1
|
Yan W, Li Y, Wang G, Huang Y, Xie P. Clinical application and immune infiltration landscape of stemness-related genes in heart failure. ESC Heart Fail 2025; 12:250-270. [PMID: 39275894 PMCID: PMC11769652 DOI: 10.1002/ehf2.15055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 07/17/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
BACKGROUND Heart failure (HF) is the leading cause of morbidity and mortality worldwide. Stemness refers to the self-renewal and differentiation ability of cells. However, little is known about the heart's stemness properties. Thus, the current study aims to identify putative stemness-related biomarkers to construct a viable prediction model of HF and characterize the immune infiltration features of HF. METHODS HF datasets from the Gene Expression Omnibus (GEO) database were adopted as the training and validation cohorts while stemness-related genes were obtained from GeneCards and previously published papers. Feature selection was performed using two machine learning algorithms. Nomogram models were then constructed to predict HF risk based on the selected key genes. Moreover, the biological functions of the key genes were evaluated using Gene Ontology (GO) and Kyoto Encyclopedia of Genes Genomes (KEGG) pathway analyses, and gene set variation analysis (GSVA) and enrichment analysis (GSEA) were performed between the high- and low-risk groups. The immune infiltration landscape in HF was investigated, and the interaction network of key genes was analysed to predict potential targets and molecular mechanisms. RESULTS Seven key genes, namely SMOC2, LUM, FNDC1, SCUBE2, CD163, BLM and S1PR3, were included in the proposed nomogram. This nomogram showed good predictive performance for HF diagnosis in the training and validation sets. GO and KEGG analyses revealed that the key genes were primarily associated with ageing, inflammatory processes and DNA oxidation. GSEA and GSVA identified various inflammatory and immune signalling pathways that were enriched between the high- and low-risk groups. The infiltration of 15 immune cell subsets suggests that adaptive immunity has an important role in HF. CONCLUSIONS Our study identified a clinically significant stemness-related signature for predicting HF risk, with the potential to improve early disease diagnosis, optimize risk stratification and provide new strategies for treating patients with HF.
Collapse
Affiliation(s)
- Wenting Yan
- Gansu University of Traditional Chinese MedicineLanzhouChina
| | - Yanling Li
- Department of CardiologyGansu Provincial HospitalLanzhouChina
| | - Gang Wang
- First Clinical Medical College of Lanzhou UniversityLanzhouChina
| | - Yuan Huang
- Gansu University of Traditional Chinese MedicineLanzhouChina
| | - Ping Xie
- Department of CardiologyGansu Provincial HospitalLanzhouChina
| |
Collapse
|
2
|
Geng F, Liu J, Liu J, Lu Z, Pan Y. Recent progress in understanding the role of bacterial extracellular DNA: focus on dental biofilm. Crit Rev Microbiol 2024:1-19. [PMID: 39648406 DOI: 10.1080/1040841x.2024.2438117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/11/2024] [Accepted: 11/30/2024] [Indexed: 12/10/2024]
Abstract
Dental biofilm is a highly complicated and dynamic structure comprising not only microbial communities but also the surrounding matrix of extracellular polymeric substances (EPS), including polysaccharides, proteins, extracellular DNA (eDNA) and other biopolymers. In recent years, the important role of bacterial eDNA in dental biofilms has gradually attracted attention. In this review, we present recent studies on the presence, dynamic conformation and release of oral bacterial eDNA. Moreover, updated information on functions associated with oral bacterial eDNA in biofilm formation, antibiotic resistance, activation of the immune system and immune evasion is highlighted. Finally, we summarize the role of oral bacterial eDNA as a promising target for the treatment of oral diseases. Increasing insight into the versatile roles of bacterial eDNA in dental biofilms will facilitate the prevention and treatment of biofilm-induced oral infections.
Collapse
Affiliation(s)
- Fengxue Geng
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Junchao Liu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Jinwen Liu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Ze Lu
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yaping Pan
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
3
|
Mackay HL, Stone HR, Ronson GE, Ellis K, Lanz A, Aghabi Y, Walker AK, Starowicz K, Garvin AJ, Van Eijk P, Koestler SA, Anthony EJ, Piberger AL, Chauhan AS, Conway-Thomas P, Vaitsiankova A, Vijayendran S, Beesley JF, Petermann E, Brown EJ, Densham RM, Reed SH, Dobbs F, Saponaro M, Morris JR. USP50 suppresses alternative RecQ helicase use and deleterious DNA2 activity during replication. Nat Commun 2024; 15:8102. [PMID: 39284827 PMCID: PMC11405836 DOI: 10.1038/s41467-024-52250-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/30/2024] [Indexed: 09/22/2024] Open
Abstract
Mammalian DNA replication relies on various DNA helicase and nuclease activities to ensure accurate genetic duplication, but how different helicase and nuclease activities are properly directed remains unclear. Here, we identify the ubiquitin-specific protease, USP50, as a chromatin-associated protein required to promote ongoing replication, fork restart, telomere maintenance, cellular survival following hydroxyurea or pyridostatin treatment, and suppression of DNA breaks near GC-rich sequences. We find that USP50 supports proper WRN-FEN1 localisation at or near stalled replication forks. Nascent DNA in cells lacking USP50 shows increased association of the DNA2 nuclease and RECQL4 and RECQL5 helicases and replication defects in cells lacking USP50, or FEN1 are driven by these proteins. Consequently, suppression of DNA2 or RECQL4/5 improves USP50-depleted cell resistance to agents inducing replicative stress and restores telomere stability. These data define an unexpected regulatory protein that promotes the balance of helicase and nuclease use at ongoing and stalled replication forks.
Collapse
Affiliation(s)
- Hannah L Mackay
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Helen R Stone
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- CCTT-C Cancer Research UK, Clinical trials unit, Sir Robert Aitken building, College of Medicine and Health, University of Birmingham, Birmingham, B15 2TT, UK
| | - George E Ronson
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Katherine Ellis
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Alexander Lanz
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Yara Aghabi
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Alexandra K Walker
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Katarzyna Starowicz
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Adthera Bio, Lyndon House, 62 Hagley Road, Birmingham, B16 8PE, UK
| | - Alexander J Garvin
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- SUMO Biology Lab, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Patrick Van Eijk
- Broken String Biosciences Ltd., BioData Innovation Centre, Unit AB3-03, Level 3, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1DR, UK
- Division of Cancer & Genetics School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Stefan A Koestler
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Elizabeth J Anthony
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ann Liza Piberger
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Anoop S Chauhan
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Poppy Conway-Thomas
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Alina Vaitsiankova
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Sobana Vijayendran
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- University Hospital Birmingham N.H.S. Foundation Trust, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Birmingham, B15 2TH, UK
| | - James F Beesley
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Eva Petermann
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Eric J Brown
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 421 Curie Boulevard PA, 19104-6160, USA
| | - Ruth M Densham
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Simon H Reed
- Broken String Biosciences Ltd., BioData Innovation Centre, Unit AB3-03, Level 3, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1DR, UK
- Division of Cancer & Genetics School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Felix Dobbs
- Broken String Biosciences Ltd., BioData Innovation Centre, Unit AB3-03, Level 3, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1DR, UK
- Division of Cancer & Genetics School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Marco Saponaro
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Joanna R Morris
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
4
|
Joo SY, Sung K, Lee H. Balancing act: BRCA2's elaborate management of telomere replication through control of G-quadruplex dynamicity. Bioessays 2024; 46:e2300229. [PMID: 38922965 DOI: 10.1002/bies.202300229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
In billion years of evolution, eukaryotes preserved the chromosome ends with arrays of guanine repeats surrounded by thymines and adenines, which can form stacks of four-stranded planar structure known as G-quadruplex (G4). The rationale behind the evolutionary conservation of the G4 structure at the telomere remained elusive. Our recent study has shed light on this matter by revealing that telomere G4 undergoes oscillation between at least two distinct folded conformations. Additionally, tumor suppressor BRCA2 exhibits a unique mode of interaction with telomere G4. To elaborate, BRCA2 directly interacts with G-triplex (G3)-derived intermediates that form during the interconversion of the two different G4 states. In doing so, BRCA2 remodels the G4, facilitating the restart of stalled replication forks. In this review, we succinctly summarize the findings regarding the dynamicity of telomeric G4, emphasize its importance in maintaining telomere replication homeostasis, and the physiological consequences of losing G4 dynamicity at the telomere.
Collapse
Affiliation(s)
- So Young Joo
- Department of Biological Sciences & Institute of Molecular Biology and Genetics (IMBG), Seoul National University, Seoul, South Korea
| | - Keewon Sung
- Center for RNA Research, Institute for Basic Science (IBS), Seoul National University, Seoul, South Korea
| | - Hyunsook Lee
- Department of Biological Sciences & Institute of Molecular Biology and Genetics (IMBG), Seoul National University, Seoul, South Korea
| |
Collapse
|
5
|
Dai YX, Duan XL, Fu WT, Wang S, Liu NN, Li HH, Ai X, Guo HL, Navés CA, Bugnard E, Auguin D, Hou XM, Rety S, Xi XG. Stimulation of ATP Hydrolysis by ssDNA Provides the Necessary Mechanochemical Energy for G4 Unfolding. J Mol Biol 2024; 436:168373. [PMID: 37992890 DOI: 10.1016/j.jmb.2023.168373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
The G-quadruplex (G4) is a distinct geometric and electrophysical structure compared to classical double-stranded DNA, and its stability can impede essential cellular processes such as replication, transcription, and translation. This study focuses on the BsPif1 helicase, revealing its ability to bind independently to both single-stranded DNA (ssDNA) and G4 structures. The unfolding activity of BsPif1 on G4 relies on the presence of a single tail chain, and the covalent continuity between the single tail chain and the G4's main chain is necessary for efficient G4 unwinding. This suggests that ATP hydrolysis-driven ssDNA translocation exerts a pull force on G4 unwinding. Molecular dynamics simulations identified a specific region within BsPif1 that contains five crucial amino acid sites responsible for G4 binding and unwinding. A "molecular wire stripper" model is proposed to explain BsPif1's mechanism of G4 unwinding. These findings provide a new theoretical foundation for further exploration of the G4 development mechanism in Pif1 family helicases.
