1
|
Medici IF, Bartrolí L, Guaimas FF, Fulgenzi FR, Molina CL, Sánchez IE, Comerci DJ, Mongiardini E, Soler-Bistué A. The distinct cell physiology of Bradyrhizobium at the population and cellular level. BMC Microbiol 2024; 24:129. [PMID: 38643099 PMCID: PMC11031950 DOI: 10.1186/s12866-024-03272-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/22/2024] [Indexed: 04/22/2024] Open
Abstract
The α-Proteobacteria belonging to Bradyrhizobium genus are microorganisms of extreme slow growth. Despite their extended use as inoculants in soybean production, their physiology remains poorly characterized. In this work, we produced quantitative data on four different isolates: B. diazoefficens USDA110, B. diazoefficiens USDA122, B. japonicum E109 and B. japonicum USDA6 which are representative of specific genomic profiles. Notably, we found conserved physiological traits conserved in all the studied isolates: (i) the lag and initial exponential growth phases display cell aggregation; (ii) the increase in specific nutrient concentration such as yeast extract and gluconate hinders growth; (iii) cell size does not correlate with culture age; and (iv) cell cycle presents polar growth. Meanwhile, fitness, cell size and in vitro growth widely vary across isolates correlating to ribosomal RNA operon number. In summary, this study provides novel empirical data that enriches the comprehension of the Bradyrhizobium (slow) growth dynamics and cell cycle.
Collapse
Affiliation(s)
- Ian F Medici
- Instituto de Investigaciones Biotecnológicas, IIB-IIBIO, Universidad Nacional de San Martín- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. 25 de Mayo y Francia CP (1650), San Martín, Prov. de Buenos Aires, Argentina
| | - Leila Bartrolí
- Instituto de Investigaciones Biotecnológicas, IIB-IIBIO, Universidad Nacional de San Martín- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. 25 de Mayo y Francia CP (1650), San Martín, Prov. de Buenos Aires, Argentina
| | - Francisco F Guaimas
- Instituto de Investigaciones Biotecnológicas, IIB-IIBIO, Universidad Nacional de San Martín- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. 25 de Mayo y Francia CP (1650), San Martín, Prov. de Buenos Aires, Argentina
| | - Fabiana R Fulgenzi
- Instituto de Investigaciones Biotecnológicas, IIB-IIBIO, Universidad Nacional de San Martín- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. 25 de Mayo y Francia CP (1650), San Martín, Prov. de Buenos Aires, Argentina
| | - Charo Luciana Molina
- Instituto de Investigaciones Biotecnológicas, IIB-IIBIO, Universidad Nacional de San Martín- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. 25 de Mayo y Francia CP (1650), San Martín, Prov. de Buenos Aires, Argentina
| | - Ignacio Enrique Sánchez
- Laboratorio de Fisiología de Proteínas, Facultad de Ciencias Exactas y Naturales, CONICET Instituto de Química Biológica, Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Diego J Comerci
- Instituto de Investigaciones Biotecnológicas, IIB-IIBIO, Universidad Nacional de San Martín- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. 25 de Mayo y Francia CP (1650), San Martín, Prov. de Buenos Aires, Argentina
| | - Elías Mongiardini
- Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, UNLP y CCT-La Plata-CONICET, La Plata, Argentina
| | - Alfonso Soler-Bistué
- Instituto de Investigaciones Biotecnológicas, IIB-IIBIO, Universidad Nacional de San Martín- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. 25 de Mayo y Francia CP (1650), San Martín, Prov. de Buenos Aires, Argentina.
| |
Collapse
|
2
|
Shea J, Davis L, Quaye B, Gedeon T. Ribosome Abundance Control in Prokaryotes. Bull Math Biol 2023; 85:119. [PMID: 37861893 DOI: 10.1007/s11538-023-01212-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/06/2023] [Indexed: 10/21/2023]
Abstract
Cell growth is an essential phenotype of any unicellular organism and it crucially depends on precise control of protein synthesis. We construct a model of the feedback mechanisms that regulate abundance of ribosomes in E. coli, a prototypical prokaryotic organism. Since ribosomes are needed to produce more ribosomes, the model includes a positive feedback loop central to the control of cell growth. Our analysis of the model shows that there can be only two coexisting equilibrium states across all 23 parameters. This precludes the existence of hysteresis, suggesting that the ribosome abundance changes continuously with parameters. These states are related by a transcritical bifurcation, and we provide an analytic formula for parameters that admit either state.
Collapse
Affiliation(s)
- Jacob Shea
- Department of Mathematical Sciences, Montana State University, Bozeman, MT, 59717, USA
| | - Lisa Davis
- Department of Mathematical Sciences, Montana State University, Bozeman, MT, 59717, USA
| | - Bright Quaye
- Department of Economics, Washington University, St. Louis, MO, USA
| | - Tomas Gedeon
- Department of Mathematical Sciences, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
3
|
Lin R, Wu H, Kong X, Ren H, Lu Z. Ribosomal RNA gene operon copy number, a functional trait indicating the hydrocarbon degradation level of bacterial communities. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132100. [PMID: 37523962 DOI: 10.1016/j.jhazmat.2023.132100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
The lack of universal indicators for predicting microbial biodegradation potential and assessing remediation effects limits the generalization of bioremediation. The community-level ribosomal RNA gene operon (rrn) copy number, an important functional trait, has the potential to serve as a key indicator of the bioremediation of organic pollutants. A meta-analysis based on 1275 samples from 26 hydrocarbon-related studies revealed a positive relationship between the microbial hydrocarbon biodegradation level and the community-level rrn copy number in soil, seawater and culture. Subsequently, a microcosm experiment was performed to decipher the community-level rrn copy number response mechanism during total petroleum hydrocarbon (TPH) biodegradation. The treatment combining straw with resuscitation-promoting factor (Rpf) exhibited the highest community-level rrn copy number and the most effective biodegradation compared with other treatments, and the initial TPH content (20,000 mg kg-1) was reduced by 67.67% after 77 days of incubation. TPH biodegradation rate was positively correlated with the average community-level rrn copy number (p = 0.001, R2 = 0.5781). Both meta and community analyses showed that rrn copy number may reflect the potential of hydrocarbon degradation and microbial dormancy. Our findings provide insight into the applicability of the community-level rrn copy number to assess bacterial biodegradation for pollution remediation.
Collapse
Affiliation(s)
- Renzhang Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Hao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Xiangyu Kong
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Hao Ren
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Wood E, Schulenburg H, Rosenstiel P, Bergmiller T, Ankrett D, Gudelj I, Beardmore R. Ribosome-binding antibiotics increase bacterial longevity and growth efficiency. Proc Natl Acad Sci U S A 2023; 120:e2221507120. [PMID: 37751555 PMCID: PMC10556576 DOI: 10.1073/pnas.2221507120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/11/2023] [Indexed: 09/28/2023] Open
Abstract
Antibiotics, by definition, reduce bacterial growth rates in optimal culture conditions; however, the real-world environments bacteria inhabit see rapid growth punctuated by periods of low nutrient availability. How antibiotics mediate population decline during these periods is poorly understood. Bacteria cannot optimize for all environmental conditions because a growth-longevity tradeoff predicts faster growth results in faster population decline, and since bacteriostatic antibiotics slow growth, they should also mediate longevity. We quantify how antibiotics, their targets, and resistance mechanisms influence longevity using populations of Escherichia coli and, as the tradeoff predicts, populations are maintained for longer if they encounter ribosome-binding antibiotics doxycycline and erythromycin, a finding that is not observed using antibiotics with alternative cellular targets. This tradeoff also predicts resistance mechanisms that increase growth rates during antibiotic treatment could be detrimental during nutrient stresses, and indeed, we find resistance by ribosomal protection removes benefits to longevity provided by doxycycline. We therefore liken ribosomal protection to a "Trojan horse" because it provides protection from an antibiotic but, during nutrient stresses, it promotes the demise of the bacteria. Seeking mechanisms to support these observations, we show doxycycline promotes efficient metabolism and reduces the concentration of reactive oxygen species. Seeking generality, we sought another mechanism that affects longevity and we found the number of doxycycline targets, namely, the ribosomal RNA operons, mediates growth and longevity even without antibiotics. We conclude that slow growth, as observed during antibiotic treatment, can help bacteria overcome later periods of nutrient stress.
Collapse
Affiliation(s)
- Emily Wood
- Biosciences, College of Life and Environmental Sciences, University of Exeter, ExeterEX4 4QD, United Kingdom
- Engineering and Physical Sciences Research Council Hub for Quantitative Modelling in Healthcare, University of Exeter, ExeterEX4 4QJ, United Kingdom
| | - Hinrich Schulenburg
- Evolutionary Ecology and Genetics, Zoologisches Institut, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, Kiel24118, Germany
| | - Philip Rosenstiel
- Instituts für Klinische Molekularbiologie, Dekanat der Medizinischen Fakultät, Christian-Albrechts-Universität zu Kiel, Christian-Albrechts-Platz 4, KielD-24118, Germany
| | - Tobias Bergmiller
- Biosciences, College of Life and Environmental Sciences, University of Exeter, ExeterEX4 4QD, United Kingdom
| | - Dyan Ankrett
- Biosciences, College of Life and Environmental Sciences, University of Exeter, ExeterEX4 4QD, United Kingdom
| | - Ivana Gudelj
- Biosciences, College of Life and Environmental Sciences, University of Exeter, ExeterEX4 4QD, United Kingdom
| | - Robert Beardmore
- Biosciences, College of Life and Environmental Sciences, University of Exeter, ExeterEX4 4QD, United Kingdom
- Engineering and Physical Sciences Research Council Hub for Quantitative Modelling in Healthcare, University of Exeter, ExeterEX4 4QJ, United Kingdom
| |
Collapse
|
5
|
Raval PK, Ngan WY, Gallie J, Agashe D. The layered costs and benefits of translational redundancy. eLife 2023; 12:81005. [PMID: 36862572 PMCID: PMC9981150 DOI: 10.7554/elife.81005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 01/25/2023] [Indexed: 03/03/2023] Open
Abstract
The rate and accuracy of translation hinges upon multiple components - including transfer RNA (tRNA) pools, tRNA modifying enzymes, and rRNA molecules - many of which are redundant in terms of gene copy number or function. It has been hypothesized that the redundancy evolves under selection, driven by its impacts on growth rate. However, we lack empirical measurements of the fitness costs and benefits of redundancy, and we have poor a understanding of how this redundancy is organized across components. We manipulated redundancy in multiple translation components of Escherichia coli by deleting 28 tRNA genes, 3 tRNA modifying systems, and 4 rRNA operons in various combinations. We find that redundancy in tRNA pools is beneficial when nutrients are plentiful and costly under nutrient limitation. This nutrient-dependent cost of redundant tRNA genes stems from upper limits to translation capacity and growth rate, and therefore varies as a function of the maximum growth rate attainable in a given nutrient niche. The loss of redundancy in rRNA genes and tRNA modifying enzymes had similar nutrient-dependent fitness consequences. Importantly, these effects are also contingent upon interactions across translation components, indicating a layered hierarchy from copy number of tRNA and rRNA genes to their expression and downstream processing. Overall, our results indicate both positive and negative selection on redundancy in translation components, depending on a species' evolutionary history with feasts and famines.
