1
|
Zahraee H, Mohammadi F, Parvaee E, Khoshbin Z, Arab SS. Reducing the assemblies of amyloid-beta multimers by sodium dodecyl sulfate surfactant at concentrations lower than critical micelle concentration: molecular dynamics simulation exploration. J Biomol Struct Dyn 2024; 42:8673-8687. [PMID: 37599504 DOI: 10.1080/07391102.2023.2247086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/05/2023] [Indexed: 08/22/2023]
Abstract
Amyloid-β peptide, the predominant proteinaceous component of senile plaques, is responsible for the incidence of Alzheimer's disease (AD), an age-associated neurodegenerative disorder. Specifically, the amyloid-β(1-42) (Aβ1-42) isoform, known for its high toxicity, is the predominant biomarker for the preliminary diagnosis of AD. The aggregation of the Aβ1-42 peptides can be affected by the components of the cellular medium through changing their structures and molecular interactions. In this study, we investigated the effect of sodium dodecyl sulfate (SDS) at much lower concentrations than the critical micelle concentration (CMC) on Aβ1-42 aggregation. For this purpose, we studied mono-, di-, tri- and tetramers of Aβ1-42 peptide in two different concentrations of SDS molecules (10 and 40 molecules) using a 300 ns molecular dynamics simulation for each system. The distance between the center of mass (COM) of Aβ1-42 peptides confirms that an increase in the number of SDS molecules decreases their aggregation probability due to greater interaction with SDS molecules. Besides, the less compactness parameter reveals the reduced aggregation probability of Aβ1-42 peptides. Based on the energetic FEL landscapes, SDS molecules with the concentration closer to the CMC are an effective inhibitory agent to prevent the formation of Aβ1-42 fibrils. Also, the aggregation direction of the peptide pairs can be predicted by determining the direction of the accumulation-deterrent forces.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hamed Zahraee
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mohammadi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elahe Parvaee
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Zahra Khoshbin
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Shahriar Arab
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
2
|
Bosio S, Bernetti M, Rocchia W, Masetti M. Similarities and Differences in Ligand Binding to Protein and RNA Targets: The Case of Riboflavin. J Chem Inf Model 2024; 64:4570-4586. [PMID: 38800845 DOI: 10.1021/acs.jcim.4c00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
It is nowadays clear that RNA molecules can play active roles in several biological processes. As a result, an increasing number of RNAs are gradually being identified as potentially druggable targets. In particular, noncoding RNAs can adopt highly organized conformations that are suitable for drug binding. However, RNAs are still considered challenging targets due to their complex structural dynamics and high charge density. Thus, elucidating relevant features of drug-RNA binding is fundamental for advancing drug discovery. Here, by using Molecular Dynamics simulations, we compare key features of ligand binding to proteins with those observed in RNA. Specifically, we explore similarities and differences in terms of (i) conformational flexibility of the target, (ii) electrostatic contribution to binding free energy, and (iii) water and ligand dynamics. As a test case, we examine binding of the same ligand, namely riboflavin, to protein and RNA targets, specifically the riboflavin (RF) kinase and flavin mononucleotide (FMN) riboswitch. The FMN riboswitch exhibited enhanced fluctuations and explored a wider conformational space, compared to the protein target, underscoring the importance of RNA flexibility in ligand binding. Conversely, a similar electrostatic contribution to the binding free energy of riboflavin was found. Finally, greater stability of water molecules was observed in the FMN riboswitch compared to the RF kinase, possibly due to the different shape and polarity of the pockets.
Collapse
Affiliation(s)
- Stefano Bosio
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
- Computational and Chemical Biology, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy
| | - Mattia Bernetti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
- Computational and Chemical Biology, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy
| | - Walter Rocchia
- Computational mOdelling of NanosCalE and bioPhysical sysTems (CONCEPT) Lab, Istituto Italiano di Tecnologia, Via Melen - 83, B Block, 16152 Genova, Italy
| | - Matteo Masetti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
3
|
Choudhury SD, Kumar P, Choudhury D. Bioactive nutraceuticals as G4 stabilizers: potential cancer prevention and therapy-a critical review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3585-3616. [PMID: 38019298 DOI: 10.1007/s00210-023-02857-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
G-quadruplexes (G4) are non-canonical, four-stranded, nucleic acid secondary structures formed in the guanine-rich sequences, where guanine nucleotides associate with each other via Hoogsteen hydrogen bonding. These structures are widely found near the functional regions of the mammalian genome, such as telomeres, oncogenic promoters, and replication origins, and play crucial regulatory roles in replication and transcription. Destabilization of G4 by various carcinogenic agents allows oncogene overexpression and extension of telomeric ends resulting in dysregulation of cellular growth-promoting oncogenesis. Therefore, targeting and stabilizing these G4 structures with potential ligands could aid cancer prevention and therapy. The field of G-quadruplex targeting is relatively nascent, although many articles have demonstrated the effect of G4 stabilization on oncogenic expressions; however, no previous study has provided a comprehensive analysis about the potency of a wide variety of nutraceuticals and some of their derivatives in targeting G4 and the lattice of oncogenic cell signaling cascade affected by them. In this review, we have discussed bioactive G4-stabilizing nutraceuticals, their sources, mode of action, and their influence on cellular signaling, and we believe our insight would bring new light to the current status of the field and motivate researchers to explore this relatively poorly studied arena.
Collapse
Affiliation(s)
- Satabdi Datta Choudhury
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology (IIT), Mandi, Himachal Pradesh, 175005, India
| | - Diptiman Choudhury
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
- Centre for Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
4
|
Fazelifar P, Cucchiarini A, Khoshbin Z, Mergny JL, Kazemi Noureini S. Strong and selective interactions of palmatine with G-rich sequences in TRF2 promoter; experimental and computational studies. J Biomol Struct Dyn 2023:1-15. [PMID: 38100552 DOI: 10.1080/07391102.2023.2292793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/25/2023] [Indexed: 12/17/2023]
Abstract
G-rich sequences have the potential to fold into G-quadruplexes (GQs). G-quadruplexes, particularly those positioned in the regulatory regions of proto-oncogenes, have recently garnered attention in anti-cancer drug design. A thermal FRET assay was employed to conduct preliminary screening of various alkaloids, aiming to identify stronger interactions with a specific set of G-rich double-labeled oligonucleotides in both K + and Na + buffers. These oligonucleotides were derived from regions associated with Kit, Myc, Ceb, Bcl2, human telomeres, and potential G-quadruplex forming sequences found in the Nrf2 and Trf2 promoters. Palmatine generally increased the stability of different G-rich sequences into their folded GQ structures, more or less in a concentration dependent manner. The thermal stability and interaction of palmatine was further studied using transition FRET (t-FRET), CD and UV-visible spectroscopy and molecular dynamics simulation methods. Palmatine showed the strongest interaction with T RF2 in both K+ and Na+ buffers even at equimolar concentration ratio. T-FRET studies revealed that palmatine has the potential to disrupt double-strand formation by the T RF2 sequence in the presence of its complementary strand. Palmatine exhibits a stronger interaction with G-rich strand DNA, promoting its folding into G-quadruplex structures. It is noteworthy that palmatine exhibits the strongest interaction with T RF2, which is the shortest sequence among the G-rich oligonucleotides studied, featuring only one nucleotide for two of its loops. Palmatine represents a suitable structure for drug design to develop more specific ligands targeting G-quadruplexes. Whether palmatine can also affect the expression of the T RF2 gene requires further studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pegah Fazelifar
- Department of Biology, Faculty of Basic Science, Hakim Sabzevari University, Sabzevar, Iran
| | - Anne Cucchiarini
- Laboratoire d'Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | - Zahra Khoshbin
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jean-Louis Mergny
- Laboratoire d'Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | | |
Collapse
|
5
|
Siddiqui GA, Stebani JA, Wragg D, Koutsourelakis PS, Casini A, Gagliardi A. Application of Machine Learning Algorithms to Metadynamics for the Elucidation of the Binding Modes and Free Energy Landscape of Drug/Target Interactions: a Case Study. Chemistry 2023; 29:e202302375. [PMID: 37555841 DOI: 10.1002/chem.202302375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 08/10/2023]
Abstract
In the context of drug discovery, computational methods were able to accelerate the challenging process of designing and optimizing a new drug candidate. Amongst the possible atomistic simulation approaches, metadynamics (metaD) has proven very powerful. However, the choice of collective variables (CVs) is not trivial for complex systems. To automate the process of CVs identification, two different machine learning algorithms were applied in this study, namely DeepLDA and Autoencoder, to the metaD simulation of a well-researched drug/target complex, consisting in a pharmacologically relevant non-canonical DNA secondary structure (G-quadruplex) and a metallodrug acting as its stabilizer, as well as solvent molecules.