Collapse
Affiliation(s)
- Yang-Xue Dai
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Xiao-Lei Duan
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Wen-Tong Fu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shan Wang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Na-Nv Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hai-Hong Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xia Ai
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hai-Lei Guo
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cel Areny Navés
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, LBPA, 91190 Gif-sur-Yvette, France
| | - Elisabeth Bugnard
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, LBPA, 91190 Gif-sur-Yvette, France
| | - Daniel Auguin
- Laboratoire de Physiologie, Ecologie et Environnement(P2E), UPRES EA 1207/USC INRAE-1328, UFR Sciences et Techniques, Université d'Orléans, Orléans, France
| | - Xi-Miao Hou
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Stephane Rety
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, INSERM U1210, LBMC, 46 allée d'Italie, Site Jacques Monod, 69007 Lyon, France.
| | - Xu-Guang Xi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; Université Paris-Saclay, ENS Paris-Saclay, CNRS, LBPA, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
6
|
Mackay HL, Stone HR, Ellis K, Ronson GE, Walker AK, Starowicz K, Garvin AJ, van Eijk P, Vaitsiankova A, Vijayendran S, Beesley JF, Petermann E, Brown EJ, Densham RM, Reed SH, Dobbs F, Saponaro M, Morris JR. USP50 suppresses alternative RecQ helicase use and deleterious DNA2 activity during replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.574674. [PMID: 38260523 PMCID: PMC10802463 DOI: 10.1101/2024.01.10.574674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Mammalian DNA replication employs several RecQ DNA helicases to orchestrate the faithful duplication of genetic information. Helicase function is often coupled to the activity of specific nucleases, but how helicase and nuclease activities are co-directed is unclear. Here we identify the inactive ubiquitin-specific protease, USP50, as a ubiquitin-binding and chromatin-associated protein required for ongoing replication, fork restart, telomere maintenance and cellular survival during replicative stress. USP50 supports WRN:FEN1 at stalled replication forks, suppresses MUS81-dependent fork collapse and restricts double-strand DNA breaks at GC-rich sequences. Surprisingly we find that cells depleted for USP50 and recovering from a replication block exhibit increased DNA2 and RECQL4 foci and that the defects in ongoing replication, poor fork restart and increased fork collapse seen in these cells are mediated by DNA2, RECQL4 and RECQL5. These data define a novel ubiquitin-dependent pathway that promotes the balance of helicase: nuclease use at ongoing and stalled replication forks.
Collapse
|
7
|
Sato K, Knipscheer P. G-quadruplex resolution: From molecular mechanisms to physiological relevance. DNA Repair (Amst) 2023; 130:103552. [PMID: 37572578 DOI: 10.1016/j.dnarep.2023.103552] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023]
Abstract
Guanine-rich DNA sequences can fold into stable four-stranded structures called G-quadruplexes or G4s. Research in the past decade demonstrated that G4 structures are widespread in the genome and prevalent in regulatory regions of actively transcribed genes. The formation of G4s has been tightly linked to important biological processes including regulation of gene expression and genome maintenance. However, they can also pose a serious threat to genome integrity especially by impeding DNA replication, and G4-associated somatic mutations have been found accumulated in the cancer genomes. Specialised DNA helicases and single stranded DNA binding proteins that can resolve G4 structures play a crucial role in preventing genome instability. The large variety of G4 unfolding proteins suggest the presence of multiple G4 resolution mechanisms in cells. Recently, there has been considerable progress in our detailed understanding of how G4s are resolved, especially during DNA replication. In this review, we first discuss the current knowledge of the genomic G4 landscapes and the impact of G4 structures on DNA replication and genome integrity. We then describe the recent progress on the mechanisms that resolve G4 structures and their physiological relevance. Finally, we discuss therapeutic opportunities to target G4 structures.
Collapse
Affiliation(s)
- Koichi Sato
- Oncode Institute, Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Puck Knipscheer
- Oncode Institute, Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, the Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
8
|
Sharma T, Kundu N, Kaur S, Shankaraswamy J, Saxena S. Why to target G-quadruplexes using peptides: Next-generation G4-interacting ligands. J Pept Sci 2023; 29:e3491. [PMID: 37009771 DOI: 10.1002/psc.3491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/04/2023]
Abstract
Guanine-rich oligonucleotides existing in both DNA and RNA are able to fold into four-stranded DNA secondary structures via Hoogsteen type hydrogen-bonding, where four guanines self-assemble into a square planar arrangement, which, when stacked upon each other, results in the formation of higher-order structures called G-quadruplexes. Their distribution is not random; they are more frequently present at telomeres, proto-oncogenic promoters, introns, 5'- and 3'-untranslated regions, stem cell markers, ribosome binding sites and so forth and are associated with various biological functions, all of which play a pivotal role in various incurable diseases like cancer and cellular ageing. Several studies have suggested that G-quadruplexes could not regulate biological processes by themselves; instead, various proteins take part in this regulation and can be important therapeutic targets. There are certain limitations in using whole G4-protein for therapeutics purpose because of its high manufacturing cost, laborious structure prediction, dynamic nature, unavailability for oral administration due to its degradation in the gut and inefficient penetration to reach the target site because of the large size. Hence, biologically active peptides can be the potential candidates for therapeutic intervention instead of the whole G4-protein complex. In this review, we aimed to clarify the biological roles of G4s, how we can identify them throughout the genome via bioinformatics, the proteins interacting with G4s and how G4-interacting peptide molecules may be the potential next-generation ligands for targeting the G4 motifs located in biologically important regions.
Collapse
Affiliation(s)
- Taniya Sharma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Nikita Kundu
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Sarvpreet Kaur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Jadala Shankaraswamy
- Department of Fruit Science, College of Horticulture, Mojerla, Sri Konda Laxman Telangana State Horticultural University, Budwel, Telangana, India
| | - Sarika Saxena
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
9
|
Vijay Kumar MJ, Morales R, Tsvetkov AS. G-quadruplexes and associated proteins in aging and Alzheimer's disease. FRONTIERS IN AGING 2023; 4:1164057. [PMID: 37323535 PMCID: PMC10267416 DOI: 10.3389/fragi.2023.1164057] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Aging is a prominent risk factor for many neurodegenerative disorders, such as Alzheimer's disease (AD). Alzheimer's disease is characterized by progressive cognitive decline, memory loss, and neuropsychiatric and behavioral symptoms, accounting for most of the reported dementia cases. This disease is now becoming a major challenge and burden on modern society, especially with the aging population. Over the last few decades, a significant understanding of the pathophysiology of AD has been gained by studying amyloid deposition, hyperphosphorylated tau, synaptic dysfunction, oxidative stress, calcium dysregulation, and neuroinflammation. This review focuses on the role of non-canonical secondary structures of DNA/RNA G-quadruplexes (G4s, G4-DNA, and G4-RNA), G4-binding proteins (G4BPs), and helicases, and their roles in aging and AD. Being critically important for cellular function, G4s are involved in the regulation of DNA and RNA processes, such as replication, transcription, translation, RNA localization, and degradation. Recent studies have also highlighted G4-DNA's roles in inducing DNA double-strand breaks that cause genomic instability and G4-RNA's participation in regulating stress granule formation. This review emphasizes the significance of G4s in aging processes and how their homeostatic imbalance may contribute to the pathophysiology of AD.
Collapse
Affiliation(s)
- M. J. Vijay Kumar
- The Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, TX, United States
| | - Rodrigo Morales
- The Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, TX, United States
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile
| | - Andrey S. Tsvetkov
- The Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, TX, United States
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, United States
- UTHealth Consortium on Aging, The University of Texas McGovern Medical School, Houston, TX, United States
| |
Collapse
|
10
|
Wang JE, Zhou YC, Wu BH, Chen XC, Zhai J, Tan JH, Huang ZS, Chen SB. A rapid and highly sensitive immunosorbent assay to monitor helicases unwinding diverse nucleic acid structures. Analyst 2023; 148:2343-2351. [PMID: 37185609 DOI: 10.1039/d2an01989b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Helicases are crucial enzymes in DNA and RNA metabolism and function by unwinding particular nucleic acid structures. However, most convenient and high-throughput helicase assays are limited to the typical duplex DNA. Herein, we developed an immunosorbent assay to monitor the Werner syndrome (WRN) helicase unwinding a wide range of DNA structures, such as a replication fork, a bubble, Holliday junction, G-quadruplex and hairpin. This assay could sensitively detect the unwinding of DNA structures with detection limits around 0.1 nM, and accurately monitor the substrate-specificity of WRN with a comparatively less time-consuming and high throughput process. Remarkably, we have established that this new assay was compatible in evaluating helicase inhibitors and revealed that the inhibitory effect was substrate-dependent, suggesting that diverse substrate structures other than duplex structures should be considered in discovering new inhibitors. Our study provided a foundational example for using this new assay as a powerful tool to study helicase functions and discover potent inhibitors.
Collapse
Affiliation(s)
- Jia-En Wang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| | - Ying-Chen Zhou
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| | - Bi-Han Wu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| | - Xiu-Cai Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| | - Junqiu Zhai
- Guangzhou University of Chinese Medicine, Guangzhou, Guangzhou 510330, China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
11
|
Amrane S, Jaubert C, Bedrat A, Rundstadler T, Recordon-Pinson P, Aknin C, Guédin A, De Rache A, Bartolucci L, Diene I, Lemoine F, Gascuel O, Pratviel G, Mergny JL, Andreola ML. Deciphering RNA G-quadruplex function during the early steps of HIV-1 infection. Nucleic Acids Res 2022; 50:12328-12343. [PMID: 36453997 PMCID: PMC9757044 DOI: 10.1093/nar/gkac1030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 09/27/2022] [Accepted: 10/29/2022] [Indexed: 12/02/2022] Open
Abstract
G-quadruplexes (G4s) are four-stranded nucleic acid structures formed by the stacking of G-tetrads. Here we investigated their formation and function during HIV-1 infection. Using bioinformatics and biophysics analyses we first searched for evolutionary conserved G4-forming sequences in HIV-1 genome. We identified 10 G4s with conservation rates higher than those of HIV-1 regulatory sequences such as RRE and TAR. We then used porphyrin-based G4-binders to probe the formation of the G4s during infection of human cells by native HIV-1. The G4-binders efficiently inhibited HIV-1 infectivity, which is attributed to the formation of G4 structures during HIV-1 replication. Using a qRT-PCR approach, we showed that the formation of viral G4s occurs during the first 2 h post-infection and their stabilization by the G4-binders prevents initiation of reverse transcription. We also used a G4-RNA pull-down approach, based on a G4-specific biotinylated probe, to allow the direct detection and identification of viral G4-RNA in infected cells. Most of the detected G4-RNAs contain crucial regulatory elements such as the PPT and cPPT sequences as well as the U3 region. Hence, these G4s would function in the early stages of infection when the viral RNA genome is being processed for the reverse transcription step.