Collapse
Affiliation(s)
- Parth K Raval
- National Centre for Biological Sciences (NCBS-TIFR)BengaluruIndia
| | - Wing Yui Ngan
- Max Plank Institute for Evolutionary BiologyPlönGermany
| | - Jenna Gallie
- Max Plank Institute for Evolutionary BiologyPlönGermany
| | - Deepa Agashe
- National Centre for Biological Sciences (NCBS-TIFR)BengaluruIndia
| |
Collapse
|
6
|
Chromosomal Position of Ribosomal Protein Genes Affects Long-Term Evolution of Vibrio cholerae. mBio 2023; 14:e0343222. [PMID: 36861972 PMCID: PMC10127744 DOI: 10.1128/mbio.03432-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
It is unclear how gene order within the chromosome influences genome evolution. Bacteria cluster transcription and translation genes close to the replication origin (oriC). In Vibrio cholerae, relocation of s10-spc-α locus (S10), the major locus of ribosomal protein genes, to ectopic genomic positions shows that its relative distance to the oriC correlates to a reduction in growth rate, fitness, and infectivity. To test the long-term impact of this trait, we evolved 12 populations of V. cholerae strains bearing S10 at an oriC-proximal or an oriC-distal location for 1,000 generations. During the first 250 generations, positive selection was the main force driving mutation. After 1,000 generations, we observed more nonadaptative mutations and hypermutator genotypes. Populations fixed inactivating mutations at many genes linked to virulence: flagellum, chemotaxis, biofilm, and quorum sensing. Throughout the experiment, all populations increased their growth rates. However, those bearing S10 close to oriC remained the fittest, indicating that suppressor mutations cannot compensate for the genomic position of the main ribosomal protein locus. Selection and sequencing of the fastest-growing clones allowed us to characterize mutations inactivating, among other sites, flagellum master regulators. Reintroduction of these mutations into the wild-type context led to a ≈10% growth improvement. In conclusion, the genomic location of ribosomal protein genes conditions the evolutionary trajectory of V. cholerae. While genomic content is highly plastic in prokaryotes, gene order is an underestimated factor that conditions cellular physiology and evolution. A lack of suppression enables artificial gene relocation as a tool for genetic circuit reprogramming. IMPORTANCE The bacterial chromosome harbors several entangled processes such as replication, transcription, DNA repair, and segregation. Replication begins bidirectionally at the replication origin (oriC) until the terminal region (ter) organizing the genome along the ori-ter axis gene order along this axis could link genome structure to cell physiology. Fast-growing bacteria cluster translation genes near oriC. In Vibrio cholerae, moving them away was feasible but at the cost of losing fitness and infectivity. Here, we evolved strains harboring ribosomal genes close or far from oriC. Growth rate differences persisted after 1,000 generations. No mutation was able to compensate for the growth defect, showing that ribosomal gene location conditions their evolutionary trajectory. Despite the high plasticity of bacterial genomes, evolution has sculpted gene order to optimize the ecological strategy of the microorganism. We observed growth rate improvement throughout the evolution experiment that occurred at expense of energetically costly processes such the flagellum biosynthesis and virulence-related functions. From the biotechnological point of view, manipulation of gene order enables altering bacterial growth with no escape events.
Collapse
|
7
|
Piñero-Lambea C, Garcia-Ramallo E, Miravet-Verde S, Burgos R, Scarpa M, Serrano L, Lluch-Senar M. SURE editing: combining oligo-recombineering and programmable insertion/deletion of selection markers to efficiently edit the Mycoplasma pneumoniae genome. Nucleic Acids Res 2022; 50:e127. [PMID: 36215032 PMCID: PMC9825166 DOI: 10.1093/nar/gkac836] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 08/03/2022] [Accepted: 09/28/2022] [Indexed: 01/29/2023] Open
Abstract
The development of advanced genetic tools is boosting microbial engineering which can potentially tackle wide-ranging challenges currently faced by our society. Here we present SURE editing, a multi-recombinase engineering rationale combining oligonucleotide recombineering with the selective capacity of antibiotic resistance via transient insertion of selector plasmids. We test this method in Mycoplasma pneumoniae, a bacterium with a very inefficient native recombination machinery. Using SURE editing, we can seamlessly generate, in a single step, a wide variety of genome modifications at high efficiencies, including the largest possible deletion of this genome (30 Kb) and the targeted complementation of essential genes in the deletion of a region of interest. Additional steps can be taken to remove the selector plasmid from the edited area, to obtain markerless or even scarless edits. Of note, SURE editing is compatible with different site-specific recombinases for mediating transient plasmid integration. This battery of selector plasmids can be used to select different edits, regardless of the target sequence, which significantly reduces the cloning load associated to genome engineering projects. Given the proven functionality in several microorganisms of the machinery behind the SURE editing logic, this method is likely to represent a valuable advance for the synthetic biology field.
Collapse
Affiliation(s)
| | | | - Samuel Miravet-Verde
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Raul Burgos
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | | | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain,Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain,ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - Maria Lluch-Senar
- Correspondence may also be addressed to Maria Lluch-Senar. Tel: +34 661963680;
| |
Collapse
|
8
|
Fleurier S, Dapa T, Tenaillon O, Condon C, Matic I. rRNA operon multiplicity as a bacterial genome stability insurance policy. Nucleic Acids Res 2022; 50:12601-12620. [PMID: 35552441 PMCID: PMC9825170 DOI: 10.1093/nar/gkac332] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 01/29/2023] Open
Abstract
Quick growth restart after upon encountering favourable environmental conditions is a major fitness contributor in natural environment. It is widely assumed that the time required to restart growth after nutritional upshift is determined by how long it takes for cells to synthesize enough ribosomes to produce the proteins required to reinitiate growth. Here we show that a reduction in the capacity to synthesize ribosomes by reducing number of ribosomal RNA (rRNA) operons (rrn) causes a longer transition from stationary phase to growth of Escherichia coli primarily due to high mortality rates. Cell death results from DNA replication blockage and massive DNA breakage at the sites of the remaining rrn operons that become overloaded with RNA polymerases (RNAPs). Mortality rates and growth restart duration can be reduced by preventing R-loop formation and improving DNA repair capacity. The same molecular mechanisms determine the duration of the recovery phase after ribosome-damaging stresses, such as antibiotics, exposure to bile salts or high temperature. Our study therefore suggests that a major function of rrn operon multiplicity is to ensure that individual rrn operons are not saturated by RNAPs, which can result in catastrophic chromosome replication failure and cell death during adaptation to environmental fluctuations.
Collapse
Affiliation(s)
- Sebastien Fleurier
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm U1016, CNRS UMR8104, Université de Paris, 75014 Paris, France
| | - Tanja Dapa
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm U1016, CNRS UMR8104, Université de Paris, 75014 Paris, France
| | | | - Ciarán Condon
- Institut de Biologie Physico-Chimique, CNRS UMR8261, Université de Paris, 75005 Paris, France
| | - Ivan Matic
- To whom correspondence should be addressed.
| |
Collapse
|
9
|
Regulatory perturbations of ribosome allocation in bacteria reshape the growth proteome with a trade-off in adaptation capacity. iScience 2022; 25:103879. [PMID: 35243241 PMCID: PMC8866900 DOI: 10.1016/j.isci.2022.103879] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/29/2021] [Accepted: 02/03/2022] [Indexed: 11/20/2022] Open
Abstract
Bacteria regulate their cellular resource allocation to enable fast growth-adaptation to a variety of environmental niches. We studied the ribosomal allocation, growth, and expression profiles of two sets of fast-growing mutants of Escherichia coli K-12 MG1655. Mutants with only three of the seven copies of ribosomal RNA operons grew faster than the wild-type strain in minimal media and show similar phenotype to previously studied fast-growing rpoB mutants. Comparing these two different regulatory perturbations (rRNA promoters or rpoB mutations), we show how they reshape the proteome for growth with a concomitant fitness cost. The fast-growing mutants shared downregulation of hedging functions and upregulated growth functions. They showed longer diauxic shifts and reduced activity of gluconeogenic promoters during glucose-acetate shifts, suggesting reduced availability of the RNA polymerase for expressing hedging proteome. These results show that the regulation of ribosomal allocation underlies the growth/hedging phenotypes obtained from laboratory evolution experiments. Mutants with only three ribosomal operons grow faster than wild-type in minimal medium Faster growth of mutants is achieved by increased ribosome content Fast-growing mutants display reduced hedging expression and adaptation trade-offs
Collapse
|
10
|
inPOSE: A Flexible Toolbox for Chromosomal Cloning and Amplification of Bacterial Transgenes. Microorganisms 2022; 10:microorganisms10020236. [PMID: 35208691 PMCID: PMC8875745 DOI: 10.3390/microorganisms10020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/10/2022] Open
Abstract
Cloning the genes and operons encoding heterologous functions in bacterial hosts is now almost exclusively carried out using plasmid vectors. This has multiple drawbacks, including the need for constant selection and variation in copy numbers. The chromosomal integration of transgenes has always offered a viable alternative; however, to date, it has been of limited use due to its tedious nature and often being limited to a single copy. We introduce here a strategy that uses bacterial insertion sequences, which are the simplest autonomous transposable elements to insert and amplify genetic cargo into a bacterial chromosome. Transgene insertion can take place either as transposition or homologous recombination, and copy number amplification is achieved using controlled copy-paste transposition. We display the successful use of IS1 and IS3 for this purpose in Escherichia coli cells using various selection markers. We demonstrate the insertion of selectable genes, an unselectable gene and a five-gene operon in up to two copies in a single step. We continue with the amplification of the inserted cassette to double-digit copy numbers within two rounds of transposase induction and selection. Finally, we analyze the stability of the cloned genetic constructs in the lack of selection and find it to be superior to all investigated plasmid-based systems. Due to the ubiquitous nature of transposable elements, we believe that with proper design, this strategy can be adapted to numerous other bacterial species.
Collapse
|
11
|
Sharda M, Badrinarayanan A, Seshasayee ASN. Evolutionary and Comparative Analysis of Bacterial Nonhomologous End Joining Repair. Genome Biol Evol 2021; 12:2450-2466. [PMID: 33078828 PMCID: PMC7719229 DOI: 10.1093/gbe/evaa223] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2020] [Indexed: 01/04/2023] Open
Abstract
DNA double-strand breaks (DSBs) are a threat to genome stability. In all domains of life, DSBs are faithfully fixed via homologous recombination. Recombination requires the presence of an uncut copy of duplex DNA which is used as a template for repair. Alternatively, in the absence of a template, cells utilize error-prone nonhomologous end joining (NHEJ). Although ubiquitously found in eukaryotes, NHEJ is not universally present in bacteria. It is unclear as to why many prokaryotes lack this pathway. Toward understanding what could have led to the current distribution of bacterial NHEJ, we carried out comparative genomics and phylogenetic analysis across ∼6,000 genomes. Our results show that this pathway is sporadically distributed across the phylogeny. Ancestral reconstruction further suggests that NHEJ was absent in the eubacterial ancestor and can be acquired via specific routes. Integrating NHEJ occurrence data for archaea, we also find evidence for extensive horizontal exchange of NHEJ genes between the two kingdoms as well as across bacterial clades. The pattern of occurrence in bacteria is consistent with correlated evolution of NHEJ with key genome characteristics of genome size and growth rate; NHEJ presence is associated with large genome sizes and/or slow growth rates, with the former being the dominant correlate. Given the central role these traits play in determining the ability to carry out recombination, it is possible that the evolutionary history of bacterial NHEJ may have been shaped by requirement for efficient DSB repair.
