1
|
Cervantes-Salguero K, Kadrmas M, Ward BM, Lysne D, Wolf A, Piantanida L, Pascual G, Knowlton WB. Minimizing Structural Heterogeneity in DNA Self-Assembled Dye Templating via DNA Origami-Tuned Conformations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10195-10207. [PMID: 38690801 PMCID: PMC11100016 DOI: 10.1021/acs.langmuir.4c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
With recent advances in DNA-templated dye aggregation for leveraging and engineering molecular excitons, a need exists for minimizing structural heterogeneity. Holliday Junction complexes (HJ) are commonly used to covalently template dye aggregates on their core; however, the global conformation of HJ is detrimentally dynamic. Here, the global conformation of the HJ is selectively tuned by restricting its position and orientation by using a sheet-like DNA origami construct (DOC) physisorbed on glass. The HJ arms are fixed with four different designed interduplex angles (IDAs). Atomic force microscopy confirmed that the HJs are bound to the surface of DOC with tuned IDAs. Dye orientation distributions were determined by combining dipole imaging and super-resolution microscopy. All IDAs led to dye orientations having dispersed distributions along planes perpendicular to the HJ plane, suggesting that stacking occurred between the dye and the neighboring DNA bases. The dye-base stacking interpretation was supported by increasing the size of the core cavity. The narrowest IDA minimizes structural heterogeneity and suggests dye intercalation. A strong correlation is found between the IDA and the orientation of the dye along the HJ plane. These results show that the HJ imposes restrictions on the dye and that the dye-DNA interactions are always present regardless of global conformation. The implications of our results are discussed for the scalability of dye aggregates using DNA self-assembly. Our methodology provides an avenue for the solid-supported single-molecule characterization of molecular assemblies templated on biomolecules─such as DNA and protein templates involved in light-harvesting and catalysis─with tuned conformations and restricted in position and orientation.
Collapse
Affiliation(s)
- Keitel Cervantes-Salguero
- Micron
School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Madison Kadrmas
- Micron
School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Brett M. Ward
- Micron
School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Drew Lysne
- Micron
School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Amanda Wolf
- Biomolecular
Sciences Graduate Programs, Boise State
University, Boise, Idaho 83725, United States
| | - Luca Piantanida
- Micron
School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Gissela Pascual
- Micron
School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
| | - William B. Knowlton
- Micron
School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
- Department
of Electrical and Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| |
Collapse
|
2
|
Ahlqvist J, Tymecka-Mulik J, Burkiewicz K, Wallenberg R, Jasilionis A, Karlsson EN, Dabrowski S. DNA digestion and formation of DNA-network structures with Holliday junction-resolving enzyme Hjc_15-6 in conjunction with polymerase reactions. J Biotechnol 2024; 385:23-29. [PMID: 38408644 DOI: 10.1016/j.jbiotec.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 02/11/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
The recently identified novel Holliday junction-resolving enzyme, termed Hjc_15-6, activity investigation results imply DNA cleavage by Hjc_15-6 in a manner that potentially enhances the molecular self-assembly that may be exploited for creating DNA-networks and nanostructures. The study also demonstrates Pwo DNA polymerase acting in combination with Hjc_15-6 capability to produce large amounts of DNA that transforms into large DNA-network structures even without DNA template and primers. Furthermore, it is demonstrated that Hjc_15-6 prefers Holliday junction oligonucleotides as compared to Y-shaped oligonucleotides as well as efficiently cleaves typical branched products from isothermal DNA amplification of both linear and circular DNA templates amplified by phi29-like DNA polymerase. The assembly of large DNA network structures was observed in real time, by transmission electron microscopy, on negative stained grids that were freshly prepared, and also on the same grids after incubation for 4 days under constant cooling. Hence, Hjc_15-6 is a promising molecular tool for efficient production of various DNA origamis that may be implemented for a wide range of applications such as within medical biomaterials, catalytic materials, molecular devices and biosensors.
