1
|
Hoffmann A, Lorenz C, Fallmann J, Wolff P, Lechner A, Betat H, Mörl M, Stadler PF. Temperature-Dependent tRNA Modifications in Bacillales. Int J Mol Sci 2024; 25:8823. [PMID: 39201508 PMCID: PMC11354880 DOI: 10.3390/ijms25168823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Transfer RNA (tRNA) modifications are essential for the temperature adaptation of thermophilic and psychrophilic organisms as they control the rigidity and flexibility of transcripts. To further understand how specific tRNA modifications are adjusted to maintain functionality in response to temperature fluctuations, we investigated whether tRNA modifications represent an adaptation of bacteria to different growth temperatures (minimal, optimal, and maximal), focusing on closely related psychrophilic (P. halocryophilus and E. sibiricum), mesophilic (B. subtilis), and thermophilic (G. stearothermophilus) Bacillales. Utilizing an RNA sequencing approach combined with chemical pre-treatment of tRNA samples, we systematically profiled dihydrouridine (D), 4-thiouridine (s4U), 7-methyl-guanosine (m7G), and pseudouridine (Ψ) modifications at single-nucleotide resolution. Despite their close relationship, each bacterium exhibited a unique tRNA modification profile. Our findings revealed increased tRNA modifications in the thermophilic bacterium at its optimal growth temperature, particularly showing elevated levels of s4U8 and Ψ55 modifications compared to non-thermophilic bacteria, indicating a temperature-dependent regulation that may contribute to thermotolerance. Furthermore, we observed higher levels of D modifications in psychrophilic and mesophilic bacteria, indicating an adaptive strategy for cold environments by enhancing local flexibility in tRNAs. Our method demonstrated high effectiveness in identifying tRNA modifications compared to an established tool, highlighting its potential for precise tRNA profiling studies.
Collapse
Affiliation(s)
- Anne Hoffmann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research, Helmholtz Zentrum München of the University of Leipzig and University Hospital Leipzig, Philipp-Rosenthal-Str. 27, D-04103 Leipzig, Germany;
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Härtelstraße 16–18, D-04107 Leipzig, Germany;
| | - Christian Lorenz
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany (H.B.); (M.M.)
| | - Jörg Fallmann
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Härtelstraße 16–18, D-04107 Leipzig, Germany;
| | - Philippe Wolff
- Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, F-67084 Strasbourg, France; (P.W.); (A.L.)
| | - Antony Lechner
- Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, F-67084 Strasbourg, France; (P.W.); (A.L.)
| | - Heike Betat
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany (H.B.); (M.M.)
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany (H.B.); (M.M.)
| | - Peter F. Stadler
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Härtelstraße 16–18, D-04107 Leipzig, Germany;
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Competence Center for Scalable Data Services and Solutions and Leipzig Research Center for Civilization Diseases, University Leipzig, Puschstrasse 4, D-04103 Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany
- Institute for Theoretical Chemistry, University of Vienna, Währingerstrasse 17, A-1090 Wien, Austria
- Facultad de Ciencias, Universidad National de Colombia, Bogotá CO-111321, Colombia
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
2
|
Gourgues G, Manso-Silván L, Chamberland C, Sirand-Pugnet P, Thiaucourt F, Blanchard A, Baby V, Lartigue C. A toolbox for manipulating the genome of the major goat pathogen, Mycoplasma capricolum subsp. capripneumoniae. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001423. [PMID: 38193814 PMCID: PMC10866025 DOI: 10.1099/mic.0.001423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024]
Abstract
Mycoplasma capricolum subspecies capripneumoniae (Mccp) is the causative agent of contagious caprine pleuropneumonia (CCPP), a devastating disease listed by the World Organisation for Animal Health (WOAH) as a notifiable disease and threatening goat production in Africa and Asia. Although a few commercial inactivated vaccines are available, they do not comply with WOAH standards and there are serious doubts regarding their efficacy. One of the limiting factors to comprehend the molecular pathogenesis of CCPP and develop improved vaccines has been the lack of tools for Mccp genome engineering. In this work, key synthetic biology techniques recently developed for closely related mycoplasmas were adapted to Mccp. CReasPy-Cloning was used to simultaneously clone and engineer the Mccp genome in yeast, prior to whole-genome transplantation into M. capricolum subsp. capricolum recipient cells. This approach was used to knock out an S41 serine protease gene recently identified as a potential virulence factor, leading to the generation of the first site-specific Mccp mutants. The Cre-lox recombination system was then applied to remove all DNA sequences added during genome engineering. Finally, the resulting unmarked S41 serine protease mutants were validated by whole-genome sequencing and their non-caseinolytic phenotype was confirmed by casein digestion assay on milk agar. The synthetic biology tools that have been successfully implemented in Mccp allow the addition and removal of genes and other genetic features for the construction of seamless targeted mutants at ease, which will pave the way for both the identification of key pathogenicity determinants of Mccp and the rational design of novel, improved vaccines for the control of CCPP.
Collapse
Affiliation(s)
- Géraldine Gourgues
- Université de Bordeaux, INRAE, BFP, UMR 1332, F-33140 Villenave d'Ornon, France
| | - Lucía Manso-Silván
- CIRAD, UMR ASTRE, F-34398, Montpellier, France
- ASTRE, Université de Montpellier, CIRAD, INRAE, F-34398, Montpellier, France
| | - Catherine Chamberland
- Université de Sherbrooke, Département de biologie, Sherbrooke, Québec, J1K 2R1, Canada
| | | | - François Thiaucourt
- CIRAD, UMR ASTRE, F-34398, Montpellier, France
- ASTRE, Université de Montpellier, CIRAD, INRAE, F-34398, Montpellier, France
| | - Alain Blanchard
- Université de Bordeaux, INRAE, BFP, UMR 1332, F-33140 Villenave d'Ornon, France
| | - Vincent Baby
- Université de Montréal, Faculté de médecine vétérinaire, Saint-Hyacinthe, Québec, J2S 2M2, Canada
| | - Carole Lartigue
- Université de Bordeaux, INRAE, BFP, UMR 1332, F-33140 Villenave d'Ornon, France
| |
Collapse
|
3
|
Bou-Nader C, Pecqueur L, de Crécy-Lagard V, Hamdane D. Integrative Approach to Probe Alternative Redox Mechanisms in RNA Modifications. Acc Chem Res 2023; 56:3142-3152. [PMID: 37916403 PMCID: PMC10999249 DOI: 10.1021/acs.accounts.3c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
RNA modifications found in most RNAs, particularly in tRNAs and rRNAs, reveal an abundance of chemical alterations of nucleotides. Over 150 distinct RNA modifications are known, emphasizing a remarkable diversity of chemical moieties in RNA molecules. These modifications play pivotal roles in RNA maturation, structural integrity, and the fidelity and efficiency of translation processes. The catalysts responsible for these modifications are RNA-modifying enzymes that use a striking array of chemistries to directly influence the chemical landscape of RNA. This diversity is further underscored by instances where the same modification is introduced by distinct enzymes that use unique catalytic mechanisms and cofactors across different domains of life. This phenomenon of convergent evolution highlights the biological importance of RNA modification and the vast potential within the chemical repertoire for nucleotide alteration. While shared RNA modifications can hint at conserved enzymatic pathways, a major bottleneck is to identify alternative routes within species that possess a modified RNA but are devoid of known RNA-modifying enzymes. To address this challenge, a combination of bioinformatic and experimental strategies proves invaluable in pinpointing new genes responsible for RNA modifications. This integrative approach not only unveils new chemical insights but also serves as a wellspring of inspiration for biocatalytic applications and drug design. In this Account, we present how comparative genomics and genome mining, combined with biomimetic synthetic chemistry, biochemistry, and anaerobic crystallography, can be judiciously implemented to address unprecedented and alternative chemical mechanisms in the world of RNA modification. We illustrate these integrative methodologies through the study of tRNA and rRNA modifications, dihydrouridine, 5-methyluridine, queuosine, 8-methyladenosine, 5-carboxymethylamino-methyluridine, or 5-taurinomethyluridine, each dependent on a diverse array of redox chemistries, often involving organic compounds, organometallic complexes, and metal coenzymes. We explore how vast genome and tRNA databases empower comparative genomic analyses and enable the identification of novel genes that govern RNA modification. Subsequently, we describe how the isolation of a stable reaction intermediate can guide the synthesis of a biomimetic to unveil new enzymatic pathways. We then discuss the usefulness of a biochemical "shunt" strategy to study catalytic mechanisms and to directly visualize reactive intermediates bound within active sites. While we primarily focus on various RNA-modifying enzymes studied in our laboratory, with a particular emphasis on the discovery of a SAM-independent methylation mechanism, the strategies and rationale presented herein are broadly applicable for the identification of new enzymes and the elucidation of their intricate chemistries. This Account offers a comprehensive glimpse into the evolving landscape of RNA modification research and highlights the pivotal role of integrated approaches to identify novel enzymatic pathways.