Collapse
Affiliation(s)
- Samir Amrane
- To whom correspondence should be addressed. Tel : +33 5 4000 2224;
| | - Chloé Jaubert
- Université de Bordeaux, Bordeaux, France,ARNA Laboratory, INSERM U1212, CNRS UMR 5320, IECB, Bordeaux, France
| | - Amina Bedrat
- Université de Bordeaux, Bordeaux, France,ARNA Laboratory, INSERM U1212, CNRS UMR 5320, IECB, Bordeaux, France
| | - Tiffany Rundstadler
- Université de Toulouse, UPS, INPT, Toulouse, France,Laboratoire de Chimie de Coordination, CNRS UPR 8241, Toulouse, France
| | | | - Cindy Aknin
- Université de Bordeaux, Bordeaux, France,MFP laboratory, UMR5234, CNRS, Bordeaux, France
| | - Aurore Guédin
- Université de Bordeaux, Bordeaux, France,ARNA Laboratory, INSERM U1212, CNRS UMR 5320, IECB, Bordeaux, France
| | - Aurore De Rache
- Université de Bordeaux, Bordeaux, France,ARNA Laboratory, INSERM U1212, CNRS UMR 5320, IECB, Bordeaux, France
| | - Laura Bartolucci
- Université de Bordeaux, Bordeaux, France,ARNA Laboratory, INSERM U1212, CNRS UMR 5320, IECB, Bordeaux, France
| | - Ibra Diene
- Université de Bordeaux, Bordeaux, France,ARNA Laboratory, INSERM U1212, CNRS UMR 5320, IECB, Bordeaux, France
| | - Frédéric Lemoine
- Institut Pasteur, Université de Paris, Unité de Bioinformatique Évolutive, F-75015 Paris, France,Institut Pasteur, Université de Paris, Hub de bioinformatique et biostatistiques, F-75015 Paris, France
| | - Olivier Gascuel
- Institut Pasteur, Université de Paris, Unité de Bioinformatique Évolutive, F-75015 Paris, France,Institut de Systématique, Évolution, Biodiversité (ISYEB, UMR 7205 - CNRS, Muséum National d’Histoire Naturelle, SU, EPHE UA), F-75005 Paris, France
| | - Geneviève Pratviel
- Université de Toulouse, UPS, INPT, Toulouse, France,Laboratoire de Chimie de Coordination, CNRS UPR 8241, Toulouse, France
| | - Jean-Louis Mergny
- Université de Bordeaux, Bordeaux, France,ARNA Laboratory, INSERM U1212, CNRS UMR 5320, IECB, Bordeaux, France,Laboratoire d’Optique & Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, Palaiseau, France
| | - Marie-Line Andreola
- Université de Bordeaux, Bordeaux, France,MFP laboratory, UMR5234, CNRS, Bordeaux, France
| |
Collapse
|
12
|
Craig JM, Mills M, Kim HC, Huang JR, Abell S, Mount J, Gundlach J, Neuman K, Laszlo A. Nanopore tweezers measurements of RecQ conformational changes reveal the energy landscape of helicase motion. Nucleic Acids Res 2022; 50:10601-10613. [PMID: 36165957 PMCID: PMC9561376 DOI: 10.1093/nar/gkac837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 09/02/2022] [Accepted: 09/19/2022] [Indexed: 11/13/2022] Open
Abstract
Helicases are essential for nearly all nucleic acid processes across the tree of life, yet detailed understanding of how they couple ATP hydrolysis to translocation and unwinding remains incomplete because their small (∼300 picometer), fast (∼1 ms) steps are difficult to resolve. Here, we use Nanopore Tweezers to observe single Escherichia coli RecQ helicases as they translocate on and unwind DNA at ultrahigh spatiotemporal resolution. Nanopore Tweezers simultaneously resolve individual steps of RecQ along the DNA and conformational changes of the helicase associated with stepping. Our data reveal the mechanochemical coupling between physical domain motions and chemical reactions that together produce directed motion of the helicase along DNA. Nanopore Tweezers measurements are performed under either assisting or opposing force applied directly on RecQ, shedding light on how RecQ responds to such forces in vivo. Determining the rates of translocation and physical conformational changes under a wide range of assisting and opposing forces reveals the underlying dynamic energy landscape that drives RecQ motion. We show that RecQ has a highly asymmetric energy landscape that enables RecQ to maintain velocity when encountering molecular roadblocks such as bound proteins and DNA secondary structures. This energy landscape also provides a mechanistic basis making RecQ an 'active helicase,' capable of unwinding dsDNA as fast as it translocates on ssDNA. Such an energy landscape may be a general strategy for molecular motors to maintain consistent velocity despite opposing loads or roadblocks.
Collapse
Affiliation(s)
- Jonathan M Craig
- Department of Physics, University of Washington, 3910 15th Ave NE, Seattle, WA, USA
| | - Maria Mills
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Physics & Astronomy, University of Missouri, 701 S College Ave, Physics Building Rm 223, Columbia, MO 65211, USA
| | - Hwanhee C Kim
- Department of Physics, University of Washington, 3910 15th Ave NE, Seattle, WA, USA
| | - Jesse R Huang
- Department of Physics, University of Washington, 3910 15th Ave NE, Seattle, WA, USA
| | - Sarah J Abell
- Department of Physics, University of Washington, 3910 15th Ave NE, Seattle, WA, USA
| | - Jonathan W Mount
- Department of Physics, University of Washington, 3910 15th Ave NE, Seattle, WA, USA
| | - Jens H Gundlach
- Department of Physics, University of Washington, 3910 15th Ave NE, Seattle, WA, USA
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew H Laszlo
- Department of Physics, University of Washington, 3910 15th Ave NE, Seattle, WA, USA
| |
Collapse
|
13
|
Chang-Gu B, Venkatesan S, Russell R. Kinetics measurements of G-quadruplex binding and unfolding by helicases. Methods 2022; 204:1-13. [PMID: 35483547 PMCID: PMC10034854 DOI: 10.1016/j.ymeth.2022.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 01/28/2023] Open
Abstract
G-quadruplex structures (G4s) form readily in DNA and RNA and play diverse roles in gene expression and other processes, and their inappropriate formation and stabilization are linked to human diseases. G4s are inherently long-lived, such that their timely unfolding depends on a suite of DNA and RNA helicase proteins. Biochemical analysis of G4 binding and unfolding by individual helicase proteins is important for establishing their levels of activity, affinity, and specificity for G4s, including individual G4s of varying sequence and structure. Here we describe a set of simple, accessible methods in which electrophoretic mobility shift assays (EMSA) are used to measure the kinetics of G4 binding, dissociation, and unfolding by helicase proteins. We focus on practical considerations and the pitfalls that are most likely to arise when these methods are used to study the activities of helicases on G4s.
Collapse
Affiliation(s)
- Bruce Chang-Gu
- Department of Molecular Biosciences, University of Texas at Austin, Austin TX 78712, United States
| | - Sneha Venkatesan
- Department of Molecular Biosciences, University of Texas at Austin, Austin TX 78712, United States
| | - Rick Russell
- Department of Molecular Biosciences, University of Texas at Austin, Austin TX 78712, United States.
| |
Collapse
|
14
|
Mellor C, Perez C, Sale JE. Creation and resolution of non-B-DNA structural impediments during replication. Crit Rev Biochem Mol Biol 2022; 57:412-442. [PMID: 36170051 PMCID: PMC7613824 DOI: 10.1080/10409238.2022.2121803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/02/2022] [Accepted: 08/25/2022] [Indexed: 01/27/2023]
Abstract
During replication, folding of the DNA template into non-B-form secondary structures provides one of the most abundant impediments to the smooth progression of the replisome. The core replisome collaborates with multiple accessory factors to ensure timely and accurate duplication of the genome and epigenome. Here, we discuss the forces that drive non-B structure formation and the evidence that secondary structures are a significant and frequent source of replication stress that must be actively countered. Taking advantage of recent advances in the molecular and structural biology of the yeast and human replisomes, we examine how structures form and how they may be sensed and resolved during replication.
Collapse
Affiliation(s)
- Christopher Mellor
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Consuelo Perez
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Julian E Sale
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
15
|
Dai Y, Guo H, Liu N, Chen W, Ai X, Li H, Sun B, Hou X, Rety S, Xi X. Structural mechanism underpinning Thermus oshimai Pif1-mediated G-quadruplex unfolding. EMBO Rep 2022; 23:e53874. [PMID: 35736675 PMCID: PMC9253758 DOI: 10.15252/embr.202153874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 05/04/2022] [Accepted: 05/16/2022] [Indexed: 08/05/2023] Open
Abstract
G-quadruplexes (G4s) are unusual stable DNA structures that cause genomic instability. To overcome the potential barriers formed by G4s, cells have evolved different families of proteins that unfold G4s. Pif1 is a DNA helicase from superfamily 1 (SF1) conserved from bacteria to humans with high G4-unwinding activity. Here, we present the first X-ray crystal structure of the Thermus oshimai Pif1 (ToPif1) complexed with a G4. Our structure reveals that ToPif1 recognizes the entire native G4 via a cluster of amino acids at domains 1B/2B which constitute a G4-Recognizing Surface (GRS). The overall structure of the G4 maintains its three-layered propeller-type G4 topology, without significant reorganization of G-tetrads upon protein binding. The three G-tetrads in G4 are recognized by GRS residues mainly through electrostatic, ionic interactions, and hydrogen bonds formed between the GRS residues and the ribose-phosphate backbone. Compared with previously solved structures of SF2 helicases in complex with G4, our structure reveals how helicases from distinct superfamilies adopt different strategies for recognizing and unfolding G4s.
Collapse
Affiliation(s)
- Yang‐Xue Dai
- College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Hai‐Lei Guo
- College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Na‐Nv Liu
- College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Wei‐Fei Chen
- College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Xia Ai
- College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Hai‐Hong Li
- College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Bo Sun
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Xi‐Miao Hou
- College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Stephane Rety
- LBMCENS de LyonCNRS UMR 5239INSERM U1293Universite Claude Bernard Lyon 1LyonFrance
| | - Xu‐Guang Xi
- College of Life SciencesNorthwest A&F UniversityYanglingChina
- Laboratoire de Biologie et Pharmacologie Appliquée (LBPA)UMR8113 CNRSENS Paris‐SaclayUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| |
Collapse
|
16
|
Meier-Stephenson V. G4-quadruplex-binding proteins: review and insights into selectivity. Biophys Rev 2022; 14:635-654. [PMID: 35791380 PMCID: PMC9250568 DOI: 10.1007/s12551-022-00952-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
There are over 700,000 putative G4-quadruplexes (G4Qs) in the human genome, found largely in promoter regions, telomeres, and other regions of high regulation. Growing evidence links their presence to functionality in various cellular processes, where cellular proteins interact with them, either stabilizing and/or anchoring upon them, or unwinding them to allow a process to proceed. Interest in understanding and manipulating the plethora of processes regulated by these G4Qs has spawned a new area of small-molecule binder development, with attempts to mimic and block the associated G4-binding protein (G4BP). Despite the growing interest and focus on these G4Qs, there is limited data (in particular, high-resolution structural information), on the nature of these G4Q-G4BP interactions and what makes a G4BP selective to certain G4Qs, if in fact they are at all. This review summarizes the current literature on G4BPs with regards to their interactions with G4Qs, providing groupings for binding mode, drawing conclusions around commonalities and highlighting information on specific interactions where available.