Collapse
Affiliation(s)
- Mohak Sharda
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, India.,School of Life Science, The University of Trans-Disciplinary Health Sciences & Technology (TDU), Bangalore, Karnataka, India
| | - Anjana Badrinarayanan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, India
| | - Aswin Sai Narain Seshasayee
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, India
| |
Collapse
|
12
|
Orthogonal translation enables heterologous ribosome engineering in E. coli. Nat Commun 2021; 12:599. [PMID: 33500394 PMCID: PMC7838251 DOI: 10.1038/s41467-020-20759-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/16/2020] [Indexed: 01/30/2023] Open
Abstract
The ribosome represents a promising avenue for synthetic biology, but its complexity and essentiality have hindered significant engineering efforts. Heterologous ribosomes, comprising rRNAs and r-proteins derived from different microorganisms, may offer opportunities for novel translational functions. Such heterologous ribosomes have previously been evaluated in E. coli via complementation of a genomic ribosome deficiency, but this method fails to guide the engineering of refractory ribosomes. Here, we implement orthogonal ribosome binding site (RBS):antiRBS pairs, in which engineered ribosomes are directed to researcher-defined transcripts, to inform requirements for heterologous ribosome functionality. We discover that optimized rRNA processing and supplementation with cognate r-proteins enhances heterologous ribosome function for rRNAs derived from organisms with ≥76.1% 16S rRNA identity to E. coli. Additionally, some heterologous ribosomes undergo reduced subunit exchange with E. coli-derived subunits. Cumulatively, this work provides a general framework for heterologous ribosome engineering in living cells.
Collapse
|
13
|
Wang YN, Kai Y, Wang L, Tsang YF, Fu X, Hu J, Xie Y. Key internal factors leading to the variability in CO 2 fixation efficiency of different sulfur-oxidizing bacteria during autotrophic cultivation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 271:110957. [PMID: 32579519 DOI: 10.1016/j.jenvman.2020.110957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 06/07/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
Variability in the apparent CO2 fixation yield of four aerobic sulfur-oxidizing bacteria (Halothiobacillus neapolitanus DSM 15147, Thiobacillus thioparus DSM 505, Thiomonas intermedia DSM 18155, and Starkeya novella DSM 506) in autotrophic culturing was studied, and mutual effects of key intrinsic factors on CO2 fixation were explored. DSM 15147 and DSM 505 exhibited much higher CO2 fixation yields than DSM 18155 and DSM 506. The differences in CO2 fixation yield were determined not only by cbb gene transcription, but also by cell synthesis rate, which was determined by rRNA gene copy number; the rRNA gene copy number had a more significant effect than cbb gene transcription on the apparent CO2 fixation yield. Moreover, accumulation of EDOC was observed in all four strains during chemoautotrophic cultivation, and the proportion of EDOC accounting for total fixed organic carbon (TOC; EDOC/TOC ratio) was much higher in DSM 18155 and DSM 506 than in DSM 15147 and DSM 505. The accumulation of EDOC led to a significant decrease in the cbb gene transcription efficiency during cultivation, and a further feedback inhibitory effect on CO2 fixation.
Collapse
Affiliation(s)
- Ya-Nan Wang
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Yan Kai
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Lei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Research Institute for Shanghai Pollution Control and Ecological Security, 200092, China.
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, SAR, Hong Kong, China.
| | - Xiaohua Fu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Research Institute for Shanghai Pollution Control and Ecological Security, 200092, China
| | - Jiajun Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yanjun Xie
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| |
Collapse
|
14
|
Tollerson R, Ibba M. Translational regulation of environmental adaptation in bacteria. J Biol Chem 2020; 295:10434-10445. [PMID: 32518156 DOI: 10.1074/jbc.rev120.012742] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/08/2020] [Indexed: 01/26/2023] Open
Abstract
Bacteria must rapidly respond to both intracellular and environmental changes to survive. One critical mechanism to rapidly detect and adapt to changes in environmental conditions is control of gene expression at the level of protein synthesis. At each of the three major steps of translation-initiation, elongation, and termination-cells use stimuli to tune translation rate and cellular protein concentrations. For example, changes in nutrient concentrations in the cell can lead to translational responses involving mechanisms such as dynamic folding of riboswitches during translation initiation or the synthesis of alarmones, which drastically alter cell physiology. Moreover, the cell can fine-tune the levels of specific protein products using programmed ribosome pausing or inducing frameshifting. Recent studies have improved understanding and revealed greater complexity regarding long-standing paradigms describing key regulatory steps of translation such as start-site selection and the coupling of transcription and translation. In this review, we describe how bacteria regulate their gene expression at the three translational steps and discuss how translation is used to detect and respond to changes in the cellular environment. Finally, we appraise the costs and benefits of regulation at the translational level in bacteria.
Collapse
Affiliation(s)
- Rodney Tollerson
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, Ohio, USA
| | - Michael Ibba
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
15
|
Nunan N, Schmidt H, Raynaud X. The ecology of heterogeneity: soil bacterial communities and C dynamics. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190249. [PMID: 32200737 PMCID: PMC7133523 DOI: 10.1098/rstb.2019.0249] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2020] [Indexed: 12/15/2022] Open
Abstract
Heterogeneity is a fundamental property of soil that is often overlooked in microbial ecology. Although it is generally accepted that the heterogeneity of soil underpins the emergence and maintenance of microbial diversity, the profound and far-reaching consequences that heterogeneity can have on many aspects of microbial ecology and activity have yet to be fully apprehended and have not been fully integrated into our understanding of microbial functioning. In this contribution we first discuss how the heterogeneity of the soil microbial environment, and the consequent uncertainty associated with acquiring resources, may have affected how microbial metabolism, motility and interactions evolved and, ultimately, the overall microbial activity that is represented in ecosystem models, such as heterotrophic decomposition or respiration. We then present an analysis of predicted metabolic pathways for soil bacteria, obtained from the MetaCyc pathway/genome database collection (https://metacyc.org/). The analysis suggests that while there is a relationship between phylogenic affiliation and the catabolic range of soil bacterial taxa, there does not appear to be a trade-off between the 16S rRNA gene copy number, taken as a proxy of potential growth rate, of bacterial strains and the range of substrates that can be used. Finally, we present a simple, spatially explicit model that can be used to understand how the interactions between decomposers and environmental heterogeneity affect the bacterial decomposition of organic matter, suggesting that environmental heterogeneity might have important consequences on the variability of this process. This article is part of the theme issue 'Conceptual challenges in microbial community ecology'.
Collapse
Affiliation(s)
- Naoise Nunan
- Sorbonne Université, CNRS, IRD, INRA, P7, UPEC, Institute of Ecology and Environmental Sciences—Paris, 4 place Jussieu, 75005 Paris, France
| | - Hannes Schmidt
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna 1090, Austria
| | - Xavier Raynaud
- Sorbonne Université, CNRS, IRD, INRA, P7, UPEC, Institute of Ecology and Environmental Sciences—Paris, 4 place Jussieu, 75005 Paris, France
| |
Collapse
|
16
|
Yubero P, Poyatos JF. The Impact of Global Transcriptional Regulation on Bacterial Gene Order. iScience 2020; 23:101029. [PMID: 32283521 PMCID: PMC7155222 DOI: 10.1016/j.isci.2020.101029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 12/15/2019] [Accepted: 03/27/2020] [Indexed: 12/04/2022] Open
Abstract
Bacterial gene expression depends on the allocation of limited transcriptional resources provided a particular growth rate and growth condition. Early studies in a few genes suggested this global regulation to generate a unifying hyperbolic expression pattern. Here, we developed a large-scale method that generalizes these experiments to quantify the response to growth of over 700 genes that a priori do not exhibit any specific control. We distinguish a core subset following a promoter-specific hyperbolic response. Within this group, we sort genes with regard to their responsiveness to the global regulatory program to show that those with a particularly sensitive linear response are located near the origin of replication. We then find evidence that this genomic architecture is biologically significant by examining position conservation of E. coli genes in 100 bacteria. The response to the transcriptional resources of the cell results in an additional feature contributing to bacterial genome organization. Cell physiology determines a global transcriptional regulatory program Constitutive genes show a differential response to this global regulation The most responsive constitutive genes are located near the origin of replication Global transcriptional regulation acts as a gene position conservation force
Collapse
Affiliation(s)
- Pablo Yubero
- Logic of Genomic Systems Laboratory, CNB - CSIC, Madrid 28049, Spain
| | - Juan F Poyatos
- Logic of Genomic Systems Laboratory, CNB - CSIC, Madrid 28049, Spain.
| |
Collapse
|
17
|
Matsumoto N, Matsutani M, Azuma Y, Kataoka N, Yakushi T, Matsushita K. In vitro thermal adaptation of mesophilic Acetobacter pasteurianus NBRC 3283 generates thermotolerant strains with evolutionary trade-offs. Biosci Biotechnol Biochem 2020; 84:832-841. [DOI: 10.1080/09168451.2019.1703638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
ABSTRACT
Thermotolerant strains are critical for low-cost high temperature fermentation. In this study, we carried out the thermal adaptation of A. pasteurianus IFO 3283–32 under acetic acid fermentation conditions using an experimental evolution approach from 37ºC to 40ºC. The adapted strain exhibited an increased growth and acetic acid fermentation ability at high temperatures, however, with the trade-off response of the opposite phenotype at low temperatures. Genome analysis followed by PCR sequencing showed that the most adapted strain had 11 mutations, a single 64-kb large deletion, and a single plasmid loss. Comparative phenotypic analysis showed that at least the large deletion (containing many ribosomal RNAs and tRNAs genes) and a mutation of DNA polymerase (one of the 11 mutations) critically contributed to this thermotolerance. The relationship between the phenotypic changes and the gene mutations are discussed, comparing with another thermally adapted A. pasteurianus strains obtained previously.
Collapse
Affiliation(s)
- Nami Matsumoto
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Minenosuke Matsutani
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Yoshinao Azuma
- Biology-oriented Science and Technology, Kinki University, Kinokawa, Japan
| | - Naoya Kataoka
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, Japan
| | - Toshiharu Yakushi
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, Japan
| | - Kazunobu Matsushita
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
18
|
Brandis G, Hughes D. The SNAP hypothesis: Chromosomal rearrangements could emerge from positive Selection during Niche Adaptation. PLoS Genet 2020; 16:e1008615. [PMID: 32130223 PMCID: PMC7055797 DOI: 10.1371/journal.pgen.1008615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/17/2020] [Indexed: 12/23/2022] Open
Abstract
The relative linear order of most genes on bacterial chromosomes is not conserved over evolutionary timescales. One explanation is that selection is weak, allowing recombination to randomize gene order by genetic drift. However, most chromosomal rearrangements are deleterious to fitness. In contrast, we propose the hypothesis that rearrangements in gene order are more likely the result of selection during niche adaptation (SNAP). Partial chromosomal duplications occur very frequently by recombination between direct repeat sequences. Duplicated regions may contain tens to hundreds of genes and segregate quickly unless maintained by selection. Bacteria exposed to non-lethal selections (for example, a requirement to grow on a poor nutrient) can adapt by maintaining a duplication that includes a gene that improves relative fitness. Further improvements in fitness result from the loss or inactivation of non-selected genes within each copy of the duplication. When genes that are essential in single copy are lost from different copies of the duplication, segregation is prevented even if the original selection is lifted. Functional gene loss continues until a new genetic equilibrium is reached. The outcome is a rearranged gene order. Mathematical modelling shows that this process of positive selection to adapt to a new niche can rapidly drive rearrangements in gene order to fixation. Signature features (duplication formation and divergence) of the SNAP model were identified in natural isolates from multiple species showing that the initial two steps in the SNAP process can occur with a remarkably high frequency. Further bioinformatic and experimental analyses are required to test if and to which extend the SNAP process acts on bacterial genomes. All life on earth has evolved from a universal common ancestor with a specific order of genes on the chromosome. This order is not maintained in modern species and the standard hypothesis is that changes reflect a lack of strong selection on gene order. Here, we propose an alternative hypothesis, SNAP. The occupation of a novel environment by bacteria is generally a trade-off situation. For example, while the bacteria may not be adapted to grow well under the new conditions, they may benefit by not having to share available resources with other microorganisms. Bacterial populations frequently acquire duplications of chromosomal segments containing genes that can help them adapt to a new environment. Other genes that are also duplicated are not required in two copies so that over time a superfluous copy can be lost. Eventually, the process of duplication and gene loss can lead to the rearrangement of the gene order in the chromosomal segment. The major benefit of this model over the standard hypothesis is that the process is driven by positive selection and can reach fixation rapidly.