Collapse
Affiliation(s)
- Gohar Ali Siddiqui
- Professorship of Simulation of Nanosystems for Energy Conversion Department of Electrical and Computer Engineering School of Computation, Information and Technology, Technical University of Munich (TUM), Hans-Piloty-Str. 1, 85748, Garching b. München, Germany
| | - Julia A Stebani
- Chair of Medicinal and Bioinorganic Chemistry Department of Chemistry, School of Natural Sciences, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching b. München, Germany
| | - Darren Wragg
- Chair of Medicinal and Bioinorganic Chemistry Department of Chemistry, School of Natural Sciences, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching b. München, Germany
| | - Phaedon-Stelios Koutsourelakis
- Professorship for Data-driven Materials Modeling School of Engineering and Design, Technical University of Munich (TUM), Boltzmannstr. 15, 85748, Garching b. München, Germany
| | - Angela Casini
- Chair of Medicinal and Bioinorganic Chemistry Department of Chemistry, School of Natural Sciences, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching b. München, Germany
| | - Alessio Gagliardi
- Professorship of Simulation of Nanosystems for Energy Conversion Department of Electrical and Computer Engineering School of Computation, Information and Technology, Technical University of Munich (TUM), Hans-Piloty-Str. 1, 85748, Garching b. München, Germany
| |
Collapse
|
6
|
Hu G, Zhang Y, Yu Z, Cui T, Cui W. Dynamical characterization and multiple unbinding paths of two PreQ 1 ligands in one pocket. Phys Chem Chem Phys 2023; 25:24004-24015. [PMID: 37646322 DOI: 10.1039/d3cp03142j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Riboswitches naturally regulate gene expression in bacteria by binding to specific small molecules. Class 1 preQ1 riboswitch aptamer is an important model not only for RNA folding but also as a target for designing small molecule antibiotics due to its well-known minimal aptamer domain. Here, we ran a total of 62.4 μs conventional and enhanced-sampling molecular dynamics (MD) simulations to characterize the determinants underlying the binding of the preQ1-II riboswitch aptamer to two preQ1 ligands in one binding pocket. Decomposition of binding free energy suggested that preQ1 ligands at α and β sites interact with four nucleotides (G5, C17, C18, and A30) and two nucleotides (A12 and C31), respectively. Mg2+ ions play a crucial role in both stabilizing the binding pocket and facilitating ligand binding. The flexible preQ1 ligand at the β site leads to the top of the binding pocket loosening and thus pre-organizes the riboswitch for ligand entry. Enhanced sampling simulations further revealed that the preQ1 ligand at the α site unbinds through two orthogonal pathways, which are dependent on whether or not a β site preQ1 ligand is present. One of the two preQ1 ligands has been identified in the binding pocket, which will aid to identify the second preQ1 Ligand. Our work provides new information for designing robust ligands.
Collapse
Affiliation(s)
- Guodong Hu
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou 253023, China.
- Laoling People's Hospital, Dezhou 253600, China
| | | | - Zhiping Yu
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou 253023, China.
| | - Tiejun Cui
- Laoling People's Hospital, Dezhou 253600, China
| | - Wanling Cui
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou 253023, China.
- Laoling People's Hospital, Dezhou 253600, China
| |
Collapse
|
7
|
Ponkarpagam S, Vennila KN, Elango KP. A closer look at the mode of binding of drug pemetrexed with CT-DNA. J Biomol Struct Dyn 2023; 41:3553-3561. [PMID: 35297322 DOI: 10.1080/07391102.2022.2051747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/05/2022] [Indexed: 10/18/2022]
Abstract
The interaction of antifolate drug Pemetrexed (PEM) with CT-DNA has been studied by UV-Vis, fluorescence and circular dichroism spectroscopic techniques. The results of these spectroscopic studies in combination with viscosity measurements, voltammetric and KI quenching studies suggested a less-common mode of binding of PEM with CT-DNA i.e. neither intercalation nor groove binding. Thus, metadynamic (MD) simulation is utilized to decipher the nature of binding of PEM with CT-DNA. Analysis of free energy surfaces obtained in MD simulation, reveals that PEM binds to the 3'- and 5'-ends of the DNA molecule. The thermodynamics of the interaction has been investigated by isothermal titration calorimetric experiment. The analysis shows that PEM binds with CT-DNA strongly with a binding constant of 2.6x109 M-1 and the process is found to be spontaneous (ΔG - 12.84 kcal/mol). Further, positive values of enthalpy (ΔH 6.09 cal/mol) and entropy (ΔS 43.1 cal/mol) changes indicate that the binding is an enthalpically unfavourable and, instead, entropically driven process.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- S Ponkarpagam
- Department of Chemistry, Gandhigram Rural Institute, (Deemed to be University), Gandhigram, India
| | - K N Vennila
- Department of Chemistry, Gandhigram Rural Institute, (Deemed to be University), Gandhigram, India
| | - Kuppanagounder P Elango
- Department of Chemistry, Gandhigram Rural Institute, (Deemed to be University), Gandhigram, India
| |
Collapse
|
8
|
Alexander A, Sumohan Pillai A, Sri Varalakshmi G, Ananthi N, Pal H, V. M. V. Enoch I, Sayed M. G-Quadruplex binding affinity variation on molecular encapsulation of ligands by porphyrin-tethered cyclodextrin. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
9
|
Kim H, Pak Y. Improving All-Atom Force Field to Accurately Describe DNA G-Quadruplex Loops. J Phys Chem B 2022; 126:6199-6209. [PMID: 35951994 DOI: 10.1021/acs.jpcb.2c04256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The DNA G-quadruplex (GQ) displays structural polymorphisms, and interactions between its loops and flanking sequences critically determine which of the diverse GQ conformers is adopted. All-atom molecular dynamics (MD) simulations of GQs are computationally challenging due to slow folding times and force field (ff) artifacts. In an earlier study, a direct folding simulation of the simplest DNA GQ (TBA15) was first reported using a modified version of the AMBER bsc1 ff (bsc1_vdW ff). Despite this successful folding simulation, it was later found that the bsc1_vdW ff is somewhat limited in terms of describing loop structures of GQs, which is problematic because GQ loop regions play key roles in ligand binding to modulate GQ activities. In this study, we further modified the bsc1_vdW ff to enhance the GQ loop prediction by fine-tuning a limited number of van der Waals (vdW) parameters of the standard AMBER bsc1 ff to improve the GQ loop distribution of a target GQ system (three-layered antiparallel GQ; mHtel21). Test simulations of this newly generated ff (bsc1_vdWL ff) on DNA GQs with diverse topologies (hybrid1, hybrid2, and parallel propeller) revealed that loop structures were predicted more accurately than by the bsc1_vdW ff. We consider that enhanced sampling MD simulation methods in combination with bsc1_vdWL provide useful simulation protocols for resolving outstanding issues of DNA GQ folding and GQ/ligand binding at the all-atom level.
Collapse
Affiliation(s)
- Hyeonjun Kim
- Department of Chemistry and Institute of Functional Materials, Pusan National University, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, S. Korea
| | - Youngshang Pak
- Department of Chemistry and Institute of Functional Materials, Pusan National University, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, S. Korea
| |
Collapse
|
10
|
Bağda E, Kızılyar Y, İnci ÖG, Ghaffarlou M, Barsbay M. One-pot modification of oleate-capped UCNPs with AS1411 G-quadruplex DNA in a fully aqueous medium. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Haldar S, Zhang Y, Xia Y, Islam B, Liu S, Gervasio FL, Mulholland AJ, Waller ZAE, Wei D, Haider S. Mechanistic Insights into the Ligand-Induced Unfolding of an RNA G-Quadruplex. J Am Chem Soc 2022; 144:935-950. [PMID: 34989224 DOI: 10.1021/jacs.1c11248] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cationic porphyrin TMPyP4 is a well-established DNA G-quadruplex (G4) binding ligand that can stabilize different topologies via multiple binding modes. However, TMPyP4 can have both a stabilizing and destabilizing effect on RNA G4 structures. The structural mechanisms that mediate RNA G4 unfolding remain unknown. Here, we report on the TMPyP4-induced RNA G4 unfolding mechanism studied by well-tempered metadynamics (WT-MetaD) with supporting biophysical experiments. The simulations predict a two-state mechanism of TMPyP4 interaction via a groove-bound and a top-face-bound conformation. The dynamics of TMPyP4 stacking on the top tetrad disrupts Hoogsteen H-bonds between guanine bases, resulting in the consecutive TMPyP4 intercalation from top-to-bottom G-tetrads. The results reveal a striking correlation between computational and experimental approaches and validate WT-MetaD simulations as a powerful tool for studying RNA G4-ligand interactions.
Collapse
Affiliation(s)
- Susanta Haldar
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, U.K
- D.E. Shaw India Private Ltd., Hyderabad, Telangana 500096, India
| | - Yashu Zhang
- State Key Laboratory of Agricultural Microbiology, College of Vetrinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Xia
- UCL School of Pharmacy, University College London, London, WC1N 1AX, U.K
| | - Barira Islam
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, U.K
| | - Sisi Liu
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Francesco L Gervasio
- Department of Chemistry, University College London, London, WC1H 0AJ, U.K
- Pharmaceutical Sciences, University of Geneva, Geneva CH-1211, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), Geneva CH-1211, Switzerland
| | | | - Zoë A E Waller
- UCL School of Pharmacy, University College London, London, WC1N 1AX, U.K
| | - Dengguo Wei
- State Key Laboratory of Agricultural Microbiology, College of Vetrinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China
| | - Shozeb Haider
- UCL School of Pharmacy, University College London, London, WC1N 1AX, U.K
- UCL Centre for Advanced Research Computing, University College London, London, WC1H 9RN, U.K
| |
Collapse
|
12
|
Hu G, Zhou HX. Binding free energy decomposition and multiple unbinding paths of buried ligands in a PreQ1 riboswitch. PLoS Comput Biol 2021; 17:e1009603. [PMID: 34767553 PMCID: PMC8612554 DOI: 10.1371/journal.pcbi.1009603] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/24/2021] [Accepted: 10/31/2021] [Indexed: 11/18/2022] Open
Abstract
Riboswitches are naturally occurring RNA elements that control bacterial gene expression by binding to specific small molecules. They serve as important models for RNA-small molecule recognition and have also become a novel class of targets for developing antibiotics. Here, we carried out conventional and enhanced-sampling molecular dynamics (MD) simulations, totaling 153.5 μs, to characterize the determinants of binding free energies and unbinding paths for the cognate and synthetic ligands of a PreQ1 riboswitch. Binding free energy analysis showed that two triplets of nucleotides, U6-C15-A29 and G5-G11-C16, contribute the most to the binding of the cognate ligands, by hydrogen bonding and by base stacking, respectively. Mg2+ ions are essential in stabilizing the binding pocket. For the synthetic ligands, the hydrogen-bonding contributions of the U6-C15-A29 triplet are significantly compromised, and the bound state resembles the apo state in several respects, including the disengagement of the C15-A14-A13 and A32-G33 base stacks. The bulkier synthetic ligands lead to significantly loosening of the binding pocket, including extrusion of the C15 nucleobase and a widening of the C15-C30 groove. Enhanced-sampling simulations further revealed that the cognate and synthetic ligands unbind in almost opposite directions. Our work offers new insight for designing riboswitch ligands. Riboswitches are bacterial RNA elements that change structures upon binding a cognate ligand. They are of great interest not only for understanding gene regulation but also as targets for designing small-molecule antibiotics and chemical tools. Understanding the molecular determinants for ligand affinity and selectivity is thus crucial for designing synthetic ligands. Here we carried out extensive molecular dynamics simulations of a PreQ1 riboswitch bound to either cognate or synthetic ligands. By comparing and contrasting these two groups of ligands, we learn how the chemical (e.g., number of hydrogen bond donors and acceptors) and physical (e.g., molecular size) features of ligands affect binding affinity and ligand exit paths. While the number of hydrogen bond donors and acceptors is a key determinant for RNA binding affinity, the ligand size affects the rigidity of the binding pocket and thereby regulates the unbinding of the ligand. These lessons provide guidance for designing riboswitch ligands.