Collapse
Affiliation(s)
- Vanessa Meier-Stephenson
- Department of Medicine, Division of Infectious Diseases, University of Alberta, Edmonton, AB Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB Canada
| |
Collapse
|
17
|
Shu H, Zhang R, Xiao K, Yang J, Sun X. G-Quadruplex-Binding Proteins: Promising Targets for Drug Design. Biomolecules 2022; 12:biom12050648. [PMID: 35625576 PMCID: PMC9138358 DOI: 10.3390/biom12050648] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/31/2022] Open
Abstract
G-quadruplexes (G4s) are non-canonical secondary nucleic acid structures. Sequences with the potential to form G4s are abundant in regulatory regions of the genome including telomeres, promoters and 5′ non-coding regions, indicating they fulfill important genome regulatory functions. Generally, G4s perform various biological functions by interacting with proteins. In recent years, an increasing number of G-quadruplex-binding proteins have been identified with biochemical experiments. G4-binding proteins are involved in vital cellular processes such as telomere maintenance, DNA replication, gene transcription, mRNA processing. Therefore, G4-binding proteins are also associated with various human diseases. An intensive study of G4-protein interactions provides an attractive approach for potential therapeutics and these proteins can be considered as drug targets for novel medical treatment. In this review, we present biological functions and structural properties of G4-binding proteins, and discuss how to exploit G4-protein interactions to develop new therapeutic targets.
Collapse
|
18
|
Shastri VM, Subramanian V, Schmidt KH. A novel cell-cycle-regulated interaction of the Bloom syndrome helicase BLM with Mcm6 controls replication-linked processes. Nucleic Acids Res 2021; 49:8699-8713. [PMID: 34370039 PMCID: PMC8421143 DOI: 10.1093/nar/gkab663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
The Bloom syndrome DNA helicase BLM contributes to chromosome stability through its roles in double-strand break repair by homologous recombination and DNA replication fork restart during the replication stress response. Loss of BLM activity leads to Bloom syndrome, which is characterized by extraordinary cancer risk and small stature. Here, we have analyzed the composition of the BLM complex during unperturbed S-phase and identified a direct physical interaction with the Mcm6 subunit of the minichromosome maintenance (MCM) complex. Using distinct binding sites, BLM interacts with the N-terminal domain of Mcm6 in G1 phase and switches to the C-terminal Cdt1-binding domain of Mcm6 in S-phase, with a third site playing a role for Mcm6 binding after DNA damage. Disruption of Mcm6-binding to BLM in S-phase leads to supra-normal DNA replication speed in unperturbed cells, and the helicase activity of BLM is required for this increased replication speed. Upon disruption of BLM/Mcm6 interaction, repair of replication-dependent DNA double-strand breaks is delayed and cells become hypersensitive to DNA damage and replication stress. Our findings reveal that BLM not only plays a role in the response to DNA damage and replication stress, but that its physical interaction with Mcm6 is required in unperturbed cells, most notably in S-phase as a negative regulator of replication speed.
Collapse
Affiliation(s)
- Vivek M Shastri
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Veena Subramanian
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Kristina H Schmidt
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
19
|
Yang SY, Chang EYC, Lim J, Kwan HH, Monchaud D, Yip S, Stirling PC, Wong JMY. G-quadruplexes mark alternative lengthening of telomeres. NAR Cancer 2021; 3:zcab031. [PMID: 34316718 PMCID: PMC8294677 DOI: 10.1093/narcan/zcab031] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 11/12/2022] Open
Abstract
About 10-15% of all human cancer cells employ a telomerase-independent recombination-based telomere maintenance method, known as alternative lengthening of telomere (ALT), of which the full mechanism remains incompletely understood. While implicated in previous studies as the initiating signals for ALT telomere repair, the prevalence of non-canonical nucleic acid structures in ALT cancers remains unclear. Extending earlier reports, we observe higher levels of DNA/RNA hybrids (R-loops) in ALT-positive (ALT+) compared to telomerase-positive (TERT+) cells. Strikingly, we observe even more pronounced differences for an associated four-stranded nucleic acid structure, G-quadruplex (G4). G4 signals are found at the telomere and are broadly associated with telomere length and accompanied by DNA damage markers. We establish an interdependent relationship between ALT-associated G4s and R-loops and confirm that these two structures can be spatially linked into unique structures, G-loops, at the telomere. Additionally, stabilization of G4s and R-loops cooperatively enhances ALT-activity. However, co-stabilization at higher doses resulted in cytotoxicity in a synergistic manner. Nuclear G4 signals are significantly and reproducibly different between ALT+ and TERT+ low-grade glioma tumours. Together, we present G4 as a novel hallmark of ALT cancers with potential future applications as a convenient biomarker for identifying ALT+ tumours and as therapeutic targets.
Collapse
Affiliation(s)
- Sunny Y Yang
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | | | - Joanne Lim
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Harwood H Kwan
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - David Monchaud
- Institut de Chimie Moléculaire, ICMUB CNRS UMR 6302, UBFC Dijon, 21078 Dijon, France
| | - Stephen Yip
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, V6T 2B5 Canada
| | | | - Judy M Y Wong
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, V6T 1Z3, Canada
| |
Collapse
|
20
|
Multifunctionality of the Telomere-Capping Shelterin Complex Explained by Variations in Its Protein Composition. Cells 2021; 10:cells10071753. [PMID: 34359923 PMCID: PMC8305809 DOI: 10.3390/cells10071753] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/03/2021] [Accepted: 07/09/2021] [Indexed: 12/31/2022] Open
Abstract
Protecting telomere from the DNA damage response is essential to avoid the entry into cellular senescence and organismal aging. The progressive telomere DNA shortening in dividing somatic cells, programmed during development, leads to critically short telomeres that trigger replicative senescence and thereby contribute to aging. In several organisms, including mammals, telomeres are protected by a protein complex named Shelterin that counteract at various levels the DNA damage response at chromosome ends through the specific function of each of its subunits. The changes in Shelterin structure and function during development and aging is thus an intense area of research. Here, we review our knowledge on the existence of several Shelterin subcomplexes and the functional independence between them. This leads us to discuss the possibility that the multifunctionality of the Shelterin complex is determined by the formation of different subcomplexes whose composition may change during aging.
Collapse
|
21
|
Mustafa G, Shiekh S, Gc K, Abeysirigunawardena S, Balci H. Interrogating accessibility of telomeric sequences with FRET-PAINT: evidence for length-dependent telomere compaction. Nucleic Acids Res 2021; 49:3371-3380. [PMID: 33693934 PMCID: PMC8034622 DOI: 10.1093/nar/gkab067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/23/2021] [Accepted: 03/08/2021] [Indexed: 12/25/2022] Open
Abstract
Single-stranded telomeric overhangs are ∼200 nucleotides long and can form tandem G-quadruplex (GQ) structures, which reduce their accessibility to nucleases and proteins that activate DNA damage response. Whether these tandem GQs further stack to form compact superstructures, which may provide better protection for longer telomeres, is not known. We report single-molecule measurements where the accessibility of 24-144 nucleotide long human telomeric DNA molecules is interrogated by a short PNA molecule that is complementary to a single GGGTTA repeat, as implemented in the FRET-PAINT method. Binding of the PNA strand to available GGGTTA sequences results in discrete FRET bursts which were analyzed in terms of their dwell times, binding frequencies, and topographic distributions. The binding frequencies were greater for binding to intermediate regions of telomeric DNA compared to 3'- or 5'-ends, suggesting these regions are more accessible. Significantly, the binding frequency per telomeric repeat monotonically decreased with increasing telomere length. These results are consistent with telomeres forming more compact structures at longer lengths, reducing accessibility of these critical genomic sites.
Collapse
Affiliation(s)
- Golam Mustafa
- Department of Physics, Kent State University, Kent, OH 44242, USA
| | - Sajad Shiekh
- Department of Physics, Kent State University, Kent, OH 44242, USA
| | - Keshav Gc
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | | | - Hamza Balci
- Department of Physics, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
22
|
McRae EKS, Dupas SJ, Atefi N, McKenna SA. Monitoring Enzymatic RNA G-Quadruplex Unwinding Activities by Nuclease Sensitivity and Reverse Transcription Stop Assays. Methods Mol Biol 2021; 2209:163-173. [PMID: 33201469 DOI: 10.1007/978-1-0716-0935-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Multiple different methods have been employed to investigate the unwinding of RNA G-quadruplexes by various helicase proteins. Each has their own pitfalls, namely, looking at non-native or chemically modified RNA sequences, biasing the unwinding process with competing trap nucleotides, and a lack of context sequence to the 5' and 3' of the RNA G-quadruplex structure. Herein we present two straightforward methods that allow for quadruplex unwinding to be monitored on native RNA sequences without the use of fluorescent modifications, specialized equipment, or trap nucleotides to be employed.
Collapse
Affiliation(s)
- Ewan K S McRae
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Steven J Dupas
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Negar Atefi
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada. .,Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada. .,Manitoba Institute for Materials, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
23
|
Seviour T, Winnerdy FR, Wong LL, Shi X, Mugunthan S, Foo YH, Castaing R, Adav SS, Subramoni S, Kohli GS, Shewan HM, Stokes JR, Rice SA, Phan AT, Kjelleberg S. The biofilm matrix scaffold of Pseudomonas aeruginosa contains G-quadruplex extracellular DNA structures. NPJ Biofilms Microbiomes 2021; 7:27. [PMID: 33741996 PMCID: PMC7979868 DOI: 10.1038/s41522-021-00197-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/12/2021] [Indexed: 12/31/2022] Open
Abstract
Extracellular DNA, or eDNA, is recognised as a critical biofilm component; however, it is not understood how it forms networked matrix structures. Here, we isolate eDNA from static-culture Pseudomonas aeruginosa biofilms using ionic liquids to preserve its biophysical signatures of fluid viscoelasticity and the temperature dependency of DNA transitions. We describe a loss of eDNA network structure as resulting from a change in nucleic acid conformation, and propose that its ability to form viscoelastic structures is key to its role in building biofilm matrices. Solid-state analysis of isolated eDNA, as a proxy for eDNA structure in biofilms, reveals non-canonical Hoogsteen base pairs, triads or tetrads involving thymine or uracil, and guanine, suggesting that the eDNA forms G-quadruplex structures. These are less abundant in chromosomal DNA and disappear when eDNA undergoes conformation transition. We verify the occurrence of G-quadruplex structures in the extracellular matrix of intact static and flow-cell biofilms of P. aeruginosa, as displayed by the matrix to G-quadruplex-specific antibody binding, and validate the loss of G-quadruplex structures in vivo to occur coincident with the disappearance of eDNA fibres. Given their stability, understanding how extracellular G-quadruplex structures form will elucidate how P. aeruginosa eDNA builds viscoelastic networks, which are a foundational biofilm property.