Collapse
Affiliation(s)
- Charles Bou-Nader
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Ludovic Pecqueur
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, 32611, USA
- University of Florida, Genetics Institute, Gainesville, Florida, 32610, USA
| | - Djemel Hamdane
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| |
Collapse
|
4
|
McGuffey JC, Jackson-Litteken CD, Di Venanzio G, Zimmer AA, Lewis JM, Distel JS, Kim KQ, Zaher HS, Alfonzo J, Scott NE, Feldman MF. The tRNA methyltransferase TrmB is critical for Acinetobacter baumannii stress responses and pulmonary infection. mBio 2023; 14:e0141623. [PMID: 37589464 PMCID: PMC10653896 DOI: 10.1128/mbio.01416-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/10/2023] [Indexed: 08/18/2023] Open
Abstract
IMPORTANCE As deficiencies in tRNA modifications have been linked to human diseases such as cancer and diabetes, much research has focused on the modifications' impacts on translational regulation in eukaryotes. However, the significance of tRNA modifications in bacterial physiology remains largely unexplored. In this paper, we demonstrate that the m7G tRNA methyltransferase TrmB is crucial for a top-priority pathogen, Acinetobacter baumannii, to respond to stressors encountered during infection, including oxidative stress, low pH, and iron deprivation. We show that loss of TrmB dramatically attenuates a murine pulmonary infection. Given the current efforts to use another tRNA methyltransferase, TrmD, as an antimicrobial therapeutic target, we propose that TrmB, and other tRNA methyltransferases, may also be viable options for drug development to combat multidrug-resistant A. baumannii.
Collapse
Affiliation(s)
- Jenna C. McGuffey
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Clay D. Jackson-Litteken
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Gisela Di Venanzio
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Aubree A. Zimmer
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Jessica M. Lewis
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Jesus S. Distel
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Kyusik Q. Kim
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Hani S. Zaher
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Juan Alfonzo
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Nichollas E. Scott
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Mario F. Feldman
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Ferraz R, Coimbra S, Correia S, Canhoto J. RNA methyltransferases in plants: Breakthroughs in function and evolution. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:449-460. [PMID: 36502609 DOI: 10.1016/j.plaphy.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/28/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Each day it is becoming increasingly difficult not to notice the completely new, fast growing, extremely intricate and challenging world of epitranscriptomics as the understanding of RNA methylation is expanding at a hasty rate. Writers (methyltransferases), erasers (demethylases) and readers (RNA-binding proteins) are responsible for adding, removing and recognising methyl groups on RNA, respectively. Several methyltransferases identified in plants are now being investigated and recent studies have shown a connection between RNA-methyltransferases (RNA-MTases) and stress and development processes. However, compared to their animal and bacteria counterparts, the understanding of RNA methyltransferases is still incipient, particularly those located in organelles. Comparative and systematic analyses allowed the tracing of the evolution of these enzymes suggesting the existence of several methyltransferases yet to be characterised. This review outlines the functions of plant nuclear and organellar RNA-MTases in plant development and stress responses and the comparative and evolutionary discoveries made on RNA-MTases across kingdoms.
Collapse
Affiliation(s)
- Ricardo Ferraz
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra 3000-456, Portugal; LAQV Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal.
| | - Sílvia Coimbra
- University of Porto, Faculty of Sciences, Portugal; LAQV Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal.
| | - Sandra Correia
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra 3000-456, Portugal.
| | - Jorge Canhoto
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra 3000-456, Portugal.
| |
Collapse
|
6
|
Motorin Y, Helm M. RNA nucleotide methylation: 2021 update. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1691. [PMID: 34913259 DOI: 10.1002/wrna.1691] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022]
Abstract
Among RNA modifications, transfer of methylgroups from the typical cofactor S-adenosyl-l-methionine by methyltransferases (MTases) to RNA is by far the most common reaction. Since our last review about a decade ago, the field has witnessed the re-emergence of mRNA methylation as an important mechanism in gene regulation. Attention has then spread to many other RNA species; all being included into the newly coined concept of the "epitranscriptome." The focus moved from prokaryotes and single cell eukaryotes as model organisms to higher eukaryotes, in particular to mammals. The perception of the field has dramatically changed over the past decade. A previous lack of phenotypes in knockouts in single cell organisms has been replaced by the apparition of MTases in numerous disease models and clinical investigations. Major driving forces of the field include methylation mapping techniques, as well as the characterization of the various MTases, termed "writers." The latter term has spilled over from DNA modification in the neighboring epigenetics field, along with the designations "readers," applied to mediators of biological effects upon specific binding to a methylated RNA. Furthermore "eraser" enzymes effect the newly discovered oxidative removal of methylgroups. A sense of reversibility and dynamics has replaced the older perception of RNA modification as a concrete-cast, irreversible part of RNA maturation. A related concept concerns incompletely methylated residues, which, through permutation of each site, lead to inhomogeneous populations of numerous modivariants. This review recapitulates the major developments of the past decade outlined above, and attempts a prediction of upcoming trends. This article is categorized under: RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Yuri Motorin
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core Facility, Nancy, France.,Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy, France
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-Universität, Mainz, Germany
| |
Collapse
|
7
|
Kimura S. Distinct evolutionary pathways for the synthesis and function of tRNA modifications. Brief Funct Genomics 2021; 20:125-134. [PMID: 33454776 DOI: 10.1093/bfgp/elaa027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/23/2022] Open
Abstract
Transfer ribonucleicacids (RNAs) (tRNAs) are essential adaptor molecules for translation. The functions and stability of tRNAs are modulated by their post-transcriptional modifications (tRNA modifications). Each domain of life has a specific set of modifications that include ones shared in multiple domains and ones specific to a domain. In some cases, different tRNA modifications across domains have similar functions to each other. Recent studies uncovered that distinct enzymes synthesize the same modification in different organisms, suggesting that such modifications are acquired through independent evolution. In this short review, I outline the mechanisms by which various modifications contribute to tRNA function, including modulation of decoding and tRNA stability, using recent findings. I also focus on modifications that are synthesized by distinct biosynthetic pathways.
Collapse
Affiliation(s)
- Satoshi Kimura
- Dr Matthew Waldor's lab at the Brigham and Women's Hospital. He completed his PhD and early postdoc work in Dr Tsutomu Suzuki's lab at the University of Tokyo
| |
Collapse
|
8
|
Vashee S, Arfi Y, Lartigue C. Budding yeast as a factory to engineer partial and complete microbial genomes. CURRENT OPINION IN SYSTEMS BIOLOGY 2020; 24:1-8. [PMID: 33015421 PMCID: PMC7523139 DOI: 10.1016/j.coisb.2020.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Yeast cells have long been used as hosts to propagate exogenous DNA. Recent progress in genome editing opens new avenues in synthetic biology. These developments allow the efficient engineering of microbial genomes in Saccharomyces cerevisiae that can then be rescued to yield modified bacteria/viruses. Recent examples show that the ability to quickly synthesize, assemble, and/or modify viral and bacterial genomes may be a critical factor to respond to emerging pathogens. However, this process has some limitations. DNA molecules much larger than two megabase pairs are complex to clone, bacterial genomes have proven to be difficult to rescue, and the dual-use potential of these technologies must be carefully considered. Regardless, the use of yeast as a factory has enormous appeal for biological applications.