Collapse
Affiliation(s)
- Guodong Hu
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou, China
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
13
|
Zhang Q, Zhao N, Meng X, Yu F, Yao X, Liu H. The prediction of protein-ligand unbinding for modern drug discovery. Expert Opin Drug Discov 2021; 17:191-205. [PMID: 34731059 DOI: 10.1080/17460441.2022.2002298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Drug-target thermodynamic and kinetic information have perennially important roles in drug design. The prediction of protein-ligand unbinding, which can provide important kinetic information, in experiments continues to face great challenges. Uncovering protein-ligand unbinding through molecular dynamics simulations has become efficient and inexpensive with the progress and enhancement of computing power and sampling methods. AREAS COVERED In this review, various sampling methods for protein-ligand unbinding and their basic principles are firstly briefly introduced. Then, their applications in predicting aspects of protein-ligand unbinding, including unbinding pathways, dissociation rate constants, residence time and binding affinity, are discussed. EXPERT OPINION Although various sampling methods have been successfully applied in numerous systems, they still have shortcomings and deficiencies. Most enhanced sampling methods require researchers to possess a wealth of prior knowledge of collective variables or reaction coordinates. In addition, most systems studied at present are relatively simple, and the study of complex systems in real drug research remains greatly challenging. Through the combination of machine learning and enhanced sampling methods, prediction accuracy can be further improved, and some problems encountered in complex systems also may be solved.
Collapse
Affiliation(s)
| | - Nannan Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xiaoxiao Meng
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Fansen Yu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xiaojun Yao
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.,Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
14
|
Sarkar S, Singh PC. The combined action of cations and anions of ionic liquids modulates the formation and stability of G-quadruplex DNA. Phys Chem Chem Phys 2021; 23:24497-24504. [PMID: 34700329 DOI: 10.1039/d1cp03730g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
G-Quadruplex (Gq) formation and stabilization by any molecule is an essential requirement for its application in therapy, especially in oncology. Metal cations have shown higher propensity of the formation of the Gq structure and its stabilization. In this study, the role of both cations and anions of ionic liquids (ILs) on the Gq formation of human telomere (hTeloG) and its stability was investigated using spectroscopic and molecular dynamics simulation techniques. Irrespective of the nature of anions of ILs, tetramethylguanidinium (TMG) cations associated with different anions can form an antiparallel Gq structure in hTeloG. However, the propensity of the formation of an antiparallel Gq structure and its stability depend on the chain length of anions of ILs. Gq is significantly less stable in ILs having longer hydrocarbon chain anions compared to the short chain anions suggesting that the hydrophobicity of the anion plays a critical role in the stability and formation of the Gq structure by ILs. The data indicate that longer hydrocarbon chain anions of ILs preferably interact in the loop region of Gq through hydrophobic interaction which enhances the overall binding of the cation of ILs with Gq causing a decrease in the stacking energy between the G-quartets as well as Hoogsteen hydrogen bonds between the guanine bases leading to the destabilization of the antiparallel Gq structure.
Collapse
Affiliation(s)
- Sunipa Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, India, 700032.
| | - Prashant Chandra Singh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, India, 700032.
| |
Collapse
|
15
|
Largy E, König A, Ghosh A, Ghosh D, Benabou S, Rosu F, Gabelica V. Mass Spectrometry of Nucleic Acid Noncovalent Complexes. Chem Rev 2021; 122:7720-7839. [PMID: 34587741 DOI: 10.1021/acs.chemrev.1c00386] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleic acids have been among the first targets for antitumor drugs and antibiotics. With the unveiling of new biological roles in regulation of gene expression, specific DNA and RNA structures have become very attractive targets, especially when the corresponding proteins are undruggable. Biophysical assays to assess target structure as well as ligand binding stoichiometry, affinity, specificity, and binding modes are part of the drug development process. Mass spectrometry offers unique advantages as a biophysical method owing to its ability to distinguish each stoichiometry present in a mixture. In addition, advanced mass spectrometry approaches (reactive probing, fragmentation techniques, ion mobility spectrometry, ion spectroscopy) provide more detailed information on the complexes. Here, we review the fundamentals of mass spectrometry and all its particularities when studying noncovalent nucleic acid structures, and then review what has been learned thanks to mass spectrometry on nucleic acid structures, self-assemblies (e.g., duplexes or G-quadruplexes), and their complexes with ligands.
Collapse
Affiliation(s)
- Eric Largy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Alexander König
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Anirban Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Debasmita Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Sanae Benabou
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Frédéric Rosu
- Univ. Bordeaux, CNRS, INSERM, IECB, UMS 3033, F-33600 Pessac, France
| | - Valérie Gabelica
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| |
Collapse
|
16
|
Tang Z, Akhter S, Ramprasad A, Wang X, Reibarkh M, Wang J, Aryal S, Thota SS, Zhao J, Douglas JT, Gao P, Holmstrom ED, Miao Y, Wang J. Recognition of single-stranded nucleic acids by small-molecule splicing modulators. Nucleic Acids Res 2021; 49:7870-7883. [PMID: 34283224 PMCID: PMC8373063 DOI: 10.1093/nar/gkab602] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/24/2021] [Accepted: 07/01/2021] [Indexed: 12/16/2022] Open
Abstract
Risdiplam is the first approved small-molecule splicing modulator for the treatment of spinal muscular atrophy (SMA). Previous studies demonstrated that risdiplam analogues have two separate binding sites in exon 7 of the SMN2 pre-mRNA: (i) the 5'-splice site and (ii) an upstream purine (GA)-rich binding site. Importantly, the sequence of this GA-rich binding site significantly enhanced the potency of risdiplam analogues. In this report, we unambiguously determined that a known risdiplam analogue, SMN-C2, binds to single-stranded GA-rich RNA in a sequence-specific manner. The minimum required binding sequence for SMN-C2 was identified as GAAGGAAGG. We performed all-atom simulations using a robust Gaussian accelerated molecular dynamics (GaMD) method, which captured spontaneous binding of a risdiplam analogue to the target nucleic acids. We uncovered, for the first time, a ligand-binding pocket formed by two sequential GAAG loop-like structures. The simulation findings were highly consistent with experimental data obtained from saturation transfer difference (STD) NMR and structure-affinity-relationship studies of the risdiplam analogues. Together, these studies illuminate us to understand the molecular basis of single-stranded purine-rich RNA recognition by small-molecule splicing modulators with an unprecedented binding mode.
Collapse
Affiliation(s)
- Zhichao Tang
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Sana Akhter
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66047, USA
| | - Ankita Ramprasad
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Xiao Wang
- Analytical Research & Development, Merck and Co., Inc., Kenilworth, NJ 07033, USA
| | - Mikhail Reibarkh
- Analytical Research & Development, Merck and Co., Inc., Kenilworth, NJ 07033, USA
| | - Jinan Wang
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66047, USA
| | - Sadikshya Aryal
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Srinivas S Thota
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Junxing Zhao
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Justin T Douglas
- Nuclear Magnetic Resonance Lab, University of Kansas, Lawrence, KS 66045, USA
| | - Philip Gao
- Protein Production Group, University of Kansas, Lawrence, KS 66047, USA
| | - Erik D Holmstrom
- Department of Molecular Biosciences and Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Yinglong Miao
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66047, USA
| | - Jingxin Wang
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66047, USA
| |
Collapse
|
17
|
Preferential interaction with c-MYC quadruplex DNA mediates the cytotoxic activity of a nitro-flavone derivative in A375 cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
18
|
Fluorescent probes for the stabilization and detection of G-quadruplexes and their prospective applications. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Unraveling the binding characteristics of small ligands to telomeric DNA by pressure modulation. Sci Rep 2021; 11:9714. [PMID: 33958702 PMCID: PMC8102477 DOI: 10.1038/s41598-021-89215-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/15/2021] [Indexed: 02/03/2023] Open
Abstract
Recently, non-canonical DNA structures, such as G-quadruplexes (GQs), were found to be highly pressure sensitive, suggesting that pressure modulation studies can provide additional mechanistic details of such biomolecular systems. Using FRET and CD spectroscopy as well as binding equilibrium measurements, we investigated the effect of pressure on the binding reaction of the ligand ThT to the quadruplex 22AG in solutions containing different ionic species and a crowding agent mimicking the intracellular milieu. Pressure modulation helped us to identify the different conformational substates adopted by the quadruplex at the different solution conditions and to determine the volumetric changes during complex formation and the conformational transitions involved. The magnitudes of the binding volumes are a hallmark of packing defects and hydrational changes upon ligand binding. The conformational substates of the GQ as well as the binding strength and the stoichiometry of complex formation depend strongly on the solution conditions as well as on pressure. High hydrostatic pressure can also impact GQs inside living cells and thus affect expression of genetic information in deep sea organisms. We show that sub-kbar pressures do not only affect the conformational dynamics and structures of GQs, but also their ligand binding reactions.
