1
|
Zhu W, Yang W, Sun G, Huang J. RNA-binding protein quaking: a multifunctional regulator in tumour progression. Ann Med 2025; 57:2443046. [PMID: 39711373 DOI: 10.1080/07853890.2024.2443046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/03/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Quaking (QKI) is a member of the signal transduction and activators of RNA (STAR) family, performing a crucial multifunctional regulatory role in alternative splicing, mRNA precursor processing, mRNA transport and localization, mRNA stabilization, and translation during tumour progression. Abnormal QKI expression or fusion mutations lead to aberrant RNA and protein expression, thereby promoting tumour progression. However, in many types of tumour, QKI played a role as tumour suppressor, the regulatory role of QKI in tumour progression remains ambiguous. OBJECTIVES This review aims to analyze the isoform and function of QKI, the impact of QKI-regulated gene expression or signalling pathway alterations on tumour progression, and its potential clinical applications as a predictive marker or target for tumour therapy. METHODS We reviewed recent studies and summarized the function of QKI alteration in tumour progression. RESULTS QKI mediate post-transcriptional gene regulation including alternative splicing, polyadenylation, mRNA stabilization, mRNA subcellular location, and noncoding RNA by binding to the QRE elements of targeted nucleotide. The dysregulation of QKI is intricately correlated to tumour proliferation, metastasis, angiogenesis, tumor stem cells, the tumour microenvironment, and treatment sensitivity, and represents as a potential biological predictor in tumour diagnosis and prognosis. CONCLUSIONS QKI play a critical role as tumour suppressor or an oncogene in tumour progression due to the different splicing sites and transcripts with various tumour subtype or tumor micorenvironment. Ongoing research about QKI's functions and mechanisms persist is required to conduct for better understanding the role of QKI in tumour regulation.
Collapse
Affiliation(s)
- Wangyu Zhu
- Cell and Molecular Biology Laboratory, Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, China
- Lung Cancer Research Centre, Zhoushan Hospital of Wenzhou Medical, Zhoushan, Zhejiang, China
| | - Weiwei Yang
- Cell and Molecular Biology Laboratory, Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, China
- Lung Cancer Research Centre, Zhoushan Hospital of Wenzhou Medical, Zhoushan, Zhejiang, China
| | - Guoping Sun
- Department of Breast Surgery, Second Affiliated Hospital and Cancer Institute (Provincial Key Laboratory of Tumor Microenvironment and Immunotherapy, Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education), Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Huang
- Department of Breast Surgery, Second Affiliated Hospital and Cancer Institute (Provincial Key Laboratory of Tumor Microenvironment and Immunotherapy, Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education), Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Fernandes R, Ostendorp A, Ostendorp S, Mehrmann J, Falke S, Graewert MA, Weingartner M, Kehr J, Hoth S. Structural and functional analysis of a plant nucleolar RNA chaperone-like protein. Sci Rep 2023; 13:9656. [PMID: 37316549 DOI: 10.1038/s41598-023-36426-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/03/2023] [Indexed: 06/16/2023] Open
Abstract
Ribosome biogenesis is a key process in all eukaryotic cells that requires hundreds of ribosome biogenesis factors (RBFs), which are essential to build the mature ribosomes consisting of proteins and rRNAs. The processing of the required rRNAs has been studied extensively in yeast and mammals, but in plants much is still unknown. In this study, we focused on a RBF from A. thaliana that we named NUCLEOLAR RNA CHAPERONE-LIKE 1 (NURC1). NURC1 was localized in the nucleolus of plant cell nuclei, and other plant RBF candidates shared the same localization. SEC-SAXS experiments revealed that NURC1 has an elongated and flexible structure. In addition, SEC-MALLS experiments confirmed that NURC1 was present in its monomeric form with a molecular weight of around 28 kDa. RNA binding was assessed by performing microscale thermophoresis with the Arabidopsis internal transcribed spacer 2 (ITS2) of the polycistronic pre-rRNA precursor, which contains the 5.8S, 18S, and 25S rRNA. NURC1 showed binding activity to the ITS2 with a dissociation constant of 228 nM and exhibited RNA chaperone-like activity. Our data suggested that NURC1 may have a function in pre-rRNA processing and thus ribosome biogenesis.