Collapse
Affiliation(s)
- Gerrit Brandis
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
19
|
Vuong HQ, McFrederick QS. Comparative Genomics of Wild Bee and Flower Isolated Lactobacillus Reveals Potential Adaptation to the Bee Host. Genome Biol Evol 2020; 11:2151-2161. [PMID: 31243442 PMCID: PMC6685495 DOI: 10.1093/gbe/evz136] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2019] [Indexed: 01/18/2023] Open
Abstract
Symbiosis with bacteria is common across insects, resulting in adaptive host phenotypes. The recently described bacterial symbionts Lactobacillus micheneri, Lactobacillus timberlakei, and Lactobacillus quenuiae are found in wild bee pollen provisions, bee guts, and flowers but have small genomes in comparison to other lactobacilli. We sequenced, assembled, and analyzed 27 new L. micheneri clade genomes to identify their possible ecological functions in flower and bee hosts. We determined possible key functions for the L. micheneri clade by identifying genes under positive selection, balancing selection, genes gained or lost, and population structure. A host adherence factor shows signatures of positive selection, whereas other orthologous copies are variable within the L. micheneri clade. The host adherence factors serve as strong evidence that these lactobacilli are adapted to animal hosts as their targets are found in the digestive tract of insects. Next, the L. micheneri clade is adapted toward a nutrient-rich environment, corroborating observations of where L. micheneri is most abundant. Additionally, genes involved in osmotolerance, pH tolerance, temperature resistance, detoxification, and oxidative stress response show signatures of selection that allow these bacteria to thrive in pollen and nectar masses in bee nests and in the bee gut. Altogether, these findings not only suggest that the L. micheneri clade is primarily adapted to the wild bee gut but also exhibit genomic features that would be beneficial to survival in flowers.
Collapse
Affiliation(s)
- Hoang Q Vuong
- Department of Entomology, University California Riverside.,Department of Plant Pathology and Microbiology, University California Riverside
| | | |
Collapse
|
20
|
Planson AG, Sauveplane V, Dervyn E, Jules M. Bacterial growth physiology and RNA metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194502. [PMID: 32044462 DOI: 10.1016/j.bbagrm.2020.194502] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/17/2020] [Accepted: 02/06/2020] [Indexed: 12/31/2022]
Abstract
Bacteria are sophisticated systems with high capacity and flexibility to adapt to various environmental conditions. Each prokaryote however possesses a defined metabolic network, which sets its overall metabolic capacity, and therefore the maximal growth rate that can be reached. To achieve optimal growth, bacteria adopt various molecular strategies to optimally adjust gene expression and optimize resource allocation according to the nutrient availability. The resulting physiological changes are often accompanied by changes in the growth rate, and by global regulation of gene expression. The growth-rate-dependent variation of the abundances in the cellular machineries, together with condition-specific regulatory mechanisms, affect RNA metabolism and fate and pose a challenge for rational gene expression reengineering of synthetic circuits. This article is part of a Special Issue entitled: RNA and gene control in bacteria, edited by Dr. M. Guillier and F. Repoila.
Collapse
Affiliation(s)
- Anne-Gaëlle Planson
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Vincent Sauveplane
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Etienne Dervyn
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Matthieu Jules
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| |
Collapse
|
21
|
Okie JG, Poret-Peterson AT, Lee ZM, Richter A, Alcaraz LD, Eguiarte LE, Siefert JL, Souza V, Dupont CL, Elser JJ. Genomic adaptations in information processing underpin trophic strategy in a whole-ecosystem nutrient enrichment experiment. eLife 2020; 9:49816. [PMID: 31989922 PMCID: PMC7028357 DOI: 10.7554/elife.49816] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 01/27/2020] [Indexed: 01/03/2023] Open
Abstract
Several universal genomic traits affect trade-offs in the capacity, cost, and efficiency of the biochemical information processing that underpins metabolism and reproduction. We analyzed the role of these traits in mediating the responses of a planktonic microbial community to nutrient enrichment in an oligotrophic, phosphorus-deficient pond in Cuatro Ciénegas, Mexico. This is one of the first whole-ecosystem experiments to involve replicated metagenomic assessment. Mean bacterial genome size, GC content, total number of tRNA genes, total number of rRNA genes, and codon usage bias in ribosomal protein sequences were all higher in the fertilized treatment, as predicted on the basis of the assumption that oligotrophy favors lower information-processing costs whereas copiotrophy favors higher processing rates. Contrasting changes in trait variances also suggested differences between traits in mediating assembly under copiotrophic versus oligotrophic conditions. Trade-offs in information-processing traits are apparently sufficiently pronounced to play a role in community assembly because the major components of metabolism-information, energy, and nutrient requirements-are fine-tuned to an organism's growth and trophic strategy.
Collapse
Affiliation(s)
- Jordan G Okie
- School of Earth and Space Exploration, Arizona State University, Tempe, United States
| | | | - Zarraz Mp Lee
- School of Life Sciences, Arizona State University, Tempe, United States
| | | | - Luis D Alcaraz
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Janet L Siefert
- Department of Statistics, Rice University, Houston, United States
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - James J Elser
- School of Life Sciences, Arizona State University, Tempe, United States.,Flathead Lake Biological Station, University of Montana, Polson, United States
| |
Collapse
|
22
|
Kurylo CM, Parks MM, Juette MF, Zinshteyn B, Altman RB, Thibado JK, Vincent CT, Blanchard SC. Endogenous rRNA Sequence Variation Can Regulate Stress Response Gene Expression and Phenotype. Cell Rep 2020; 25:236-248.e6. [PMID: 30282032 PMCID: PMC6312700 DOI: 10.1016/j.celrep.2018.08.093] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 08/16/2018] [Accepted: 08/30/2018] [Indexed: 11/30/2022] Open
Abstract
Prevailing dogma holds that ribosomes are uniform in composition and function. Here, we show that nutrient limitation-induced stress in E. coli changes the relative expression of rDNA operons to alter the rRNA composition within the actively translating ribosome pool. The most upregulated operon encodes the unique 16S rRNA, rrsH, distinguished by conserved sequence variation within the small ribosomal subunit. rrsH-bearing ribosomes affect the expression of functionally coherent gene sets and alter the levels of the RpoS sigma factor, the master regulator of the general stress response. These impacts are associated with phenotypic changes in antibiotic sensitivity, biofilm formation, and cell motility and are regulated by stress response proteins, RelA and RelE, as well as the metabolic enzyme and virulence-associated protein, AdhE. These findings establish that endogenously encoded, naturally occurring rRNA sequence variation can modulate ribosome function, central aspects of gene expression regulation, and cellular physiology. Most organisms encode multiple, distinct copies of rRNA genes, rendering the composition of the ribosome pool intrinsically heterogeneous. Here, Kurylo et al. show that nutrient limitation in E. coli upregulates the expression of ribosomes bearing conserved sequence variation in 16S rRNA that can regulate gene expression and phenotype.
Collapse
Affiliation(s)
- Chad M Kurylo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Matthew M Parks
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Manuel F Juette
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Boris Zinshteyn
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Roger B Altman
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Jordana K Thibado
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - C Theresa Vincent
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Scott C Blanchard
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; Tri-Institutional Training Program in Chemical Biology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
23
|
NoRC Recruitment by H2A.X Deposition at rRNA Gene Promoter Limits Embryonic Stem Cell Proliferation. Cell Rep 2019; 23:1853-1866. [PMID: 29742439 DOI: 10.1016/j.celrep.2018.04.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 01/16/2018] [Accepted: 04/04/2018] [Indexed: 01/22/2023] Open
Abstract
Embryonic stem cells (ESCs) display an abbreviated cell cycle, resulting in a short doubling time and rapid proliferation. The histone variant H2A.X is critical for proliferation of stem cells, although mechanistic insights have remained obscure. Here, we show that H2A.X defines the rate of mouse ESC proliferation independently of the DNA damage response pathway, and it associates with three major chromatin-modifying complexes. Our functional and biochemical analyses demonstrate that H2A.X-associated factors mediate the H2A.X-dependent effect on ESC proliferation and involve the nucleolar remodeling complex (NoRC). A specific H2A.X deposition at rDNA promoters determines the chromatin recruitment of the NoRC, histone modifications, the rRNA transcription, and the rate of proliferation. Collectively, our results suggest that NoRC assembly by H2A.X deposition at rRNA promoters silences transcription, and this represents an important regulatory component for ESC proliferation.
Collapse
|
24
|
Korem Kohanim Y, Levi D, Jona G, Towbin BD, Bren A, Alon U. A Bacterial Growth Law out of Steady State. Cell Rep 2019; 23:2891-2900. [PMID: 29874577 DOI: 10.1016/j.celrep.2018.05.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/21/2018] [Accepted: 05/01/2018] [Indexed: 11/28/2022] Open
Abstract
Bacterial growth follows simple laws in constant conditions. However, bacteria in nature often face fluctuating environments. We therefore ask whether there are growth laws that apply to changing environments. We derive a law for upshifts using an optimal resource-allocation model: the post-shift growth rate equals the geometrical mean of the pre-shift growth rate and the growth rate on saturating carbon. We test this using chemostat and batch culture experiments, as well as previous data from several species. The increase in growth rate after an upshift indicates that ribosomes have spare capacity (SC). We demonstrate theoretically that SC has the cost of slow steady-state growth but is beneficial after an upshift because it prevents large overshoots in intracellular metabolites and allows rapid response to change. We also provide predictions for downshifts. The present study quantifies the optimal degree of SC, which rises the slower the growth rate, and suggests that SC can be precisely regulated.
Collapse
Affiliation(s)
- Yael Korem Kohanim
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Dikla Levi
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ghil Jona
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Benjamin D Towbin
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Anat Bren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Uri Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
25
|
Kim J, Darlington A, Salvador M, Utrilla J, Jiménez JI. Trade-offs between gene expression, growth and phenotypic diversity in microbial populations. Curr Opin Biotechnol 2019; 62:29-37. [PMID: 31580950 PMCID: PMC7208540 DOI: 10.1016/j.copbio.2019.08.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022]
Abstract
Limitations in molecular resources for gene expression influence bacterial physiology. Bacteria optimise trade-offs between resource allocation and growth. Resource allocation plays a role in the emergence of phenotypic heterogeneity. Trade-offs between bet-hedging and growth can be harnessed in biotechnology.
Bacterial cells have a limited number of resources that can be allocated for gene expression. The intracellular competition for these resources has an impact on the cell physiology. Bacteria have evolved mechanisms to optimize resource allocation in a variety of scenarios, showing a trade-off between the resources used to maximise growth (e.g. ribosome synthesis) and the rest of cellular functions. Limitations in gene expression also play a role in generating phenotypic diversity, which is advantageous in fluctuating environments, at the expenses of decreasing growth rates. Our current understanding of these trade-offs can be exploited for biotechnological applications benefiting from the selective manipulation of the allocation of resources.