Collapse
|
20
|
O'Hagan MP, Haldar S, Morales JC, Mulholland AJ, Galan MC. Enhanced sampling molecular dynamics simulations correctly predict the diverse activities of a series of stiff-stilbene G-quadruplex DNA ligands. Chem Sci 2020; 12:1415-1426. [PMID: 34163904 PMCID: PMC8179204 DOI: 10.1039/d0sc05223j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ligands with the capability to bind G-quadruplexes (G4s) specifically, and to control G4 structure and behaviour, offer great potential in the development of novel therapies, technologies and functional materials. Most known ligands bind to a pre-formed topology, but G4s are highly dynamic and a small number of ligands have been discovered that influence these folding equilibria. Such ligands may be useful as probes to understand the dynamic nature of G4 in vivo, or to exploit the polymorphism of G4 in the development of molecular devices. To date, these fascinating molecules have been discovered serendipitously. There is a need for tools to predict such effects to drive ligand design and development, and for molecular-level understanding of ligand binding mechanisms and associated topological perturbation of G4 structures. Here we study the G4 binding mechanisms of a family of stiff-stilbene G4 ligands to human telomeric DNA using molecular dynamics (MD) and enhanced sampling (metadynamics) MD simulations. The simulations predict a variety of binding mechanisms and effects on G4 structure for the different ligands in the series. In parallel, we characterize the binding of the ligands to the G4 target experimentally using NMR and CD spectroscopy. The results show good agreement between the simulated and experimentally observed binding modes, binding affinities and ligand-induced perturbation of the G4 structure. The simulations correctly predict ligands that perturb G4 topology. Metadynamics simulations are shown to be a powerful tool to aid development of molecules to influence G4 structure, both in interpreting experiments and to help in the design of these chemotypes.
Collapse
Affiliation(s)
- Michael P O'Hagan
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Susanta Haldar
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- Centre for Computational Chemistry, School of Chemistry, University of Bristol Bristol BS8 1TS UK
| | - Juan C Morales
- Instituto de Parasitología y Biomedicina "López Neyra" Consejo Superior de Investigaciones Científicas (CSIC), PTS Granada Avenida del Conocimiento 17, 18016 Armilla Granada Spain
| | - Adrian J Mulholland
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- Centre for Computational Chemistry, School of Chemistry, University of Bristol Bristol BS8 1TS UK
| | - M Carmen Galan
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
21
|
Lenarčič Živković M, Rozman J, Plavec J. Structure of a DNA G-Quadruplex Related to Osteoporosis with a G-A Bulge Forming a Pseudo-loop. Molecules 2020; 25:E4867. [PMID: 33096904 PMCID: PMC7588008 DOI: 10.3390/molecules25204867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 11/30/2022] Open
Abstract
Bone remodeling is a fine-tuned process principally regulated by a cascade triggered by interaction of receptor activator of NF-κB (RANK) and RANK ligand (RANKL). Excessive activity of the RANKL gene leads to increased bone resorption and can influence the incidence of osteoporosis. Although much has been learned about the intracellular signals activated by RANKL/RANK complex, significantly less is known about the molecular mechanisms of regulation of RANKL expression. Here, we report on the structure of an unprecedented DNA G-quadruplex, well-known secondary structure-mediated gene expression regulator, formed by a G-rich sequence found in the regulatory region of a RANKL gene. Solution-state NMR structural study reveals the formation of a three-layered parallel-type G-quadruplex characterized by an unique features, including a G-A bulge. Although a guanine within a G-tract occupies syn glycosidic conformation, bulge-forming residues arrange in a pseudo-loop conformation to facilitate partial 5/6-ring stacking, typical of G-quadruplex structures with parallel G-tracts orientation. Such distinctive structural features protruding from the core of the structure can represent a novel platform for design of highly specific ligands with anti-osteoporotic function. Additionally, our study suggests that the expression of RANKL gene may be regulated by putative folding of its G-rich region into non-B-DNA structure(s).
Collapse
Affiliation(s)
- Martina Lenarčič Živković
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia;
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Jan Rozman
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia;
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia;
- EN-FIST Centre of Excellence, Trg OF 13, 1000 Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| |
Collapse
|
22
|
Sullivan HJ, Chen B, Wu C. Molecular Dynamics Study on the Binding of an Anticancer DNA G-Quadruplex Stabilizer, CX-5461, to Human Telomeric, c-KIT1, and c-Myc G-Quadruplexes and a DNA Duplex. J Chem Inf Model 2020; 60:5203-5224. [PMID: 32820923 DOI: 10.1021/acs.jcim.0c00632] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
DNA G-quadruplex (G4) stabilizer, CX-5461, is in phase I/II clinical trials for advanced cancers with BRCA1/2 deficiencies. A FRET-melting temperature increase assay measured the stabilizing effects of CX-5461 to a DNA duplex (∼10 K), and three G4 forming sequences negatively implicated in the cancers upon its binding: human telomeric (∼30 K), c-KIT1 (∼27 K), and c-Myc (∼25 K). Without experimentally solved structures of these CX-5461-G4 complexes, CX-5461's interactions remain elusive. In this study, we performed a total of 73.5 μs free ligand molecular dynamics binding simulations of CX-5461 to the DNA duplex and three G4s. Three binding modes (top, bottom, and side) were identified for each system and their thermodynamic, kinetic, and structural nature were deciphered. The molecular mechanics/Poisson Boltzmann surface area binding energies of CX-5461 were calculated for the human telomeric (-28.6 kcal/mol), c-KIT1 (-23.9 kcal/mol), c-Myc (-22.0 kcal/mol) G4s, and DNA duplex (-15.0 kcal/mol) systems. These energetic differences coupled with structural differences at the 3' site explained the different melting temperatures between the G4s, while CX-5461's lack of intercalation to the duplex explained the difference between the G4s and duplex. Based on the interaction insight, CX-5461 derivatives were designed and docked, showing higher selectivity to the G4s over the duplex.
Collapse
Affiliation(s)
- Holli-Joi Sullivan
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028 USA
| | - Brian Chen
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028 USA
| | - Chun Wu
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028 USA
| |
Collapse
|
23
|
Ligand binding free-energy calculations with funnel metadynamics. Nat Protoc 2020; 15:2837-2866. [PMID: 32814837 DOI: 10.1038/s41596-020-0342-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 04/17/2020] [Indexed: 11/09/2022]
Abstract
The accurate resolution of the binding mechanism of a ligand to its molecular target is fundamental to develop a successful drug design campaign. Free-energy calculations, which provide the energy value of the ligand-protein binding complex, are essential for resolving the binding mode of the ligand. The accuracy of free-energy calculation methods is counteracted by their poor user-friendliness, which hampers their broad application. Here we present the Funnel-Metadynamics Advanced Protocol (FMAP), which is a flexible and user-friendly graphical user interface (GUI)-based protocol to perform funnel metadynamics, a binding free-energy method that employs a funnel-shape restraint potential to reveal the ligand binding mode and accurately calculate the absolute ligand-protein binding free energy. FMAP guides the user through all phases of the free-energy calculation process, from preparation of the input files, to production simulation, to analysis of the results. FMAP delivers the ligand binding mode and the absolute protein-ligand binding free energy as outputs. Alternative binding modes and the role of waters are also elucidated, providing a detailed description of the ligand binding mechanism. The entire protocol on the paradigmatic system benzamidine-trypsin, composed of ~105 k atoms, took ~2.8 d using the Cray XC50 piz Daint cluster at the Swiss National Supercomputing Centre.
Collapse
|
24
|
Khoshbin Z, Housaindokht MR. Computer-Aided aptamer design for sulfadimethoxine antibiotic: step by step mutation based on MD simulation approach. J Biomol Struct Dyn 2020; 39:3071-3079. [PMID: 32323612 DOI: 10.1080/07391102.2020.1760133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study introduces a computational method to design a new aptamer with higher binding affinity to a special target in comparison with the experimentally available aptamers. The method is called step by step mutation based on MD simulation, which includes some steps. First, MD simulation is performed for the SELEX-introduced (native) aptamer in the presence of the target. Afterwards, conformational factor (Pi) is calculated for the simulated system, which obtains the affinity of the aptamer residues to the target. A nucleotide exchange is done for the residue with the least Pi parameter to the nucleotide with the highest Pi value that results in a mutant aptamer. MD simulation is performed for the target-mutant complex, and Pi values are calculated again. The nucleotide exchange is performed similarly, and the designing process is proceeded repeatedly that results in a mutant with the improved specificity to the target. The aptamer affinity to the target is also determined in each step through calculating the binding Gibbs energy (ΔGBind) as a reliable parameter. The introduced strategy is utilized efficiently to design a mutant aptamer with improved specificity toward sulfadimethoxine (SDM) antibiotic as a case study. The great difference in the ΔGBind values about 579.856 kJ mol-1 highlights that the M5 mutant possesses the improved specificity toward SDM in comparison with the native aptamer. Besides, the selectivity of the M5 aptamer toward SDM is examined among some conventional interfering compounds by using MD simulation that confirms the applicability of the designed aptamer for further experimental studies.
Collapse
Affiliation(s)
- Zahra Khoshbin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | |
Collapse
|
25
|
Khoshbin Z, Housaindokht MR, Izadyar M, Bozorgmehr MR, Verdian A. Temperature and molecular crowding effects on the sensitivity of T30695 aptamer toward Pb2+ion: a joint molecular dynamics simulation and experimental study. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1751842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zahra Khoshbin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Mohammad Izadyar
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Asma Verdian
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| |
Collapse
|
26
|
D'Aria F, D'Amore VM, Di Leva FS, Amato J, Caterino M, Russomanno P, Salerno S, Barresi E, De Leo M, Marini AM, Taliani S, Da Settimo F, Salgado GF, Pompili L, Zizza P, Shirasawa S, Novellino E, Biroccio A, Marinelli L, Giancola C. Targeting the KRAS oncogene: Synthesis, physicochemical and biological evaluation of novel G-Quadruplex DNA binders. Eur J Pharm Sci 2020; 149:105337. [PMID: 32311457 DOI: 10.1016/j.ejps.2020.105337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023]
Abstract
The oncogene KRAS is involved in the pathogenesis of many tumors such as pancreatic, lung and colorectal cancers, thereby representing a relevant target for the treatment of these diseases. The KRAS P1 promoter contains a nuclease hypersensitive, guanine-rich sequence able to fold into a G-quadruplex motif (G4). The stabilization of this G4 structure by small molecules is emerging as a feasible approach to downregulate KRAS expression. Here, a set of novel stabilizing molecules was identified through a virtual screening campaign on the NMR structure of the 22-mer KRAS G4. The most promising hits were then submitted to structure-activity relationships studies which allowed improving their binding affinity and selectivity over double helix DNA and different G4 topologies. The best derivative (19) underwent fluorescence titration experiments and further computational studies to disclose its binding mechanism to KRAS G4. Finally, biological assays showed that this compound is capable to reduce the viability of colorectal cancer cells in which mutated KRAS acts as a driver oncogene. Thus, 19 might represent the prototype of a new class of drugs for the treatment of tumors that, expressing mutated forms of KRAS, are refractory to current therapeutic regimens.