Collapse
Affiliation(s)
| | - Yonathan Arfi
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140, Villenave d'Ornon, France
| | - Carole Lartigue
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140, Villenave d'Ornon, France
| |
Collapse
|
9
|
Rose S, Auxilien S, Havelund JF, Kirpekar F, Huber H, Grosjean H, Douthwaite S. The hyperthermophilic partners Nanoarchaeum and Ignicoccus stabilize their tRNA T-loops via different but structurally equivalent modifications. Nucleic Acids Res 2020; 48:6906-6918. [PMID: 32459340 PMCID: PMC7337903 DOI: 10.1093/nar/gkaa411] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/19/2020] [Accepted: 05/06/2020] [Indexed: 01/31/2023] Open
Abstract
The universal L-shaped tertiary structure of tRNAs is maintained with the help of nucleotide modifications within the D- and T-loops, and these modifications are most extensive within hyperthermophilic species. The obligate-commensal Nanoarchaeum equitans and its phylogenetically-distinct host Ignicoccus hospitalis grow physically coupled under identical hyperthermic conditions. We report here two fundamentally different routes by which these archaea modify the key conserved nucleotide U54 within their tRNA T-loops. In N. equitans, this nucleotide is methylated by the S-adenosylmethionine-dependent enzyme NEQ053 to form m5U54, and a recombinant version of this enzyme maintains specificity for U54 in Escherichia coli. In N. equitans, m5U54 is subsequently thiolated to form m5s2U54. In contrast, I. hospitalis isomerizes U54 to pseudouridine prior to methylating its N1-position and thiolating the O4-position of the nucleobase to form the previously uncharacterized nucleotide m1s4Ψ. The methyl and thiol groups in m1s4Ψ and m5s2U are presented within the T-loop in a spatially identical manner that stabilizes the 3′-endo-anti conformation of nucleotide-54, facilitating stacking onto adjacent nucleotides and reverse-Hoogsteen pairing with nucleotide m1A58. Thus, two distinct structurally-equivalent solutions have evolved independently and convergently to maintain the tertiary fold of tRNAs under extreme hyperthermic conditions.
Collapse
Affiliation(s)
- Simon Rose
- Department of Biochemistry & Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Sylvie Auxilien
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Jesper F Havelund
- Department of Biochemistry & Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Finn Kirpekar
- Department of Biochemistry & Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Harald Huber
- Lehrstuhl für Mikrobiologie und Archaeenzentrum, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Henri Grosjean
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Stephen Douthwaite
- Department of Biochemistry & Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
10
|
McCown PJ, Ruszkowska A, Kunkler CN, Breger K, Hulewicz JP, Wang MC, Springer NA, Brown JA. Naturally occurring modified ribonucleosides. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1595. [PMID: 32301288 PMCID: PMC7694415 DOI: 10.1002/wrna.1595] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/18/2022]
Abstract
The chemical identity of RNA molecules beyond the four standard ribonucleosides has fascinated scientists since pseudouridine was characterized as the "fifth" ribonucleotide in 1951. Since then, the ever-increasing number and complexity of modified ribonucleosides have been found in viruses and throughout all three domains of life. Such modifications can be as simple as methylations, hydroxylations, or thiolations, complex as ring closures, glycosylations, acylations, or aminoacylations, or unusual as the incorporation of selenium. While initially found in transfer and ribosomal RNAs, modifications also exist in messenger RNAs and noncoding RNAs. Modifications have profound cellular outcomes at various levels, such as altering RNA structure or being essential for cell survival or organism viability. The aberrant presence or absence of RNA modifications can lead to human disease, ranging from cancer to various metabolic and developmental illnesses such as Hoyeraal-Hreidarsson syndrome, Bowen-Conradi syndrome, or Williams-Beuren syndrome. In this review article, we summarize the characterization of all 143 currently known modified ribonucleosides by describing their taxonomic distributions, the enzymes that generate the modifications, and any implications in cellular processes, RNA structure, and disease. We also highlight areas of active research, such as specific RNAs that contain a particular type of modification as well as methodologies used to identify novel RNA modifications. This article is categorized under: RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Phillip J. McCown
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Agnieszka Ruszkowska
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
- Present address:
Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
| | - Charlotte N. Kunkler
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Kurtis Breger
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Jacob P. Hulewicz
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Matthew C. Wang
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Noah A. Springer
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Jessica A. Brown
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| |
Collapse
|
11
|
de Crécy-Lagard V, Jaroch M. Functions of Bacterial tRNA Modifications: From Ubiquity to Diversity. Trends Microbiol 2020; 29:41-53. [PMID: 32718697 DOI: 10.1016/j.tim.2020.06.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 01/21/2023]
Abstract
Modified nucleotides in tRNA are critical components of the translation apparatus, but their importance in the process of translational regulation had until recently been greatly overlooked. Two breakthroughs have recently allowed a fuller understanding of the importance of tRNA modifications in bacterial physiology. One is the identification of the full set of tRNA modification genes in model organisms such as Escherichia coli K12. The second is the improvement of available analytical tools to monitor tRNA modification patterns. The role of tRNA modifications varies greatly with the specific modification within a given tRNA and with the organism studied. The absence of these modifications or reductions can lead to cell death or pleiotropic phenotypes or may have no apparent visible effect. By linking translation through their decoding functions to metabolism through their biosynthetic pathways, tRNA modifications are emerging as important components of the bacterial regulatory toolbox.
Collapse
Affiliation(s)
- Valérie de Crécy-Lagard
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA; Genetics Institute, University of Florida, Gainesville, FL 32611, USA.
| | - Marshall Jaroch
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
12
|
Danchin A, Sekowska A, You C. One-carbon metabolism, folate, zinc and translation. Microb Biotechnol 2020; 13:899-925. [PMID: 32153134 PMCID: PMC7264889 DOI: 10.1111/1751-7915.13550] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 12/16/2022] Open
Abstract
The translation process, central to life, is tightly connected to the one-carbon (1-C) metabolism via a plethora of macromolecule modifications and specific effectors. Using manual genome annotations and putting together a variety of experimental studies, we explore here the possible reasons of this critical interaction, likely to have originated during the earliest steps of the birth of the first cells. Methionine, S-adenosylmethionine and tetrahydrofolate dominate this interaction. Yet, 1-C metabolism is unlikely to be a simple frozen accident of primaeval conditions. Reactive 1-C species (ROCS) are buffered by the translation machinery in a way tightly associated with the metabolism of iron-sulfur clusters, zinc and potassium availability, possibly coupling carbon metabolism to nitrogen metabolism. In this process, the highly modified position 34 of tRNA molecules plays a critical role. Overall, this metabolic integration may serve both as a protection against the deleterious formation of excess carbon under various growth transitions or environmental unbalanced conditions and as a regulator of zinc homeostasis, while regulating input of prosthetic groups into nascent proteins. This knowledge should be taken into account in metabolic engineering.
Collapse
Affiliation(s)
- Antoine Danchin
- AMAbiotics SASInstitut Cochin24 rue du Faubourg Saint‐Jacques75014ParisFrance
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongS.A.R. Hong KongChina
| | - Agnieszka Sekowska
- AMAbiotics SASInstitut Cochin24 rue du Faubourg Saint‐Jacques75014ParisFrance
| | - Conghui You
- Shenzhen Key Laboratory of Microbial Genetic EngineeringCollege of Life Sciences and OceanologyShenzhen University1066 Xueyuan Rd518055ShenzhenChina
| |
Collapse
|
13
|
Sirand-Pugnet P, Brégeon D, Béven L, Goyenvalle C, Blanchard A, Rose S, Grosjean H, Douthwaite S, Hamdane D, de Crécy-Lagard V. Reductive Evolution and Diversification of C5-Uracil Methylation in the Nucleic Acids of Mollicutes. Biomolecules 2020; 10:E587. [PMID: 32290235 PMCID: PMC7226160 DOI: 10.3390/biom10040587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 01/17/2023] Open
Abstract
The C5-methylation of uracil to form 5-methyluracil (m5U) is a ubiquitous base modification of nucleic acids. Four enzyme families have converged to catalyze this methylation using different chemical solutions. Here, we investigate the evolution of 5-methyluracil synthase families in Mollicutes, a class of bacteria that has undergone extensive genome erosion. Many mollicutes have lost some of the m5U methyltransferases present in their common ancestor. Cases of duplication and subsequent shift of function are also described. For example, most members of the Spiroplasma subgroup use the ancestral tetrahydrofolate-dependent TrmFO enzyme to catalyze the formation of m5U54 in tRNA, while a TrmFO paralog (termed RlmFO) is responsible for m5U1939 formation in 23S rRNA. RlmFO has replaced the S-adenosyl-L-methionine (SAM)-enzyme RlmD that adds the same modification in the ancestor and which is still present in mollicutes from the Hominis subgroup. Another paralog of this family, the TrmFO-like protein, has a yet unidentified function that differs from the TrmFO and RlmFO homologs. Despite having evolved towards minimal genomes, the mollicutes possess a repertoire of m5U-modifying enzymes that is highly dynamic and has undergone horizontal transfer.