Collapse
Affiliation(s)
- Thomas Seviour
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore. .,WATEC Aarhus University Centre for Water Technology, Aarhus, Denmark.
| | - Fernaldo Richtia Winnerdy
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Lan Li Wong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Xiangyan Shi
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Sudarsan Mugunthan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yong Hwee Foo
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Remi Castaing
- Materials and Chemical Characterisation Facility (MC2), University of Bath, Bath, UK
| | - Sunil S Adav
- Singapore Phenome Centre, Nanyang Technological University, Singapore, Singapore
| | - Sujatha Subramoni
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Gurjeet Singh Kohli
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Heather M Shewan
- School of Chemical Engineering, University of Queensland, Brisbane, QLD, Australia
| | - Jason R Stokes
- School of Chemical Engineering, University of Queensland, Brisbane, QLD, Australia
| | - Scott A Rice
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,The iThree Institute, University of Technology Sydney, Sydney, NSW, Australia.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Staffan Kjelleberg
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore. .,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore. .,School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
24
|
Human MYC G-quadruplex: From discovery to a cancer therapeutic target. Biochim Biophys Acta Rev Cancer 2020; 1874:188410. [PMID: 32827579 DOI: 10.1016/j.bbcan.2020.188410] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
Overexpression of the MYC oncogene is a molecular hallmark of both cancer initiation and progression. Targeting MYC is a logical and effective cancer therapeutic strategy. A special DNA secondary structure, the G-quadruplex (G4), is formed within the nuclease hypersensitivity element III1 (NHE III1) region, located upstream of the MYC gene's P1 promoter that drives the majority of its transcription. Targeting such G4 structures has been a focus of anticancer therapies in recent decades. Thus, a comprehensive review of the MYC G4 structure and its role as a potential therapeutic target is timely. In this review, we first outline the discovery of the MYC G4 structure and evidence of its formation in vitro and in cells. Then, we describe the functional role of G4 in regulating MYC gene expression. We also summarize three types of MYC G4-interacting proteins that can promote, stabilize and unwind G4 structures. Finally, we discuss G4-binding molecules and the anticancer activities of G4-stabilizing ligands, including small molecular compounds and peptides, and assess their potential as novel anticancer therapeutics.
Collapse
|
25
|
Lee S, Kim J, Han S, Park CJ. Recognition and Unfolding of c-MYC and Telomeric G-Quadruplex DNAs by the RecQ C-Terminal Domain of Human Bloom Syndrome Helicase. ACS OMEGA 2020; 5:14513-14522. [PMID: 32596589 PMCID: PMC7315595 DOI: 10.1021/acsomega.0c01176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/02/2020] [Indexed: 05/16/2023]
Abstract
G-quadruplex (G4) is a noncanonical DNA secondary structure formed by Hoogsteen base pairing. It is recognized by various DNA helicases involved in DNA metabolism processes such as replication and transcription. Human Bloom syndrome protein (BLM), one of five human RecQ helicases, is a G4 helicase. While several studies revealed the mechanism of G4 binding and unfolding by the conserved RecQ C-terminal (RQC) domain of BLM, how RQC recognizes different G4 topologies is still unclear. Here, we investigated the interaction of Myc-22(14/23T) G4 from the c-Myc promoter and hTelo G4 from the telomeric sequence with RQC. Myc-22(14/23T) and hTelo form parallel and (3+1) hybrid topologies, respectively. Our circular dichroism (CD) spectroscopy data indicate that RQC can partially unfold the parallel G4, even with a short 3' overhang, while it can only partially unfold the (3+1) hybrid G4 with a 3' overhang of 6 nucleotides or longer. We found that the intrinsic thermal stability of G4 does not determine RQC-induced G4 unfolding by comparing T m of G4s. We also showed that both parallel and (3+1) hybrid G4s bind to the β-wing region of RQC. Thermodynamic analysis using isothermal titration calorimetry (ITC) showed that all interactions were endothermic and entropically driven. We suggest that RQC partially unfolds the parallel G4 more efficiently than the (3+1) hybrid G4 and binds to various G4 structures using its β-wing region. By this information, our research provides new insights into the influence of G4 structure on DNA metabolic processes involving BLM.
Collapse
|
26
|
Maleki P, Mustafa G, Gyawali P, Budhathoki JB, Ma Y, Nagasawa K, Balci H. Quantifying the impact of small molecule ligands on G-quadruplex stability against Bloom helicase. Nucleic Acids Res 2020; 47:10744-10753. [PMID: 31544934 PMCID: PMC6847008 DOI: 10.1093/nar/gkz803] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 08/28/2019] [Accepted: 09/09/2019] [Indexed: 01/28/2023] Open
Abstract
G-quadruplex (GQ) stabilizing small molecule (SM) ligands have been used to stabilize human telomeric GQ (hGQ) to inhibit telomerase activity, or non-telomeric GQs to manipulate gene expression at transcription or translation level. GQs are known to inhibit DNA replication unless destabilized by helicases, such as Bloom helicase (BLM). Even though the impact of SM ligands on thermal stability of GQs is commonly used to characterize their efficacy, how these ligands influence helicase-mediated GQ unfolding is not well understood. Three prominent SM ligands (an oxazole telomestatin derivative, pyridostatin, and PhenDC3), which thermally stabilize hGQ at different levels, were utilized in this study. How these ligands influence BLM-mediated hGQ unfolding was investigated using two independent single-molecule approaches. While the frequency of dynamic hGQ unfolding events was used as the metric in the first approach, the second approach was based on quantifying the cumulative unfolding activity as a function of time. All three SM ligands inhibited BLM activity at similar levels, 2–3 fold, in both approaches. Our observations suggest that the impact of SM ligands on GQ thermal stability is not an ideal predictor for their inhibition of helicase-mediated unfolding, which is physiologically more relevant.
Collapse
Affiliation(s)
- Parastoo Maleki
- Department of Physics, Kent State University, Kent, OH 44242, USA
| | - Golam Mustafa
- Department of Physics, Kent State University, Kent, OH 44242, USA
| | - Prabesh Gyawali
- Department of Physics, Kent State University, Kent, OH 44242, USA
| | | | - Yue Ma
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Hamza Balci
- Department of Physics, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
27
|
Mitra J, Ha T. Streamlining effects of extra telomeric repeat on telomeric DNA folding revealed by fluorescence-force spectroscopy. Nucleic Acids Res 2020; 47:11044-11056. [PMID: 31617570 PMCID: PMC6868435 DOI: 10.1093/nar/gkz906] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/29/2019] [Accepted: 10/02/2019] [Indexed: 01/26/2023] Open
Abstract
A human telomere ends in a single-stranded 3′ tail, composed of repeats of T2AG3. G-quadruplexes (GQs) formed from four consecutive repeats have been shown to possess high-structural and mechanical diversity. In principle, a GQ can form from any four repeats that are not necessarily consecutive. To understand the dynamics of GQs with positional multiplicity, we studied five and six repeats human telomeric sequence using a combination of single molecule FRET and optical tweezers. Our results suggest preferential formation of GQs at the 3′ end both in K+ and Na+ solutions, with minor populations of 5′-GQ or long-loop GQs. A vectorial folding assay which mimics the directional nature of telomere extension showed that the 3′ preference holds even when folding is allowed to begin from the 5′ side. In 100 mM K+, the unassociated T2AG3 segment has a streamlining effect in that one or two mechanically distinct species was observed at a single position instead of six or more observed without an unassociated repeat. We did not observe such streamlining effect in 100 mM Na+. Location of GQ and reduction in conformational diversity in the presence of extra repeats have implications in telomerase inhibition, T-loop formation and telomere end protection.
Collapse
Affiliation(s)
- Jaba Mitra
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana IL 61801, USA.,Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD 21205, USA.,Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.,Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
28
|
Wu WQ, Zhang ML, Song CP. A comprehensive evaluation of a typical plant telomeric G-quadruplex (G4) DNA reveals the dynamics of G4 formation, rearrangement, and unfolding. J Biol Chem 2020; 295:5461-5469. [PMID: 32184352 PMCID: PMC7170514 DOI: 10.1074/jbc.ra119.012383] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/16/2020] [Indexed: 11/06/2022] Open
Abstract
Telomeres are specific nucleoprotein structures that are located at the ends of linear eukaryotic chromosomes and play crucial roles in genomic stability. Telomere DNA consists of simple repeats of a short G-rich sequence: TTAGGG in mammals and TTTAGGG in most plants. In recent years, the mammalian telomeric G-rich repeats have been shown to form G-quadruplex (G4) structures, which are crucial for modulating telomere functions. Surprisingly, even though plant telomeres are essential for plant growth, development, and environmental adaptions, only few reports exist on plant telomeric G4 DNA (pTG4). Here, using bulk and single-molecule assays, including CD spectroscopy, and single-molecule FRET approaches, we comprehensively characterized the structure and dynamics of a typical plant telomeric sequence, d[GGG(TTTAGGG)3]. We found that this sequence can fold into mixed G4s in potassium, including parallel and antiparallel structures. We also directly detected intermediate dynamic transitions, including G-hairpin, parallel G-triplex, and antiparallel G-triplex structures. Moreover, we observed that pTG4 is unfolded by the AtRecQ2 helicase but not by AtRecQ3. The results of our work shed light on our understanding about the existence, topological structures, stability, intermediates, unwinding, and functions of pTG4.