Collapse
Affiliation(s)
- Josefin Ahlqvist
- Division of Biotechnology, Department of Chemistry, Lund University, PO Box 124, Lund SE-221 00, Sweden.
| | | | | | - Reine Wallenberg
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, PO Box 124, Lund SE-221 00, Sweden
| | - Andrius Jasilionis
- Division of Biotechnology, Department of Chemistry, Lund University, PO Box 124, Lund SE-221 00, Sweden
| | - Eva Nordberg Karlsson
- Division of Biotechnology, Department of Chemistry, Lund University, PO Box 124, Lund SE-221 00, Sweden
| | | |
Collapse
|
3
|
Carrasco B, Torres R, Moreno-del Álamo M, Ramos C, Ayora S, Alonso JC. Processing of stalled replication forks in Bacillus subtilis. FEMS Microbiol Rev 2024; 48:fuad065. [PMID: 38052445 PMCID: PMC10804225 DOI: 10.1093/femsre/fuad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/07/2023] Open
Abstract
Accurate DNA replication and transcription elongation are crucial for preventing the accumulation of unreplicated DNA and genomic instability. Cells have evolved multiple mechanisms to deal with impaired replication fork progression, challenged by both intrinsic and extrinsic impediments. The bacterium Bacillus subtilis, which adopts multiple forms of differentiation and development, serves as an excellent model system for studying the pathways required to cope with replication stress to preserve genomic stability. This review focuses on the genetics, single molecule choreography, and biochemical properties of the proteins that act to circumvent the replicative arrest allowing the resumption of DNA synthesis. The RecA recombinase, its mediators (RecO, RecR, and RadA/Sms) and modulators (RecF, RecX, RarA, RecU, RecD2, and PcrA), repair licensing (DisA), fork remodelers (RuvAB, RecG, RecD2, RadA/Sms, and PriA), Holliday junction resolvase (RecU), nucleases (RnhC and DinG), and translesion synthesis DNA polymerases (PolY1 and PolY2) are key functions required to overcome a replication stress, provided that the fork does not collapse.
Collapse
Affiliation(s)
- Begoña Carrasco
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - Rubén Torres
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - María Moreno-del Álamo
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - Cristina Ramos
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| |
Collapse
|
4
|
Dubrovin EV. Atomic force microscopy-based approaches for single-molecule investigation of nucleic acid- protein complexes. Biophys Rev 2023; 15:1015-1033. [PMID: 37974971 PMCID: PMC10643717 DOI: 10.1007/s12551-023-01111-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/07/2023] [Indexed: 11/19/2023] Open
Abstract
The interaction of nucleic acids with proteins plays an important role in many fundamental biological processes in living cells, including replication, transcription, and translation. Therefore, understanding nucleic acid-protein interaction is of high relevance in many areas of biology, medicine and technology. During almost four decades of its existence atomic force microscopy (AFM) accumulated a significant experience in investigation of biological molecules at a single-molecule level. AFM has become a powerful tool of molecular biology and biophysics providing unique information about properties, structure, and functioning of biomolecules. Despite a great variety of nucleic acid-protein systems under AFM investigations, there are a number of typical approaches for such studies. This review is devoted to the analysis of the typical AFM-based approaches of investigation of DNA (RNA)-protein complexes with a major focus on transcription studies. The basic strategies of AFM analysis of nucleic acid-protein complexes including investigation of the products of DNA-protein reactions and real-time dynamics of DNA-protein interaction are categorized and described by the example of the most relevant research studies. The described approaches and protocols have many universal features and, therefore, are applicable for future AFM studies of various nucleic acid-protein systems.