Collapse
Affiliation(s)
- Pascal Sirand-Pugnet
- INRAE, UMR BFP, University Bordeaux, 33882 Bordeaux Villenave D’Ornon, France; (L.B.); (A.B.)
| | - Damien Brégeon
- IBPS, Biology of Aging and Adaptation, Sorbonne University, 7 quai Saint Bernard, CEDEX 05, F-75252 Paris, France; (D.B.); (C.G.)
| | - Laure Béven
- INRAE, UMR BFP, University Bordeaux, 33882 Bordeaux Villenave D’Ornon, France; (L.B.); (A.B.)
| | - Catherine Goyenvalle
- IBPS, Biology of Aging and Adaptation, Sorbonne University, 7 quai Saint Bernard, CEDEX 05, F-75252 Paris, France; (D.B.); (C.G.)
| | - Alain Blanchard
- INRAE, UMR BFP, University Bordeaux, 33882 Bordeaux Villenave D’Ornon, France; (L.B.); (A.B.)
| | - Simon Rose
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark; (S.R.); (S.D.)
| | - Henri Grosjean
- Institute for Integrative Biology of the Cell (I2BC), French Atomic Energy and Energy Commission Alternatives, CNRS, Paris-Sud University, Paris-Saclay University, Gif-sur-Yvette CEDEX, 91198 Paris, France;
| | - Stephen Douthwaite
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark; (S.R.); (S.D.)
| | - Djemel Hamdane
- Laboratory of Biological Process Chemistry, CNRS-UMR 8229, College De France, Sorbonne University, 11 Place Marcelin Berthelot, CEDEX 05, 75231 Paris, France
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
14
|
Laptev I, Shvetsova E, Levitskii S, Serebryakova M, Rubtsova M, Bogdanov A, Kamenski P, Sergiev P, Dontsova O. Mouse Trmt2B protein is a dual specific mitochondrial metyltransferase responsible for m 5U formation in both tRNA and rRNA. RNA Biol 2020; 17:441-450. [PMID: 31736397 PMCID: PMC7237156 DOI: 10.1080/15476286.2019.1694733] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/27/2019] [Accepted: 11/14/2019] [Indexed: 10/25/2022] Open
Abstract
RNA molecules of all species contain modified nucleotides and particularly m5U residues. The vertebrate mitochondrial small subunit rRNA contains m5U nucleotide in a unique site. In this work we found an enzyme, TRMT2B, responsible for the formation of this nucleotide and m5U residues in a number of mitochondrial tRNA species. Inactivation of the Trmt2B gene leads to a reduction of the activity of respiratory chain complexes I, III and IV, containing the subunits synthesized by the mitochondrial protein synthesis apparatus. Comparative sequence analysis of m5U-specific RNA methyltransferases revealed an unusual evolutionary pathway of TRMT2B formation which includes consecutive substrate specificity switches from the large subunit rRNA to tRNA and then to the small subunit rRNA.
Collapse
Affiliation(s)
- Ivan Laptev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow Region, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina Shvetsova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Sergey Levitskii
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Marina Serebryakova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow Region, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Maria Rubtsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow Region, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Alexey Bogdanov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Piotr Kamenski
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Petr Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow Region, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, Russia
| | - Olga Dontsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow Region, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Functioning of Living Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| |
Collapse
|
15
|
Schumacher M, Nicholson P, Stoffel MH, Chandran S, D’Mello A, Ma L, Vashee S, Jores J, Labroussaa F. Evidence for the Cytoplasmic Localization of the L-α-Glycerophosphate Oxidase in Members of the " Mycoplasma mycoides Cluster". Front Microbiol 2019; 10:1344. [PMID: 31275271 PMCID: PMC6593217 DOI: 10.3389/fmicb.2019.01344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/29/2019] [Indexed: 12/15/2022] Open
Abstract
Members of the "Mycoplasma mycoides cluster" are important animal pathogens causing diseases including contagious bovine pleuropneumonia and contagious caprine pleuropneumonia, which are of utmost importance in Africa or Asia. Even if all existing vaccines have shortcomings, vaccination of herds is still considered the best way to fight mycoplasma diseases, especially with the recent and dramatic increase of antimicrobial resistance observed in many mycoplasma species. A new generation of vaccines will benefit from a better understanding of the pathogenesis of mycoplasmas, which is very patchy up to now. In particular, surface-exposed virulence traits are likely to induce a protective immune response when formulated in a vaccine. The candidate virulence factor L-α-glycerophosphate oxidase (GlpO), shared by many mycoplasmas including Mycoplasma pneumoniae, was suggested to be a surface-exposed enzyme in Mycoplasma mycoides subsp. mycoides responsible for the production of hydrogen peroxide directly into the host cells. We produced a glpO isogenic mutant GM12::YCpMmyc1.1-ΔglpO using in-yeast synthetic genomics tools including the tandem-repeat endonuclease cleavage (TREC) technique followed by the back-transplantation of the engineered genome into a mycoplasma recipient cell. GlpO localization in the mutant and its parental strain was assessed using scanning electron microscopy (SEM). We obtained conflicting results and this led us to re-evaluate the localization of GlpO using a combination of in silico and in vitro techniques, such as Triton X-114 fractionation or tryptic shaving followed by immunoblotting. Our in vitro results unambiguously support the finding that GlpO is a cytoplasmic protein throughout the "Mycoplasma mycoides cluster." Thus, the use of GlpO as a candidate vaccine antigen is unlikely to induce a protective immune response.
Collapse
Affiliation(s)
- Melanie Schumacher
- Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | - Pamela Nicholson
- Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | | | | | - Adonis D’Mello
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Li Ma
- J. Craig Venter Institute, Rockville, MD, United States
| | - Sanjay Vashee
- J. Craig Venter Institute, Rockville, MD, United States
| | - Joerg Jores
- Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | - Fabien Labroussaa
- Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| |
Collapse
|
16
|
Attenuation of a Pathogenic Mycoplasma Strain by Modification of the obg Gene by Using Synthetic Biology Approaches. mSphere 2019; 4:4/3/e00030-19. [PMID: 31118296 PMCID: PMC6531878 DOI: 10.1128/msphere.00030-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Animal diseases due to mycoplasmas are a major cause of morbidity and mortality associated with economic losses for farmers all over the world. Currently used mycoplasma vaccines exhibit several drawbacks, including low efficacy, short time of protection, adverse reactions, and difficulty in differentiating infected from vaccinated animals. Therefore, there is a need for improved vaccines to control animal mycoplasmoses. Here, we used genome engineering tools derived from synthetic biology approaches to produce targeted mutations in the essential GTPase-encoding obg gene of Mycoplasma mycoides subsp. capri. Some of the resulting mutants exhibited a marked temperature-sensitive phenotype. The virulence of one of the obg mutants was evaluated in a caprine septicemia model and found to be strongly reduced. Although the obg mutant reverted to a virulent phenotype in one infected animal, we believe that these results contribute to a strategy that should help in building new vaccines against animal mycoplasmoses. Mycoplasma species are responsible for several economically significant livestock diseases for which there is a need for new and improved vaccines. Most of the existing mycoplasma vaccines are attenuated strains that have been empirically obtained by serial passages or by chemical mutagenesis. The recent development of synthetic biology approaches has opened the way for the engineering of live mycoplasma vaccines. Using these tools, the essential GTPase-encoding gene obg was modified directly on the Mycoplasma mycoides subsp. capri genome cloned in yeast, reproducing mutations suspected to induce a temperature-sensitive (TS+) phenotype. After transplantation of modified genomes into a recipient cell, the phenotype of the resulting M. mycoides subsp. capri mutants was characterized. Single-point obg mutations did not result in a strong TS+ phenotype in M. mycoides subsp. capri, but a clone presenting three obg mutations was shown to grow with difficulty at temperatures of ≥40°C. This particular mutant was then tested in a caprine septicemia model of M. mycoides subsp. capri infection. Five out of eight goats infected with the parental strain had to be euthanized, in contrast to one out of eight goats infected with the obg mutant, demonstrating an attenuation of virulence in the mutant. Moreover, the strain isolated from the euthanized animal in the group infected with the obg mutant was shown to carry a reversion in the obg gene associated with the loss of the TS+ phenotype. This study demonstrates the feasibility of building attenuated strains of mycoplasma that could contribute to the design of novel vaccines with improved safety. IMPORTANCE Animal diseases due to mycoplasmas are a major cause of morbidity and mortality associated with economic losses for farmers all over the world. Currently used mycoplasma vaccines exhibit several drawbacks, including low efficacy, short time of protection, adverse reactions, and difficulty in differentiating infected from vaccinated animals. Therefore, there is a need for improved vaccines to control animal mycoplasmoses. Here, we used genome engineering tools derived from synthetic biology approaches to produce targeted mutations in the essential GTPase-encoding obg gene of Mycoplasma mycoides subsp. capri. Some of the resulting mutants exhibited a marked temperature-sensitive phenotype. The virulence of one of the obg mutants was evaluated in a caprine septicemia model and found to be strongly reduced. Although the obg mutant reverted to a virulent phenotype in one infected animal, we believe that these results contribute to a strategy that should help in building new vaccines against animal mycoplasmoses.