Collapse
Affiliation(s)
- Wen-Qiang Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Ming-Li Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475001, China.
| |
Collapse
|
29
|
Tan J, Wang X, Phoon L, Yang H, Lan L. Resolution of ROS‐induced G‐quadruplexes and R‐loops at transcriptionally active sites is dependent on BLM helicase. FEBS Lett 2020; 594:1359-1367. [DOI: 10.1002/1873-3468.13738] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/23/2019] [Accepted: 01/15/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Jun Tan
- Massachusetts General Hospital Cancer Center Harvard Medical School Charlestown MA USA
- Department of Radiation Oncology Harvard Medical School Massachusetts General Hospital Boston MA USA
| | - Xiangyu Wang
- Massachusetts General Hospital Cancer Center Harvard Medical School Charlestown MA USA
- Department of Radiation Oncology Harvard Medical School Massachusetts General Hospital Boston MA USA
| | - Laiyee Phoon
- Massachusetts General Hospital Cancer Center Harvard Medical School Charlestown MA USA
- Department of Radiation Oncology Harvard Medical School Massachusetts General Hospital Boston MA USA
| | - Haibo Yang
- Massachusetts General Hospital Cancer Center Harvard Medical School Charlestown MA USA
- Department of Radiation Oncology Harvard Medical School Massachusetts General Hospital Boston MA USA
| | - Li Lan
- Massachusetts General Hospital Cancer Center Harvard Medical School Charlestown MA USA
- Department of Radiation Oncology Harvard Medical School Massachusetts General Hospital Boston MA USA
| |
Collapse
|
30
|
Lowran K, Campbell L, Popp P, Wu CG. Assembly of a G-Quadruplex Repair Complex by the FANCJ DNA Helicase and the REV1 Polymerase. Genes (Basel) 2019; 11:E5. [PMID: 31861576 PMCID: PMC7017153 DOI: 10.3390/genes11010005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
The FANCJ helicase unfolds G-quadruplexes (G4s) in human cells to support DNA replication. This action is coupled to the recruitment of REV1 polymerase to synthesize DNA across from a guanine template. The precise mechanisms of these reactions remain unclear. While FANCJ binds to G4s with an AKKQ motif, it is not known whether this site recognizes damaged G4 structures. FANCJ also has a PIP-like (PCNA Interacting Protein) region that may recruit REV1 to G4s either directly or through interactions mediated by PCNA protein. In this work, we measured the affinities of a FANCJ AKKQ peptide for G4s formed by (TTAGGG)4 and (GGGT)4 using fluorescence spectroscopy and biolayer interferometry (BLI). The effects of 8-oxoguanine (8oxoG) on these interactions were tested at different positions. BLI assays were then performed with a FANCJ PIP to examine its recruitment of REV1 and PCNA. FANCJ AKKQ bound tightly to a TTA loop and was sequestered away from the 8oxoG. Reducing the loop length between guanine tetrads increased the affinity of the peptide for 8oxoG4s. FANCJ PIP targeted both REV1 and PCNA but favored interactions with the REV1 polymerase. The impact of these results on the remodeling of damaged G4 DNA is discussed herein.
Collapse
Affiliation(s)
- Kaitlin Lowran
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA; (K.L.); (L.C.)
| | - Laura Campbell
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA; (K.L.); (L.C.)
| | - Phillip Popp
- Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Colin G. Wu
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA; (K.L.); (L.C.)
| |
Collapse
|
31
|
Lansdorp P, van Wietmarschen N. Helicases FANCJ, RTEL1 and BLM Act on Guanine Quadruplex DNA in Vivo. Genes (Basel) 2019; 10:genes10110870. [PMID: 31683575 PMCID: PMC6896191 DOI: 10.3390/genes10110870] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 02/03/2023] Open
Abstract
Guanine quadruplex (G4) structures are among the most stable secondary DNA structures that can form in vitro, and evidence for their existence in vivo has been steadily accumulating. Originally described mainly for their deleterious effects on genome stability, more recent research has focused on (potential) functions of G4 structures in telomere maintenance, gene expression, and other cellular processes. The combined research on G4 structures has revealed that properly regulating G4 DNA structures in cells is important to prevent genome instability and disruption of normal cell function. In this short review we provide some background and historical context of our work resulting in the identification of FANCJ, RTEL1 and BLM as helicases that act on G4 structures in vivo. Taken together these studies highlight important roles of different G4 DNA structures and specific G4 helicases at selected genomic locations and telomeres in regulating gene expression and maintaining genome stability.
Collapse
Affiliation(s)
- Peter Lansdorp
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada.
- European Research Institute for the Biology of Ageing, University of Groningen, 9713 AV Groningen, The Netherlands.
| | - Niek van Wietmarschen
- European Research Institute for the Biology of Ageing, University of Groningen, 9713 AV Groningen, The Netherlands.
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
32
|
Khairnar NP, Maurya GK, Pandey N, Das A, Misra HS. DrRecQ regulates guanine quadruplex DNA structure dynamics and its impact on radioresistance in
Deinococcus radiodurans. Mol Microbiol 2019; 112:854-865. [DOI: 10.1111/mmi.14321] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2019] [Indexed: 11/30/2022]
Affiliation(s)
| | - Ganesh Kumar Maurya
- Molecular Biology Division Bhabha Atomic Research Centre Mumbai 400085India
- Life Sciences Homi Bhabha National Institute Mumbai 400094India
| | - Neha Pandey
- Molecular Biology Division Bhabha Atomic Research Centre Mumbai 400085India
| | - Anubrata Das
- Molecular Biology Division Bhabha Atomic Research Centre Mumbai 400085India
| | - Hari S. Misra
- Molecular Biology Division Bhabha Atomic Research Centre Mumbai 400085India
- Life Sciences Homi Bhabha National Institute Mumbai 400094India
| |
Collapse
|
33
|
Yin QK, Wang CX, Wang YQ, Guo QL, Zhang ZL, Ou TM, Huang SL, Li D, Wang HG, Tan JH, Chen SB, Huang ZS. Discovery of Isaindigotone Derivatives as Novel Bloom’s Syndrome Protein (BLM) Helicase Inhibitors That Disrupt the BLM/DNA Interactions and Regulate the Homologous Recombination Repair. J Med Chem 2019; 62:3147-3162. [DOI: 10.1021/acs.jmedchem.9b00083] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Qi-Kun Yin
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Chen-Xi Wang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yu-Qing Wang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Qian-Liang Guo
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Zi-Lin Zhang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Tian-Miao Ou
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Shi-Liang Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Ding Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Hong-Gen Wang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
34
|
Lee S, Lee AR, Ryu KS, Lee JH, Park CJ. NMR Investigation of the Interaction between the RecQ C-Terminal Domain of Human Bloom Syndrome Protein and G-Quadruplex DNA from the Human c-Myc Promoter. J Mol Biol 2019; 431:794-806. [DOI: 10.1016/j.jmb.2019.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/01/2019] [Accepted: 01/05/2019] [Indexed: 11/29/2022]
|
35
|
Lerner LK, Sale JE. Replication of G Quadruplex DNA. Genes (Basel) 2019; 10:genes10020095. [PMID: 30700033 PMCID: PMC6409989 DOI: 10.3390/genes10020095] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 01/03/2023] Open
Abstract
A cursory look at any textbook image of DNA replication might suggest that the complex machine that is the replisome runs smoothly along the chromosomal DNA. However, many DNA sequences can adopt non-B form secondary structures and these have the potential to impede progression of the replisome. A picture is emerging in which the maintenance of processive DNA replication requires the action of a significant number of additional proteins beyond the core replisome to resolve secondary structures in the DNA template. By ensuring that DNA synthesis remains closely coupled to DNA unwinding by the replicative helicase, these factors prevent impediments to the replisome from causing genetic and epigenetic instability. This review considers the circumstances in which DNA forms secondary structures, the potential responses of the eukaryotic replisome to these impediments in the light of recent advances in our understanding of its structure and operation and the mechanisms cells deploy to remove secondary structure from the DNA. To illustrate the principles involved, we focus on one of the best understood DNA secondary structures, G quadruplexes (G4s), and on the helicases that promote their resolution.
Collapse
Affiliation(s)
- Leticia Koch Lerner
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Julian E Sale
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
36
|
Developing Novel G-Quadruplex Ligands: from Interaction with Nucleic Acids to Interfering with Nucleic Acid⁻Protein Interaction. Molecules 2019; 24:molecules24030396. [PMID: 30678288 PMCID: PMC6384609 DOI: 10.3390/molecules24030396] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/10/2019] [Accepted: 01/22/2019] [Indexed: 12/20/2022] Open
Abstract
G-quadruplex is a special secondary structure of nucleic acids in guanine-rich sequences of genome. G-quadruplexes have been proved to be involved in the regulation of replication, DNA damage repair, and transcription and translation of oncogenes or other cancer-related genes. Therefore, targeting G-quadruplexes has become a novel promising anti-tumor strategy. Different kinds of small molecules targeting the G-quadruplexes have been designed, synthesized, and identified as potential anti-tumor agents, including molecules directly bind to the G-quadruplex and molecules interfering with the binding between the G-quadruplex structures and related binding proteins. This review will explore the feasibility of G-quadruplex ligands acting as anti-tumor drugs, from basis to application. Meanwhile, since helicase is the most well-defined G-quadruplex-related protein, the most extensive research on the relationship between helicase and G-quadruplexes, and its meaning in drug design, is emphasized.
Collapse
|
37
|
Wang H, Li S, Zhang H, Wang Y, Hao S, Wu X. BLM prevents instability of structure-forming DNA sequences at common fragile sites. PLoS Genet 2018; 14:e1007816. [PMID: 30496191 PMCID: PMC6289451 DOI: 10.1371/journal.pgen.1007816] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/11/2018] [Accepted: 11/07/2018] [Indexed: 01/04/2023] Open
Abstract
Genome instability often arises at common fragile sites (CFSs) leading to cancer-associated chromosomal rearrangements. However, the underlying mechanisms of how CFS protection is achieved is not well understood. We demonstrate that BLM plays an important role in the maintenance of genome stability of structure-forming AT-rich sequences derived from CFSs (CFS-AT). BLM deficiency leads to increased DSB formation and hyper mitotic recombination at CFS-AT and induces instability of the plasmids containing CFS-AT. We further showed that BLM is required for suppression of CFS breakage upon oncogene expression. Both helicase activity and ATR-mediated phosphorylation of BLM are important for preventing genetic instability at CFS-AT sequences. Furthermore, the role of BLM in protecting CFS-AT is not epistatic to that of FANCM, a translocase that is involved in preserving CFS stability. Loss of BLM helicase activity leads to drastic decrease of cell viability in FANCM deficient cells. We propose that BLM and FANCM utilize different mechanisms to remove DNA secondary structures forming at CFS-AT on replication forks, thereby preventing DSB formation and maintaining CFS stability. Common fragile sites (CFSs) are large chromosomal regions which are more prone to breakage than other places in the genome. They are a part of normal chromosome structure and are present in all human beings, but are also hotspots for chromosomal rearrangement during oncogenesis. Understanding how CFSs are protected to prevent genome instability is thus extremely important for revealing the mechanism underlying cancer development. We found that Bloom syndrome protein BLM is involved in resolving DNA secondary structures that arise at AT-rich sequences in CFSs, suggesting a critical function of BLM in protecting CFSs. We also found that this BLM function is distinct from the role of Fanconi anemia protein FANCM in protecting CFSs, and loss of both BLM and FANCM activities leads to cell death. These studies reveal important mechanisms of the maintenance of CFS stability in mammalian cells.