Collapse
Affiliation(s)
- Evgeniy V. Dubrovin
- Lomonosov Moscow State University, Leninskie Gory 1 Bld. 2, 119991 Moscow, Russian Federation
- Moscow Institute of Physics and Technology, Institutskiy Per. 9, Dolgoprudny, 141700 Russian Federation
- Sirius University of Science and Technology, Olimpiyskiy Ave 1, Township Sirius, Krasnodar Region, 354349 Russia
| |
Collapse
|
5
|
Gándara C, Torres R, Carrasco B, Ayora S, Alonso JC. DisA Restrains the Processing and Cleavage of Reversed Replication Forks by the RuvAB-RecU Resolvasome. Int J Mol Sci 2021; 22:11323. [PMID: 34768753 PMCID: PMC8583203 DOI: 10.3390/ijms222111323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/04/2021] [Accepted: 10/16/2021] [Indexed: 11/17/2022] Open
Abstract
DNA lesions that impede fork progression cause replisome stalling and threaten genome stability. Bacillus subtilis RecA, at a lesion-containing gap, interacts with and facilitates DisA pausing at these branched intermediates. Paused DisA suppresses its synthesis of the essential c-di-AMP messenger. The RuvAB-RecU resolvasome branch migrates and resolves formed Holliday junctions (HJ). We show that DisA prevents DNA degradation. DisA, which interacts with RuvB, binds branched structures, and reduces the RuvAB DNA-dependent ATPase activity. DisA pre-bound to HJ DNA limits RuvAB and RecU activities, but such inhibition does not occur if the RuvAB- or RecU-HJ DNA complexes are pre-formed. RuvAB or RecU pre-bound to HJ DNA strongly inhibits DisA-mediated synthesis of c-di-AMP, and indirectly blocks cell proliferation. We propose that DisA limits RuvAB-mediated fork remodeling and RecU-mediated HJ cleavage to provide time for damage removal and replication restart in order to preserve genome integrity.
Collapse
Affiliation(s)
| | | | | | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin St, 28049 Madrid, Spain; (C.G.); (R.T.); (B.C.)
| | - Juan C. Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin St, 28049 Madrid, Spain; (C.G.); (R.T.); (B.C.)
| |
Collapse
|
6
|
Xin Y, Zargariantabrizi AA, Grundmeier G, Keller A. Magnesium-Free Immobilization of DNA Origami Nanostructures at Mica Surfaces for Atomic Force Microscopy. Molecules 2021; 26:4798. [PMID: 34443385 PMCID: PMC8399889 DOI: 10.3390/molecules26164798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023] Open
Abstract
DNA origami nanostructures (DONs) are promising substrates for the single-molecule investigation of biomolecular reactions and dynamics by in situ atomic force microscopy (AFM). For this, they are typically immobilized on mica substrates by adding millimolar concentrations of Mg2+ ions to the sample solution, which enable the adsorption of the negatively charged DONs at the like-charged mica surface. These non-physiological Mg2+ concentrations, however, present a serious limitation in such experiments as they may interfere with the reactions and processes under investigation. Therefore, we here evaluate three approaches to efficiently immobilize DONs at mica surfaces under essentially Mg2+-free conditions. These approaches rely on the pre-adsorption of different multivalent cations, i.e., Ni2+, poly-l-lysine (PLL), and spermidine (Spdn). DON adsorption is studied in phosphate-buffered saline (PBS) and pure water. In general, Ni2+ shows the worst performance with heavily deformed DONs. For 2D DON triangles, adsorption at PLL- and in particular Spdn-modified mica may outperform even Mg2+-mediated adsorption in terms of surface coverage, depending on the employed solution. For 3D six-helix bundles, less pronounced differences between the individual strategies are observed. Our results provide some general guidance for the immobilization of DONs at mica surfaces under Mg2+-free conditions and may aid future in situ AFM studies.