Collapse
Affiliation(s)
- Federica D'Aria
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, Italy
| | - Vincenzo Maria D'Amore
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, Italy
| | | | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, Italy
| | - Marco Caterino
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, Italy
| | - Pasquale Russomanno
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, Italy
| | - Silvia Salerno
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Elisabetta Barresi
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Marinella De Leo
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Anna Maria Marini
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Gilmar F Salgado
- ARNA Laboratory, IECB, University of Bordeaux, Inserm U1212, CNRS UMR 5320, F-33600 Pessac, France
| | - Luca Pompili
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Pasquale Zizza
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Senji Shirasawa
- Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka, Japan
| | - Ettore Novellino
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, Italy
| | - Annamaria Biroccio
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Luciana Marinelli
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, Italy
| | - Concetta Giancola
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, Italy.
| |
Collapse
|
27
|
Khanna L, Singhal S, Jain SC, Khanna P. Spiro-Indole-Coumarin Hybrids: Synthesis, ADME, DFT, NBO Studies and In Silico Screening through Molecular Docking on DNA G-Quadruplex. ChemistrySelect 2020; 5:3420-3433. [PMID: 32328514 PMCID: PMC7169502 DOI: 10.1002/slct.201904783] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/09/2020] [Indexed: 01/11/2023]
Abstract
New series of hybrids were synthesized by combination of 4-hydroxycoumarin with spiro[indol-indazole-thiazolidine]-diones and spiro[indol-pyrazole-thiazolidine]-diones, via hitherto unknown Schiff bases. The effects of substituents, such as -F, -Br and -CH3, on the crucial characteristics pertaining to the hybrids were investigated through computational studies. In silico or virtual screening through molecular docking studies on the library of 22 compounds, including reference compounds, precursors, non-hybrid and hybrid derivatives, was performed on DNA G-quadruplex of the human genome. All six freshly synthesized hybrids showed high binding energy as compared to non-hybrids as well as reference compounds. The presence of substituents at 5-position of indole enhanced the binding tendency of the ligand. ADME studies indicated good oral bioavailability and absorption of these compounds. Density Functional Theory (DFT) calculations of hybrids were done at B3LYP/6-311G++(d,p) level of computation. Their HOMO and LUMO energy plots reflected the presence of high charge transfer and chemical potential. Natural bond order (NBO) calculations predicted hyperconjugative interactions. The Molecular Electrostatic Potential (MEP) surface plots showed possible electrophilic and nucleophilic attacking sites of the hybrids. Compound 10 a (5-fluoro-spiro[indol-indazole-thiazolidine]-dione-coumarin hybrid), on the basis of global reactivity descriptors, was filtered to be chemically most reactive with the highest binding energy of -8.23 kcal/mol with DNA G-quadruplex. The synthesized hybrid coumarin derivatives in correlation with theoretical docking studies validate that hybrid derivatives are more reactive compared to their non-hybrid counterparts.
Collapse
Affiliation(s)
- Leena Khanna
- Department of ChemistryUniversity of DelhiDelhi110007India
- University School of Basic and Applied SciencesGuru Gobind Singh Indraprastha University, Sector 16-C, DwarkaNew Delhi110078India
| | - Sugandha Singhal
- University School of Basic and Applied SciencesGuru Gobind Singh Indraprastha University, Sector 16-C, DwarkaNew Delhi110078India
| | | | - Pankaj Khanna
- Department of ChemistryUniversity of DelhiDelhi110007India
- Department of ChemistryAcharya Narendra Dev CollegeUniversity of Delhi, KalkajiNew Delhi110019India
| |
Collapse
|
28
|
Folding intermediate states of the parallel human telomeric G-quadruplex DNA explored using Well-Tempered Metadynamics. Sci Rep 2020; 10:3176. [PMID: 32081872 PMCID: PMC7035250 DOI: 10.1038/s41598-020-59774-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/30/2020] [Indexed: 11/16/2022] Open
Abstract
An increasingly comprehension of the folding intermediate states of DNA G-quadruplexes (G4s) is currently an important scientific challenge, especially for the human telomeric (h-tel) G4s-forming sequences, characterized by a highly polymorphic nature. Despite the G-triplex conformation was proposed as one of the possible folding intermediates for the antiparallel and hybrid h-tel G4s, for the parallel h-tel topology with an all-anti guanine orientation, a vertical strand-slippage involving the G-triplets was proposed in previous works through microseconds-long standard molecular dynamics simulations (MDs). Here, in order to get further insights into the vertical strand-slippage and the folding intermediate states of the parallel h-tel G4s, we have carried out a Well-Tempered Metadynamics simulation (WT-MetaD), which allowed us to retrieve an ensemble of six G4s having two/G-tetrad conformations derived by the G-triplets vertical slippage. The insights highlighted in this work are aimed at rationalizing the mechanistic characterisation of the parallel h-tel G4 folding process.
Collapse
|
29
|
Molecular dynamics simulations of G-quadruplexes: The basic principles and their application to folding and ligand binding. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2020. [DOI: 10.1016/bs.armc.2020.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Khoshbin Z, Housaindokht MR, Izadyar M, Bozorgmehr MR, Verdian A. The investigation of the G-quadruplex aptamer selectivity to Pb 2+ ion: a joint molecular dynamics simulation and density functional theory study. J Biomol Struct Dyn 2019; 38:3659-3675. [PMID: 31496379 DOI: 10.1080/07391102.2019.1664933] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The aptamers with the ability to form a G-quadruplex structure can be stable in the presence of some ions. Hence, study of the interactions between such aptamers and ions can be beneficial to determine the highest selective aptamer toward an ion. In this article, molecular dynamics (MD) simulations and quantum mechanics (QM) calculations have been applied to investigate the selectivity of the T30695 aptamer toward Pb2+ in comparison with some ions. The Free Energy Landscape (FEL) analysis indicates that Pb2+ has remained inside the aptamer during the MD simulation, while the other ions have left it. The Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) binding energies prove that the conformational stability of the aptamer is the highest in the presence of Pb2+. According to the compaction parameters, the greatest compressed ion-aptamer complex, and hence, the highest ion-aptamer interaction have been induced in the presence of Pb2+. The contact maps clarify the closer contacts between the nucleotides of the aptamer in the presence of Pb2+. The density functional theory (DFT) results show that Pb2+ forms the most stable complex with the aptamer, which is consistent with the MD results. The QM calculations reveal that the N-H bonds and the O…H distances are the longest and the shortest, respectively, in the presence of Pb2+. The obtained results verify that the strongest hydrogen bonds (HBs), and hence, the most compressed aptamer structure are induced by Pb2+. Besides, atoms in molecules (AIM) and natural bond orbital (NBO) analyses confirm the results.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zahra Khoshbin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Mohammad Izadyar
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Asma Verdian
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| |
Collapse
|
31
|
Theoretical design and experimental study of new aptamers with the improved target-affinity: New insights into the Pb2+-specific aptamers as a case study. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111159] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Challenges and current status of computational methods for docking small molecules to nucleic acids. Eur J Med Chem 2019; 168:414-425. [PMID: 30831409 DOI: 10.1016/j.ejmech.2019.02.046] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 01/29/2023]
Abstract
Since the development of the first docking program in 1982, the use of docking-based in silico screening for potentially bioactive molecule discovery has become a common strategy in academia and pharmaceutical industry. Up until recently, application of docking programs has largely focused on drugs binding to proteins. However, with the discovery of promising drug targets in nucleic acids, including RNA riboswitches, DNA G-quadruplexes, and extended repeats in RNA, there has been greater interests in developing drugs for nucleic acids. However, due to major biochemical and physical differences in charges, binding pockets, and solvation, existing docking programs, developed for proteins, face difficulties when adopted directly for nucleic acids. In this review, we cover the current field of in silico docking to nucleic acids, available programs, as well as challenges faced in the field.
Collapse
|
33
|
Si MK, Pramanik SK, Ganguly B. Tuning the ring strain effect in acridine derivatives on binding affinity with G-quadruplex-DNA: A computational and experimental study. Int J Biol Macromol 2018; 124:1177-1185. [PMID: 30521912 DOI: 10.1016/j.ijbiomac.2018.12.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 12/01/2018] [Accepted: 12/01/2018] [Indexed: 12/22/2022]
Abstract
Search for inhibitors to stabilize the telomeric G-quadruplex in order to deter telomerase activity is an active area of research. Inhibitors play an important role to initiate the tumor cell mortalization process. This work reports for the first time of acridine derivative with four membered ammonium rings at the side chain to surpass the binding ability against BRACO-19 with G-quadruplex-DNA. It is known in the literature that acridine based molecule BRACO-19 can effectively bind with G-quadruplex-DNA. The computational study performed in this study revealed that the binding ability of acridine based molecule can be augmented with subtle variation in the molecular structure of the drug like candidates. Steered molecular dynamics (SMD) performed with the acridine derivatives and G-quadruplex DNA showed the importance of ring strain to the side chain of those ligand molecules. The rupture force analysis, hydrogen bonding interactions and the calculated free energies in MM-PBSA method suggest that ligand 3 is superior than that of BRACO-19. The synthesized ligand 3 and BRACO-19 showed the binding constants obtained from ITC measurements are 4 × 106 mol-1 and 2.6 × 106, which corroborates the computational findings.
