1
|
Smaruj P, Kieliszek M. Casposons - silent heroes of the CRISPR-Cas systems evolutionary history. EXCLI JOURNAL 2023; 22:70-83. [PMID: 36814855 PMCID: PMC9939771 DOI: 10.17179/excli2022-5581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/19/2022] [Indexed: 02/24/2023]
Abstract
Many archaeal and bacterial organisms possess an adaptive immunity system known as CRISPR-Cas. Its role is to recognize and degrade foreign DNA showing high similarity to repeats within the CRISPR array. In recent years computational techniques have been used to identify cas1 genes that are not associated with CRISPR systems, named cas1-solo. Often, cas1-solo genes are present in a conserved neighborhood of PolB-like polymerase genes, which is a characteristic feature of self-synthesizing, eukaryotic transposons of the Polinton class. Nearly all cas1-polB genomic islands are flanked by terminal inverted repeats and direct repeats which correspond to target site duplications. Considering the patchy taxonomic distribution of the identified islands in archaeal and bacterial genomes, they were characterized as a new superfamily of mobile genetic elements and called casposons. Here, we review recent experiments on casposons' mobility and discuss their discovery, classification, and evolutionary relationship with the CRISPR-Cas systems.
Collapse
Affiliation(s)
- Paulina Smaruj
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, United States of America,College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, 02-097 Warsaw, Poland,*To whom correspondence should be addressed: Paulina Smaruj, Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, United States of America, E-mail:
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland
| |
Collapse
|
2
|
Salgado O, Guajardo-Leiva S, Moya-Beltrán A, Barbosa C, Ridley C, Tamayo-Leiva J, Quatrini R, Mojica FJM, Díez B. Global phylogenomic novelty of the Cas1 gene from hot spring microbial communities. Front Microbiol 2022; 13:1069452. [DOI: 10.3389/fmicb.2022.1069452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
The Cas1 protein is essential for the functioning of CRISPR-Cas adaptive systems. However, despite the high prevalence of CRISPR-Cas systems in thermophilic microorganisms, few studies have investigated the occurrence and diversity of Cas1 across hot spring microbial communities. Phylogenomic analysis of 2,150 Cas1 sequences recovered from 48 metagenomes representing hot springs (42–80°C, pH 6–9) from three continents, revealed similar ecological diversity of Cas1 and 16S rRNA associated with geographic location. Furthermore, phylogenetic analysis of the Cas1 sequences exposed a broad taxonomic distribution in thermophilic bacteria, with new clades of Cas1 homologs branching at the root of the tree or at the root of known clades harboring reference Cas1 types. Additionally, a new family of casposases was identified from hot springs, which further completes the evolutionary landscape of the Cas1 superfamily. This ecological study contributes new Cas1 sequences from known and novel locations worldwide, mainly focusing on under-sampled hot spring microbial mat taxa. Results herein show that circumneutral hot springs are environments harboring high diversity and novelty related to adaptive immunity systems.
Collapse
|
3
|
Ilyina TS. Adaptive Immunity Systems of Bacteria: Association with Self-Synthesizing Transposons, Polyfunctionality. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY 2022. [DOI: 10.3103/s0891416822030065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
4
|
Benler S, Koonin EV. Recruitment of Mobile Genetic Elements for Diverse Cellular Functions in Prokaryotes. Front Mol Biosci 2022; 9:821197. [PMID: 35402511 PMCID: PMC8987985 DOI: 10.3389/fmolb.2022.821197] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/08/2022] [Indexed: 12/15/2022] Open
Abstract
Prokaryotic genomes are replete with mobile genetic elements (MGE) that span a continuum of replication autonomy. On numerous occasions during microbial evolution, diverse MGE lose their autonomy altogether but, rather than being quickly purged from the host genome, assume a new function that benefits the host, rendering the immobilized MGE subject to purifying selection, and resulting in its vertical inheritance. This mini-review highlights the diversity of the repurposed (exapted) MGE as well as the plethora of cellular functions that they perform. The principal contribution of the exaptation of MGE and their components is to the prokaryotic functional systems involved in biological conflicts, and in particular, defense against viruses and other MGE. This evolutionary entanglement between MGE and defense systems appears to stem both from mechanistic similarities and from similar evolutionary predicaments whereby both MGEs and defense systems tend to incur fitness costs to the hosts and thereby evolve mechanisms for survival including horizontal mobility, causing host addiction, and exaptation for functions beneficial to the host. The examples discussed demonstrate that the identity of an MGE, overall mobility and relationship with the host cell (mutualistic, symbiotic, commensal, or parasitic) are all factors that affect exaptation.