Collapse
Affiliation(s)
- Hailong Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
| | - Shibo Li
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Huimin Zhang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Ya Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
| | - Shuailin Hao
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
| | - Xiaohua Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
38
|
Peng W, Sun ZY, Zhang Q, Cheng SQ, Wang SK, Wang XN, Kuang GT, Su XX, Tan JH, Huang ZS, Ou TM. Design, Synthesis, and Evaluation of Novel p-(Methylthio)styryl Substituted Quindoline Derivatives as Neuroblastoma RAS (NRAS) Repressors via Specific Stabilizing the RNA G-Quadruplex. J Med Chem 2018; 61:6629-6646. [PMID: 29799749 DOI: 10.1021/acs.jmedchem.8b00257] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The human proto-oncogene neuroblastoma RAS ( NRAS) contains a guanine-rich sequence in the 5'-untranslated regions (5'-UTR) of the mRNA that could form an RNA G-quadruplex structure. This structure acts as a repressor for NRAS translation and could be a potential target for anticancer drugs. Our previous studies found an effective scaffold, the quindoline scaffold, for binding and stabilizing the DNA G-quadruplex structures. Here, on the basis of the previous studies and reported RNA-specific probes, a series of novel p-(methylthio)styryl substituted quindoline (MSQ) derivatives were designed, synthesized, and evaluated as NRAS RNA G-quadruplex ligands. Panels of experiments turned out that the introduction of p-(methylthio)styryl side chain could enhance the specific binding to the NRAS RNA G-quadruplex. One of the hits, 4a-10, showed strong stabilizing activity on the G-quadruplex and subsequently repressed NRAS's translation and inhibited tumor cells proliferation. Our finding provided a novel strategy to discover novel NRAS repressors by specifically binding to the RNA G-quadruplex in the 5'-UTR of mRNA.
Collapse
Affiliation(s)
- Wang Peng
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , P. R. China
| | - Zhi-Yin Sun
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , P. R. China
| | - Qi Zhang
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , P. R. China
| | - Sui-Qi Cheng
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , P. R. China
| | - Shi-Ke Wang
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , P. R. China
| | - Xiao-Na Wang
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , P. R. China
| | - Guo-Tao Kuang
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , P. R. China
| | - Xiao-Xuan Su
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , P. R. China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , P. R. China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , P. R. China
| | - Tian-Miao Ou
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , P. R. China
| |
Collapse
|
39
|
Teng FY, Hou XM, Fan SH, Rety S, Dou SX, Xi XG. Escherichia coli DNA polymerase I can disrupt G-quadruplex structures during DNA replication. FEBS J 2017; 284:4051-4065. [PMID: 28986969 DOI: 10.1111/febs.14290] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/24/2017] [Accepted: 10/03/2017] [Indexed: 12/14/2022]
Abstract
Non-canonical four-stranded G-quadruplex (G4) DNA structures can form in G-rich sequences that are widely distributed throughout the genome. The presence of G4 structures can impair DNA replication by hindering the progress of replicative polymerases (Pols), and failure to resolve these structures can lead to genetic instability. In the present study, we combined different approaches to address the question of whether and how Escherichia coli Pol I resolves G4 obstacles during DNA replication and/or repair. We found that E. coli Pol I-catalyzed DNA synthesis could be arrested by G4 structures at low protein concentrations and the degree of inhibition was strongly dependent on the stability of the G4 structures. Interestingly, at high protein concentrations, E. coli Pol I was able to overcome some kinds of G4 obstacles without the involvement of other molecules and could achieve complete replication of G4 DNA. Mechanistic studies suggested that multiple Pol I proteins might be implicated in G4 unfolding, and the disruption of G4 structures requires energy derived from dNTP hydrolysis. The present work not only reveals an unrealized function of E. coli Pol I, but also presents a possible mechanism by which G4 structures can be resolved during DNA replication and/or repair in E. coli.
Collapse
Affiliation(s)
- Fang-Yuan Teng
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xi-Miao Hou
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - San-Hong Fan
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Stephane Rety
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, LBMC, Lyon, France
| | - Shuo-Xing Dou
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xu-Guang Xi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.,LBPA, Ecole normale supérieure Paris-Saclay, CNRS, Université Paris Saclay, Cachan, France
| |
Collapse
|
40
|
Budhathoki JB, Maleki P, Roy WA, Janscak P, Yodh JG, Balci H. A Comparative Study of G-Quadruplex Unfolding and DNA Reeling Activities of Human RECQ5 Helicase. Biophys J 2017; 110:2585-2596. [PMID: 27332117 DOI: 10.1016/j.bpj.2016.05.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/04/2016] [Accepted: 05/11/2016] [Indexed: 11/15/2022] Open
Abstract
RECQ5 is one of five members of the RecQ family of helicases in humans, which include RECQ1, Bloom (BLM), Werner (WRN), RECQ4, and RECQ5. Both WRN and BLM have been shown to resolve G-quadruplex (GQ) structures. Deficiencies in unfolding GQ are known to result in DNA breaks and genomic instability, which are prominent in Werner and Bloom syndromes. RECQ5 is significant in suppressing sister chromatid exchanges during homologous recombination but its GQ unfolding activity are not known. We performed single-molecule studies under different salt (50-150 mM KCl or NaCl) and ATP concentrations on different GQ constructs including human telomeric GQ (with different overhangs and polarities) and GQ formed by thrombin-binding aptamer to investigate this activity. These studies demonstrated a RECQ5-mediated GQ unfolding activity that was an order of magnitude weaker than BLM and WRN. On the other hand, BLM and RECQ5 demonstrated similar single-stranded DNA (ssDNA) reeling activities that were not coupled to GQ unfolding. These results demonstrate overlap in function between these RecQ helicases; however, the relatively weak GQ destabilization activity of RECQ5 compared to BLM and WRN suggests that RECQ5 is not primarily associated with GQ destabilization, but could substitute for the more efficient helicases under conditions where their activity is compromised. In addition, these results implicate a more general role for helicase-promoted ssDNA reeling activity such as removal of proteins at the replication fork, whereas the association of ssDNA reeling with GQ destabilization is more helicase-specific.
Collapse
Affiliation(s)
| | | | - William A Roy
- Department of Physics, Kent State University, Kent, Ohio
| | - Pavel Janscak
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Jaya G Yodh
- Department of Physics and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| | - Hamza Balci
- Department of Physics, Kent State University, Kent, Ohio.
| |
Collapse
|
41
|
Maleki P, Budhathoki JB, Roy WA, Balci H. A practical guide to studying G-quadruplex structures using single-molecule FRET. Mol Genet Genomics 2017; 292:483-498. [PMID: 28150040 DOI: 10.1007/s00438-017-1288-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/05/2017] [Indexed: 11/26/2022]
Abstract
In this article, we summarize the knowledge and best practices learned from bulk and single-molecule measurements to address some of the frequently experienced difficulties in single-molecule Förster resonance energy transfer (smFRET) measurements on G-quadruplex (GQ) structures. The number of studies that use smFRET to investigate the structure, function, dynamics, and interactions of GQ structures has grown significantly in the last few years, with new applications already in sight. However, a number of challenges need to be overcome before reliable and reproducible smFRET data can be obtained in measurements that include GQ. The annealing and storage conditions, the location of fluorophores on the DNA construct, and the ionic conditions of the experiment are some of the factors that are of critical importance for the outcome of measurements, and many of these manifest themselves in unique ways in smFRET assays. By reviewing these aspects and providing a summary of best practices, we aim to provide a practical guide that will help in successfully designing and performing smFRET studies on GQ structures.
Collapse
Affiliation(s)
- Parastoo Maleki
- Department of Physics, Kent State University, Kent, OH, 44242, USA
| | | | - William A Roy
- Department of Physics, Kent State University, Kent, OH, 44242, USA
| | - Hamza Balci
- Department of Physics, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
42
|
Maleki P, Ma Y, Iida K, Nagasawa K, Balci H. A single molecule study of a fluorescently labeled telomestatin derivative and G-quadruplex interactions. Nucleic Acids Res 2016; 45:288-295. [PMID: 27899628 PMCID: PMC5224478 DOI: 10.1093/nar/gkw1090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/10/2016] [Accepted: 10/25/2016] [Indexed: 02/03/2023] Open
Abstract
The potential use of G-quadruplex (GQ) stabilizing small molecules as anti-cancer drugs has created a flurry of activity on various aspects of these molecules. Telomestatin and oxazole telomestatin derivatives (OTD) are some of the most prominent of such molecules, yet the underlying dynamics of their interactions with GQ and the extent of heterogeneities in these interactions are not known. We performed single molecule measurements to study binding kinetics, rotational freedom, and dwell time distributions of a Cy5-labeled OTD (L1Cy5–7OTD) as it interacted with several different GQ structures. Our measurements show that L1Cy5–7OTD dwells on more stable GQ for longer times and binds to such GQ with higher frequency. The dwell times showed a broad distribution, but were longer than a minute for a significant fraction of molecules (characteristic dwell time τ = 192 ± 15 s and τ = 98 ± 15 s for the more and less stable GQ, respectively). In addition, L1Cy5–7OTD might be able to bind to GQ in at least two different primary orientations and occasionally transition between these orientations. The dwell time in one of these orientations was significantly longer than that in the other one, suggesting different stabilities for different binding orientations.