Collapse
Affiliation(s)
- Mrinal Kanti Si
- Computation and Simulation Unit (Analytical and Environmental Science Division and Centralized Instrument Facility), CSIR-Central Salt & Marine Chemicals Research Institute, India; Academy of Scientific and Innovative Research, CSIR-CSMCRI, Bhavnagar, Gujarat 364 002, India
| | - Sumit Kumar Pramanik
- Computation and Simulation Unit (Analytical and Environmental Science Division and Centralized Instrument Facility), CSIR-Central Salt & Marine Chemicals Research Institute, India
| | - Bishwajit Ganguly
- Computation and Simulation Unit (Analytical and Environmental Science Division and Centralized Instrument Facility), CSIR-Central Salt & Marine Chemicals Research Institute, India; Academy of Scientific and Innovative Research, CSIR-CSMCRI, Bhavnagar, Gujarat 364 002, India.
| |
Collapse
|
34
|
Kilburg D, Gallicchio E. Analytical Model of the Free Energy of Alchemical Molecular Binding. J Chem Theory Comput 2018; 14:6183-6196. [DOI: 10.1021/acs.jctc.8b00967] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Denise Kilburg
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States
| | - Emilio Gallicchio
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States
| |
Collapse
|
35
|
Wu Q, Liao S, Yu G, Wu J, Mei W. High-order self-assembly of G-quadruplex DNA: Nano-network formation under the guidance of arene ruthenium(II) complexes. J Inorg Biochem 2018; 189:81-90. [PMID: 30243121 DOI: 10.1016/j.jinorgbio.2018.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/12/2018] [Accepted: 09/15/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Qiong Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Province Engineering Technology Center for Molecular Probe and Biomedical Imaging, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Siyan Liao
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 510180, China
| | - Gengnan Yu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Province Engineering Technology Center for Molecular Probe and Biomedical Imaging, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jian Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Province Engineering Technology Center for Molecular Probe and Biomedical Imaging, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wenjie Mei
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Province Engineering Technology Center for Molecular Probe and Biomedical Imaging, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
36
|
Rocca R, Moraca F, Costa G, Talarico C, Ortuso F, Da Ros S, Nicoletto G, Sissi C, Alcaro S, Artese A. In Silico Identification of Piperidinyl-amine Derivatives as Novel Dual Binders of Oncogene c-myc/c-Kit G-quadruplexes. ACS Med Chem Lett 2018; 9:848-853. [PMID: 30128079 DOI: 10.1021/acsmedchemlett.8b00275] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/10/2018] [Indexed: 12/15/2022] Open
Abstract
In the last years, it has been shown that the DNA secondary structure known as G-quadruplex is also involved in the regulation of oncogenes transcription, such as c-myc, c-Kit, KRAS, Bcl-2, VEGF, and PDGF. DNA G-quadruplexes, formed in the promoter region of these proto-oncogenes, are considered alternative anticancer targets since their stabilization causes a reduction of the related oncoprotein overexpression. In this study, a structure-based virtual screening toward the experimental DNA G-quadruplex structures of c-myc and c-Kit was performed by using Glide for the docking analysis of a commercial library of approximately 693 000 compounds. The best hits were submitted to thermodynamic and biophysical studies, highlighting the effective stabilization of both G-quadruplex oncogene promoter structures for three N-(4-piperidinylmethyl)amine derivatives, thus proposed as a new class of dual G-quadruplex binders.
Collapse
Affiliation(s)
- Roberta Rocca
- Dipartimento di Scienze della Salute, Università “Magna Graecia” di Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Federica Moraca
- Dipartimento di Scienze della Salute, Università “Magna Graecia” di Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Giosuè Costa
- Dipartimento di Scienze della Salute, Università “Magna Graecia” di Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Carmine Talarico
- Dipartimento di Scienze della Salute, Università “Magna Graecia” di Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Francesco Ortuso
- Dipartimento di Scienze della Salute, Università “Magna Graecia” di Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Silvia Da Ros
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Giulia Nicoletto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Claudia Sissi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università “Magna Graecia” di Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Anna Artese
- Dipartimento di Scienze della Salute, Università “Magna Graecia” di Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
37
|
|
38
|
Yuan X, Raniolo S, Limongelli V, Xu Y. The Molecular Mechanism Underlying Ligand Binding to the Membrane-Embedded Site of a G-Protein-Coupled Receptor. J Chem Theory Comput 2018; 14:2761-2770. [PMID: 29660291 DOI: 10.1021/acs.jctc.8b00046] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The crystal structure of P2Y1 receptor (P2Y1R), a class A GPCR, revealed a special extra-helical site for its antagonist, BPTU, which locates in-between the membrane and the protein. However, due to the limitation of crystallization experiments, the membrane was mimicked by use of detergents, and the information related to the binding of BPTU to the receptor in the membrane environment is rather limited. In the present work, we conducted a total of ∼7.5 μs all-atom simulations in explicit solvent using conventional molecular dynamics and multiple enhanced sampling methods, with models of BPTU and a POPC bilayer, both in the absence and presence of P2Y1R. Our simulations revealed that BPTU prefers partitioning into the interface of polar/lipophilic region of the lipid bilayer before associating with the receptor. Then, it interacts with the second extracellular loop of the receptor and reaches the binding site through the lipid-receptor interface. In addition, by use of funnel-metadynamics simulations which efficiently enhance the sampling of bound and unbound states, we provide a statistically accurate description of the underlying binding free energy landscape. The calculated absolute ligand-receptor binding affinity is in excellent agreement with the experimental data (Δ Gb0_theo = -11.5 kcal mol-1, Δ Gb0_exp= -11.7 kcal mol-1). Our study broadens the view of the current experimental/theoretical models and our understanding of the protein-ligand recognition mechanism in the lipid environment. The strategy used in this work is potentially applicable to investigate ligands association/dissociation with other membrane-embedded sites, allowing identification of compounds targeting membrane receptors of pharmacological interest.
Collapse
Affiliation(s)
- Xiaojing Yuan
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica , Chinese Academy of Sciences (CAS) , Shanghai 201203 , China.,School of Pharmacy , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Stefano Raniolo
- Faculty of Biomedical Sciences, Institute of Computational Science - Center for Computational Medicine in Cardiology , Università della Svizzera Italiana (USI) , CH-6900 Lugano , Switzerland
| | - Vittorio Limongelli
- Faculty of Biomedical Sciences, Institute of Computational Science - Center for Computational Medicine in Cardiology , Università della Svizzera Italiana (USI) , CH-6900 Lugano , Switzerland.,Department of Pharmacy , University of Naples "Federico II" , I-80131 Naples , Italy
| | - Yechun Xu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica , Chinese Academy of Sciences (CAS) , Shanghai 201203 , China.,School of Pharmacy , University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
39
|
Kilburg D, Gallicchio E. Assessment of a Single Decoupling Alchemical Approach for the Calculation of the Absolute Binding Free Energies of Protein-Peptide Complexes. Front Mol Biosci 2018; 5:22. [PMID: 29568737 PMCID: PMC5852065 DOI: 10.3389/fmolb.2018.00022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/21/2018] [Indexed: 01/24/2023] Open
Abstract
The computational modeling of peptide inhibitors to target protein-protein binding interfaces is growing in interest as these are often too large, too shallow, and too feature-less for conventional small molecule compounds. Here, we present a rare successful application of an alchemical binding free energy method for the calculation of converged absolute binding free energies of a series of protein-peptide complexes. Specifically, we report the binding free energies of a series of cyclic peptides derived from the LEDGF/p75 protein to the integrase receptor of the HIV1 virus. The simulations recapitulate the effect of mutations relative to the wild-type binding motif of LEDGF/p75, providing structural, energetic and dynamical interpretations of the observed trends. The equilibration and convergence of the calculations are carefully analyzed. Convergence is aided by the adoption of a single-decoupling alchemical approach with implicit solvation, which circumvents the convergence difficulties of conventional double-decoupling protocols. We hereby present the single-decoupling methodology and critically evaluate its advantages and limitations. We also discuss some of the challenges and potential pitfalls of binding free energy calculations for complex molecular systems which have generally limited their applicability to the quantitative study of protein-peptide binding equilibria.
Collapse
Affiliation(s)
- Denise Kilburg
- Department of Chemistry, Brooklyn College, Brooklyn, NY, United States.,Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York, NY, United States
| | - Emilio Gallicchio
- Department of Chemistry, Brooklyn College, Brooklyn, NY, United States.,Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York, NY, United States.,Ph.D. Program in Biochemistry, The Graduate Center, City University of New York, New York, NY, United States
| |
Collapse
|
40
|
Machireddy B, Kalra G, Jonnalagadda S, Ramanujachary K, Wu C. Probing the Binding Pathway of BRACO19 to a Parallel-Stranded Human Telomeric G-Quadruplex Using Molecular Dynamics Binding Simulation with AMBER DNA OL15 and Ligand GAFF2 Force Fields. J Chem Inf Model 2017; 57:2846-2864. [PMID: 29028340 DOI: 10.1021/acs.jcim.7b00287] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human telomeric DNA G-quadruplex has been identified as a good therapeutic target in cancer treatment. G-quadruplex-specific ligands that stabilize the G-quadruplex have great potential to be developed as anticancer agents. Two crystal structures (an apo form of parallel stranded human telomeric G-quadruplex and its holo form in complex with BRACO19, a potent G-quadruplex ligand) have been solved, yet the binding mechanism and pathway remain elusive. In this study, we simulated the binding of a free BRACO19 molecule to the apo form of the G-quadruplex using the latest AMBER DNA (OL15) and ligand (GAFF2) force fields. Three binding modes have been identified: top stacking, bottom intercalation, and groove binding. Bottom intercalation (51% of the population) resembles the bottom binding pose in the complex crystal structure very well. The groove binding mode is less stable than the bottom binding mode and is likely to be an intermediate state leading to the bottom binding mode. A flip-insertion mechanism was observed in the bottom intercalation mode, during which flipping of the bases outward makes space for ligand insertion, after which the bases flip back to increase the stability of the complex. In addition to reproducing the base-flipping behavior for some loop residues upon ligand binding, the direct alignment type of the ATAT-tetrad was observed in our simulations for the first time. These successes provide initial support for using this combination of the OL15 and GAFF2 force fields to study quadruplex-ligand interactions.