Collapse
Affiliation(s)
- Rita Fernandes
- Molecular Plant Physiology, Institute of Plant Science and Microbiology, Department of Biology, Universität Hamburg, Hamburg, Germany
- Molecular Plant Genetics, Institute of Plant Science and Microbiology, Department of Biology, Universität Hamburg, Hamburg, Germany
| | - Anna Ostendorp
- Molecular Plant Genetics, Institute of Plant Science and Microbiology, Department of Biology, Universität Hamburg, Hamburg, Germany
| | - Steffen Ostendorp
- Molecular Plant Genetics, Institute of Plant Science and Microbiology, Department of Biology, Universität Hamburg, Hamburg, Germany
| | - Judith Mehrmann
- Molecular Plant Physiology, Institute of Plant Science and Microbiology, Department of Biology, Universität Hamburg, Hamburg, Germany
| | - Sven Falke
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607, Hamburg, Germany
| | | | - Magdalena Weingartner
- Molecular Plant Physiology, Institute of Plant Science and Microbiology, Department of Biology, Universität Hamburg, Hamburg, Germany
| | - Julia Kehr
- Molecular Plant Genetics, Institute of Plant Science and Microbiology, Department of Biology, Universität Hamburg, Hamburg, Germany
| | - Stefan Hoth
- Molecular Plant Physiology, Institute of Plant Science and Microbiology, Department of Biology, Universität Hamburg, Hamburg, Germany.
| |
Collapse
|
3
|
Malki I, Liepina I, Kogelnik N, Watmuff H, Robinson S, Lightfoot A, Gonchar O, Bottrill A, Fry AM, Dominguez C. Cdk1-mediated threonine phosphorylation of Sam68 modulates its RNA binding, alternative splicing activity and cellular functions. Nucleic Acids Res 2022; 50:13045-13062. [PMID: 36537190 PMCID: PMC9825155 DOI: 10.1093/nar/gkac1181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Sam68, also known as KHDRBS1, is a member of the STAR family of proteins that directly link signal transduction with post-transcriptional gene regulation. Sam68 controls the alternative splicing of many oncogenic proteins and its role is modulated by post-translational modifications, including serine/threonine phosphorylation, that differ at various stages of the cell cycle. However, the molecular basis and mechanisms of these modulations remain largely unknown. Here, we combined mass spectrometry, nuclear magnetic resonance spectroscopy and cell biology techniques to provide a comprehensive post-translational modification mapping of Sam68 at different stages of the cell cycle in HEK293 and HCT116 cells. We established that Sam68 is specifically phosphorylated at T33 and T317 by Cdk1, and demonstrated that these phosphorylation events reduce the binding of Sam68 to RNA, control its cellular localization and reduce its alternative splicing activity, leading to a reduction in the induction of apoptosis and an increase in the proliferation of HCT116 cells.
Collapse
Affiliation(s)
- Idir Malki
- The Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Inara Liepina
- The Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Nora Kogelnik
- The Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Hollie Watmuff
- The Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Sue Robinson
- The Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Adam Lightfoot
- The Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Oksana Gonchar
- The Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Andrew Bottrill
- Proteomics RTP, School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Andrew M Fry
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Cyril Dominguez
- The Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
4
|
Aepala MR, Peiris MN, Jiang Z, Yang W, Meyer AN, Donoghue DJ. Nefarious NTRK oncogenic fusions in pediatric sarcomas: Too many to Trk. Cytokine Growth Factor Rev 2022; 68:93-106. [PMID: 36153202 DOI: 10.1016/j.cytogfr.2022.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 01/30/2023]
Abstract
Neurotrophic Tyrosine Receptor Kinase (NTRK) genes undergo chromosomal translocations to create novel open reading frames coding for oncogenic fusion proteins; the N-terminal portion, donated by various partner genes, becomes fused to the tyrosine kinase domain of either NTRK1, NTRK2, or NTRK3. NTRK fusion proteins have been identified as driver oncogenes in a wide variety of tumors over the past three decades, including Pediatric Gliomas, Papillary Thyroid Carcinoma, Spitzoid Neoplasms, Glioblastoma, and additional tumors. Importantly, NTRK fusions function as drivers of pediatric sarcomas, accounting for approximately 15% of childhood cancers including Infantile Fibrosarcoma (IFS), a subset of pediatric soft tissue sarcoma (STS). While tyrosine kinase inhibitors (TKIs), such as larotrectinib and entrectinib, have demonstrated profound results against NTRK fusion-positive cancers, acquired resistance to these TKIs has resulted in the formation of gatekeeper, solvent-front, and compound mutations. We present a comprehensive compilation of oncogenic fusions involving NTRKs focusing specifically on pediatric STS, examining their biological signaling pathways and mechanisms of activation. The importance of an obligatory dimerization or multimerization domain, invariably donated by the N-terminal fusion partner, is discussed using characteristic fusions that occur in pediatric sarcomas. In addition, examples are presented of oncogenic fusion proteins in which the N-terminal partners may contribute additional biological activities beyond an oligomerization domain. Lastly, therapeutic approaches to the treatment of pediatric sarcoma will be presented, using first generation and second-generation agents such as selitrectinib and repotrectinib.