Collapse
|
17
|
Sergiev PV, Aleksashin NA, Chugunova AA, Polikanov YS, Dontsova OA. Structural and evolutionary insights into ribosomal RNA methylation. Nat Chem Biol 2019; 14:226-235. [PMID: 29443970 DOI: 10.1038/nchembio.2569] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/02/2018] [Indexed: 01/24/2023]
Abstract
Methylation of nucleotides in ribosomal RNAs (rRNAs) is a ubiquitous feature that occurs in all living organisms. Identification of all enzymes responsible for rRNA methylation, as well as mapping of all modified rRNA residues, is now complete for a number of model species, such as Escherichia coli and Saccharomyces cerevisiae. Recent high-resolution structures of bacterial ribosomes provided the first direct visualization of methylated nucleotides. The structures of ribosomes from various organisms and organelles have also lately become available, enabling comparative structure-based analysis of rRNA methylation sites in various taxonomic groups. In addition to the conserved core of modified residues in ribosomes from the majority of studied organisms, structural analysis points to the functional roles of some of the rRNA methylations, which are discussed in this Review in an evolutionary context.
Collapse
Affiliation(s)
- Petr V Sergiev
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region, Russia.,Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Nikolay A Aleksashin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Anastasia A Chugunova
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region, Russia.,Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Yury S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Olga A Dontsova
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region, Russia.,Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
18
|
de Crécy-Lagard V, Boccaletto P, Mangleburg CG, Sharma P, Lowe TM, Leidel SA, Bujnicki JM. Matching tRNA modifications in humans to their known and predicted enzymes. Nucleic Acids Res 2019; 47:2143-2159. [PMID: 30698754 PMCID: PMC6412123 DOI: 10.1093/nar/gkz011] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/28/2018] [Accepted: 01/10/2019] [Indexed: 12/25/2022] Open
Abstract
tRNA are post-transcriptionally modified by chemical modifications that affect all aspects of tRNA biology. An increasing number of mutations underlying human genetic diseases map to genes encoding for tRNA modification enzymes. However, our knowledge on human tRNA-modification genes remains fragmentary and the most comprehensive RNA modification database currently contains information on approximately 20% of human cytosolic tRNAs, primarily based on biochemical studies. Recent high-throughput methods such as DM-tRNA-seq now allow annotation of a majority of tRNAs for six specific base modifications. Furthermore, we identified large gaps in knowledge when we predicted all cytosolic and mitochondrial human tRNA modification genes. Only 48% of the candidate cytosolic tRNA modification enzymes have been experimentally validated in mammals (either directly or in a heterologous system). Approximately 23% of the modification genes (cytosolic and mitochondrial combined) remain unknown. We discuss these 'unidentified enzymes' cases in detail and propose candidates whenever possible. Finally, tissue-specific expression analysis shows that modification genes are highly expressed in proliferative tissues like testis and transformed cells, but scarcely in differentiated tissues, with the exception of the cerebellum. Our work provides a comprehensive up to date compilation of human tRNA modifications and their enzymes that can be used as a resource for further studies.
Collapse
Affiliation(s)
- Valérie de Crécy-Lagard
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
- Cancer and Genetic Institute, University of Florida, Gainesville, FL 32611, USA
| | - Pietro Boccaletto
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland
| | - Carl G Mangleburg
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Puneet Sharma
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany
- Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
| | - Todd M Lowe
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Sebastian A Leidel
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany
- Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
- Research Group for RNA Biochemistry, Institute of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznań, Poland
| |
Collapse
|
19
|
Yamagami R, Miyake R, Fukumoto A, Nakashima M, Hori H. Consumption of N5, N10-methylenetetrahydrofolate in Thermus thermophilus under nutrient-poor condition. J Biochem 2018. [PMID: 29538705 DOI: 10.1093/jb/mvy037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
TrmFO catalyzes the formation of 5-methyluridine at position 54 in tRNA and uses N5, N10-methylenetetrahydrofolate (CH2THF) as the methyl group donor. We found that the trmFO gene-disruptant strain of Thermus thermophilus, an extremely thermophilic eubacterium, can grow faster than the wild-type strain in the synthetic medium at 70°C (optimal growth temperature). Nucleoside analysis revealed that the majority of modifications were appropriately introduced into tRNA, showing that the limited nutrients are preferentially consumed in the tRNA modification systems. CH2THF is consumed not only for tRNA methylation by TrmFO but also for dTMP synthesis by ThyX and methionine synthesis by multiple steps including MetF reaction. In vivo experiment revealed that methylene group derived from serine was rapidly incorporated into DNA in the absence of TrmFO. Furthermore, the addition of thymidine to the medium accelerated growth speed of the wild-type strain. Moreover, in vitro experiments showed that TrmFO interfered with ThyX through consumption of CH2THF. Addition of methionine to the medium accelerated growth speed of wild-type strain and the activity of TrmFO was disturbed by MetF. Thus, the consumption of CH2THF by TrmFO has a negative effect on dTMP and methionine syntheses and results in the slow growth under a nutrient-poor condition.
Collapse
Affiliation(s)
- Ryota Yamagami
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Ryota Miyake
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Ayaka Fukumoto
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Misa Nakashima
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
20
|
Kirpekar F, Hansen LH, Mundus J, Tryggedsson S, Teixeira Dos Santos P, Ntokou E, Vester B. Mapping of ribosomal 23S ribosomal RNA modifications in Clostridium sporogenes. RNA Biol 2018; 15:1060-1070. [PMID: 29947286 DOI: 10.1080/15476286.2018.1486662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
All organisms contain RNA modifications in their ribosomal RNA (rRNA), but the importance, positions and exact function of these are still not fully elucidated. Various functions such as stabilizing structures, controlling ribosome assembly and facilitating interactions have been suggested and in some cases substantiated. Bacterial rRNA contains much fewer modifications than eukaryotic rRNA. The rRNA modification patterns in bacteria differ from each other, but too few organisms have been mapped to draw general conclusions. This study maps 23S ribosomal RNA modifications in Clostridium sporogenes that can be characterized as a non-toxin producing Clostridium botulinum. Clostridia are able to sporulate and thereby survive harsh conditions, and are in general considered to be resilient to antibiotics. Selected regions of the 23S rRNA were investigated by mass spectrometry and by primer extension analysis to pinpoint modified sites and the nature of the modifications. Apparently, C. sporogenes 23S rRNA contains few modifications compared to other investigated bacteria. No modifications were identified in domain II and III of 23S rRNA. Three modifications were identified in domain IV, all of which have also been found in other organisms. Two unusual modifications were identified in domain V, methylated dihydrouridine at position U2449 and dihydrouridine at position U2500 (Escherichia coli numbering), in addition to four previously known modified positions. The enzymes responsible for the modifications were searched for in the C. sporogenes genome using BLAST with characterized enzymes as query. The search identified genes potentially coding for RNA modifying enzymes responsible for most of the found modifications.