Collapse
Affiliation(s)
- Babitha Machireddy
- College of Science and Mathematics, Rowan University , Glassboro, New Jersey 08028, United States
| | - Gurmannat Kalra
- College of Science and Mathematics, Rowan University , Glassboro, New Jersey 08028, United States
| | - Subash Jonnalagadda
- College of Science and Mathematics, Rowan University , Glassboro, New Jersey 08028, United States
| | - Kandalam Ramanujachary
- College of Science and Mathematics, Rowan University , Glassboro, New Jersey 08028, United States
| | - Chun Wu
- College of Science and Mathematics, Rowan University , Glassboro, New Jersey 08028, United States
| |
Collapse
|
41
|
Grasso G, Deriu MA, Patrulea V, Borchard G, Möller M, Danani A. Free energy landscape of siRNA-polycation complexation: Elucidating the effect of molecular geometry, polymer flexibility, and charge neutralization. PLoS One 2017; 12:e0186816. [PMID: 29088239 PMCID: PMC5663398 DOI: 10.1371/journal.pone.0186816] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/09/2017] [Indexed: 12/16/2022] Open
Abstract
The success of medical threatments with DNA and silencing interference RNA is strongly related to the design of efficient delivery technologies. Cationic polymers represent an attractive strategy to serve as nucleic-acid carriers with the envisioned advantages of efficient complexation, low cost, ease of production, well-defined size, and low polydispersity index. However, the balance between efficacy and toxicity (safety) of these polymers is a challenge and in need of improvement. With the aim of designing more effective polycationic-based gene carriers, many parameters such as carrier morphology, size, molecular weight, surface chemistry, and flexibility/rigidity ratio need to be taken into consideration. In the present work, the binding mechanism of three cationic polymers (polyarginine, polylysine and polyethyleneimine) to a model siRNA target is computationally investigated at the atomistic level. In order to better understand the polycationic carrier-siRNA interactions, replica exchange molecular dynamic simulations were carried out to provide an exhaustive exploration of all the possible binding sites, taking fully into account the siRNA flexibility together with the presence of explicit solvent and ions. Moreover, well-tempered metadynamics simulations were employed to elucidate how molecular geometry, polycation flexibility, and charge neutralization affect the siRNA-polycations free energy landscape in term of low-energy binding modes and unbinding free energy barriers. Significant differences among polymer binding modes have been detected, revealing the advantageous binding properties of polyarginine and polylysine compared to polyethyleneimine.
Collapse
Affiliation(s)
- Gianvito Grasso
- Istituto Dalle Molle di Studi Sull'Intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale della Svizzera Italiana (SUPSI), Università della Svizzera Italiana (USI), Centro Galleria 2, Manno, Switzerland
| | - Marco Agostino Deriu
- Istituto Dalle Molle di Studi Sull'Intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale della Svizzera Italiana (SUPSI), Università della Svizzera Italiana (USI), Centro Galleria 2, Manno, Switzerland
| | - Viorica Patrulea
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, Geneva, Switzerland
| | - Gerrit Borchard
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, Geneva, Switzerland
| | - Michael Möller
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, Geneva, Switzerland
| | - Andrea Danani
- Istituto Dalle Molle di Studi Sull'Intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale della Svizzera Italiana (SUPSI), Università della Svizzera Italiana (USI), Centro Galleria 2, Manno, Switzerland
| |
Collapse
|
42
|
Shen Z, Mulholland KA, Zheng Y, Wu C. Binding of anticancer drug daunomycin to a TGGGGT G-quadruplex DNA probed by all-atom molecular dynamics simulations: additional pure groove binding mode and implications on designing more selective G-quadruplex ligands. J Mol Model 2017; 23:256. [PMID: 28785893 DOI: 10.1007/s00894-017-3417-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022]
Abstract
DNA G-quadruplex structures are emerging cancer-specific targets for chemotherapeutics. Ligands that bind to and stabilize DNA G-quadruplexes have the potential to be anti-cancer drugs. Lack of binding selectivity to DNA G-quadruplex over DNA duplex remains a major challenge when attempting to develop G-quadruplex ligands into successful anti-cancer drugs. Thorough understanding of the binding nature of existing non-selective ligands that bind to both DNA quadruplex and DNA duplex will help to address this challenge. Daunomycin and doxorubicin, two commonly used anticancer drugs, are examples of non-selective DNA ligands. In this study, we extended our early all-atom binding simulation studies between doxorubicin and a DNA duplex (d(CGATCG)2) to probe the binding between daunomycin and a parallel DNA quadruplex (d(TGGGGT)4) and DNA duplex. In addition to the end stacking mode, which mimics the mode in the crystal structure, a pure groove binding mode was observed in our free binding simulations. The dynamic and energetic properties of these two binding modes are thoroughly examined, and a detailed comparison is made between DNA quadruplex binding modes and DNA duplex binding modes. Implications on the design of more selective DNA quadruplex ligands are also discussed. Graphical abstract Top stacking and groov binding modes from the MD simulations.
Collapse
Affiliation(s)
- Zhanhang Shen
- School of Physics, Shandong University, Jinan, 250100, China
| | - Kelly A Mulholland
- College of Science and Mathematics, Rowan University, Glassboro, NJ, 08028, USA
| | - Yujun Zheng
- School of Physics, Shandong University, Jinan, 250100, China.
| | - Chun Wu
- College of Science and Mathematics, Rowan University, Glassboro, NJ, 08028, USA.
| |
Collapse
|
43
|
Kerkour A, Marquevielle J, Ivashchenko S, Yatsunyk LA, Mergny JL, Salgado GF. High-resolution three-dimensional NMR structure of the KRAS proto-oncogene promoter reveals key features of a G-quadruplex involved in transcriptional regulation. J Biol Chem 2017; 292:8082-8091. [PMID: 28330874 DOI: 10.1074/jbc.m117.781906] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/15/2017] [Indexed: 12/13/2022] Open
Abstract
Non-canonical base pairing within guanine-rich DNA and RNA sequences can produce G-quartets, whose stacking leads to the formation of a G-quadruplex (G4). G4s can coexist with canonical duplex DNA in the human genome and have been suggested to suppress gene transcription, and much attention has therefore focused on studying G4s in promotor regions of disease-related genes. For example, the human KRAS proto-oncogene contains a nuclease-hypersensitive element located upstream of the major transcription start site. The KRAS nuclease-hypersensitive element (NHE) region contains a G-rich element (22RT; 5'-AGGGCGGTGTGGGAATAGGGAA-3') and encompasses a Myc-associated zinc finger-binding site that regulates KRAS transcription. The NEH region therefore has been proposed as a target for new drugs that control KRAS transcription, which requires detailed knowledge of the NHE structure. In this study, we report a high-resolution NMR structure of the G-rich element within the KRAS NHE. We found that the G-rich element forms a parallel structure with three G-quartets connected by a four-nucleotide loop and two short one-nucleotide double-chain reversal loops. In addition, a thymine bulge is found between G8 and G9. The loops of different lengths and the presence of a bulge between the G-quartets are structural elements that potentially can be targeted by small chemical ligands that would further stabilize the structure and interfere or block transcriptional regulators such as Myc-associated zinc finger from accessing their binding sites on the KRAS promoter. In conclusion, our work suggests a possible new route for the development of anticancer agents that could suppress KRAS expression.
Collapse
Affiliation(s)
- Abdelaziz Kerkour
- From the Université Bordeaux, INSERM, CNRS, ARNA laboratory, European Institute of Chemistry and Biology, U1212, UMR 5320, 2 Rue Robert Escarpit, 33000 Pessac, France and
| | - Julien Marquevielle
- From the Université Bordeaux, INSERM, CNRS, ARNA laboratory, European Institute of Chemistry and Biology, U1212, UMR 5320, 2 Rue Robert Escarpit, 33000 Pessac, France and
| | - Stefaniia Ivashchenko
- From the Université Bordeaux, INSERM, CNRS, ARNA laboratory, European Institute of Chemistry and Biology, U1212, UMR 5320, 2 Rue Robert Escarpit, 33000 Pessac, France and
| | - Liliya A Yatsunyk
- From the Université Bordeaux, INSERM, CNRS, ARNA laboratory, European Institute of Chemistry and Biology, U1212, UMR 5320, 2 Rue Robert Escarpit, 33000 Pessac, France and.,Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081
| | - Jean-Louis Mergny
- From the Université Bordeaux, INSERM, CNRS, ARNA laboratory, European Institute of Chemistry and Biology, U1212, UMR 5320, 2 Rue Robert Escarpit, 33000 Pessac, France and
| | - Gilmar F Salgado
- From the Université Bordeaux, INSERM, CNRS, ARNA laboratory, European Institute of Chemistry and Biology, U1212, UMR 5320, 2 Rue Robert Escarpit, 33000 Pessac, France and
| |
Collapse
|
44
|
Dolinnaya NG, Ogloblina AM, Yakubovskaya MG. Structure, Properties, and Biological Relevance of the DNA and RNA G-Quadruplexes: Overview 50 Years after Their Discovery. BIOCHEMISTRY (MOSCOW) 2017; 81:1602-1649. [PMID: 28260487 PMCID: PMC7087716 DOI: 10.1134/s0006297916130034] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
G-quadruplexes (G4s), which are known to have important roles in regulation of key biological processes in both normal and pathological cells, are the most actively studied non-canonical structures of nucleic acids. In this review, we summarize the results of studies published in recent years that change significantly scientific views on various aspects of our understanding of quadruplexes. Modern notions on the polymorphism of DNA quadruplexes, on factors affecting thermodynamics and kinetics of G4 folding–unfolding, on structural organization of multiquadruplex systems, and on conformational features of RNA G4s and hybrid DNA–RNA G4s are discussed. Here we report the data on location of G4 sequence motifs in the genomes of eukaryotes, bacteria, and viruses, characterize G4-specific small-molecule ligands and proteins, as well as the mechanisms of their interactions with quadruplexes. New information on the structure and stability of G4s in telomeric DNA and oncogene promoters is discussed as well as proof being provided on the occurrence of G-quadruplexes in cells. Prominence is given to novel experimental techniques (single molecule manipulations, optical and magnetic tweezers, original chemical approaches, G4 detection in situ, in-cell NMR spectroscopy) that facilitate breakthroughs in the investigation of the structure and functions of G-quadruplexes.