Collapse
Affiliation(s)
| | | | | | - Adrian Keller
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany; (Y.X.); (A.A.Z.); (G.G.)
| |
Collapse
|
7
|
Abstract
DNA origami enables the bottom-up construction of chemically addressable, nanoscale objects with user-defined shapes and tailored functionalities. As such, not only can DNA origami objects be used to improve existing experimental methods in biophysics, but they also open up completely new avenues of exploration. In this review, we discuss basic biophysical concepts that are relevant for prospective DNA origami users. We summarize biochemical strategies for interfacing DNA origami with biomolecules of interest. We describe various applications of DNA origami, emphasizing the added value or new biophysical insights that can be generated: rulers and positioning devices, force measurement and force application devices, alignment supports for structural analysis for biomolecules in cryogenic electron microscopy and nuclear magnetic resonance, probes for manipulating and interacting with lipid membranes, and programmable nanopores. We conclude with some thoughts on so-far little explored opportunities for using DNA origami in more complex environments such as the cell or even organisms.
Collapse
Affiliation(s)
- Wouter Engelen
- Physik Department, Technische Universität München, 85748 Garching bei München, Germany;
| | - Hendrik Dietz
- Physik Department, Technische Universität München, 85748 Garching bei München, Germany;
| |
Collapse
|
8
|
Romero H, Serrano E, Hernández-Tamayo R, Carrasco B, Cárdenas PP, Ayora S, Graumann PL, Alonso JC. Bacillus subtilis RarA Acts as a Positive RecA Accessory Protein. Front Microbiol 2020; 11:92. [PMID: 32117122 PMCID: PMC7031210 DOI: 10.3389/fmicb.2020.00092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/16/2020] [Indexed: 01/15/2023] Open
Abstract
Ubiquitous RarA AAA+ ATPases play crucial roles in the cellular response to blocked replication forks in pro- and eukaryotes. Here, we provide evidence that absence of RarA reduced the viability of ΔrecA, ΔrecO, and recF15 cells during unperturbed growth. The rarA gene was epistatic to recO and recF genes in response to H2O2- or MMS-induced DNA damage. Conversely, the inactivation of rarA partially suppressed the HR defect of mutants lacking end-resection (ΔaddAB, ΔrecJ, ΔrecQ, ΔrecS) or branch migration (ΔruvAB, ΔrecG, ΔradA) activity. RarA contributes to RecA thread formation, that are thought to be the active forms of RecA during homology search. The absence of RarA reduced RecA accumulation, and the formation of visible RecA threads in vivo upon DNA damage. When ΔrarA was combined with mutations in genuine RecA accessory genes, RecA accumulation was further reduced in ΔrarA ΔrecU and ΔrarA ΔrecX double mutant cells, and was blocked in ΔrarA recF15 cells. These results suggest that RarA contributes to the assembly of RecA nucleoprotein filaments onto single-stranded DNA, and possibly antagonizes RecA filament disassembly.
Collapse
Affiliation(s)
- Hector Romero
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Marburg, Germany
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Ester Serrano
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Rogelio Hernández-Tamayo
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Marburg, Germany
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Begoña Carrasco
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Paula P. Cárdenas
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Peter L. Graumann
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Marburg, Germany
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Juan C. Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| |
Collapse
|
9
|
Lee AJ, Wälti C. DNA nanostructures: A versatile lab-bench for interrogating biological reactions. Comput Struct Biotechnol J 2019; 17:832-842. [PMID: 31316727 PMCID: PMC6611922 DOI: 10.1016/j.csbj.2019.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 01/10/2023] Open
Abstract
At its inception DNA nanotechnology was conceived as a tool for spatially arranging biological molecules in a programmable and deterministic way to improve their interrogation. To date, DNA nanotechnology has provided a versatile toolset of nanostructures and functional devices to augment traditional single molecule investigation approaches - including atomic force microscopy - by isolating, arranging and contextualising biological systems at the single molecule level. This review explores the state-of-the-art of DNA-based nanoscale tools employed to enhance and tune the interrogation of biological reactions, the study of spatially distributed pathways, the visualisation of enzyme interactions, the application and detection of forces to biological systems, and biosensing platforms.