Collapse
Affiliation(s)
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
5
|
Wang X, Yuan Q, Zhang W, Ji S, Lv Y, Ren K, Lu M, Xiao Y. Sequence specific integration by the family 1 casposase from Candidatus Nitrosopumilus koreensis AR1. Nucleic Acids Res 2021; 49:9938-9952. [PMID: 34428286 PMCID: PMC8464041 DOI: 10.1093/nar/gkab725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 11/13/2022] Open
Abstract
Casposase, a homolog of Cas1 integrase, is encoded by a superfamily of mobile genetic elements known as casposons. While family 2 casposase has been well documented in both function and structure, little is known about the other three casposase families. Here, we studied the family 1 casposase lacking the helix-turn-helix (HTH) domain from Candidatus Nitrosopumilus koreensis AR1 (Ca. N. koreensis). The determinants for integration by Ca. N. koreensis casposase were extensively investigated, and it was found that a 13-bp target site duplication (TSD) sequence, a minimal 3-bp leader and three different nucleotides of the TSD sequences are indispensable for target specific integration. Significantly, the casposase can site-specifically integrate a broad range of terminal inverted repeat (TIR)-derived oligonucleotides ranging from 7-nt to ∼4000-bp, and various oligonucleotides lacking the 5′-TTCTA-3′ motif at the 3′ end of TIR sequence can be integrated efficiently. Furthermore, similar to some Cas1 homologs, the casposase utilizes a 5′-ATAA-3′ motif in the TSD as a molecular ruler to dictate nucleophilic attack at 9-bp downstream of the end of the ruler during the spacer-side integration. By characterizing the family 1 Ca. N. koreensis casposase, we have extended our understanding on mechanistic similarities and evolutionary connections between casposons and the adaptation elements of CRISPR-Cas immunity.
Collapse
Affiliation(s)
- Xiaoke Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing210009, China.,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing210009, China
| | - Qinling Yuan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing210009, China.,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing210009, China
| | - Wenxuan Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing210009, China.,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing210009, China
| | - Suyu Ji
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing210009, China.,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing210009, China
| | - Yang Lv
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing210009, China.,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing210009, China
| | - Kejing Ren
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing210009, China.,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing210009, China
| | - Meiling Lu
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing210009, China
| | - Yibei Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing210009, China.,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing210009, China
| |
Collapse
|
6
|
Makarova KS, Wolf YI, Shmakov SA, Liu Y, Li M, Koonin EV. Unprecedented Diversity of Unique CRISPR-Cas-Related Systems and Cas1 Homologs in Asgard Archaea. CRISPR J 2021; 3:156-163. [PMID: 33555973 DOI: 10.1089/crispr.2020.0012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The principal function of archaeal and bacterial CRISPR-Cas systems is antivirus adaptive immunity. However, recent genome analyses identified a variety of derived CRISPR-Cas variants at least some of which appear to perform different functions. Here, we describe a unique repertoire of CRISPR-Cas-related systems that we discovered by searching archaeal metagenome-assemble genomes of the Asgard superphylum. Several of these variants contain extremely diverged homologs of Cas1, the integrase involved in CRISPR adaptation as well as casposon transposition. Strikingly, the diversity of Cas1 in Asgard archaea alone is greater than that detected so far among the rest of archaea and bacteria. The Asgard CRISPR-Cas derivatives also encode distinct forms of Cas4, Cas5, and Cas7 proteins, and/or additional nucleases. Some of these systems are predicted to perform defense functions, but possibly not programmable ones, whereas others are likely to represent previously unknown mobile genetic elements.
Collapse
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Sergey A Shmakov
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Yang Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, P.R. China
| | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, P.R. China
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Lau CH, Bolt EL. Integration of diverse DNA substrates by a casposase can be targeted to R-loops in vitro by its fusion to Cas9. Biosci Rep 2021; 41:BSR20203595. [PMID: 33289517 PMCID: PMC7786333 DOI: 10.1042/bsr20203595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/18/2020] [Accepted: 12/03/2020] [Indexed: 12/17/2022] Open
Abstract
CRISPR systems build adaptive immunity against mobile genetic elements by DNA capture and integration catalysed by Cas1-Cas2 protein complexes. Recent studies suggested that CRISPR repeats and adaptation module originated from a novel type of DNA transposons called casposons. Casposons encode a Cas1 homologue called casposase that alone integrates into target molecules single and double-stranded DNA containing terminal inverted repeats (TIRs) from casposons. A recent study showed Methanosarcina mazei casposase is able to integrate random DNA oligonucleotides, followed up in this work using Acidoprofundum boonei casposase, from which we also observe promiscuous substrate integration. Here we first show that the substrate flexibility of Acidoprofundum boonei casposase extends to random integration of DNA without TIRs, including integration of a functional gene. We then used this to investigate targeting of the casposase-catalysed DNA integration reactions to specific DNA sites that would allow insertion of defined DNA payloads. Casposase-Cas9 fusions were engineered that were catalytically proficient in vitro and generated RNA-guided DNA integration products from short synthetic DNA or a gene, with or without TIRs. However, DNA integration could still occur unguided due to the competing background activity of the casposase moiety. Expression of Casposase-dCas9 in Escherichia coli cells effectively targeted chromosomal and plasmid lacZ revealed by reduced β-galactosidase activity but DNA integration was not detected. The promiscuous substrate integration properties of casposases make them potential DNA insertion tools. The Casposase-dCas9 fusion protein may serves as a prototype for development in genetic editing for DNA insertion that is independent of homology-directed DNA repair.