Collapse
Affiliation(s)
- Megha R Aepala
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA
| | - Malalage N Peiris
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA
| | - Zian Jiang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA
| | - Wei Yang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA
| | - April N Meyer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA
| | - Daniel J Donoghue
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA; UCSD Moores Cancer Center, University of California San Diego, La Jolla, CA 92093-0367, USA.
| |
Collapse
|
5
|
The Role of RNA-Binding Proteins in Hematological Malignancies. Int J Mol Sci 2022; 23:ijms23179552. [PMID: 36076951 PMCID: PMC9455611 DOI: 10.3390/ijms23179552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022] Open
Abstract
Hematological malignancies comprise a plethora of different neoplasms, such as leukemia, lymphoma, and myeloma, plus a myriad of dysplasia, such as myelodysplastic syndromes or anemias. Despite all the advances in patient care and the development of new therapies, some of these malignancies remain incurable, mainly due to resistance and refractoriness to treatment. Therefore, there is an unmet clinical need to identify new biomarkers and potential therapeutic targets that play a role in treatment resistance and contribute to the poor outcomes of these tumors. RNA-binding proteins (RBPs) are a diverse class of proteins that interact with transcripts and noncoding RNAs and are involved in every step of the post-transcriptional processing of transcripts. Dysregulation of RBPs has been associated with the development of hematological malignancies, making them potential valuable biomarkers and potential therapeutic targets. Although a number of dysregulated RBPs have been identified in hematological malignancies, there is a critical need to understand the biology underlying their contribution to pathology, such as the spatiotemporal context and molecular mechanisms involved. In this review, we emphasize the importance of deciphering the regulatory mechanisms of RBPs to pinpoint novel therapeutic targets that could drive or contribute to hematological malignancy biology.
Collapse
|
6
|
Neumann DP, Goodall GJ, Gregory PA. The Quaking RNA-binding proteins as regulators of cell differentiation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1724. [PMID: 35298877 PMCID: PMC9786888 DOI: 10.1002/wrna.1724] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/30/2022]
Abstract
The RNA-binding protein Quaking (QKI) has emerged as a potent regulator of cellular differentiation in developmental and pathological processes. The QKI gene is itself alternatively spliced to produce three major isoforms, QKI-5, QKI-6, and QKI-7, that possess very distinct functions. Here, we highlight roles of the different QKI isoforms in neuronal, vascular, muscle, and monocyte cell differentiation, and during epithelial-mesenchymal transition in cancer progression. QKI isoforms control cell differentiation through regulating alternative splicing, mRNA stability and translation, with activities in gene transcription now also becoming evident. These diverse functions of the QKI isoforms contribute to their broad influences on RNA metabolism and cellular differentiation. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Processing > Splicing Regulation/Alternative Splicing RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Daniel P. Neumann
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideSouth Australia
| | - Gregory J. Goodall
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideSouth Australia,Faculty of Health and Medical SciencesThe University of AdelaideAdelaideSouth Australia
| | - Philip A. Gregory
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideSouth Australia,Faculty of Health and Medical SciencesThe University of AdelaideAdelaideSouth Australia
| |
Collapse
|
7
|
MINA-1 and WAGO-4 are part of regulatory network coordinating germ cell death and RNAi in C. elegans. Cell Death Differ 2019; 26:2157-2178. [PMID: 30728462 DOI: 10.1038/s41418-019-0291-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 01/22/2023] Open
Abstract