Collapse
Affiliation(s)
- Andrew J. Lee
- Bioelectronics, The Pollard Institute, School of Electronic & Electrical Engineering, University of Leeds, LS2 9JT, United Kingdom
| | | |
Collapse
|
10
|
Torres R, Romero H, Rodríguez-Cerrato V, Alonso JC. Interplay between Bacillus subtilis RecD2 and the RecG or RuvAB helicase in recombinational repair. DNA Repair (Amst) 2017; 55:40-46. [DOI: 10.1016/j.dnarep.2017.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 10/24/2022]
|
11
|
Hong F, Zhang F, Liu Y, Yan H. DNA Origami: Scaffolds for Creating Higher Order Structures. Chem Rev 2017; 117:12584-12640. [DOI: 10.1021/acs.chemrev.6b00825] [Citation(s) in RCA: 645] [Impact Index Per Article: 80.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Fan Hong
- The Biodesign Institute and
School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Fei Zhang
- The Biodesign Institute and
School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Yan Liu
- The Biodesign Institute and
School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Hao Yan
- The Biodesign Institute and
School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
12
|
Activity and in vivo dynamics of Bacillus subtilis DisA are affected by RadA/Sms and by Holliday junction-processing proteins. DNA Repair (Amst) 2017; 55:17-30. [PMID: 28511132 DOI: 10.1016/j.dnarep.2017.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 12/18/2022]
Abstract
Bacillus subtilis c-di-AMP synthase DisA and RecA-related RadA/Sms are involved in the repair of DNA damage in exponentially growing cells. We provide genetic evidence that DisA or RadA/Sms is epistatic to the branch migration translocase (BMT) RecG and the Holliday junction (HJ) resolvase RecU in response to DNA damage. We provide genetic evidence damage. Functional DisA-YFP formed dynamic foci in exponentially growing cells, which moved through the nucleoids at a speed compatible with a DNA-scanning mode. DisA formed more static structures in the absence of RecU or RecG than in wild type cells, while dynamic foci were still observed in cells lacking the BMT RuvAB. Purified DisA synthesizes c-di-AMP, but interaction with RadA/Sms or with HJ DNA decreases DisA-mediated c-di-AMP synthesis. RadA/Sms-YFP also formed dynamic foci in growing cells, but the foci moved throughout the cells rather than just on the nucleoids, and co-localized rarely with DisA-YFP foci, suggesting that RadA/Sms and DisA interact only transiently in unperturbed conditions. Our data suggest a model in which DisA moving along dsDNA indicates absence of DNA damage/replication stress via normal c-di-AMP levels, while interaction with HJ DNA/halted forks leads to reduced c-di-AMP levels and an ensuing block in cell proliferation. RadA/Sms may be involved in modulating DisA activities.
Collapse
|
13
|
Kamagata K, Murata A, Itoh Y, Takahashi S. Characterization of facilitated diffusion of tumor suppressor p53 along DNA using single-molecule fluorescence imaging. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2017. [DOI: 10.1016/j.jphotochemrev.2017.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
14
|
Takeuchi Y, Endo M, Suzuki Y, Hidaka K, Durand G, Dausse E, Toulmé JJ, Sugiyama H. Single-molecule observations of RNA-RNA kissing interactions in a DNA nanostructure. Biomater Sci 2017; 4:130-5. [PMID: 26438892 DOI: 10.1039/c5bm00274e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
RNA molecules uniquely form a complex through specific hairpin loops, called a kissing complex. The kissing complex is widely investigated and used for the construction of RNA nanostructures. Molecular switches have also been created by combining a kissing loop and a ligand-binding aptamer to control the interactions of RNA molecules. In this study, we incorporated two kinds of RNA molecules into a DNA origami structure and used atomic force microscopy to observe their ligand-responsive interactions at the single-molecule level. We used a designed RNA aptamer called GTPswitch, which has a guanosine triphosphate (GTP) responsive domain and can bind to the target RNA hairpin named Aptakiss in the presence of GTP. We observed shape changes of the DNA/RNA strands in the DNA origami, which are induced by the GTPswitch, into two different shapes in the absence and presence of GTP, respectively. We also found that the switching function in the nanospace could be improved by using a cover strand over the kissing loop of the GTPswitch or by deleting one base from this kissing loop. These newly designed ligand-responsive aptamers can be used for the controlled assembly of the various DNA and RNA nanostructures.