Collapse
Affiliation(s)
- Juhyun Kim
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | | | - Manuel Salvador
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - José Utrilla
- Centre for Genomic Sciences, Universidad Nacional Autónoma de México, Campus Morelos, Av. Universidad s/n Col. Chamilpa 62210, Cuernavaca, Mexico
| | - José I Jiménez
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, United Kingdom.
| |
Collapse
|
26
|
Pérez MV, Guerrero LD, Orellana E, Figuerola EL, Erijman L. Time Series Genome-Centric Analysis Unveils Bacterial Response to Operational Disturbance in Activated Sludge. mSystems 2019; 4:e00169-19. [PMID: 31266798 PMCID: PMC6606829 DOI: 10.1128/msystems.00169-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/08/2019] [Indexed: 01/08/2023] Open
Abstract
Understanding ecosystem response to disturbances and identifying the most critical traits for the maintenance of ecosystem functioning are important goals for microbial community ecology. In this study, we used 16S rRNA amplicon sequencing and metagenomics to investigate the assembly of bacterial populations in a full-scale municipal activated sludge wastewater treatment plant over a period of 3 years, including a 9-month period of disturbance characterized by short-term plant shutdowns. Following the reconstruction of 173 metagenome-assembled genomes, we assessed the functional potential, the number of rRNA gene operons, and the in situ growth rate of microorganisms present throughout the time series. Operational disturbances caused a significant decrease in bacteria with a single copy of the rRNA (rrn) operon. Despite moderate differences in resource availability, replication rates were distributed uniformly throughout time, with no differences between disturbed and stable periods. We suggest that the length of the growth lag phase, rather than the growth rate, is the primary driver of selection under disturbed conditions. Thus, the system could maintain its function in the face of disturbance by recruiting bacteria with the capacity to rapidly resume growth under unsteady operating conditions.IMPORTANCE Disturbance is a key determinant of community assembly and dynamics in natural and engineered ecosystems. Microbiome response to disturbance is thought to be influenced by bacterial growth traits and life history strategies. In this time series observational study, the response to disturbance of microbial communities in a full-scale activated sludge wastewater treatment plant was assessed by computing specific cellular traits of genomes retrieved from metagenomes. It was found that the genomes observed in disturbed periods have more copies of the rRNA operon than genomes observed in stable periods, whereas the in situ mean relative growth rates of bacteria present during stable and disturbed periods were indistinguishable. From these intriguing observations, we infer that the length of the lag phase might be a growth trait that affects the microbial response to disturbance. Further exploration of this hypothesis could contribute to better understanding of the adaptive response of microbiomes to unsteady environmental conditions.
Collapse
Affiliation(s)
- María Victoria Pérez
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET) Vuelta de Obligado, Buenos Aires, Argentina
- Agua y Saneamientos Argentinos S. A. Tucumán, Buenos Aires, Argentina
| | - Leandro D Guerrero
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET) Vuelta de Obligado, Buenos Aires, Argentina
| | - Esteban Orellana
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET) Vuelta de Obligado, Buenos Aires, Argentina
| | - Eva L Figuerola
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET) Vuelta de Obligado, Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Leonardo Erijman
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET) Vuelta de Obligado, Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
27
|
Remigi P, Ferguson GC, McConnell E, De Monte S, Rogers DW, Rainey PB. Ribosome Provisioning Activates a Bistable Switch Coupled to Fast Exit from Stationary Phase. Mol Biol Evol 2019; 36:1056-1070. [PMID: 30835283 PMCID: PMC6501884 DOI: 10.1093/molbev/msz041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Observations of bacteria at the single-cell level have revealed many instances of phenotypic heterogeneity within otherwise clonal populations, but the selective causes, molecular bases, and broader ecological relevance remain poorly understood. In an earlier experiment in which the bacterium Pseudomonas fluorescens SBW25 was propagated under a selective regime that mimicked the host immune response, a genotype evolved that stochastically switched between capsulation states. The genetic cause was a mutation in carB that decreased the pyrimidine pool (and growth rate), lowering the activation threshold of a preexisting but hitherto unrecognized phenotypic switch. Genetic components surrounding bifurcation of UTP flux toward DNA/RNA or UDP-glucose (a precursor of colanic acid forming the capsules) were implicated as key components. Extending these molecular analyses-and based on a combination of genetics, transcriptomics, biochemistry, and mathematical modeling-we show that pyrimidine limitation triggers an increase in ribosome biosynthesis and that switching is caused by competition between ribosomes and CsrA/RsmA proteins for the mRNA transcript of a positively autoregulated activator of colanic acid biosynthesis. We additionally show that in the ancestral bacterium the switch is part of a program that determines stochastic entry into a semiquiescent capsulated state, ensures that such cells are provisioned with excess ribosomes, and enables provisioned cells to exit rapidly from stationary phase under permissive conditions.
Collapse
Affiliation(s)
- Philippe Remigi
- New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand.,Laboratoire des Interactions Plantes-Microorganismes (LIPM), Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Gayle C Ferguson
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - Ellen McConnell
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Silvia De Monte
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France.,Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - David W Rogers
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Paul B Rainey
- New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand.,Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris Tech), CNRS UMR 8231, PSL Research University, Paris, France
| |
Collapse
|
28
|
Pseudomonas putida rDNA is a favored site for the expression of biosynthetic genes. Sci Rep 2019; 9:7028. [PMID: 31065014 PMCID: PMC6505042 DOI: 10.1038/s41598-019-43405-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/24/2019] [Indexed: 11/23/2022] Open
Abstract
Since high-value bacterial secondary metabolites, including antibiotics, are often naturally produced in only low amounts, their efficient biosynthesis typically requires the transfer of entire metabolic pathways into suitable bacterial hosts like Pseudomonas putida. Stable maintenance and sufficient expression of heterologous pathway-encoding genes in host microbes, however, still remain key challenges. In this study, the 21 kb prodigiosin gene cluster from Serratia marcescens was used as a reporter to identify genomic sites in P. putida KT2440 especially suitable for maintenance and expression of pathway genes. After generation of a strain library by random Tn5 transposon-based chromosomal integration of the cluster, 50 strains exhibited strong prodigiosin production. Remarkably, chromosomal integration sites were exclusively identified in the seven rRNA-encoding rrn operons of P. putida. We could further demonstrate that prodigiosin production was mainly dependent on (i) the individual rrn operon where the gene cluster was inserted as well as (ii) the distance between the rrn promoter and the inserted prodigiosin biosynthetic genes. In addition, the recombinant strains showed high stability upon subculturing for many generations. Consequently, our findings demonstrate the general applicability of rDNA loci as chromosomal integration sites for gene cluster expression and recombinant pathway implementation in P. putida KT2440.
Collapse
|
29
|
Cherni AE, Perret X. Deletion of rRNA Operons of Sinorhizobium fredii Strain NGR234 and Impact on Symbiosis With Legumes. Front Microbiol 2019; 10:154. [PMID: 30814981 PMCID: PMC6381291 DOI: 10.3389/fmicb.2019.00154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/22/2019] [Indexed: 01/08/2023] Open
Abstract
During their lifecycle, from free-living soil bacteria to endosymbiotic nitrogen-fixing bacteroids of legumes, rhizobia must colonize, and cope with environments where nutrient concentrations and compositions vary greatly. Bacterial colonization of legume rhizospheres and of root surfaces is subject to a fierce competition for plant exudates. By contrast root nodules offer to rhizobia sheltered nutrient-rich environments within which the cells that successfully propagated via infection threads can rapidly multiply. To explore the effects on symbiosis of a slower rhizobia growth and metabolism, we deleted one or two copies of the three functional rRNA operons of the promiscuous Sinorhizobium fredii strain NGR234 and examined the impact of these mutations on free-living and symbiotic lifestyles. Strains with two functional rRNA operons (NGRΔrRNA1 and NGRΔrRNA3) grew almost as rapidly as NGR234, and NGRΔrRNA1 was as proficient as the parent strain on all of the five legume species tested. By contrast, the NGRΔrRNA1,3 double mutant, which carried a single rRNA operon and grew significantly slower than NGR234, had a reduced symbiotic proficiency on Cajanus cajan, Macroptilium atropurpureum, Tephrosia vogelii, and Vigna unguiculata. In addition, while NGRΔrRNA1 and NGR234 equally competed for nodulation of V. unguiculata, strain NGRΔrRNA1,3 was clearly outcompeted by wild-type. Surprisingly, on Leucaena leucocephala, NGRΔrRNA1,3 was the most proficient strain and competed equally NGR234 for nodule occupation. Together, these results indicate that for strains with otherwise identical repertoires of symbiotic genes, a faster growth on roots and/or inside plant tissues may contribute to secure access to nodules of some hosts. By contrast, other legumes such as L. leucocephala appear as less selective and capable of providing symbiotic environments susceptible to accommodate strains with a broader spectrum of competences.
Collapse
Affiliation(s)
- Ala Eddine Cherni
- Microbiology Unit, Department of Botany and Plant Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Xavier Perret
- Microbiology Unit, Department of Botany and Plant Biology, Sciences III, University of Geneva, Geneva, Switzerland
| |
Collapse
|
30
|
Mahajan S, Agashe D. Translational Selection for Speed Is Not Sufficient to Explain Variation in Bacterial Codon Usage Bias. Genome Biol Evol 2018; 10:562-576. [PMID: 29385509 PMCID: PMC5800062 DOI: 10.1093/gbe/evy018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2017] [Indexed: 02/05/2023] Open
Abstract
Increasing growth rate across bacteria strengthens selection for faster translation, concomitantly increasing the total number of tRNA genes and codon usage bias (CUB: enrichment of specific synonymous codons in highly expressed genes). Typically, enriched codons are translated by tRNAs with higher gene copy numbers (GCN). A model of tRNA–CUB coevolution based on fast growth-associated selection on translational speed recapitulates these patterns. A key untested implication of the coevolution model is that translational selection should favor higher tRNA GCN for more frequently used amino acids, potentially weakening the effect of growth-associated selection on CUB. Surprisingly, we find that CUB saturates with increasing growth rate across γ-proteobacteria, even as the number of tRNA genes continues to increase. As predicted, amino acid-specific tRNA GCN is positively correlated with the usage of corresponding amino acids, but there is no correlation between growth rate associated changes in CUB and amino acid usage. Instead, we find that some amino acids—cysteine and those in the NNA/G codon family—show weak CUB that does not increase with growth rate, despite large variation in the corresponding tRNA GCN. We suggest that amino acid-specific variation in CUB is not explained by tRNA GCN because GCN does not influence the difference between translation times of synonymous codons as expected. Thus, selection on translational speed alone cannot fully explain quantitative variation in overall or amino acid-specific CUB, suggesting a significant role for other functional constraints and amino acid-specific codon features.