Post-transcriptional control of mRNAs by RNA-binding proteins (RBPs) has a prominent role in the regulation of gene expression. RBPs interact with mRNAs to control their biogenesis, splicing, transport, localization, translation, and stability. Defects in such regulation can lead to a wide range of human diseases from neurological disorders to cancer. Many RBPs are conserved between Caenorhabditis elegans and humans, and several are known to regulate apoptosis in the adult C. elegans germ line. How these RBPs control apoptosis is, however, largely unknown. Here, we identify mina-1(C41G7.3) in a RNA interference-based screen as a novel regulator of apoptosis, which is exclusively expressed in the adult germ line. The absence of MINA-1 causes a dramatic increase in germ cell apoptosis, a reduction in brood size, and an impaired P granules organization and structure. In vivo crosslinking immunoprecipitation experiments revealed that MINA-1 binds a set of mRNAs coding for RBPs associated with germ cell development. Additionally, a system-wide analysis of a mina-1 deletion mutant compared with wild type, including quantitative proteome and transcriptome data, hints to a post-transcriptional regulatory RBP network driven by MINA-1 during germ cell development in C. elegans. In particular, we found that the germline-specific Argonaute WAGO-4 protein levels are increased in mina-1 mutant background. Phenotypic analysis of double mutant mina-1;wago-4 revealed that contemporary loss of MINA-1 and WAGO-4 strongly rescues the phenotypes observed in mina-1 mutant background. To strengthen this functional interaction, we found that upregulation of WAGO-4 in mina-1 mutant animals causes hypersensitivity to exogenous RNAi. Our comprehensive experimental approach allowed us to describe a phenocritical interaction between two RBPs controlling germ cell apoptosis and exogenous RNAi. These findings broaden our understanding of how RBPs can orchestrate different cellular events such as differentiation and death in C. elegans.
Collapse
|
8
|
Campagne S, Krepl M, Sponer J, Allain FHT. Combining NMR Spectroscopy and Molecular Dynamic Simulations to Solve and Analyze the Structure of Protein-RNA Complexes. Methods Enzymol 2018; 614:393-422. [PMID: 30611432 DOI: 10.1016/bs.mie.2018.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Understanding the RNA binding specificity of protein is of primary interest to decipher their function in the cell. Here, we review the methodology used to solve the structures of protein-RNA complexes using solution-state NMR spectroscopy: from sample preparation to structure calculation procedures. We also describe how molecular dynamics simulations can help providing additional information on the role of key amino acid side chains and of water molecules in protein-RNA recognition.
Collapse
Affiliation(s)
- Sebastien Campagne
- Department of Biology, ETH Zürich, Institute of Molecular Biology and Biophysics, Zürich, Switzerland.
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic; Department of Physical Chemistry, Faculty of Science, Regional Centre of Advanced Technologies and Materials, Palacky University Olomouc, Olomouc, Czech Republic.
| | - Jiri Sponer
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic; Department of Physical Chemistry, Faculty of Science, Regional Centre of Advanced Technologies and Materials, Palacky University Olomouc, Olomouc, Czech Republic.
| | - Frederic H-T Allain
- Department of Biology, ETH Zürich, Institute of Molecular Biology and Biophysics, Zürich, Switzerland.
| |
Collapse
|
9
|
Yadav DK, Lukavsky PJ. NMR solution structure determination of large RNA-protein complexes. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2016; 97:57-81. [PMID: 27888840 DOI: 10.1016/j.pnmrs.2016.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/04/2016] [Accepted: 10/04/2016] [Indexed: 06/06/2023]
Abstract
Structure determination of RNA-protein complexes is essential for our understanding of the multiple layers of RNA-mediated posttranscriptional regulation of gene expression. Over the past 20years, NMR spectroscopy became a key tool for structural studies of RNA-protein interactions. Here, we review the progress being made in NMR structure determination of large ribonucleoprotein assemblies. We discuss approaches for the design of RNA-protein complexes for NMR structural studies, established and emerging isotope and segmental labeling schemes suitable for large RNPs and how to gain distance restraints from NOEs, PREs and EPR and orientational information from RDCs and SAXS/SANS in such systems. The new combination of NMR measurements with MD simulations and its potential will also be discussed. Application and combination of these various methods for structure determination of large RNPs will be illustrated with three large RNA-protein complexes (>40kDa) and other interesting complexes determined in the past six and a half years.