Collapse
Affiliation(s)
- Chun Hang Lau
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, U.K
| | - Edward L. Bolt
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, U.K
| |
Collapse
|
8
|
Zink IA, Wimmer E, Schleper C. Heavily Armed Ancestors: CRISPR Immunity and Applications in Archaea with a Comparative Analysis of CRISPR Types in Sulfolobales. Biomolecules 2020; 10:E1523. [PMID: 33172134 PMCID: PMC7694759 DOI: 10.3390/biom10111523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Prokaryotes are constantly coping with attacks by viruses in their natural environments and therefore have evolved an impressive array of defense systems. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is an adaptive immune system found in the majority of archaea and about half of bacteria which stores pieces of infecting viral DNA as spacers in genomic CRISPR arrays to reuse them for specific virus destruction upon a second wave of infection. In detail, small CRISPR RNAs (crRNAs) are transcribed from CRISPR arrays and incorporated into type-specific CRISPR effector complexes which further degrade foreign nucleic acids complementary to the crRNA. This review gives an overview of CRISPR immunity to newcomers in the field and an update on CRISPR literature in archaea by comparing the functional mechanisms and abundances of the diverse CRISPR types. A bigger fraction is dedicated to the versatile and prevalent CRISPR type III systems, as tremendous progress has been made recently using archaeal models in discerning the controlled molecular mechanisms of their unique tripartite mode of action including RNA interference, DNA interference and the unique cyclic-oligoadenylate signaling that induces promiscuous RNA shredding by CARF-domain ribonucleases. The second half of the review spotlights CRISPR in archaea outlining seminal in vivo and in vitro studies in model organisms of the euryarchaeal and crenarchaeal phyla, including the application of CRISPR-Cas for genome editing and gene silencing. In the last section, a special focus is laid on members of the crenarchaeal hyperthermophilic order Sulfolobales by presenting a thorough comparative analysis about the distribution and abundance of CRISPR-Cas systems, including arrays and spacers as well as CRISPR-accessory proteins in all 53 genomes available to date. Interestingly, we find that CRISPR type III and the DNA-degrading CRISPR type I complexes co-exist in more than two thirds of these genomes. Furthermore, we identified ring nuclease candidates in all but two genomes and found that they generally co-exist with the above-mentioned CARF domain ribonucleases Csx1/Csm6. These observations, together with published literature allowed us to draft a working model of how CRISPR-Cas systems and accessory proteins cross talk to establish native CRISPR anti-virus immunity in a Sulfolobales cell.
Collapse
|
9
|
Structural basis of seamless excision and specific targeting by piggyBac transposase. Nat Commun 2020; 11:3446. [PMID: 32651359 PMCID: PMC7351741 DOI: 10.1038/s41467-020-17128-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/02/2020] [Indexed: 12/16/2022] Open
Abstract
The piggyBac DNA transposon is used widely in genome engineering applications. Unlike other transposons, its excision site can be precisely repaired without leaving footprints and it integrates specifically at TTAA tetranucleotides. We present cryo-EM structures of piggyBac transpososomes: a synaptic complex with hairpin DNA intermediates and a strand transfer complex capturing the integration step. The results show that the excised TTAA hairpin intermediate and the TTAA target adopt essentially identical conformations, providing a mechanistic link connecting the two unique properties of piggyBac. The transposase forms an asymmetric dimer in which the two central domains synapse the ends while two C-terminal domains form a separate dimer that contacts only one transposon end. In the strand transfer structure, target DNA is severely bent and the TTAA target is unpaired. In-cell data suggest that asymmetry promotes synaptic complex formation, and modifying ends with additional transposase binding sites stimulates activity.
Collapse
|
10
|
Béguin P, Chekli Y, Sezonov G, Forterre P, Krupovic M. Sequence motifs recognized by the casposon integrase of Aciduliprofundum boonei. Nucleic Acids Res 2020; 47:6386-6395. [PMID: 31114911 PMCID: PMC6614799 DOI: 10.1093/nar/gkz447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/17/2019] [Accepted: 05/20/2019] [Indexed: 01/01/2023] Open
Abstract
Casposons are a group of bacterial and archaeal DNA transposons encoding a specific integrase, termed casposase, which is homologous to the Cas1 enzyme responsible for the integration of new spacers into CRISPR loci. Here, we characterized the sequence motifs recognized by the casposase from a thermophilic archaeon Aciduliprofundum boonei. We identified a stretch of residues, located in the leader region upstream of the actual integration site, whose deletion or mutagenesis impaired the concerted integration reaction. However, deletions of two-thirds of the target site were fully functional. Various single-stranded 6-FAM-labelled oligonucleotides derived from casposon terminal inverted repeats were as efficiently incorporated as duplexes into the target site. This result suggests that, as in the case of spacer insertion by the CRISPR Cas1–Cas2 integrase, casposon integration involves splaying of the casposon termini, with single-stranded ends being the actual substrates. The sequence critical for incorporation was limited to the five terminal residues derived from the 3′ end of the casposon. Furthermore, we characterize the casposase from Nitrosopumilus koreensis, a marine member of the phylum Thaumarchaeota, and show that it shares similar properties with the A. boonei enzyme, despite belonging to a different family. These findings further reinforce the mechanistic similarities and evolutionary connection between the casposons and the adaptation module of the CRISPR–Cas systems.