Collapse
Affiliation(s)
- Yosuke Takeuchi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masayuki Endo
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Yuki Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kumi Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Guillaume Durand
- ARNA laboratory, University of Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France. and Inserm U869, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Eric Dausse
- ARNA laboratory, University of Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France. and Inserm U869, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Jean-Jacques Toulmé
- ARNA laboratory, University of Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France. and Inserm U869, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan and Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
15
|
Kobayashi Y, Misumi O, Nishimura Y. Finding Holliday Junction Resolvases: A Crucial Factor for Chloroplast Nucleoid Segregation. CYTOLOGIA 2017. [DOI: 10.1508/cytologia.82.465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Yusuke Kobayashi
- Laboratory of Plant Molecular Genetics, Department of Botany, Kyoto University
| | - Osami Misumi
- Department of Biological Science and Chemistry, Faculty of Science, Graduate School of Sciences and Technology for Innovation, Yamaguchi University
| | - Yoshiki Nishimura
- Laboratory of Plant Molecular Genetics, Department of Botany, Kyoto University
| |
Collapse
|
16
|
Pandian GN, Sugiyama H. Nature-Inspired Design of Smart Biomaterials Using the Chemical Biology of Nucleic Acids. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2016. [DOI: 10.1246/bcsj.20160062] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Chandrasekaran AR, Anderson N, Kizer M, Halvorsen K, Wang X. Beyond the Fold: Emerging Biological Applications of DNA Origami. Chembiochem 2016; 17:1081-9. [PMID: 26928725 DOI: 10.1002/cbic.201600038] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Indexed: 01/22/2023]
Abstract
The use of DNA as a material for nanoscale construction has blossomed in the past decade. This is largely attributable to the DNA origami technique, which has enabled construction of nanostructures ranging from simple two-dimensional sheets to complex three-dimensional objects with defined curves and edges. These structures are amenable to site-specific functionalization with nanometer precision, and have been shown to exhibit cellular biocompatibility and permeability. The DNA origami technique has already found widespread use in a variety of emerging biological applications such as biosensing, enzyme cascades, biomolecular analysis, biomimetics, and drug delivery. We highlight a few of these applications and comments on the prospects for this rapidly expanding field of research.
Collapse
Affiliation(s)
| | - Nate Anderson
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.,Center for Biotechnology and Interdisciplinary Studies (CBIS), Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Megan Kizer
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.,Center for Biotechnology and Interdisciplinary Studies (CBIS), Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Ken Halvorsen
- The RNA Institute, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Xing Wang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA. , .,Center for Biotechnology and Interdisciplinary Studies (CBIS), Rensselaer Polytechnic Institute, Troy, NY, 12180, USA. ,
| |
Collapse
|
18
|
Chao J, Zhang P, Wang Q, Wu N, Zhang F, Hu J, Fan CH, Li B. Single-molecule imaging of DNA polymerase I (Klenow fragment) activity by atomic force microscopy. NANOSCALE 2016; 8:5842-5846. [PMID: 26932823 DOI: 10.1039/c5nr06544e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report a DNA origami-facilitated single-molecule platform that exploits atomic force microscopy to study DNA replication. We imaged several functional activities of the Klenow fragment of E. coli DNA polymerase I (KF) including binding, moving, and dissociation from the template DNA. Upon completion of these actions, a double-stranded DNA molecule was formed. Furthermore, the direction of KF activities was captured and then confirmed by shifting the KF binding sites on the template DNA.
