformational regulation of Cse4 suggests a structure-based regulatory mechanism for Cse4 localization. Our data suggested a novel structural transition-based mechanism where conformational flexibility of the Cse4 N terminus can control Cse4 levels in the yeast cell and prevent Cse4 from interacting with kinetochore components at ectopic locations for formation of premature kinetochore assembly.
Collapse
Affiliation(s)
- Nikita Malik
- From the Departments of Biosciences and Bioengineering and
| | | | | | - Mamta Kombrabail
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | | | - Guruswamy Krishnamoorthy
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India; Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India and.
| | - Ashutosh Kumar
- From the Departments of Biosciences and Bioengineering and.
| |
Collapse
|
6
|
Abstract
Nucleosomes compact and organize genetic material on a structural level. However, they also alter local chromatin accessibility through changes in their position, through the incorporation of histone variants, and through a vast array of histone posttranslational modifications. The dynamic nature of chromatin requires histone chaperones to process, deposit, and evict histones in different tissues and at different times in the cell cycle. This review focuses on the molecular details of canonical and variant H3-H4 histone chaperone pathways that lead to histone deposition on DNA as they are currently understood. Emphasis is placed on the most established pathways beginning with the folding, posttranslational modification, and nuclear import of newly synthesized H3-H4 histones. Next, we review the deposition of replication-coupled H3.1-H4 in S-phase and replication-independent H3.3-H4 via alternative histone chaperone pathways. Highly specialized histone chaperones overseeing the deposition of histone variants are also briefly discussed.
Collapse
Affiliation(s)
- Prerna Grover
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada;
| | - Jonathon S Asa
- Department of Molecular Genetics, The University of Toronto, Toronto, Ontario M5G 0A4, Canada
| | - Eric I Campos
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada; .,Department of Molecular Genetics, The University of Toronto, Toronto, Ontario M5G 0A4, Canada
| |
Collapse
|
7
|
Hammond CM, Strømme CB, Huang H, Patel DJ, Groth A. Histone chaperone networks shaping chromatin function. Nat Rev Mol Cell Biol 2017; 18:141-158. [PMID: 28053344 DOI: 10.1038/nrm.2016.159] [Citation(s) in RCA: 353] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The association of histones with specific chaperone complexes is important for their folding, oligomerization, post-translational modification, nuclear import, stability, assembly and genomic localization. In this way, the chaperoning of soluble histones is a key determinant of histone availability and fate, which affects all chromosomal processes, including gene expression, chromosome segregation and genome replication and repair. Here, we review the distinct structural and functional properties of the expanding network of histone chaperones. We emphasize how chaperones cooperate in the histone chaperone network and via co-chaperone complexes to match histone supply with demand, thereby promoting proper nucleosome assembly and maintaining epigenetic information by recycling modified histones evicted from chromatin.
Collapse
Affiliation(s)
- Colin M Hammond
- Biotech Research and Innovation Centre (BRIC) and Centre for Epigenetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Caroline B Strømme
- Biotech Research and Innovation Centre (BRIC) and Centre for Epigenetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Hongda Huang
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Anja Groth
- Biotech Research and Innovation Centre (BRIC) and Centre for Epigenetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| |
Collapse
|
8
|
Histone H4 Facilitates the Proteolysis of the Budding Yeast CENP-ACse4 Centromeric Histone Variant. Genetics 2016; 205:113-124. [PMID: 27794026 DOI: 10.1534/genetics.116.194027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/26/2016] [Indexed: 12/24/2022] Open
Abstract
The incorporation of histone variants into nucleosomes can alter chromatin-based processes. CENP-A is the histone H3 variant found exclusively at centromeres that serves as an epigenetic mark for centromere identity and is required for kinetochore assembly. CENP-A mislocalization to ectopic sites appears to contribute to genomic instability, transcriptional misregulation, and tumorigenesis, so mechanisms exist to ensure its exclusive localization to centromeres. One conserved process is proteolysis, which is mediated by the Psh1 E3 ubiquitin ligase in Saccharomyces cerevisiae (budding yeast). To determine whether there are features of the CENP-A nucleosome that facilitate proteolysis, we performed a genetic screen to identify histone H4 residues that regulate CENP-ACse4 degradation. We found that H4-R36 is a key residue that promotes the interaction between CENP-ACse4 and Psh1 Consistent with this, CENP-ACse4 protein levels are stabilized in H4-R36A mutant cells and CENP-ACse4 is enriched in the euchromatin. We propose that the defects in CENP-ACse4 proteolysis may be related to changes in Psh1 localization, as Psh1 becomes enriched at some 3' intergenic regions in H4-R36A mutant cells. Together, these data reveal a key residue in histone H4 that is important for efficient CENP-ACse4 degradation, likely by facilitating the interaction between Psh1 and CENP-ACse4.