Collapse
Affiliation(s)
- Pierre Béguin
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, 25-28 rue du Dr. Roux 75724 Paris cedex 15, France
| | - Yankel Chekli
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, 25-28 rue du Dr. Roux 75724 Paris cedex 15, France
| | - Guennadi Sezonov
- UMRS 1138 - Centre de Recherche des Cordeliers, Sorbonne Université, 15, rue de l'École de Médecine, 75006 Paris, France
| | - Patrick Forterre
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, 25-28 rue du Dr. Roux 75724 Paris cedex 15, France.,Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris- Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, Paris, France
| | - Mart Krupovic
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, 25-28 rue du Dr. Roux 75724 Paris cedex 15, France
| |
Collapse
|
11
|
Hickman AB, Kailasan S, Genzor P, Haase AD, Dyda F. Casposase structure and the mechanistic link between DNA transposition and spacer acquisition by CRISPR-Cas. eLife 2020; 9:50004. [PMID: 31913120 PMCID: PMC6977970 DOI: 10.7554/elife.50004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/08/2020] [Indexed: 12/17/2022] Open
Abstract
Key to CRISPR-Cas adaptive immunity is maintaining an ongoing record of invading nucleic acids, a process carried out by the Cas1-Cas2 complex that integrates short segments of foreign genetic material (spacers) into the CRISPR locus. It is hypothesized that Cas1 evolved from casposases, a novel class of transposases. We show here that the Methanosarcina mazei casposase can integrate varied forms of the casposon end in vitro, and recapitulates several properties of CRISPR-Cas integrases including site-specificity. The X-ray structure of the casposase bound to DNA representing the product of integration reveals a tetramer with target DNA bound snugly between two dimers in which single-stranded casposon end binding resembles that of spacer 3'-overhangs. The differences between transposase and CRISPR-Cas integrase are largely architectural, and it appears that evolutionary change involved changes in protein-protein interactions to favor Cas2 binding over tetramerization; this in turn led to preferred integration of single spacers over two transposon ends.
Collapse
Affiliation(s)
- Alison B Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Shweta Kailasan
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Pavol Genzor
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Astrid D Haase
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| |
Collapse
|
12
|
Adaptation processes that build CRISPR immunity: creative destruction, updated. Essays Biochem 2019; 63:227-235. [PMID: 31186288 DOI: 10.1042/ebc20180073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 01/01/2023]
Abstract
Prokaryotes can defend themselves against invading mobile genetic elements (MGEs) by acquiring immune memory against them. The memory is a DNA database located at specific chromosomal sites called CRISPRs (clustered regularly interspaced short palindromic repeats) that store fragments of MGE DNA. These are utilised to target and destroy returning MGEs, preventing re-infection. The effectiveness of CRISPR-based immune defence depends on 'adaptation' reactions that capture and integrate MGE DNA fragments into CRISPRs. This provides the means for immunity to be delivered against MGEs in 'interference' reactions. Adaptation and interference are catalysed by Cas (CRISPR-associated) proteins, aided by enzymes well known for other roles in cells. We survey the molecular biology of CRISPR adaptation, highlighting entirely new developments that may help us to understand how MGE DNA is captured. We focus on processes in Escherichia coli, punctuated with reference to other prokaryotes that illustrate how common requirements for adaptation, DNA capture and integration, can be achieved in different ways. We also comment on how CRISPR adaptation enzymes, and their antecedents, can be utilised for biotechnology.
Collapse
|
13
|
Koonin EV, Makarova KS. Origins and evolution of CRISPR-Cas systems. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180087. [PMID: 30905284 PMCID: PMC6452270 DOI: 10.1098/rstb.2018.0087] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2018] [Indexed: 12/11/2022] Open
Abstract
CRISPR-Cas, the bacterial and archaeal adaptive immunity systems, encompass a complex machinery that integrates fragments of foreign nucleic acids, mostly from mobile genetic elements (MGE), into CRISPR arrays embedded in microbial genomes. Transcripts of the inserted segments (spacers) are employed by CRISPR-Cas systems as guide (g)RNAs for recognition and inactivation of the cognate targets. The CRISPR-Cas systems consist of distinct adaptation and effector modules whose evolutionary trajectories appear to be at least partially independent. Comparative genome analysis reveals the origin of the adaptation module from casposons, a distinct type of transposons, which employ a homologue of Cas1 protein, the integrase responsible for the spacer incorporation into CRISPR arrays, as the transposase. The origin of the effector module(s) is far less clear. The CRISPR-Cas systems are partitioned into two classes, class 1 with multisubunit effectors, and class 2 in which the effector consists of a single, large protein. The class 2 effectors originate from nucleases encoded by different MGE, whereas the origin of the class 1 effector complexes remains murky. However, the recent discovery of a signalling pathway built into the type III systems of class 1 might offer a clue, suggesting that type III effector modules could have evolved from a signal transduction system involved in stress-induced programmed cell death. The subsequent evolution of the class 1 effector complexes through serial gene duplication and displacement, primarily of genes for proteins containing RNA recognition motif domains, can be hypothetically reconstructed. In addition to the multiple contributions of MGE to the evolution of CRISPR-Cas, the reverse flow of information is notable, namely, recruitment of minimalist variants of CRISPR-Cas systems by MGE for functions that remain to be elucidated. Here, we attempt a synthesis of the diverse threads that shed light on CRISPR-Cas origins and evolution. This article is part of a discussion meeting issue 'The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems'.