Collapse
Affiliation(s)
- Saurabh Mahajan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, India
| | - Deepa Agashe
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, India
| |
Collapse
|
31
|
Babina AM, Parker DJ, Li GW, Meyer MM. Fitness advantages conferred by the L20-interacting RNA cis-regulator of ribosomal protein synthesis in Bacillus subtilis. RNA (NEW YORK, N.Y.) 2018; 24:1133-1143. [PMID: 29925569 PMCID: PMC6097659 DOI: 10.1261/rna.065011.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 06/18/2018] [Indexed: 05/09/2023]
Abstract
In many bacteria, ribosomal proteins autogenously repress their own expression by interacting with RNA structures typically located in the 5'-UTRs of their mRNA transcripts. This regulation is necessary to maintain a balance between ribosomal proteins and rRNA to ensure proper ribosome production. Despite advances in noncoding RNA discovery and validation of RNA-protein regulatory interactions, the selective pressures that govern the formation and maintenance of such RNA cis-regulators in the context of an organism remain largely undetermined. To examine the impact disruptions to this regulation have on bacterial fitness, we introduced point mutations that abolish ribosomal protein binding and regulation into the RNA structure that controls expression of ribosomal proteins L20 and L35 within the Bacillus subtilis genome. Our studies indicate that removing this regulation results in reduced log phase growth, improper rRNA maturation, and the accumulation of a kinetically trapped or misassembled ribosomal particle at low temperatures, suggesting defects in ribosome synthesis. Such work emphasizes the important role regulatory RNAs play in the stoichiometric production of ribosomal components for proper ribosome composition and overall organism viability and reinforces the potential of targeting ribosomal protein production and ribosome assembly with novel antimicrobials.
Collapse
Affiliation(s)
- Arianne M Babina
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Darren J Parker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Gene-Wei Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Michelle M Meyer
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| |
Collapse
|
32
|
Mycoplasma genitalium Nonadherent Phase Variants Arise by Multiple Mechanisms and Escape Antibody-Dependent Growth Inhibition. Infect Immun 2018; 86:IAI.00866-17. [PMID: 29358335 DOI: 10.1128/iai.00866-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/16/2018] [Indexed: 01/01/2023] Open
Abstract
Antigenic variation of the immunodominant MgpB and MgpC proteins has been suggested to be a mechanism of immune evasion of the human pathogen Mycoplasma genitalium, a cause of several reproductive tract disease syndromes. Phase variation resulting in the loss of adherence has also been documented, but the molecular mechanisms underlying this process and its role in pathogenesis are still poorly understood. In this study, we isolated and characterized 40 spontaneous, nonadherent phase variants from in vitro-passaged M. genitalium cultures. In all cases, nonadherence was associated with the loss of MgpBC protein expression, attributable to sequence changes in the mgpBC expression site. Phase variants were grouped into seven classes on the basis of the nature of the mutation. Consistent with the established role of RecA in phase variation, 31 (79.5%) variants arose via recombination with MgPa repeat regions that contain mgpBC variable sequences. The remaining mutants arose via nonsense or frameshift mutations. As expected, revertants were obtained for phase variants that were predicted to be reversible but not for those that arose via an irreversible mechanism. Furthermore, phase variants were enriched in M. genitalium cultures exposed to antibodies reacting to the extracellular, conserved C terminus of MgpB but not in cultures exposed to antibodies reacting to an intracellular domain of MgpB or the cytoplasmic HU protein. Genetic characterization of the antibody-selected phase variants confirmed that they arose via reversible and irreversible recombination and point mutations within mgpBC These phase variants resisted antibody-mediated growth inhibition, suggesting that phase variation promotes immune evasion.
Collapse
|
33
|
Draft Genome Sequence of the Radioresistant Bacterium Deinococcus aerius TR0125, Isolated from the High Atmosphere above Japan. GENOME ANNOUNCEMENTS 2018; 6:6/9/e00080-18. [PMID: 29496828 PMCID: PMC5834321 DOI: 10.1128/genomea.00080-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Deinococcus aerius strain TR0125 is a bacterium isolated from the high atmosphere above Japan that shows strong resistance to desiccation, UV-C, and gamma radiation. Here, we report the draft genome sequence of D. aerius (4.5 Mb), which may provide useful genetic information supporting its biochemical features.
Collapse
|
34
|
Dynamic allocation of orthogonal ribosomes facilitates uncoupling of co-expressed genes. Nat Commun 2018; 9:695. [PMID: 29449554 PMCID: PMC5814443 DOI: 10.1038/s41467-018-02898-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 01/08/2018] [Indexed: 11/08/2022] Open
Abstract
Introduction of synthetic circuits into microbes creates competition between circuit and host genes for shared cellular resources, such as ribosomes. This can lead to the emergence of unwanted coupling between the expression of different circuit genes, complicating the design process and potentially leading to circuit failure. By expressing a synthetic 16S rRNA with altered specificity, we can partition the ribosome pool into host-specific and circuit-specific activities. We show mathematically and experimentally that the effects of resource competition can be alleviated by targeting genes to different ribosomal pools. This division of labour can be used to increase flux through a metabolic pathway. We develop a model of cell physiology which is able to capture these observations and use it to design a dynamic resource allocation controller. When implemented, this controller acts to decouple genes by increasing orthogonal ribosome production as the demand for translational resources by a synthetic circuit increases.
Collapse
|
35
|
Zhu M, Dai X. On the intrinsic constraint of bacterial growth rate: M. tuberculosis's view of the protein translation capacity. Crit Rev Microbiol 2018; 44:455-464. [PMID: 29334314 DOI: 10.1080/1040841x.2018.1425672] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In nature, the maximal growth rates vary widely among different bacteria species. Fast-growing bacteria species such as Escherichia coli can have a shortest generation time of 20 min. Slow-growing bacteria species are perhaps best known for Mycobacterium tuberculosis, a human pathogen with a generation time being no less than 16 h. Despite of the significant progress made on understanding the pathogenesis of M. tuberculosis, we know little on the origin of its intriguingly slow growth. From a global view, the intrinsic constraint of the maximal growth rate of bacteria remains to be a fundamental question in microbiology. In this review, we analyze and discuss this issue from the angle of protein translation capacity, which is the major demand for cell growth. Based on quantitative analysis, we propose four parameters: rRNA chain elongation rate, abundance of RNA polymerase engaged in rRNA synthesis, polypeptide chain elongation rate, and active ribosome fraction, which potentially limit the maximal growth rate of bacteria. We further discuss the relation of these parameters with the growth rate for M. tuberculosis as well as other bacterial species. We highlight future comprehensive investigation of these parameters for different bacteria species to understand how bacteria set their own specific growth rates.
Collapse
Affiliation(s)
- Manlu Zhu
- a College of Life Sciences , Central China Normal University , Wuhan , China
| | - Xiongfeng Dai
- a College of Life Sciences , Central China Normal University , Wuhan , China
| |
Collapse
|
36
|
Kim IH, Aryal SK, Aghai DT, Casanova-Torres ÁM, Hillman K, Kozuch MP, Mans EJ, Mauer TJ, Ogier JC, Ensign JC, Gaudriault S, Goodman WG, Goodrich-Blair H, Dillman AR. The insect pathogenic bacterium Xenorhabdus innexi has attenuated virulence in multiple insect model hosts yet encodes a potent mosquitocidal toxin. BMC Genomics 2017; 18:927. [PMID: 29191166 PMCID: PMC5709968 DOI: 10.1186/s12864-017-4311-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/16/2017] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Xenorhabdus innexi is a bacterial symbiont of Steinernema scapterisci nematodes, which is a cricket-specialist parasite and together the nematode and bacteria infect and kill crickets. Curiously, X. innexi expresses a potent extracellular mosquitocidal toxin activity in culture supernatants. We sequenced a draft genome of X. innexi and compared it to the genomes of related pathogens to elucidate the nature of specialization. RESULTS Using green fluorescent protein-expressing X. innexi we confirm previous reports using culture-dependent techniques that X. innexi colonizes its nematode host at low levels (~3-8 cells per nematode), relative to other Xenorhabdus-Steinernema associations. We found that compared to the well-characterized entomopathogenic nematode symbiont X. nematophila, X. innexi fails to suppress the insect phenoloxidase immune pathway and is attenuated for virulence and reproduction in the Lepidoptera Galleria mellonella and Manduca sexta, as well as the dipteran Drosophila melanogaster. To assess if, compared to other Xenorhabdus spp., X. innexi has a reduced capacity to synthesize virulence determinants, we obtained and analyzed a draft genome sequence. We found no evidence for several hallmarks of Xenorhabdus spp. toxicity, including Tc and Mcf toxins. Similar to other Xenorhabdus genomes, we found numerous loci predicted to encode non-ribosomal peptide/polyketide synthetases. Anti-SMASH predictions of these loci revealed one, related to the fcl locus that encodes fabclavines and zmn locus that encodes zeamines, as a likely candidate to encode the X. innexi mosquitocidal toxin biosynthetic machinery, which we designated Xlt. In support of this hypothesis, two mutants each with an insertion in an Xlt biosynthesis gene cluster lacked the mosquitocidal compound based on HPLC/MS analysis and neither produced toxin to the levels of the wild type parent. CONCLUSIONS The X. innexi genome will be a valuable resource in identifying loci encoding new metabolites of interest, but also in future comparative studies of nematode-bacterial symbiosis and niche partitioning among bacterial pathogens.
Collapse
Affiliation(s)
- Il-Hwan Kim
- Department of Entomology, University of Wisconsin-Madison, Madison, WI USA
- Present address: Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD USA
| | | | - Dariush T. Aghai
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI USA
| | | | - Kai Hillman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI USA
| | - Michael P. Kozuch
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI USA
| | - Erin J. Mans
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI USA
- Department of Microbiology, University of Tennessee-Knoxville, Knoxville, TN USA
| | - Terra J. Mauer
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI USA
- Department of Microbiology, University of Tennessee-Knoxville, Knoxville, TN USA
| | | | - Jerald C. Ensign
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI USA
| | | | - Walter G. Goodman
- Department of Entomology, University of Wisconsin-Madison, Madison, WI USA
| | - Heidi Goodrich-Blair
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI USA
- Department of Microbiology, University of Tennessee-Knoxville, Knoxville, TN USA
| | - Adler R. Dillman
- Department of Nematology, University of California, Riverside, CA USA
| |
Collapse
|
37
|
Ishihara H, Moraes TA, Pyl ET, Schulze WX, Obata T, Scheffel A, Fernie AR, Sulpice R, Stitt M. Growth rate correlates negatively with protein turnover in Arabidopsis accessions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:416-429. [PMID: 28419597 DOI: 10.1111/tpj.13576] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 03/17/2017] [Accepted: 04/10/2017] [Indexed: 05/22/2023]
Abstract
Previous studies with Arabidopsis accessions revealed that biomass correlates negatively to dusk starch content and total protein, and positively to the maximum activities of enzymes in photosynthesis. We hypothesized that large accessions have lower ribosome abundance and lower rates of protein synthesis, and that this is compensated by lower rates of protein degradation. This would increase growth efficiency and allow more investment in photosynthetic machinery. We analysed ribosome abundance and polysome loading in 19 accessions, modelled the rates of protein synthesis and compared them with the observed rate of growth. Large accessions contained less ribosomes than small accessions, due mainly to cytosolic ribosome abundance falling at night in large accessions. The modelled rates of protein synthesis resembled those required for growth in large accessions, but were up to 30% in excess in small accessions. We then employed 13 CO2 pulse-chase labelling to measure the rates of protein synthesis and degradation in 13 accessions. Small accessions had a slightly higher rate of protein synthesis and much higher rates of protein degradation than large accessions. Protein turnover was negligible in large accessions but equivalent to up to 30% of synthesised protein day-1 in small accessions. We discuss to what extent the decrease in growth in small accessions can be quantitatively explained by known costs of protein turnover and what factors may lead to the altered diurnal dynamics and increase of ribosome abundance in small accessions, and propose that there is a trade-off between protein turnover and maximisation of growth rate.