Collapse
Affiliation(s)
- J Chao
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Endo M, Xing X, Zhou X, Emura T, Hidaka K, Tuesuwan B, Sugiyama H. Single-Molecule Manipulation of the Duplex Formation and Dissociation at the G-Quadruplex/i-Motif Site in the DNA Nanostructure. ACS NANO 2015; 9:9922-9929. [PMID: 26371377 DOI: 10.1021/acsnano.5b03413] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We demonstrate the single-molecule operation and observation of the formation and resolution of double-stranded DNA (dsDNA) containing a G-quadruplex (GQ) forming and counterpart i-motif forming sequence in the DNA nanostructure. Sequential manipulation of DNA strands in the DNA frame was performed to prepare a topologically controlled GQ/i-motif dsDNA. Using strand displacement and the addition and removal of K(+), the topologically controlled GQ/i-motif dsDNA in the DNA frame was obtained in high yield. The dsDNA was resolved into the single-stranded DNA, GQ, and i-motif by the addition of K(+) and operation in acidic conditions. The dissociation of the dsDNA under the GQ and i-motif formation condition was monitored by high-speed atomic force microscopy. The results indicate that the dsDNA containing the GQ- and i-motif sequence is effectively dissolved when the duplex is helically loosened in the DNA nanoscaffold.
Collapse
Affiliation(s)
- Masayuki Endo
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University , Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
- CREST , Japan Science and Technology Corporation (JST), Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Xiwen Xing
- Department of Chemistry, Graduate School of Science, Kyoto University , Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University , Wuhan, Hubei 430072, People's Republic of China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University , Wuhan, Hubei 430072, People's Republic of China
| | - Tomoko Emura
- Department of Chemistry, Graduate School of Science, Kyoto University , Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kumi Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University , Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Bodin Tuesuwan
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University , Bangkok 10330, Thailand
| | - Hiroshi Sugiyama
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University , Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Chemistry, Graduate School of Science, Kyoto University , Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- CREST , Japan Science and Technology Corporation (JST), Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
20
|
Studying RNAP–promoter interactions using atomic force microscopy. Methods 2015; 86:4-9. [DOI: 10.1016/j.ymeth.2015.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 01/02/2023] Open
|
21
|
Saccà B, Ishitsuka Y, Meyer R, Sprengel A, Schöneweiß EC, Nienhaus GU, Niemeyer CM. Reversible Rekonfiguration von DNA-Origami-Nanosystemen und deren Beobachtung mittels FRET-Einzelmolekülanalyse. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201408941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Saccà B, Ishitsuka Y, Meyer R, Sprengel A, Schöneweiß EC, Nienhaus GU, Niemeyer CM. Reversible Reconfiguration of DNA Origami Nanochambers Monitored by Single-Molecule FRET. Angew Chem Int Ed Engl 2015; 54:3592-7. [DOI: 10.1002/anie.201408941] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/12/2014] [Indexed: 11/08/2022]
|
23
|
Yoshida A, Sakai N, Uekusa Y, Deguchi K, Gilmore JL, Kumeta M, Ito S, Takeyasu K. Probing in vivo dynamics of mitochondria and cortical actin networks using high-speed atomic force/fluorescence microscopy. Genes Cells 2014; 20:85-94. [PMID: 25440894 DOI: 10.1111/gtc.12204] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/06/2014] [Indexed: 12/12/2022]
Abstract
The dynamics of the cell membrane and submembrane structures are closely linked, facilitating various cellular activities. Although cell surface research and cortical actin studies have shown independent mechanisms for the cell membrane and the actin network, it has been difficult to obtain a comprehensive understanding of the dynamics of these structures in live cells. Here, we used a combined atomic force/optical microscope system to analyze membrane-based cellular events at nanometer-scale resolution in live cells. Imaging the COS-7 cell surface showed detailed structural properties of membrane invagination events corresponding to endocytosis and exocytosis. In addition, the movement of mitochondria and the spatiotemporal dynamics of the cortical F-actin network were directly visualized in vivo. Cortical actin microdomains with sizes ranging from 1.7×10(4) to 1.4×10(5) nm2 were dynamically rearranged by newly appearing actin filaments, which sometimes accompanied membrane invaginations, suggesting that these events are integrated with the dynamic regulation of submembrane organizations maintained by actin turnovers. These results provide novel insights into the structural aspects of the entire cell membrane machinery which can be visualized with high temporal and spatial resolution.