Collapse
Affiliation(s)
- Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | | |
Collapse
|
14
|
Krupovic M, Makarova KS, Wolf YI, Medvedeva S, Prangishvili D, Forterre P, Koonin EV. Integrated mobile genetic elements in Thaumarchaeota. Environ Microbiol 2019; 21:2056-2078. [PMID: 30773816 PMCID: PMC6563490 DOI: 10.1111/1462-2920.14564] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/10/2019] [Accepted: 02/13/2019] [Indexed: 12/20/2022]
Abstract
To explore the diversity of mobile genetic elements (MGE) associated with archaea of the phylum Thaumarchaeota, we exploited the property of most MGE to integrate into the genomes of their hosts. Integrated MGE (iMGE) were identified in 20 thaumarchaeal genomes amounting to 2 Mbp of mobile thaumarchaeal DNA. These iMGE group into five major classes: (i) proviruses, (ii) casposons, (iii) insertion sequence-like transposons, (iv) integrative-conjugative elements and (v) cryptic integrated elements. The majority of the iMGE belong to the latter category and might represent novel families of viruses or plasmids. The identified proviruses are related to tailed viruses of the order Caudovirales and to tailless icosahedral viruses with the double jelly-roll capsid proteins. The thaumarchaeal iMGE are all connected within a gene sharing network, highlighting pervasive gene exchange between MGE occupying the same ecological niche. The thaumarchaeal mobilome carries multiple auxiliary metabolic genes, including multicopper oxidases and ammonia monooxygenase subunit C (AmoC), and stress response genes, such as those for universal stress response proteins (UspA). Thus, iMGE might make important contributions to the fitness and adaptation of their hosts. We identified several iMGE carrying type I-B CRISPR-Cas systems and spacers matching other thaumarchaeal iMGE, suggesting antagonistic interactions between coexisting MGE and symbiotic relationships with the ir archaeal hosts.
Collapse
Affiliation(s)
- Mart Krupovic
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, 75015, Paris, France
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Sofia Medvedeva
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, 75015, Paris, France.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Russia.,Sorbonne Université, Collège doctoral, 75005, Paris, France
| | - David Prangishvili
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, 75015, Paris, France
| | - Patrick Forterre
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, 75015, Paris, France.,Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris- Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, Paris, France
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| |
Collapse
|
15
|
Wright AV, Wang JY, Burstein D, Harrington LB, Paez-Espino D, Kyrpides NC, Iavarone AT, Banfield JF, Doudna JA. A Functional Mini-Integrase in a Two-Protein-type V-C CRISPR System. Mol Cell 2019; 73:727-737.e3. [PMID: 30709710 PMCID: PMC6386590 DOI: 10.1016/j.molcel.2018.12.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/21/2018] [Accepted: 12/14/2018] [Indexed: 12/26/2022]
Abstract
CRISPR-Cas immunity requires integration of short, foreign DNA fragments into the host genome at the CRISPR locus, a site consisting of alternating repeat sequences and foreign-derived spacers. In most CRISPR systems, the proteins Cas1 and Cas2 form the integration complex and are both essential for DNA acquisition. Most type V-C and V-D systems lack the cas2 gene and have unusually short CRISPR repeats and spacers. Here, we show that a mini-integrase comprising the type V-C Cas1 protein alone catalyzes DNA integration with a preference for short (17- to 19-base-pair) DNA fragments. The mini-integrase has weak specificity for the CRISPR array. We present evidence that the Cas1 proteins form a tetramer for integration. Our findings support a model of a minimal integrase with an internal ruler mechanism that favors shorter repeats and spacers. This minimal integrase may represent the function of the ancestral Cas1 prior to Cas2 adoption.
Collapse
Affiliation(s)
- Addison V Wright
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joy Y Wang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David Burstein
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA
| | - Lucas B Harrington
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David Paez-Espino
- Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Nikos C Kyrpides
- Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Anthony T Iavarone
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jillian F Banfield
- Department of Earth and Planetary Sciences, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Gladstone Institutes, San Francisco, CA 94158, USA.
| |
Collapse
|
16
|
Petitjean C, Makarova KS, Wolf YI, Koonin EV. Extreme Deviations from Expected Evolutionary Rates in Archaeal Protein Families. Genome Biol Evol 2018; 9:2791-2811. [PMID: 28985292 PMCID: PMC5737733 DOI: 10.1093/gbe/evx189] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2017] [Indexed: 02/07/2023] Open
Abstract
Origin of new biological functions is a complex phenomenon ranging from single-nucleotide substitutions to the gain of new genes via horizontal gene transfer or duplication. Neofunctionalization and subfunctionalization of proteins is often attributed to the emergence of paralogs that are subject to relaxed purifying selection or positive selection and thus evolve at accelerated rates. Such phenomena potentially could be detected as anomalies in the phylogenies of the respective gene families. We developed a computational pipeline to search for such anomalies in 1,834 orthologous clusters of archaeal genes, focusing on lineage-specific subfamilies that significantly deviate from the expected rate of evolution. Multiple potential cases of neofunctionalization and subfunctionalization were identified, including some ancient, house-keeping gene families, such as ribosomal protein S10, general transcription factor TFIIB and chaperone Hsp20. As expected, many cases of apparent acceleration of evolution are associated with lineage-specific gene duplication. On other occasions, long branches in phylogenetic trees correspond to horizontal gene transfer across long evolutionary distances. Significant deceleration of evolution is less common than acceleration, and the underlying causes are not well understood; functional shifts accompanied by increased constraints could be involved. Many gene families appear to be “highly evolvable,” that is, include both long and short branches. Even in the absence of precise functional predictions, this approach allows one to select targets for experimentation in search of new biology.