Collapse
Affiliation(s)
- Finn Kirpekar
- a Department of Biochemistry and Molecular Biology , University of Southern Denmark , Odense , Denmark
| | - Lykke H Hansen
- a Department of Biochemistry and Molecular Biology , University of Southern Denmark , Odense , Denmark
| | - Julie Mundus
- a Department of Biochemistry and Molecular Biology , University of Southern Denmark , Odense , Denmark
| | - Stine Tryggedsson
- a Department of Biochemistry and Molecular Biology , University of Southern Denmark , Odense , Denmark
| | | | - Eleni Ntokou
- a Department of Biochemistry and Molecular Biology , University of Southern Denmark , Odense , Denmark
| | - Birte Vester
- a Department of Biochemistry and Molecular Biology , University of Southern Denmark , Odense , Denmark
| |
Collapse
|
21
|
Myllykallio H, Sournia P, Heliou A, Liebl U. Unique Features and Anti-microbial Targeting of Folate- and Flavin-Dependent Methyltransferases Required for Accurate Maintenance of Genetic Information. Front Microbiol 2018; 9:918. [PMID: 29867829 PMCID: PMC5954106 DOI: 10.3389/fmicb.2018.00918] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/20/2018] [Indexed: 12/14/2022] Open
Abstract
Comparative genome analyses have led to the discovery and characterization of novel flavin- and folate-dependent methyltransferases that mainly function in DNA precursor synthesis and post-transcriptional RNA modification by forming (ribo) thymidylate and its derivatives. Here we discuss the recent literature on the novel mechanistic features of these enzymes sometimes referred to as “uracil methyltransferases,” albeit we prefer to refer to them as (ribo) thymidylate synthases. These enzyme families attest to the convergent evolution of nucleic acid methylation. Special focus is given to describing the unique characteristics of these flavin- and folate-dependent enzymes that have emerged as new models for studying the non-canonical roles of reduced flavin co-factors (FADH2) in relaying carbon atoms between enzyme substrates. This ancient enzymatic methylation mechanism with a very wide phylogenetic distribution may be more commonly used for biological methylation reactions than previously anticipated. This notion is exemplified by the recent discovery of additional substrates for these enzymes. Moreover, similar reaction mechanisms can be reversed by demethylases, which remove methyl groups e.g., from human histones. Future work is now required to address whether the use of different methyl donors facilitates the regulation of distinct methylation reactions in the cell. It will also be of great interest to address whether the low activity flavin-dependent thymidylate synthases ThyX represent ancestral enzymes that were eventually replaced by the more active thymidylate synthases of the ThyA family to facilitate the maintenance of larger genomes in fast-growing microbes. Moreover, we discuss the recent efforts from several laboratories to identify selective anti-microbial compounds that target flavin-dependent thymidylate synthase ThyX. Altogether we underline how the discovery of the alternative flavoproteins required for methylation of DNA and/or RNA nucleotides, in addition to providing novel targets for antibiotics, has provided new insight into microbial physiology and virulence.
Collapse
Affiliation(s)
- Hannu Myllykallio
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Palaiseau, France
| | - Pierre Sournia
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Palaiseau, France
| | - Alice Heliou
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Palaiseau, France.,Laboratoire d'Informatique de l'École Polytechnique, Ecole Polytechnique, Centre National de la Recherche Scientifique, Université Paris-Saclay, Palaiseau, France
| | - Ursula Liebl
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Palaiseau, France
| |
Collapse
|
22
|
Galvao Ferrarini M, Mucha SG, Parrot D, Meiffrein G, Ruggiero Bachega JF, Comte G, Zaha A, Sagot MF. Hydrogen peroxide production and myo-inositol metabolism as important traits for virulence of Mycoplasma hyopneumoniae. Mol Microbiol 2018; 108:683-696. [PMID: 29624763 DOI: 10.1111/mmi.13957] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2018] [Indexed: 01/18/2023]
Abstract
Mycoplasma hyopneumoniae is the causative agent of enzootic pneumonia. In our previous work, we reconstructed the metabolic models of this species along with two other mycoplasmas from the respiratory tract of swine: Mycoplasma hyorhinis, considered less pathogenic but which nonetheless causes disease and Mycoplasma flocculare, a commensal bacterium. We identified metabolic differences that partially explained their different levels of pathogenicity. One important trait was the production of hydrogen peroxide from the glycerol metabolism only in the pathogenic species. Another important feature was a pathway for the metabolism of myo-inositol in M. hyopneumoniae. Here, we tested these traits to understand their relation to the different levels of pathogenicity, comparing not only the species but also pathogenic and attenuated strains of M. hyopneumoniae. Regarding the myo-inositol metabolism, we show that only M. hyopneumoniae assimilated this carbohydrate and remained viable when myo-inositol was the primary energy source. Strikingly, only the two pathogenic strains of M. hyopneumoniae produced hydrogen peroxide in complex medium. We also show that this production was dependent on the presence of glycerol. Although further functional tests are needed, we present in this work two interesting metabolic traits of M. hyopneumoniae that might be directly related to its enhanced virulence.
Collapse
Affiliation(s)
- Mariana Galvao Ferrarini
- ERABLE Team, Institut Nationale de Recherche en Informatique et Automation, Villeurbanne, France.,Laboratoire de Biometrie et Biologie Evolutive, Universite Claude Bernard Lyon 1, Villeurbanne, France.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Scheila Gabriele Mucha
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Delphine Parrot
- ERABLE Team, Institut Nationale de Recherche en Informatique et Automation, Villeurbanne, France.,Laboratoire de Biometrie et Biologie Evolutive, Universite Claude Bernard Lyon 1, Villeurbanne, France
| | - Guillaume Meiffrein
- Centre d'Etude des Substances Naturelles, Universite Claude Bernard Lyon 1, Villeurbanne, France
| | - Jose Fernando Ruggiero Bachega
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Farmacociencias, Universidade Federal de Ciencias da Saude de Porto Alegre, Porto Alegre, Brazil
| | - Gilles Comte
- Centre d'Etude des Substances Naturelles, Universite Claude Bernard Lyon 1, Villeurbanne, France
| | - Arnaldo Zaha
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marie-France Sagot
- ERABLE Team, Institut Nationale de Recherche en Informatique et Automation, Villeurbanne, France.,Laboratoire de Biometrie et Biologie Evolutive, Universite Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
23
|
Bou‐Nader C, Cornu D, Guerineau V, Fogeron T, Fontecave M, Hamdane D. Enzyme Activation with a Synthetic Catalytic Co‐enzyme Intermediate: Nucleotide Methylation by Flavoenzymes. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Charles Bou‐Nader
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229 Collège De France Université Pierre et Marie Curie 11 place Marcelin Berthelot 75231 Paris Cedex 05 France
| | - David Cornu
- Institut de Biologie Intégrative de la Cellule CNRS CEA Université Paris-Saclay Gif-sur-Yvette France
| | - Vincent Guerineau
- Institut de Chimie des Substances Naturelles Centre de Recherche de Gif CNRS 1 avenue de la Terrasse 91198 Gif-sur-Yvette France
| | - Thibault Fogeron
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229 Collège De France Université Pierre et Marie Curie 11 place Marcelin Berthelot 75231 Paris Cedex 05 France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229 Collège De France Université Pierre et Marie Curie 11 place Marcelin Berthelot 75231 Paris Cedex 05 France
| | - Djemel Hamdane
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229 Collège De France Université Pierre et Marie Curie 11 place Marcelin Berthelot 75231 Paris Cedex 05 France
| |
Collapse
|
24
|
|
25
|
Bou-Nader C, Cornu D, Guerineau V, Fogeron T, Fontecave M, Hamdane D. Enzyme Activation with a Synthetic Catalytic Co-enzyme Intermediate: Nucleotide Methylation by Flavoenzymes. Angew Chem Int Ed Engl 2017; 56:12523-12527. [PMID: 28796306 DOI: 10.1002/anie.201706219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/25/2017] [Indexed: 12/11/2022]
Abstract
To facilitate production of functional enzymes and to study their mechanisms, especially in the complex cases of coenzyme-dependent systems, activation of an inactive apoenzyme preparation with a catalytically competent coenzyme intermediate is an attractive strategy. This is illustrated with the simple chemical synthesis of a flavin-methylene iminium compound previously proposed as a key intermediate in the catalytic cycle of several important flavoenzymes involved in nucleic acid metabolism. Reconstitution of both flavin-dependent RNA methyltransferase and thymidylate synthase apoproteins with this synthetic compound led to active enzymes for the C5-uracil methylation within their respective transfer RNA and dUMP substrate. This strategy is expected to be of general application in enzymology.