Collapse
Affiliation(s)
- Hirofumi Ishihara
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Thiago Alexandre Moraes
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Eva-Theresa Pyl
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Waltraud X Schulze
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
- Department of Plant Systems Biology, University of Hohenheim, Garbenstraße 30, Stuttgart, 70599, Germany
| | - Toshihiro Obata
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - André Scheffel
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Ronan Sulpice
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
- Plant Systems Biology Laboratory, Plant and AgriBiosciences Research Centre, Botany and Plant Science, National University of Ireland Galway, Galway, H91 TK33, Ireland
| | - Mark Stitt
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| |
Collapse
|
38
|
Talagrand-Reboul E, Roger F, Kimper JL, Colston SM, Graf J, Latif-Eugenín F, Figueras MJ, Petit F, Marchandin H, Jumas-Bilak E, Lamy B. Delineation of Taxonomic Species within Complex of Species: Aeromonas media and Related Species as a Test Case. Front Microbiol 2017; 8:621. [PMID: 28458658 PMCID: PMC5394120 DOI: 10.3389/fmicb.2017.00621] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 03/27/2017] [Indexed: 11/13/2022] Open
Abstract
Aeromonas media is an opportunistic pathogen for human and animals mainly found in aquatic habitats and which has been noted for significant genomic and phenotypic heterogeneities. We aimed to better understand the population structure and diversity of strains currently affiliated to A. media and the related species A. rivipollensis. Forty-one strains were included in a population study integrating, multilocus genetics, phylogenetics, comparative genomics, as well as phenotypics, lifestyle, and evolutionary features. Sixteen gene-based multilocus phylogeny delineated three clades. Clades corresponded to different genomic groups or genomospecies defined by phylogenomic metrics ANI (average nucleotide identity) and isDDH (in silico DNA-DNA hybridization) on 14 whole genome sequences. DL-lactate utilization, cefoxitin susceptibility, nucleotide signatures, ribosomal multi-operon diversity, and differences in relative effect of recombination and mutation (i.e., in evolution mode) distinguished the two species Aeromonas media and Aeromonas rivipollensis. The description of these two species was emended accordingly. The genome metrics and comparative genomics suggested that a third clade is a distinct genomospecies. Beside the species delineation, genetic and genomic data analysis provided a more comprehensive knowledge of the cladogenesis determinants at the root and inside A. media species complex among aeromonads. Particular lifestyles and phenotypes as well as major differences in evolution modes may represent putative factors associated with lineage emergence and speciation within the A. media complex. Finally, the integrative and populational approach presented in this study is considered broadly in order to conciliate the delineation of taxonomic species and the population structure in bacterial genera organized in species complexes.
Collapse
Affiliation(s)
- Emilie Talagrand-Reboul
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, Université de MontpellierMontpellier, France.,Département d'Hygiène Hospitalière, CHRU de MontpellierMontpellier, France
| | - Frédéric Roger
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, Université de MontpellierMontpellier, France
| | - Jean-Luc Kimper
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, Université de MontpellierMontpellier, France
| | - Sophie M Colston
- Department of Molecular and Cell Biology, University of ConnecticutStorrs, CT, USA
| | - Joerg Graf
- Department of Molecular and Cell Biology, University of ConnecticutStorrs, CT, USA
| | - Fadua Latif-Eugenín
- Unidad de Microbiologia, Facultad de Medicina y Ciencias de la Salud, IISPV, Universidad Rovira i VirgiliReus, Spain
| | - Maria José Figueras
- Unidad de Microbiologia, Facultad de Medicina y Ciencias de la Salud, IISPV, Universidad Rovira i VirgiliReus, Spain
| | - Fabienne Petit
- Normandie Univ, UNIROUEN, UNICAEN, Centre National de la Recherche Scientifique, M2CRouen, France.,Sorbonne Universités, UPMC, Centre National de la Recherche Scientifique, EPHE, UMR 7619 METISParis, France
| | - Hélène Marchandin
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, Université de MontpellierMontpellier, France.,Département de Bactériologie, CHRU de MontpellierMontpellier, France
| | - Estelle Jumas-Bilak
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, Université de MontpellierMontpellier, France.,Département d'Hygiène Hospitalière, CHRU de MontpellierMontpellier, France
| | - Brigitte Lamy
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, Université de MontpellierMontpellier, France.,Département de Bactériologie, CHU de NiceNice, France
| |
Collapse
|
39
|
The Proximity of Ribosomal Protein Genes to oriC Enhances Vibrio cholerae Fitness in the Absence of Multifork Replication. mBio 2017; 8:mBio.00097-17. [PMID: 28246358 PMCID: PMC5347342 DOI: 10.1128/mbio.00097-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recent works suggest that bacterial gene order links chromosome structure to cell homeostasis. Comparative genomics showed that, in fast-growing bacteria, ribosomal protein genes (RP) locate near the replication origin (oriC). We recently showed that Vibrio cholerae employs this positional bias as a growth optimization strategy: under fast-growth conditions, multifork replication increases RP dosage and expression. However, RP location may provide advantages in a dosage-independent manner: for example, the physical proximity of the many ribosomal components, in the context of a crowded cytoplasm, may favor ribosome biogenesis. To uncover putative dosage-independent effects, we studied isogenic V. cholerae derivatives in which the major RP locus, S10-spc-α (S10), was relocated to alternative genomic positions. When bacteria grew fast, bacterial fitness was reduced according to the S10 relative distance to oriC The growth of wild-type V. cholerae could not be improved by additional copies of the locus, suggesting a physiologically optimized genomic location. Slow growth is expected to uncouple RP position from dosage, since multifork replication does not occur. Under these conditions, we detected a fitness impairment when S10 was far from oriC Deep sequencing followed by marker frequency analysis in the absence of multifork replication revealed an up to 30% S10 dosage reduction associated with its relocation that closely correlated with fitness alterations. Hence, the impact of S10 location goes beyond a growth optimization strategy during feast periods. RP location may be important during the whole life cycle of this pathogen.IMPORTANCE The role of gene order within the bacterial chromosome is poorly understood. In fast growers, the location of genes linked with the expression of genetic information (i.e., transcription and translation) is biased toward oriC It was proposed that the location of these genes helps to maximize their expression by recruiting multifork replication during fast growth. Our results show that such genomic positioning impacts cell fitness beyond fast-growth conditions, probably across the whole life cycle of fast growers. Thus, the genomic position of key highly expressed genes, such as RP, was finely tuned during the evolution of fast-growing bacteria and may also be important in slow growers. In the near future, many more genes whose genomic position impacts bacterial phenotype will be described. These studies will contribute to discovery the rules of genome organization and application of them for the design of synthetic chromosomes and the creation of artificial life forms.
Collapse
|
40
|
Takada H, Shimada T, Dey D, Quyyum MZ, Nakano M, Ishiguro A, Yoshida H, Yamamoto K, Sen R, Ishihama A. Differential Regulation of rRNA and tRNA Transcription from the rRNA-tRNA Composite Operon in Escherichia coli. PLoS One 2016; 11:e0163057. [PMID: 28005933 PMCID: PMC5179076 DOI: 10.1371/journal.pone.0163057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/01/2016] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli contains seven rRNA operons, each consisting of the genes for three rRNAs (16S, 23S and 5S rRNA in this order) and one or two tRNA genes in the spacer between 16S and 23S rRNA genes and one or two tRNA genes in the 3’ proximal region. All of these rRNA and tRNA genes are transcribed from two promoters, P1 and P2, into single large precursors that are afterward processed to individual rRNAs and tRNAs by a set of RNases. In the course of Genomic SELEX screening of promoters recognized by RNA polymerase (RNAP) holoenzyme containing RpoD sigma, a strong binding site was identified within 16S rRNA gene in each of all seven rRNA operons. The binding in vitro of RNAP RpoD holoenzyme to an internal promoter, referred to the promoter of riRNA (an internal RNA of the rRNA operon), within each 16S rRNA gene was confirmed by gel shift assay and AFM observation. Using this riRNA promoter within the rrnD operon as a representative, transcription in vitro was detected with use of the purified RpoD holoenzyme, confirming the presence of a constitutive promoter in this region. LacZ reporter assay indicated that this riRNA promoter is functional in vivo. The location of riRNA promoter in vivo as identified using a set of reporter plasmids agrees well with that identified in vitro. Based on transcription profile in vitro and Northern blot analysis in vivo, the majority of transcript initiated from this riRNA promoter was estimated to terminate near the beginning of 23S rRNA gene, indicating that riRNA leads to produce the spacer-coded tRNA. Under starved conditions, transcription of the rRNA operon is markedly repressed to reduce the intracellular level of ribosomes, but the levels of both riRNA and its processed tRNAGlu stayed unaffected, implying that riRNA plays a role in the continued steady-state synthesis of tRNAs from the spacers of rRNA operons. We then propose that the tRNA genes organized within the spacers of rRNA-tRNA composite operons are expressed independent of rRNA synthesis under specific conditions where further synthesis of ribosomes is not needed.
Collapse
Affiliation(s)
- Hiraku Takada
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan
| | - Tomohiro Shimada
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuda, Yokohama, Japan
| | - Debashish Dey
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | | | - Masahiro Nakano
- Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Akira Ishiguro
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan
| | - Hideji Yoshida
- Department of Physics, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Kaneyoshi Yamamoto
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Ranjan Sen
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Akira Ishihama
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
- * E-mail:
| |
Collapse
|
41
|
Hargreaves KR, Thanki AM, Jose BR, Oggioni MR, Clokie MRJ. Use of single molecule sequencing for comparative genomics of an environmental and a clinical isolate of Clostridium difficile ribotype 078. BMC Genomics 2016; 17:1020. [PMID: 27964731 PMCID: PMC5154133 DOI: 10.1186/s12864-016-3346-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/25/2016] [Indexed: 01/20/2023] Open
Abstract
Background How the pathogen Clostridium difficile might survive, evolve and be transferred between reservoirs within the natural environment is poorly understood. Some ribotypes are found both in clinical and environmental settings. Whether these strains are distinct from each another and evolve in the specific environments is not established. The possession of a highly mobile genome has contributed to the genetic diversity and ongoing evolution of C. difficile. Interpretations of genetic diversity have been limited by fragmented assemblies resulting from short-read length sequencing approaches and by a limited understanding of epigenetic regulation of diversity. To address this, single molecule real time (SMRT) sequencing was used in this study as it produces high quality genome sequences, with resolution of repeat regions (including those found in mobile elements) and can generate data to determine methylation modifications across the sequence (the methylome). Results Chromosomal rearrangements and ribosomal operon duplications were observed in both genomes. The rearrangements occurred at insertion sites within two mobile genetic elements (MGEs), Tn6164 and Tn6293, present only in the M120 and CD105HS27 genomes, respectively. The gene content of these two transposons differ considerably which could impact upon horizontal gene transfer; differences include CDSs encoding methylases and a conjugative prophage only in Tn6164. To investigate mechanisms which could affect MGE transfer, the methylome, restriction modification (RM) and the CRISPR/Cas systems were characterised for each strain. Notably, the environmental isolate, CD105HS27, does not share a consensus motif for m4C methylation, but has one additional spacer when compared to the clinical isolate M120. Conclusions These findings show key differences between the two strains in terms of their genetic capacity for MGE transfer. The carriage of horizontally transferred genes appear to have genome wide effects based on two different methylation patterns. The CRISPR/Cas system appears active although perhaps slow to evolve. Data suggests that both mechanisms are functional and impact upon horizontal gene transfer and genome evolution within C. difficile. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3346-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katherine R Hargreaves
- Department Infection, Immunity and Inflammation, University of Leicester, Leicester, UK. .,Department Microbiology, The Ohio State University, Columbus, OH, USA.