Collapse
Affiliation(s)
- Celine Petitjean
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
17
|
Ishino Y, Krupovic M, Forterre P. History of CRISPR-Cas from Encounter with a Mysterious Repeated Sequence to Genome Editing Technology. J Bacteriol 2018; 200:e00580-17. [PMID: 29358495 PMCID: PMC5847661 DOI: 10.1128/jb.00580-17] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas systems are well-known acquired immunity systems that are widespread in archaea and bacteria. The RNA-guided nucleases from CRISPR-Cas systems are currently regarded as the most reliable tools for genome editing and engineering. The first hint of their existence came in 1987, when an unusual repetitive DNA sequence, which subsequently was defined as a CRISPR, was discovered in the Escherichia coli genome during an analysis of genes involved in phosphate metabolism. Similar sequence patterns were then reported in a range of other bacteria as well as in halophilic archaea, suggesting an important role for such evolutionarily conserved clusters of repeated sequences. A critical step toward functional characterization of the CRISPR-Cas systems was the recognition of a link between CRISPRs and the associated Cas proteins, which were initially hypothesized to be involved in DNA repair in hyperthermophilic archaea. Comparative genomics, structural biology, and advanced biochemistry could then work hand in hand, not only culminating in the explosion of genome editing tools based on CRISPR-Cas9 and other class II CRISPR-Cas systems but also providing insights into the origin and evolution of this system from mobile genetic elements denoted casposons. To celebrate the 30th anniversary of the discovery of CRISPR, this minireview briefly discusses the fascinating history of CRISPR-Cas systems, from the original observation of an enigmatic sequence in E. coli to genome editing in humans.
Collapse
Affiliation(s)
- Yoshizumi Ishino
- Unité de Biologie Moléculaire du Gène Chez les Extrêmophiles, Département de Microbiologie, Institut Pasteur, Paris, France
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Mart Krupovic
- Unité de Biologie Moléculaire du Gène Chez les Extrêmophiles, Département de Microbiologie, Institut Pasteur, Paris, France
| | - Patrick Forterre
- Unité de Biologie Moléculaire du Gène Chez les Extrêmophiles, Département de Microbiologie, Institut Pasteur, Paris, France
- Institute of Integrative Cellular Biology, Université Paris Sud, Orsay, France
| |
Collapse
|
18
|
Arkhipova IR. Using bioinformatic and phylogenetic approaches to classify transposable elements and understand their complex evolutionary histories. Mob DNA 2017; 8:19. [PMID: 29225705 PMCID: PMC5718144 DOI: 10.1186/s13100-017-0103-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 11/28/2017] [Indexed: 12/11/2022] Open
Abstract
In recent years, much attention has been paid to comparative genomic studies of transposable elements (TEs) and the ensuing problems of their identification, classification, and annotation. Different approaches and diverse automated pipelines are being used to catalogue and categorize mobile genetic elements in the ever-increasing number of prokaryotic and eukaryotic genomes, with little or no connectivity between different domains of life. Here, an overview of the current picture of TE classification and evolutionary relationships is presented, updating the diversity of TE types uncovered in sequenced genomes. A tripartite TE classification scheme is proposed to account for their replicative, integrative, and structural components, and the need to expand in vitro and in vivo studies of their structural and biological properties is emphasized. Bioinformatic studies have now become front and center of novel TE discovery, and experimental pursuits of these discoveries hold great promise for both basic and applied science.
Collapse
Affiliation(s)
- Irina R Arkhipova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543 USA
| |
Collapse
|
19
|
Claeys Bouuaert C, Chalmers R. A single active site in the mariner transposase cleaves DNA strands of opposite polarity. Nucleic Acids Res 2017; 45:11467-11478. [PMID: 29036477 PMCID: PMC5714172 DOI: 10.1093/nar/gkx826] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 09/08/2017] [Indexed: 01/01/2023] Open
Abstract
The RNase H structural fold defines a large family of nucleic acid metabolizing enzymes that catalyze phosphoryl transfer reactions using two divalent metal ions in the active site. Almost all of these reactions involve only one strand of the nucleic acid substrates. In contrast, cut-and-paste transposases cleave two DNA strands of opposite polarity, which is usually achieved via an elegant hairpin mechanism. In the mariner transposons, the hairpin intermediate is absent and key aspects of the mechanism by which the transposon ends are cleaved remained unknown. Here, we characterize complexes involved prior to catalysis, which define an asymmetric pathway for transpososome assembly. Using mixtures of wild-type and catalytically inactive transposases, we show that all the catalytic steps of transposition occur within the context of a dimeric transpososome. Crucially, we find that each active site of a transposase dimer is responsible for two hydrolysis and one transesterification reaction at the same transposon end. These results provide the first strong evidence that a DDE/D active site can hydrolyze DNA strands of opposite polarity, a mechanism that has rarely been observed with any type of nuclease.