Collapse
Affiliation(s)
- N G Dolinnaya
- Lomonosov Moscow State University, Department of Chemistry, Moscow, 119991, Russia.
| | | | | |
Collapse
|
45
|
Ligand binding to telomeric G-quadruplex DNA investigated by funnel-metadynamics simulations. Proc Natl Acad Sci U S A 2017; 114:E2136-E2145. [PMID: 28232513 PMCID: PMC5358390 DOI: 10.1073/pnas.1612627114] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A thorough characterization of the binding interaction between a drug and its molecular target is fundamental to successfully lead drug design. We demonstrate that this characterization is also possible using the recently developed method of funnel-metadynamics (FM), here applied to investigate the binding of berberine to DNA G-quadruplex. We computed a quantitatively well-characterized free-energy landscape that allows identifying two low-energy ligand binding modes and the presence of higher energy prebinding states. We validated the accuracy of our calculations by steady-state fluorescence experiments. The good agreement between the theoretical and experimental binding free-energy value demonstrates that FM is a most reliable method to study ligand/DNA interaction. G-quadruplexes (G4s) are higher-order DNA structures typically present at promoter regions of genes and telomeres. Here, the G4 formation decreases the replicative DNA at each cell cycle, finally leading to apoptosis. The ability to control this mitotic clock, particularly in cancer cells, is fascinating and passes through a rational understanding of the ligand/G4 interaction. We demonstrate that an accurate description of the ligand/G4 binding mechanism is possible using an innovative free-energy method called funnel-metadynamics (FM), which we have recently developed to investigate ligand/protein interaction. Using FM simulations, we have elucidated the binding mechanism of the anticancer alkaloid berberine to the human telomeric G4 (d[AG3(T2AG3)3]), computing also the binding free-energy landscape. Two ligand binding modes have been identified as the lowest energy states. Furthermore, we have found prebinding sites, which are preparatory to reach the final binding mode. In our simulations, the ions and the water molecules have been explicitly represented and the energetic contribution of the solvent during ligand binding evaluated. Our theoretical results provide an accurate estimate of the absolute ligand/DNA binding free energy (ΔGb0 = −10.3 ± 0.5 kcal/mol) that we validated through steady-state fluorescence binding assays. The good agreement between the theoretical and experimental value demonstrates that FM is a most powerful method to investigate ligand/DNA interaction and can be a useful tool for the rational design also of G4 ligands.
Collapse
|
46
|
Jana J, Mondal S, Bhattacharjee P, Sengupta P, Roychowdhury T, Saha P, Kundu P, Chatterjee S. Chelerythrine down regulates expression of VEGFA, BCL2 and KRAS by arresting G-Quadruplex structures at their promoter regions. Sci Rep 2017; 7:40706. [PMID: 28102286 PMCID: PMC5244364 DOI: 10.1038/srep40706] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/12/2016] [Indexed: 12/22/2022] Open
Abstract
A putative anticancer plant alkaloid, Chelerythrine binds to G-quadruplexes at promoters of VEGFA, BCL2 and KRAS genes and down regulates their expression. The association of Chelerythrine to G-quadruplex at the promoters of these oncogenes were monitored using UV absorption spectroscopy, fluorescence anisotropy, circular dichroism spectroscopy, CD melting, isothermal titration calorimetry, molecular dynamics simulation and quantitative RT-PCR technique. The pronounced hypochromism accompanied by red shifts in UV absorption spectroscopy in conjunction with ethidium bromide displacement assay indicates end stacking mode of interaction of Chelerythrine with the corresponding G-quadruplex structures. An increase in fluorescence anisotropy and CD melting temperature of Chelerythrine-quadruplex complex revealed the formation of stable Chelerythrine-quadruplex complex. Isothermal titration calorimetry data confirmed that Chelerythrine-quadruplex complex formation is thermodynamically favourable. Results of quantative RT-PCR experiment in combination with luciferase assay showed that Chelerythrine treatment to MCF7 breast cancer cells effectively down regulated transcript level of all three genes, suggesting that Chelerythrine efficiently binds to in cellulo quadruplex motifs. MD simulation provides the molecular picture showing interaction between Chelerythrine and G-quadruplex. Binding of Chelerythrine with BCL2, VEGFA and KRAS genes involved in evasion, angiogenesis and self sufficiency of cancer cells provides a new insight for the development of future therapeutics against cancer.
Collapse
Affiliation(s)
- Jagannath Jana
- Department of Biophysics, Bose Institute, Kolkata, WB, India
| | - Soma Mondal
- Department of Biophysics, Bose Institute, Kolkata, WB, India
| | | | | | | | - Pranay Saha
- Department of Biophysics, Bose Institute, Kolkata, WB, India
| | - Pallob Kundu
- Division of Plant Biology, Bose Institute, Kolkata, WB, India
| | | |
Collapse
|
47
|
Gao Y, Guang T, Ye X. Sedimentation velocity analysis of TMPyP4-induced dimer formation of human telomeric G-quadruplex. RSC Adv 2017. [DOI: 10.1039/c7ra07758k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Analytical ultracentrifugation sedimentation velocity (AUC-SV) was used to study the interactions between TMPyP4 and AGGG(TTAGGG)3 (Tel22) and the TMPyP4-induced dimer formation of G-quadruplex.
Collapse
Affiliation(s)
- Yating Gao
- Hefei National Laboratory for Physical Sciences at the Microscale
- Department of Chemical Physics
- University of Science and Technology of China
- Hefei
- China
| | - Tianlei Guang
- Hefei National Laboratory for Physical Sciences at the Microscale
- Department of Chemical Physics
- University of Science and Technology of China
- Hefei
- China
| | - Xiaodong Ye
- Hefei National Laboratory for Physical Sciences at the Microscale
- Department of Chemical Physics
- University of Science and Technology of China
- Hefei
- China
| |
Collapse
|
48
|
Takahashi S, Bhowmik S, Sugimoto N. Volumetric analysis of formation of the complex of G-quadruplex DNA with hemin using high pressure. J Inorg Biochem 2017; 166:199-207. [DOI: 10.1016/j.jinorgbio.2016.08.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 12/28/2022]
|
49
|
Kiran KG, Thandeeswaran M, Ayub Nawaz KA, Easwaran M, Jayagopi KK, Ebrahimi L, Palaniswamy M, Mahendran R, Angayarkanni J. Quinazoline derivative from indigenous isolate, Nocardiopsis alba inhibits human telomerase enzyme. J Appl Microbiol 2016; 121:1637-1652. [PMID: 27567126 DOI: 10.1111/jam.13281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 07/06/2016] [Accepted: 08/08/2016] [Indexed: 01/30/2023]
Abstract
AIM Aim of this study was isolation and screening of various secondary metabolites produced by indigenous isolates of soil Actinomycetes for human telomerase inhibitory activity. METHODS AND RESULTS Extracellular extract from culture suspension of various soil Actinomycetes species were tested for telomerase inhibitory activity. The organism which produced telomerase inhibitor was identified by 16S rRNA gene sequencing. The active fraction was purified by HPLC and analysed by GC-MS to identify the compound. In GC-MS analysis, the active principle was identified as 3-[4'-(2″-chlorophenyl)-2'-thiazolyl]-2,4-dioxo-1,2,3,4-tetrahydro quinazoline. The G-quadruplex stabilizing ability of the compound was checked by molecular docking and simulation experiments with G-quadruplex model (PDB ID-1L1H). The selective binding ability of the compound with G-quadruplex over Dickerson-Drew dodecamer DNA structures showed that the compound possess high selectivity towards G-quadruplex. CONCLUSIONS Quinazoline derivative isolated from an indigenous strain of Nocardiopsis alba inhibited telomerase. Molecular docking and simulation studies predicted that this compound is a strong stabilizer of G-quadruplex conformation. It also showed a preferable binding to G-quadruplex DNA over normal DNA duplex. SIGNIFICANCE AND IMPACT OF THE STUDY This particular compound can be suggested as a suitable compound for developing a future anticancer drug. The selectivity towards G-quadruplex over normal DNA duplex gives a clue that it is likely to show lower cytotoxicity in normal cells.
Collapse
Affiliation(s)
- K G Kiran
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| | - M Thandeeswaran
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| | - K A Ayub Nawaz
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| | - M Easwaran
- Department of Bioinformatics, Bharathiar University, Coimbatore, India
| | - K K Jayagopi
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| | - L Ebrahimi
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| | - M Palaniswamy
- School of Life Science, Karpagam University, Coimbatore, India
| | - R Mahendran
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| | - J Angayarkanni
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| |
Collapse
|
50
|
Bhattacharjee S, Chakraborty S, Sengupta PK, Bhowmik S. Exploring the Interactions of the Dietary Plant Flavonoids Fisetin and Naringenin with G-Quadruplex and Duplex DNA, Showing Contrasting Binding Behavior: Spectroscopic and Molecular Modeling Approaches. J Phys Chem B 2016; 120:8942-52. [DOI: 10.1021/acs.jpcb.6b06357] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Snehasish Bhattacharjee
- Department of Biophysics, Molecular Biology & Bioinformatics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009, India
| | - Sandipan Chakraborty
- Department
of Microbiology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India
| | - Pradeep K. Sengupta
- Department of Biophysics, Molecular Biology & Bioinformatics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009, India
| | - Sudipta Bhowmik
- Department of Biophysics, Molecular Biology & Bioinformatics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009, India
| |
Collapse
|