Collapse
Affiliation(s)
- Aiko Yoshida
- Graduate School of Biostudies, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Molecular processes studied at a single-molecule level using DNA origami nanostructures and atomic force microscopy. Molecules 2014; 19:13803-23. [PMID: 25191873 PMCID: PMC6271098 DOI: 10.3390/molecules190913803] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 08/21/2014] [Accepted: 08/29/2014] [Indexed: 12/26/2022] Open
Abstract
DNA origami nanostructures allow for the arrangement of different functionalities such as proteins, specific DNA structures, nanoparticles, and various chemical modifications with unprecedented precision. The arranged functional entities can be visualized by atomic force microscopy (AFM) which enables the study of molecular processes at a single-molecular level. Examples comprise the investigation of chemical reactions, electron-induced bond breaking, enzymatic binding and cleavage events, and conformational transitions in DNA. In this paper, we provide an overview of the advances achieved in the field of single-molecule investigations by applying atomic force microscopy to functionalized DNA origami substrates.
Collapse
|
25
|
Cañas C, Suzuki Y, Marchisone C, Carrasco B, Freire-Benéitez V, Takeyasu K, Alonso JC, Ayora S. Interaction of branch migration translocases with the Holliday junction-resolving enzyme and their implications in Holliday junction resolution. J Biol Chem 2014; 289:17634-46. [PMID: 24770420 DOI: 10.1074/jbc.m114.552794] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Double-strand break repair involves the formation of Holliday junction (HJ) structures that need to be resolved to promote correct replication and chromosomal segregation. The molecular mechanisms of HJ branch migration and/or resolution are poorly characterized in Firmicutes. Genetic evidence suggested that the absence of the RuvAB branch migration translocase and the RecU HJ resolvase is synthetically lethal in Bacillus subtilis, whereas a recU recG mutant was viable. In vitro RecU, which is restricted to bacteria of the Firmicutes phylum, binds HJs with high affinity. In this work we found that RecU does not bind simultaneously with RecG to a HJ. RuvB by interacting with RecU bound to the central region of HJ DNA, loses its nonspecific association with DNA, and re-localizes with RecU to form a ternary complex. RecU cannot stimulate the ATPase or branch migration activity of RuvB. The presence of RuvB·ATPγS greatly stimulates RecU-mediated HJ resolution, but the addition of ATP or RuvA abolishes this stimulatory effect. A RecU·HJ·RuvAB complex might be formed. RecU does not increase the RuvAB activities but slightly inhibits them.
Collapse
Affiliation(s)
- Cristina Cañas
- From the Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Departamento de Biotecnología Microbiana, 28049 Madrid, Spain and
| | - Yuki Suzuki
- Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Chiara Marchisone
- From the Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Departamento de Biotecnología Microbiana, 28049 Madrid, Spain and
| | - Begoña Carrasco
- From the Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Departamento de Biotecnología Microbiana, 28049 Madrid, Spain and
| | - Verónica Freire-Benéitez
- From the Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Departamento de Biotecnología Microbiana, 28049 Madrid, Spain and
| | - Kunio Takeyasu
- Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Juan C Alonso
- From the Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Departamento de Biotecnología Microbiana, 28049 Madrid, Spain and
| | - Silvia Ayora
- From the Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Departamento de Biotecnología Microbiana, 28049 Madrid, Spain and
| |
Collapse
|