Collapse
Affiliation(s)
- Charles Bou-Nader
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231, Paris Cedex 05, France
| | - David Cornu
- Institut de Biologie Intégrative de la Cellule, CNRS, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Vincent Guerineau
- Institut de Chimie des Substances Naturelles, Centre de Recherche de Gif, CNRS, 1 avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Thibault Fogeron
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231, Paris Cedex 05, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231, Paris Cedex 05, France
| | - Djemel Hamdane
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231, Paris Cedex 05, France
| |
Collapse
|
26
|
Motorin Y, Seidu-Larry S, Helm M. DNA and RNA Pyrimidine Nucleobase Alkylation at the Carbon-5 Position. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 945:19-33. [PMID: 27826833 DOI: 10.1007/978-3-319-43624-1_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The carbon 5 of pyrimidine nucleobases is a privileged position in terms of nucleoside modification in both DNA and RNA. The simplest modification of uridine at this position is methylation leading to thymine. Thymine is an integral part of the standard nucleobase repertoire of DNA that is synthesized at the nucleotide level. However, it also occurs in RNA, where it is synthesized posttranscriptionally at the polynucleotide level. The cytidine analogue 5-methylcytidine also occurs in both DNA and RNA, but is introduced at the polynucleotide level in both cases. The same applies to a plethora of additional derivatives found in nature, resulting either from a direct modification of the 5-position by electrophiles or by further derivatization of the 5-methylpyrimidines. Here, we review the structural diversity of these modified bases, the variety of cofactors that serve as carbon donors, and the common principles shared by enzymatic mechanisms generating them.
Collapse
Affiliation(s)
- Yuri Motorin
- IMoPA UMR7365 CNRS-UL, BioPole de l'Université de Lorraine, 9 avenue de la Foret de Haye, 54505, Vandoeuvre-les-Nancy, France.
| | - Salifu Seidu-Larry
- Department of Biochemistry, University of Cape Coast, College of Agriculture and Natural Sciences, School of Biological Sciences, Cape Coast, Ghana
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128, Mainz, Germany.
| |
Collapse
|
27
|
Rideau F, Le Roy C, Descamps ECT, Renaudin H, Lartigue C, Bébéar C. Cloning, Stability, and Modification of Mycoplasma hominis Genome in Yeast. ACS Synth Biol 2017; 6:891-901. [PMID: 28118540 DOI: 10.1021/acssynbio.6b00379] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mycoplasma hominis is a minimal human pathogen that is responsible for genital and neonatal infections. Despite many attempts, there is no efficient genetic tool to manipulate this bacterium, limiting most investigations of its pathogenicity and its uncommon energy metabolism that relies on arginine. The recent cloning and subsequent engineering of other mycoplasma genomes in yeast opens new possibilities for studies of the genomes of genetically intractable organisms. Here, we report the successful one-step cloning of the M. hominis PG21 genome in yeast using the transformation-associated recombination (TAR) cloning method. At low passages, the M. hominis genome cloned into yeast displayed a conserved size. However, after ∼60 generations in selective media, this stability was affected, and large degradation events were detected, raising questions regarding the stability of large heterologous DNA molecules cloned in yeast and the need to minimize host propagation. Taking these results into account, we selected early passage yeast clones and successfully modified the M. hominis PG21 genome using the CRISPR/Cas9 editing tool, available in Saccharomyces cerevisiae. Complete M. hominis PG21 genomes lacking the adhesion-related vaa gene were efficiently obtained.
Collapse
Affiliation(s)
- Fabien Rideau
- Univ. Bordeaux, USC-EA3671 Mycoplasmal and Chlamydial Infections
in Humans, F-33000 Bordeaux, France
- INRA, USC-EA3671
Mycoplasmal and Chlamydial Infections in Humans, F-33000 Bordeaux, France
| | - Chloé Le Roy
- Univ. Bordeaux, USC-EA3671 Mycoplasmal and Chlamydial Infections
in Humans, F-33000 Bordeaux, France
- INRA, USC-EA3671
Mycoplasmal and Chlamydial Infections in Humans, F-33000 Bordeaux, France
| | - Elodie C. T. Descamps
- Univ. Bordeaux, USC-EA3671 Mycoplasmal and Chlamydial Infections
in Humans, F-33000 Bordeaux, France
- INRA, USC-EA3671
Mycoplasmal and Chlamydial Infections in Humans, F-33000 Bordeaux, France
| | - Hélène Renaudin
- Univ. Bordeaux, USC-EA3671 Mycoplasmal and Chlamydial Infections
in Humans, F-33000 Bordeaux, France
- INRA, USC-EA3671
Mycoplasmal and Chlamydial Infections in Humans, F-33000 Bordeaux, France
| | - Carole Lartigue
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d’Ornon, France
- Univ. Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d’Ornon, France
| | - Cécile Bébéar
- Univ. Bordeaux, USC-EA3671 Mycoplasmal and Chlamydial Infections
in Humans, F-33000 Bordeaux, France
- INRA, USC-EA3671
Mycoplasmal and Chlamydial Infections in Humans, F-33000 Bordeaux, France
| |
Collapse
|
28
|
Flavin-Dependent Methylation of RNAs: Complex Chemistry for a Simple Modification. J Mol Biol 2016; 428:4867-4881. [PMID: 27825927 DOI: 10.1016/j.jmb.2016.10.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/19/2016] [Accepted: 10/31/2016] [Indexed: 12/28/2022]
Abstract
RNA methylation is the most abundant and evolutionarily conserved chemical modification of bases or ribose in noncoding and coding RNAs. This rather simple modification has nevertheless major consequences on the function of maturated RNA molecules and ultimately on their cellular fates. The methyl group employed in the methylation is almost universally derived from S-adenosyl-L-methionine via a simple SN2 displacement reaction. However, in some rare cases, the carbon originates from N5,N10-methylenetetrahydrofolate (CH2=THF). Here, a methylene group is transferred first and requires a subsequent reduction step (2e-+H+) via the flavin adenine dinucleotide hydroquinone (FADH-) to form the final methylated derivative. This FAD/folate-dependent mode of chemical reaction, called reductive methylation, is thus far more complex than the usual simple S-adenosyl-L-methionine-dependent one. This reaction is catalyzed by flavoenzymes, now named TrmFO and RlmFO, which respectively modify transfer and ribosomal RNAs. In this review, we briefly recount how these new RNA methyltransferases were discovered and describe a novel aspect of the chemistry of flavins, wherein this versatile biological cofactor is not just a simple redox catalyst but is also a new methyl transfer agent acting via a critical CH2=(N5)FAD iminium intermediate. The enigmatic structural reorganization of these enzymes that needs to take place during catalysis in order to build their active center is also discussed. Finally, recent findings demonstrated that this flavin-dependent mechanism is also employed by enzymatic systems involved in DNA synthesis, suggesting that the use of this cofactor as a methylating agent of biomolecules could be far more usual than initially anticipated.