Collapse
Affiliation(s)
- Parastoo Maleki
- Department of Physics, Kent State University, Kent, OH 44240, USA
| | - Yue Ma
- Department of Biotechnology and Life Science, Graduate School of Technology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Keisuke Iida
- Department of Biotechnology and Life Science, Graduate School of Technology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science, Graduate School of Technology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Hamza Balci
- Department of Physics, Kent State University, Kent, OH 44240, USA
| |
Collapse
|
43
|
Single-molecule imaging reveals a common mechanism shared by G-quadruplex-resolving helicases. Proc Natl Acad Sci U S A 2016; 113:8448-53. [PMID: 27407146 DOI: 10.1073/pnas.1603724113] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
G-quadruplex (GQ) is a four stranded DNA secondary structure that arises from a guanine rich sequence. Stable formation of GQ in genomic DNA can be counteracted by the resolving activity of specialized helicases including RNA helicase AU (associated with AU rich elements) (RHAU) (G4 resolvase 1), Bloom helicase (BLM), and Werner helicase (WRN). However, their substrate specificity and the mechanism involved in GQ unfolding remain uncertain. Here, we report that RHAU, BLM, and WRN exhibit distinct GQ conformation specificity, but use a common mechanism of repetitive unfolding that leads to disrupting GQ structure multiple times in succession. Such unfolding activity of RHAU leads to efficient annealing exclusively within the same DNA molecule. The same resolving activity is sufficient to dislodge a stably bound GQ ligand, including BRACO-19, NMM, and Phen-DC3. Our study demonstrates a plausible biological scheme where different helicases are delegated to resolve specific GQ structures by using a common repetitive unfolding mechanism that provides a robust resolving power.
Collapse
|
44
|
Wu CG, Spies M. G-quadruplex recognition and remodeling by the FANCJ helicase. Nucleic Acids Res 2016; 44:8742-8753. [PMID: 27342280 PMCID: PMC5062972 DOI: 10.1093/nar/gkw574] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/15/2016] [Indexed: 12/16/2022] Open
Abstract
Guanine rich nucleic acid sequences can form G-quadruplex (G4) structures that interfere with DNA replication, repair and RNA transcription. The human FANCJ helicase contributes to maintaining genomic integrity by promoting DNA replication through G4-forming DNA regions. Here, we combined single-molecule and ensemble biochemical analysis to show that FANCJ possesses a G4-specific recognition site. Through this interaction, FANCJ targets G4-containing DNA where its helicase and G4-binding activities enable repeated rounds of stepwise G4-unfolding and refolding. In contrast to other G4-remodeling enzymes, FANCJ partially stabilizes the G-quadruplex. This would preserve the substrate for the REV1 translesion DNA synthesis polymerase to incorporate cytosine across from a replication-stalling G-quadruplex. The residues responsible for G-quadruplex recognition also participate in interaction with MLH1 mismatch-repair protein, suggesting that the FANCJ activity supporting replication and its participation in DNA interstrand crosslink repair and/or heteroduplex rejection are mutually exclusive. Our findings not only describe the mechanism by which FANCJ recognizes G-quadruplexes and mediates their stepwise unfolding, but also explain how FANCJ chooses between supporting DNA repair versus promoting DNA replication through G-rich sequences.
Collapse
Affiliation(s)
- Colin G Wu
- Department of Biochemistry, University of Iowa Carver College of Medicine, 51 Newton Rd., 4-532 BSB, Iowa City, IA 52242, USA
| | - Maria Spies
- Department of Biochemistry, University of Iowa Carver College of Medicine, 51 Newton Rd., 4-532 BSB, Iowa City, IA 52242, USA
| |
Collapse
|
45
|
Abstract
Fluorescence microscopy can be used to assess the dynamic localization and intensity of single entities
in vitro or in living cells. It has been applied with aplomb to many different cellular processes and has significantly enlightened our understanding of the heterogeneity and complexity of biological systems. Recently, high-resolution fluorescence microscopy has been brought to bear on telomeres, leading to new insights into telomere spatial organization and accessibility, and into the mechanistic nuances of telomere elongation. We provide a snapshot of some of these recent advances with a focus on mammalian systems, and show how three-dimensional, time-lapse microscopy and single-molecule fluorescence shine a new light on the end of the chromosome.
Collapse
Affiliation(s)
- Yahya Benslimane
- Department of Molecular Biology, University of Montreal, Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
| | - Lea Harrington
- Department of Molecular Biology, University of Montreal, Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada; Department of Biochemistry, University of Montreal, Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada; Department of Medicine, University of Montreal, Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
| |
Collapse
|
46
|
Mendoza O, Bourdoncle A, Boulé JB, Brosh RM, Mergny JL. G-quadruplexes and helicases. Nucleic Acids Res 2016; 44:1989-2006. [PMID: 26883636 PMCID: PMC4797304 DOI: 10.1093/nar/gkw079] [Citation(s) in RCA: 328] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/01/2016] [Indexed: 12/16/2022] Open
Abstract
Guanine-rich DNA strands can fold in vitro into non-canonical DNA structures called G-quadruplexes. These structures may be very stable under physiological conditions. Evidence suggests that G-quadruplex structures may act as ‘knots’ within genomic DNA, and it has been hypothesized that proteins may have evolved to remove these structures. The first indication of how G-quadruplex structures could be unfolded enzymatically came in the late 1990s with reports that some well-known duplex DNA helicases resolved these structures in vitro. Since then, the number of studies reporting G-quadruplex DNA unfolding by helicase enzymes has rapidly increased. The present review aims to present a general overview of the helicase/G-quadruplex field.
Collapse
Affiliation(s)
- Oscar Mendoza
- University of Bordeaux, ARNA Laboratory F-33000 Bordeaux, France INSERM U1212,CNRS UMR 5320, IECB, F-33600 Pessac, France
| | - Anne Bourdoncle
- University of Bordeaux, ARNA Laboratory F-33000 Bordeaux, France INSERM U1212,CNRS UMR 5320, IECB, F-33600 Pessac, France
| | - Jean-Baptiste Boulé
- CNRS UMR 7196, INSERM U1154, MNHN, F-75005 Paris, France Sorbonne Universités, F-75005 Paris, France
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Jean-Louis Mergny
- University of Bordeaux, ARNA Laboratory F-33000 Bordeaux, France INSERM U1212,CNRS UMR 5320, IECB, F-33600 Pessac, France
| |
Collapse
|
47
|
Sun B, Wang MD. Single-molecule perspectives on helicase mechanisms and functions. Crit Rev Biochem Mol Biol 2015; 51:15-25. [DOI: 10.3109/10409238.2015.1102195] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
48
|
Ma DL, Wang M, He B, Yang C, Wang W, Leung CH. A Luminescent Cocaine Detection Platform Using a Split G-Quadruplex-Selective Iridium(III) Complex and a Three-Way DNA Junction Architecture. ACS APPLIED MATERIALS & INTERFACES 2015; 7:19060-19067. [PMID: 26284502 DOI: 10.1021/acsami.5b05861] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this study, a series of 10 in-house cyclometalated iridium(III) complexes bearing different auxiliary ligands were tested for their selectivity toward split G-quadruplex in order to construct a label-free switch-on cocaine detection platform employing a three-way junction architecture and a G-quadruplex motif as a signal output unit. Through two rounds of screening, we discovered that the iridium(III) complex 7 exhibited excellent selectivity toward the intermolecular G-quadruplex motif. A detection limit as low as 30 nM for cocaine can be achieved by this sensing approach with a linear relationship between luminescence intensity and cocaine concentration established from 30 to 300 nM. Furthermore, this sensing approach could detect cocaine in diluted oral fluid. We hope that our simple, signal-on, label-free oligonucleotide-based sensing method for cocaine using a three-way DNA junction architecture could act as a useful platform in bioanalytical research.
Collapse
Affiliation(s)
- Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University , Hong Kong, China
- Partner State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University , Hong Kong, China
| | - Modi Wang
- Department of Chemistry, Hong Kong Baptist University , Hong Kong, China
| | - Bingyong He
- Department of Chemistry, Hong Kong Baptist University , Hong Kong, China
| | - Chao Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao, China
| | - Wanhe Wang
- Department of Chemistry, Hong Kong Baptist University , Hong Kong, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao, China
| |
Collapse
|
49
|
Cea V, Cipolla L, Sabbioneda S. Replication of Structured DNA and its implication in epigenetic stability. Front Genet 2015; 6:209. [PMID: 26136769 PMCID: PMC4468945 DOI: 10.3389/fgene.2015.00209] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/29/2015] [Indexed: 11/23/2022] Open
Abstract
DNA replication is an extremely risky process that cells have to endure in order to correctly duplicate and segregate their genome. This task is particularly sensitive to DNA damage and multiple mechanisms have evolved to protect DNA replication as a block to the replication fork could lead to genomic instability and possibly cell death. The DNA in the genome folds, for the most part, into the canonical B-form but in some instances can form complex secondary structures such as G-quadruplexes (G4). These G rich regions are thermodynamically stable and can constitute an obstacle to DNA and RNA metabolism. The human genome contains more than 350,000 sequences potentially capable to form G-quadruplexes and these structures are involved in a variety of cellular processes such as initiation of DNA replication, telomere maintenance and control of gene expression. Only recently, we started to understand how G4 DNA poses a problem to DNA replication and how its successful bypass requires the coordinated activity of ssDNA binding proteins, helicases and specialized DNA polymerases. Their role in the resolution and replication of structured DNA crucially prevents both genetic and epigenetic instability across the genome.
Collapse
Affiliation(s)
- Valentina Cea
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche , Pavia, Italy
| | - Lina Cipolla
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche , Pavia, Italy
| | - Simone Sabbioneda
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche , Pavia, Italy
| |
Collapse
|
50
|
Wu WQ, Hou XM, Li M, Dou SX, Xi XG. BLM unfolds G-quadruplexes in different structural environments through different mechanisms. Nucleic Acids Res 2015; 43:4614-26. [PMID: 25897130 PMCID: PMC4482088 DOI: 10.1093/nar/gkv361] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/06/2015] [Accepted: 04/07/2015] [Indexed: 11/30/2022] Open
Abstract
Mutations in the RecQ DNA helicase gene BLM give rise to Bloom's syndrome, which is a rare autosomal recessive disorder characterized by genetic instability and cancer predisposition. BLM helicase is highly active in binding and unwinding G-quadruplexes (G4s), which are physiological targets for BLM, as revealed by genome-wide characterizations of gene expression of cells from BS patients. With smFRET assays, we studied the molecular mechanism of BLM-catalyzed G4 unfolding and showed that ATP is required for G4 unfolding. Surprisingly, depending on the molecular environments of G4, BLM unfolds G4 through different mechanisms: unfolding G4 harboring a 3'-ssDNA tail in three discrete steps with unidirectional translocation, and unfolding G4 connected to dsDNA by ssDNA in a repetitive manner in which BLM remains anchored at the ss/dsDNA junction, and G4 was unfolded by reeling in ssDNA. This indicates that one BLM molecule may unfold G4s in different molecular environments through different mechanisms.
Collapse
Affiliation(s)
- Wen-Qiang Wu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xi-Miao Hou
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ming Li
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuo-Xing Dou
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xu-Guang Xi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure de Cachan, Centre National de la Recherche Scientifique, 61 Avenue du Président Wilson, 94235 Cachan, France
| |
Collapse
|