| | - Anisha M Thanki
- Department Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Bethany R Jose
- Department Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | | | - Martha R J Clokie
- Department Infection, Immunity and Inflammation, University of Leicester, Leicester, UK.
| |
Collapse
|
42
|
Martínez-García E, de Lorenzo V. The quest for the minimal bacterial genome. Curr Opin Biotechnol 2016; 42:216-224. [DOI: 10.1016/j.copbio.2016.09.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 01/09/2023]
|
43
|
High Prevalence of Diverse Insertion Sequences within the rRNA Operons of Mycoplasma bovis. Appl Environ Microbiol 2016; 82:6386-6394. [PMID: 27542937 DOI: 10.1128/aem.01628-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/15/2016] [Indexed: 11/20/2022] Open
Abstract
Insertion sequences (ISs) are widespread in the genome of Mycoplasma bovis strain PG45, but no ISs were identified within its two tandemly positioned rRNA operons (rrn1 and rrn2). However, characterization of the rrn locus in 70 M. bovis isolates revealed the presence of ISs related to the ISMbov1 (IS30 family) and ISMbov4 (IS4 family) isomers in 35 isolates. ISs were inserted into intergenic region 1 (IGR-1) or IGR-3, which are the putative promoter regions of rrn1 and rrn2, respectively, and into IGR-5, located downstream of the rrl2 gene. Seven different configurations (A to G) of the rrn locus with respect to ISs were identified, including those in five annotated genomes. The transcriptional start site for the single rrn operon in M. bovis strain 88127 was mapped within IGR-1, 60 bp upstream of the rrs gene. Notably, only 1 nucleotide separated the direct repeat (DR) for ISMbov1 and the promoter -35 element in configuration D, while in configuration F, the -35 motif was a part of the ISMbov1 DR. Relative quantitative real-time (qRT) PCR analysis and growth rate comparisons detected a significant increase (P < 0.05) in the expression of the rrs genes and in the number of viable cells during log phase growth (8, 12, and 16 h) in the strains with configuration F in comparison to strains with one or two rrn operons that did not have ISs. A high prevalence of IS elements within or close to the M. bovis rrn operon-promoter region may reflect their important role in regulation of both ribosome synthesis and function. IMPORTANCE Data presented in this study show a high prevalence of diverse ISs within the M. bovis rrn locus resulting in intraspecies variability and diversity. Such abundance of IS elements near or within the rrn locus may offer a selective advantage to M. bovis Moreover, the fact that expression of the rrs genes as well as the number of viable cells increased in the group of strains with IS element insertion within a putative promoter -35 sequence (configuration F) in comparison to that in strains with one or two rrn operons that do not have ISs may serve as a basis for understanding the possible role of M. bovis IS elements in fundamental biological processes such as regulation of ribosome synthesis and function.
Collapse
|
44
|
Heberling T, Davis L, Gedeon J, Morgan C, Gedeon T. A Mechanistic Model for Cooperative Behavior of Co-transcribing RNA Polymerases. PLoS Comput Biol 2016; 12:e1005069. [PMID: 27517607 PMCID: PMC4982667 DOI: 10.1371/journal.pcbi.1005069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/20/2016] [Indexed: 11/19/2022] Open
Abstract
In fast-transcribing prokaryotic genes, such as an rrn gene in Escherichia coli, many RNA polymerases (RNAPs) transcribe the DNA simultaneously. Active elongation of RNAPs is often interrupted by pauses, which has been observed to cause RNAP traffic jams; yet some studies indicate that elongation seems to be faster in the presence of multiple RNAPs than elongation by a single RNAP. We propose that an interaction between RNAPs via the torque produced by RNAP motion on helically twisted DNA can explain this apparent paradox. We have incorporated the torque mechanism into a stochastic model and simulated transcription both with and without torque. Simulation results illustrate that the torque causes shorter pause durations and fewer collisions between polymerases. Our results suggest that the torsional interaction of RNAPs is an important mechanism in maintaining fast transcription times, and that transcription should be viewed as a cooperative group effort by multiple polymerases.
Collapse
Affiliation(s)
- Tamra Heberling
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Lisa Davis
- Department of Mathematical Sciences, Montana State University, Bozeman, Montana, United States of America
| | - Jakub Gedeon
- Computer Science Department, Montana State University, Bozeman, Montana, United States of America
| | - Charles Morgan
- Department of Mathematical Sciences, Montana State University, Bozeman, Montana, United States of America
| | - Tomáš Gedeon
- Department of Mathematical Sciences, Montana State University, Bozeman, Montana, United States of America
| |
Collapse
|
45
|
Sinsabaugh RL, Turner BL, Talbot JM, Waring BG, Powers JS, Kuske CR, Moorhead DL, Follstad Shah JJ. Stoichiometry of microbial carbon use efficiency in soils. ECOL MONOGR 2016. [DOI: 10.1890/15-2110.1] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
| | - Benjamin L. Turner
- Smithsonian Tropical Research Institute Apartado 0843‐03092 Balboa, Ancon Panama
| | - Jennifer M. Talbot
- Department of Biology Boston University 5 Cummington Mall Boston Massachusetts 02215 USA
| | - Bonnie G. Waring
- Department of Ecology, Evolution, and Behavior University of Minnesota St. Paul Minnesota 55108 USA
| | - Jennifer S. Powers
- Department of Ecology, Evolution, and Behavior University of Minnesota St. Paul Minnesota 55108 USA
- Department of Plant Biology University of Minnesota St. Paul Minnesota 55108 USA
| | - Cheryl R. Kuske
- Bioscience Division Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | - Daryl L. Moorhead
- Department of Environmental Sciences University of Toledo 2810 West Bancroft Street Toledo Ohio 43606 USA
| | - Jennifer J. Follstad Shah
- Environmental and Sustainable Studies Program University of Utah 260 South Central Campus Drive Salt Lake City Utah 84112 USA
| |
Collapse
|
46
|
Venturelli OS, Egbert RG, Arkin AP. Towards Engineering Biological Systems in a Broader Context. J Mol Biol 2016; 428:928-44. [DOI: 10.1016/j.jmb.2015.10.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/24/2015] [Accepted: 10/28/2015] [Indexed: 01/18/2023]
|
47
|
Maeda M, Shimada T, Ishihama A. Strength and Regulation of Seven rRNA Promoters in Escherichia coli. PLoS One 2015; 10:e0144697. [PMID: 26717514 PMCID: PMC4696680 DOI: 10.1371/journal.pone.0144697] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 11/23/2015] [Indexed: 11/18/2022] Open
Abstract
The model prokaryote Escherichia coli contains seven copies of the rRNA operon in the genome. The presence of multiple rRNA operons is an advantage for increasing the level of ribosome, the key apparatus of translation, in response to environmental conditions. The complete sequence of E. coli genome, however, indicated the micro heterogeneity between seven rRNA operons, raising the possibility in functional heterogeneity and/or differential mode of expression. The aim of this research is to determine the strength and regulation of the promoter of each rRNA operon in E. coli. For this purpose, we used the double-fluorescent protein reporter pBRP system that was developed for accurate and precise determination of the promoter strength of protein-coding genes. For application of this promoter assay vector for measurement of the rRNA operon promoters devoid of the signal for translation, a synthetic SD sequence was added at the initiation codon of the reporter GFP gene, and then approximately 500 bp-sequence upstream each 16S rRNA was inserted in front of this SD sequence. Using this modified pGRS system, the promoter activity of each rrn operon was determined by measuring the rrn promoter-directed GFP and the reference promoter-directed RFP fluorescence, both encoded by a single and the same vector. Results indicated that: the promoter activity was the highest for the rrnE promoter under all growth conditions analyzed, including different growth phases of wild-type E. coli grown in various media; but the promoter strength of other six rrn promoters was various depending on the culture conditions. These findings altogether indicate that seven rRNA operons are different with respect to the regulation mode of expression, conferring an advantage to E. coli through a more fine-tuned control of ribosome formation in a wide range of environmental situations. Possible difference in the functional role of each rRNA operon is also discussed.
Collapse
Affiliation(s)
- Michihisa Maeda
- Meiji University, Faculty of Agriculture Chemistry, Kawasaki, Kanagawa 214–8571, Japan
| | - Tomohiro Shimada
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuda, Yokohama 226–8503, Japan
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo 184–8584, Japan
| | - Akira Ishihama
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo 184–8584, Japan
- * E-mail:
| |
Collapse
|
48
|
Markerless Escherichia coli rrn Deletion Strains for Genetic Determination of Ribosomal Binding Sites. G3-GENES GENOMES GENETICS 2015; 5:2555-7. [PMID: 26438293 PMCID: PMC4683628 DOI: 10.1534/g3.115.022301] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Single-copy rrn strains facilitate genetic ribosomal studies in Escherichia coli. Consecutive markerless deletion of rrn operons resulted in slower growth upon inactivation of the fourth copy, which was reversed by supplying transfer RNA genes encoded in rrn operons in trans. Removal of the sixth, penultimate rrn copy led to a reduced growth rate due to limited rrn gene dosage. Whole-genome sequencing of variants of single-copy rrn strains revealed duplications of large stretches of genomic DNA. The combination of selective pressure, resulting from the decreased growth rate, and the six identical remaining scar sequences, facilitating homologous recombination events, presumably leads to elevated genomic instability.
Collapse
|
49
|
Genomic location of the major ribosomal protein gene locus determines Vibrio cholerae global growth and infectivity. PLoS Genet 2015; 11:e1005156. [PMID: 25875621 PMCID: PMC4395360 DOI: 10.1371/journal.pgen.1005156] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/17/2015] [Indexed: 11/23/2022] Open
Abstract
The effects on cell physiology of gene order within the bacterial chromosome are poorly understood. In silico approaches have shown that genes involved in transcription and translation processes, in particular ribosomal protein (RP) genes, localize near the replication origin (oriC) in fast-growing bacteria suggesting that such a positional bias is an evolutionarily conserved growth-optimization strategy. Such genomic localization could either provide a higher dosage of these genes during fast growth or facilitate the assembly of ribosomes and transcription foci by keeping physically close the many components of these macromolecular machines. To explore this, we used novel recombineering tools to create a set of Vibrio cholerae strains in which S10-spec-α (S10), a locus bearing half of the ribosomal protein genes, was systematically relocated to alternative genomic positions. We show that the relative distance of S10 to the origin of replication tightly correlated with a reduction of S10 dosage, mRNA abundance and growth rate within these otherwise isogenic strains. Furthermore, this was accompanied by a significant reduction in the host-invasion capacity in Drosophila melanogaster. Both phenotypes were rescued in strains bearing two S10 copies highly distal to oriC, demonstrating that replication-dependent gene dosage reduction is the main mechanism behind these alterations. Hence, S10 positioning connects genome structure to cell physiology in Vibrio cholerae. Our results show experimentally for the first time that genomic positioning of genes involved in the flux of genetic information conditions global growth control and hence bacterial physiology and potentially its evolution. Increasing evidence indicates that nucleoid spatiotemporal organization is crucial for bacterial physiology since these microorganism lack compartmentalized nucleus. However, it is still unclear how gene order within the chromosome can influence cell physiology. Here, by systematically relocating ribosomal protein genes to different genomic positions in Vibrio cholerae, we revealed drastic differences in growth rate and infectivity of this isogenic strain set. We show that genomic positioning of ribosomal protein genes is crucial for physiology by providing replication-dependent higher dosage. Therefore it might play a key role in genome evolution of bacterial species. This work will contribute to discover genomic rules governing cell physiology which will be essential in the context of the creation of new artificial life forms.
Collapse
|