Collapse
|
29
|
Labroussaa F, Lebaudy A, Baby V, Gourgues G, Matteau D, Vashee S, Sirand-Pugnet P, Rodrigue S, Lartigue C. Impact of donor-recipient phylogenetic distance on bacterial genome transplantation. Nucleic Acids Res 2016; 44:8501-11. [PMID: 27488189 PMCID: PMC5041484 DOI: 10.1093/nar/gkw688] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 12/22/2022] Open
Abstract
Genome transplantation (GT) allows the installation of purified chromosomes into recipient cells, causing the resulting organisms to adopt the genotype and the phenotype conferred by the donor cells. This key process remains a bottleneck in synthetic biology, especially for genome engineering strategies of intractable and economically important microbial species. So far, this process has only been reported using two closely related bacteria, Mycoplasma mycoides subsp. capri (Mmc) and Mycoplasma capricolum subsp. capricolum (Mcap), and the main factors driving the compatibility between a donor genome and a recipient cell are poorly understood. Here, we investigated the impact of the evolutionary distance between donor and recipient species on the efficiency of GT. Using Mcap as the recipient cell, we successfully transplanted the genome of six bacteria belonging to the Spiroplasma phylogenetic group but including species of two distinct genera. Our results demonstrate that GT efficiency is inversely correlated with the phylogenetic distance between donor and recipient bacteria but also suggest that other species-specific barriers to GT exist. This work constitutes an important step toward understanding the cellular factors governing the GT process in order to better define and eventually extend the existing genome compatibility limit.
Collapse
Affiliation(s)
- Fabien Labroussaa
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France University of Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Anne Lebaudy
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France University of Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Vincent Baby
- Université de Sherbrooke, Département de biologie, 2500 boulevard Université Sherbrooke (Québec), J1K 2R1, Canada
| | - Géraldine Gourgues
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France University of Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Dominick Matteau
- Université de Sherbrooke, Département de biologie, 2500 boulevard Université Sherbrooke (Québec), J1K 2R1, Canada
| | | | - Pascal Sirand-Pugnet
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France University of Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Sébastien Rodrigue
- Université de Sherbrooke, Département de biologie, 2500 boulevard Université Sherbrooke (Québec), J1K 2R1, Canada
| | - Carole Lartigue
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France University of Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| |
Collapse
|
30
|
Danchin A, Fang G. Unknown unknowns: essential genes in quest for function. Microb Biotechnol 2016; 9:530-40. [PMID: 27435445 PMCID: PMC4993169 DOI: 10.1111/1751-7915.12384] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 06/24/2016] [Indexed: 01/18/2023] Open
Abstract
The experimental design of a minimal synthetic genome revealed the presence of a large number of genes without ascribed function, in part because the abstract laws of life must be implemented within ad hoc material contraptions. Creating a function needs recruitment of some pre‐existing structure and this reveals kludges in their set‐up and history. Here, we show that looking for functions as an engineer would help in discovery of a significant number of those, proposed together with conceptual handles allowing investigators to pursue this endeavour in other contexts.
Collapse
Affiliation(s)
- Antoine Danchin
- Institute of Cardiometabolism and Nutrition, CHU Pitié-Salpêtrière, 47 boulevard de l'Hôpital, 75013, Paris, France
| | - Gang Fang
- Department of Biology, New York University Shanghai Campus, 1555 Century Avenue, Pudong New Area, Shanghai, 200122, China
| |
Collapse
|
31
|
Yamagami R, Tomikawa C, Shigi N, Kazayama A, Asai SI, Takuma H, Hirata A, Fourmy D, Asahara H, Watanabe K, Yoshizawa S, Hori H. Folate-/FAD-dependent tRNA methyltransferase from Thermus thermophilus regulates other modifications in tRNA at low temperatures. Genes Cells 2016; 21:740-54. [PMID: 27238446 DOI: 10.1111/gtc.12376] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/19/2016] [Indexed: 11/29/2022]
Abstract
TrmFO is a N(5) , N(10) -methylenetetrahydrofolate (CH2 THF)-/FAD-dependent tRNA methyltransferase, which synthesizes 5-methyluridine at position 54 (m(5) U54) in tRNA. Thermus thermophilus is an extreme-thermophilic eubacterium, which grows in a wide range of temperatures (50-83 °C). In T. thermophilus, modified nucleosides in tRNA and modification enzymes form a network, in which one modification regulates the degrees of other modifications and controls the flexibility of tRNA. To clarify the role of m(5) U54 and TrmFO in the network, we constructed the trmFO gene disruptant (∆trmFO) strain of T. thermophilus. Although this strain did not show any growth retardation at 70 °C, it showed a slow-growth phenotype at 50 °C. Nucleoside analysis showed increase in 2'-O-methylguanosine at position 18 and decrease in N(1) -methyladenosine at position 58 in the tRNA mixture from the ∆trmFO strain at 50 °C. These in vivo results were reproduced by in vitro experiments with purified enzymes. Thus, we concluded that the m(5) U54 modification have effects on the other modifications in tRNA through the network at 50 °C. (35) S incorporations into proteins showed that the protein synthesis activity of ∆trmFO strain was inferior to the wild-type strain at 50 °C, suggesting that the growth delay at 50 °C was caused by the inferior protein synthesis activity.
Collapse
Affiliation(s)
- Ryota Yamagami
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Chie Tomikawa
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Naoki Shigi
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Ai Kazayama
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Shin-Ichi Asai
- Japan Biological Information Research Center (JBIRC), Japan Biological Informatics Consortium (JBIC), Tokyo, 135-0064, Japan
| | - Hiroyuki Takuma
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Akira Hirata
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Dominique Fourmy
- Institute for Integrative Biology of the Cell (I2BC), UMR9198, CEA, CNRS, Université Paris-Sud, 1 Avenue de la Terrasse, Gif-sur-Yvette, Cedex, 91198, France
| | - Haruichi Asahara
- New England Biolabs, Inc, 240 County Road, Ipswich, MA, 01938, USA
| | - Kimitsuna Watanabe
- Biomedicinal Information Research Center (BIRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Satoko Yoshizawa
- Institute for Integrative Biology of the Cell (I2BC), UMR9198, CEA, CNRS, Université Paris-Sud, 1 Avenue de la Terrasse, Gif-sur-Yvette, Cedex, 91198, France
| | - Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| |
Collapse
|
32
|
Complete Genome Sequence of Mycoplasma mycoides subsp. mycoides T1/44, a Vaccine Strain against Contagious Bovine Pleuropneumonia. GENOME ANNOUNCEMENTS 2016; 4:4/2/e00263-16. [PMID: 27081135 PMCID: PMC4832163 DOI: 10.1128/genomea.00263-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mycoplasma mycoides subsp. mycoides is the etiologic agent of contagious bovine pleuropneumonia. We report here the complete genome sequence of the strain T1/44, which is widely used as a live vaccine in Africa.
Collapse
|
33
|
Shoji T, Takaya A, Sato Y, Kimura S, Suzuki T, Yamamoto T. RlmCD-mediated U747 methylation promotes efficient G748 methylation by methyltransferase RlmAII in 23S rRNA in Streptococcus pneumoniae; interplay between two rRNA methylations responsible for telithromycin susceptibility. Nucleic Acids Res 2015; 43:8964-72. [PMID: 26365244 PMCID: PMC4605293 DOI: 10.1093/nar/gkv609] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/31/2015] [Indexed: 11/18/2022] Open
Abstract
Adenine at position 752 in a loop of helix 35 from positions 745 to 752 in domain II of 23S rRNA is involved in binding to the ribosome of telithromycin (TEL), a member of ketolides. Methylation of guanine at position 748 by the intrinsic methyltransferase RlmAII enhances binding of telithromycin (TEL) to A752 in Streptococcus pneumoniae. We have found that another intrinsic methylation of the adjacent uridine at position 747 enhances G748 methylation by RlmAII, rendering TEL susceptibility. U747 and another nucleotide, U1939, were methylated by the dual-specific methyltransferase RlmCD encoded by SP_1029 in S. pneumoniae. Inactivation of RlmCD reduced N1-methylated level of G748 by RlmAIIin vivo, leading to TEL resistance when the nucleotide A2058, located in domain V of 23S rRNA, was dimethylated by the dimethyltransferase Erm(B). In vitro methylation of rRNA showed that RlmAII activity was significantly enhanced by RlmCD-mediated pre-methylation of 23S rRNA. These results suggest that RlmCD-mediated U747 methylation promotes efficient G748 methylation by RlmAII, thereby facilitating TEL binding to the ribosome.
Collapse
Affiliation(s)
- Tatsuma Shoji
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Akiko Takaya
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Yoshiharu Sato
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Satoshi Kimura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tomoko Yamamoto
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan Division of Clinical Research, Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan
| |
Collapse
|