Collapse
Affiliation(s)
- Deepak Kumar Yadav
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Peter J Lukavsky
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic.
| |
Collapse
|
10
|
Feracci M, Foot JN, Grellscheid SN, Danilenko M, Stehle R, Gonchar O, Kang HS, Dalgliesh C, Meyer NH, Liu Y, Lahat A, Sattler M, Eperon IC, Elliott DJ, Dominguez C. Structural basis of RNA recognition and dimerization by the STAR proteins T-STAR and Sam68. Nat Commun 2016; 7:10355. [PMID: 26758068 PMCID: PMC4735526 DOI: 10.1038/ncomms10355] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 12/01/2015] [Indexed: 11/13/2022] Open
Abstract
Sam68 and T-STAR are members of the STAR family of proteins that directly link signal transduction with post-transcriptional gene regulation. Sam68 controls the alternative splicing of many oncogenic proteins. T-STAR is a tissue-specific paralogue that regulates the alternative splicing of neuronal pre-mRNAs. STAR proteins differ from most splicing factors, in that they contain a single RNA-binding domain. Their specificity of RNA recognition is thought to arise from their property to homodimerize, but how dimerization influences their function remains unknown. Here, we establish at atomic resolution how T-STAR and Sam68 bind to RNA, revealing an unexpected mode of dimerization different from other members of the STAR family. We further demonstrate that this unique dimerization interface is crucial for their biological activity in splicing regulation, and suggest that the increased RNA affinity through dimer formation is a crucial parameter enabling these proteins to select their functional targets within the transcriptome. Sam68 and T-STAR are members of the STAR family of proteins, which regulate various aspects of RNA metabolism. Here, the authors reveal structural features required for alternative splicing regulation by these proteins.
Collapse
Affiliation(s)
- Mikael Feracci
- Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 9HN, UK
| | - Jaelle N Foot
- Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 9HN, UK
| | - Sushma N Grellscheid
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle NE1 3BZ, UK
| | - Marina Danilenko
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle NE1 3BZ, UK
| | - Ralf Stehle
- Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Lichtenbergstr. 4, DE-85747 Garching, Germany
| | - Oksana Gonchar
- Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 9HN, UK
| | - Hyun-Seo Kang
- Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Lichtenbergstr. 4, DE-85747 Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, DE-85764 Oberschleißheim, Germany
| | - Caroline Dalgliesh
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle NE1 3BZ, UK
| | - N Helge Meyer
- Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Lichtenbergstr. 4, DE-85747 Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, DE-85764 Oberschleißheim, Germany
| | - Yilei Liu
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle NE1 3BZ, UK
| | - Albert Lahat
- School of Biological and Biomedical Sciences, University of Durham, South Road, Durham DH1 3LE, UK
| | - Michael Sattler
- Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Lichtenbergstr. 4, DE-85747 Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, DE-85764 Oberschleißheim, Germany
| | - Ian C Eperon
- Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 9HN, UK
| | - David J Elliott
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle NE1 3BZ, UK
| | - Cyril Dominguez
- Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 9HN, UK
| |
Collapse
|
11
|
Nicastro G, Taylor IA, Ramos A. KH-RNA interactions: back in the groove. Curr Opin Struct Biol 2015; 30:63-70. [PMID: 25625331 DOI: 10.1016/j.sbi.2015.01.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/20/2014] [Accepted: 01/08/2015] [Indexed: 12/30/2022]
Abstract
The hnRNP K-homology (KH) domain is a single stranded nucleic acid binding domain that mediates RNA target recognition by a large group of gene regulators. The structure of the KH fold is well characterised and some initial rules for KH-RNA recognition have been drafted. However, recent findings have shown that these rules need to be revisited and have now provided a better understanding of how the domain can recognise a sequence landscape larger than previously thought as well as revealing the diversity of structural expansions to the KH domain. Finally, novel structural and functional data show how multiple KH domains act in a combinatorial fashion to both allow recognition of longer RNA motifs and remodelling of the RNA structure. These advances set the scene for a detailed molecular understanding of KH selection of the cellular targets.
Collapse
Affiliation(s)
- Giuseppe Nicastro
- Division of Molecular Structure, MRC National Institute for Medical Research, London, UK
| | - Ian A Taylor
- Division of Molecular Structure, MRC National Institute for Medical Research, London, UK
| | - Andres Ramos
- Research Department of Structural and Molecular Biology, University College London, London, UK; Division of Molecular Structure, MRC National Institute for Medical Research, London, UK.
| |
Collapse
|