Collapse
|
9
|
Muthurajan U, Mattiroli F, Bergeron S, Zhou K, Gu Y, Chakravarthy S, Dyer P, Irving T, Luger K. In Vitro Chromatin Assembly: Strategies and Quality Control. Methods Enzymol 2016; 573:3-41. [PMID: 27372747 DOI: 10.1016/bs.mie.2016.01.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chromatin accessibility is modulated by structural transitions that provide timely access to the genetic and epigenetic information during many essential nuclear processes. These transitions are orchestrated by regulatory proteins that coordinate intricate structural modifications and signaling pathways. In vitro reconstituted chromatin samples from defined components are instrumental in defining the mechanistic details of such processes. The bottleneck to appropriate in vitro analysis is the production of high quality, and quality-controlled, chromatin substrates. In this chapter, we describe methods for in vitro chromatin reconstitution and quality control. We highlight the strengths and weaknesses of various approaches and emphasize quality control steps that ensure reconstitution of a bona fide homogenous chromatin preparation. This is essential for optimal reproducibility and reliability of ensuing experiments using chromatin substrates.
Collapse
Affiliation(s)
- U Muthurajan
- University of Colorado at Boulder, Boulder, CO, United States
| | - F Mattiroli
- University of Colorado at Boulder, Boulder, CO, United States
| | - S Bergeron
- University of Colorado at Boulder, Boulder, CO, United States
| | - K Zhou
- University of Colorado at Boulder, Boulder, CO, United States; Colorado State University, Fort Collins, CO, United States
| | - Y Gu
- University of Colorado at Boulder, Boulder, CO, United States; Colorado State University, Fort Collins, CO, United States
| | - S Chakravarthy
- Illinois Institute of Technology, Chicago, IL, United States
| | - P Dyer
- University of Colorado at Boulder, Boulder, CO, United States
| | - T Irving
- Illinois Institute of Technology, Chicago, IL, United States
| | - K Luger
- University of Colorado at Boulder, Boulder, CO, United States; Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, CO, United States; Institute for Genome Architecture and Function, Colorado State University, Fort Collins, CO, United States.
| |
Collapse
|
10
|
Westhorpe FG, Straight AF. The centromere: epigenetic control of chromosome segregation during mitosis. Cold Spring Harb Perspect Biol 2014; 7:a015818. [PMID: 25414369 DOI: 10.1101/cshperspect.a015818] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A fundamental challenge for the survival of all organisms is maintaining the integrity of the genome in all cells. Cells must therefore segregate their replicated genome equally during each cell division. Eukaryotic organisms package their genome into a number of physically distinct chromosomes, which replicate during S phase and condense during prophase of mitosis to form paired sister chromatids. During mitosis, cells form a physical connection between each sister chromatid and microtubules of the mitotic spindle, which segregate one copy of each chromatid to each new daughter cell. The centromere is the DNA locus on each chromosome that creates the site of this connection. In this review, we present a brief history of centromere research and discuss our current knowledge of centromere establishment, maintenance, composition, structure, and function in mitosis.
Collapse
Affiliation(s)
- Frederick G Westhorpe
- Department of Biochemistry, Stanford University Medical School, Stanford, California 94305
| | - Aaron F Straight
- Department of Biochemistry, Stanford University Medical School, Stanford, California 94305
| |
Collapse
|
11
|
Wisniewski J, Hajj B, Chen J, Mizuguchi G, Xiao H, Wei D, Dahan M, Wu C. Imaging the fate of histone Cse4 reveals de novo replacement in S phase and subsequent stable residence at centromeres. eLife 2014; 3:e02203. [PMID: 24844245 PMCID: PMC4067749 DOI: 10.7554/elife.02203] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The budding yeast centromere contains Cse4, a specialized histone H3 variant. Fluorescence pulse-chase analysis of an internally tagged Cse4 reveals that it is replaced with newly synthesized molecules in S phase, remaining stably associated with centromeres thereafter. In contrast, C-terminally-tagged Cse4 is functionally impaired, showing slow cell growth, cell lethality at elevated temperatures, and extra-centromeric nuclear accumulation. Recent studies using such strains gave conflicting findings regarding the centromeric abundance and cell cycle dynamics of Cse4. Our findings indicate that internally tagged Cse4 is a better reporter of the biology of this histone variant. Furthermore, the size of centromeric Cse4 clusters was precisely mapped with a new 3D-PALM method, revealing substantial compaction during anaphase. Cse4-specific chaperone Scm3 displays steady-state, stoichiometric co-localization with Cse4 at centromeres throughout the cell cycle, while undergoing exchange with a nuclear pool. These findings suggest that a stable Cse4 nucleosome is maintained by dynamic chaperone-in-residence Scm3.DOI: http://dx.doi.org/10.7554/eLife.02203.001.
Collapse
Affiliation(s)
- Jan Wisniewski
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Bassam Hajj
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Jiji Chen
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Gaku Mizuguchi
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Hua Xiao
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Debbie Wei
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Maxime Dahan
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Carl Wu
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| |
Collapse
|