Collapse
Affiliation(s)
- Corentin Claeys Bouuaert
- School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Ronald Chalmers
- School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
20
|
Koonin EV, Makarova KS. Mobile Genetic Elements and Evolution of CRISPR-Cas Systems: All the Way There and Back. Genome Biol Evol 2017; 9:2812-2825. [PMID: 28985291 PMCID: PMC5737515 DOI: 10.1093/gbe/evx192] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2017] [Indexed: 12/13/2022] Open
Abstract
The Clustered Regularly Interspaced Palindromic Repeats (CRISPR)-CRISPR-associated proteins (Cas) systems of bacterial and archaeal adaptive immunity show multifaceted evolutionary relationships with at least five classes of mobile genetic elements (MGE). First, the adaptation module of CRISPR-Cas that is responsible for the formation of the immune memory apparently evolved from a Casposon, a self-synthesizing transposon that employs the Cas1 protein as the integrase and might have brought additional cas genes to the emerging immunity loci. Second, a large subset of type III CRISPR-Cas systems recruited a reverse transcriptase from a Group II intron, providing for spacer acquisition from RNA. Third, effector nucleases of Class 2 CRISPR-Cas systems that are responsible for the recognition and cleavage of the target DNA were derived from transposon-encoded TnpB nucleases, most likely, on several independent occasions. Fourth, accessory nucleases in some variants of types I and III toxin and type VI effectors RNases appear to be ultimately derived from toxin nucleases of microbial toxin-antitoxin modules. Fifth, the opposite direction of evolution is manifested in the recruitment of CRISPR-Cas systems by a distinct family of Tn7-like transposons that probably exploit the capacity of CRISPR-Cas to recognize unique DNA sites to facilitate transposition as well as by bacteriophages that employ them to cope with host defense. Additionally, individual Cas proteins, such as the Cas4 nuclease, were recruited by bacteriophages and transposons. The two-sided evolutionary connection between CRISPR-Cas and MGE fits the "guns for hire" paradigm whereby homologous enzymatic machineries, in particular nucleases, are shuttled between MGE and defense systems and are used alternately as means of offense or defense.
Collapse
Affiliation(s)
- Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
21
|
Jangam D, Feschotte C, Betrán E. Transposable Element Domestication As an Adaptation to Evolutionary Conflicts. Trends Genet 2017; 33:817-831. [PMID: 28844698 DOI: 10.1016/j.tig.2017.07.011] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 12/26/2022]
Abstract
Transposable elements (TEs) are selfish genetic units that typically encode proteins that enable their proliferation in the genome and spread across individual hosts. Here we review a growing number of studies that suggest that TE proteins have often been co-opted or 'domesticated' by their host as adaptations to a variety of evolutionary conflicts. In particular, TE-derived proteins have been recurrently repurposed as part of defense systems that protect prokaryotes and eukaryotes against the proliferation of infectious or invasive agents, including viruses and TEs themselves. We argue that the domestication of TE proteins may often be the only evolutionary path toward the mitigation of the cost incurred by their own selfish activities.
Collapse
Affiliation(s)
- Diwash Jangam
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| | - Cédric Feschotte
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA; Present address: Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| | - Esther Betrán
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA.
| |
Collapse
|
22
|
Wright AV, Liu JJ, Knott GJ, Doxzen KW, Nogales E, Doudna JA. Structures of the CRISPR genome integration complex. Science 2017; 357:1113-1118. [PMID: 28729350 DOI: 10.1126/science.aao0679] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 07/13/2017] [Indexed: 12/21/2022]
Abstract
CRISPR-Cas systems depend on the Cas1-Cas2 integrase to capture and integrate short foreign DNA fragments into the CRISPR locus, enabling adaptation to new viruses. We present crystal structures of Cas1-Cas2 bound to both donor and target DNA in intermediate and product integration complexes, as well as a cryo-electron microscopy structure of the full CRISPR locus integration complex, including the accessory protein IHF (integration host factor). The structures show unexpectedly that indirect sequence recognition dictates integration site selection by favoring deformation of the repeat and the flanking sequences. IHF binding bends the DNA sharply, bringing an upstream recognition motif into contact with Cas1 to increase both the specificity and efficiency of integration. These results explain how the Cas1-Cas2 CRISPR integrase recognizes a sequence-dependent DNA structure to ensure site-selective CRISPR array expansion during the initial step of bacterial adaptive immunity.
Collapse
Affiliation(s)
- Addison V Wright
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jun-Jie Liu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Gavin J Knott
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kevin W Doxzen
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Eva Nogales
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA. .,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.,Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA.,Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA.,Center for RNA Systems Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
23
|
CRISPR-Cas adaptive immunity and the three Rs. Biosci Rep 2017; 37:BSR20160297. [PMID: 28674106 PMCID: PMC5518543 DOI: 10.1042/bsr20160297] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/26/2017] [Accepted: 07/03/2017] [Indexed: 12/11/2022] Open
Abstract
In this summary, we focus on fundamental biology of Clustered Regularly Interspersed Short Palindromic Repeats (CRISPR)-Cas (CRISPR-associated proteins) adaptive immunity in bacteria. Emphasis is placed on emerging information about functional interplay between Cas proteins and proteins that remodel DNA during homologous recombination (HR), DNA replication or DNA repair. We highlight how replication forks may act as ‘trigger points’ for CRISPR adaptation events, and the potential for cascade-interference complexes to act as precise roadblocks in DNA replication by an invader MGE (mobile genetic element), without the need for DNA double-strand breaks.
Collapse
|
24
|
Siguier P, Gourbeyre E, Chandler M. Known knowns, known unknowns and unknown unknowns in prokaryotic transposition. Curr Opin Microbiol 2017; 38:171-180. [PMID: 28683354 DOI: 10.1016/j.mib.2017.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 06/15/2017] [Accepted: 06/19/2017] [Indexed: 02/06/2023]
Abstract
Although the phenomenon of transposition has been known for over 60 years, its overarching importance in modifying and streamlining genomes took some time to recognize. In spite of a robust understanding of transposition of some TE, there remain a number of important TE groups with potential high genome impact and unknown transposition mechanisms and yet others, only recently identified by bioinformatics, yet to be formally confirmed as mobile. Here, we point to some areas of limited understanding concerning well established important TE groups with DDE Tpases, to address central gaps in our knowledge of characterised Tn with other types of Tpases and finally, to highlight new potentially mobile DNA species. It is not exhaustive. Examples have been chosen to provide encouragement in the continued exploration of the considerable prokaryotic mobilome especially in light of the current threat to public health posed by the spread of multiple AbR.
Collapse
Affiliation(s)
- Patricia Siguier
- Centre National de la Recherche Scientifique (CNRS), Toulouse, France
| | - Edith Gourbeyre
- Centre National de la Recherche Scientifique (CNRS), Toulouse, France
| | - Michael Chandler
- Centre National de la Recherche Scientifique (CNRS), Toulouse, France; Department of Biochem., Mol. and Cell. Biol. Georgetown University Medical Center, 3900 Reservoir Rd., Washington, DC 20057-1455, USA.
| |
Collapse
|
25
|
Abstract
Evolution of bacteria and archaea involves an incessant arms race against an enormous diversity of genetic parasites. Accordingly, a substantial fraction of the genes in most bacteria and archaea are dedicated to antiparasite defense. The functions of these defense systems follow several distinct strategies, including innate immunity; adaptive immunity; and dormancy induction, or programmed cell death. Recent comparative genomic studies taking advantage of the expanding database of microbial genomes and metagenomes, combined with direct experiments, resulted in the discovery of several previously unknown defense systems, including innate immunity centered on Argonaute proteins, bacteriophage exclusion, and new types of CRISPR-Cas systems of adaptive immunity. Some general principles of function and evolution of defense systems are starting to crystallize, in particular, extensive gain and loss of defense genes during the evolution of prokaryotes; formation of genomic defense islands; evolutionary connections between mobile genetic elements and defense, whereby genes of mobile elements are repeatedly recruited for defense functions; the partially selfish and addictive behavior of the defense systems; and coupling between immunity and dormancy induction/programmed cell death.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894;
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894;
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894;
| |
Collapse
|
26
|
Koonin EV, Makarova KS, Zhang F. Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 2017; 37:67-78. [PMID: 28605718 DOI: 10.1016/j.mib.2017.05.008] [Citation(s) in RCA: 864] [Impact Index Per Article: 123.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/15/2017] [Accepted: 05/28/2017] [Indexed: 01/17/2023]
Abstract
The bacterial and archaeal CRISPR-Cas systems of adaptive immunity show remarkable diversity of protein composition, effector complex structure, genome locus architecture and mechanisms of adaptation, pre-CRISPR (cr)RNA processing and interference. The CRISPR-Cas systems belong to two classes, with multi-subunit effector complexes in Class 1 and single-protein effector modules in Class 2. Concerted genomic and experimental efforts on comprehensive characterization of Class 2 CRISPR-Cas systems led to the identification of two new types and several subtypes. The newly characterized type VI systems are the first among the CRISPR-Cas variants to exclusively target RNA. Unexpectedly, in some of the class 2 systems, the effector protein is additionally responsible for the pre-crRNA processing. Comparative analysis of the effector complexes indicates that Class 2 systems evolved from mobile genetic elements on multiple, independent occasions.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA.
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Departments of Brain and Cognitive Science and Biological Engineering, Cambridge, MA 02139, USA
| |
Collapse
|
27
|
Krupovic M, Béguin P, Koonin EV. Casposons: mobile genetic elements that gave rise to the CRISPR-Cas adaptation machinery. Curr Opin Microbiol 2017; 38:36-43. [PMID: 28472712 DOI: 10.1016/j.mib.2017.04.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/04/2017] [Accepted: 04/12/2017] [Indexed: 01/26/2023]
Abstract
A casposon, a member of a distinct superfamily of archaeal and bacterial self-synthesizing transposons that employ a recombinase (casposase) homologous to the Cas1 endonuclease, appears to have given rise to the adaptation module of CRISPR-Cas systems as well as the CRISPR repeats themselves. Comparison of the mechanistic features of the reactions catalyzed by the casposase and the Cas1-Cas2 heterohexamer, the CRISPR integrase, reveals close similarity but also important differences that explain the requirement of Cas2 for integration of short DNA fragments, the CRISPR spacers.
Collapse
Affiliation(s)
- Mart Krupovic
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France.
| | - Pierre Béguin
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| |
Collapse
|
28
|
Jackson SA, McKenzie RE, Fagerlund RD, Kieper SN, Fineran PC, Brouns SJJ. CRISPR-Cas: Adapting to change. Science 2017; 356:356/6333/eaal5056. [PMID: 28385959 DOI: 10.1126/science.aal5056] [Citation(s) in RCA: 257] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bacteria and archaea are engaged in a constant arms race to defend against the ever-present threats of viruses and invasion by mobile genetic elements. The most flexible weapons in the prokaryotic defense arsenal are the CRISPR-Cas adaptive immune systems. These systems are capable of selective identification and neutralization of foreign DNA and/or RNA. CRISPR-Cas systems rely on stored genetic memories to facilitate target recognition. Thus, to keep pace with a changing pool of hostile invaders, the CRISPR memory banks must be regularly updated with new information through a process termed CRISPR adaptation. In this Review, we outline the recent advances in our understanding of the molecular mechanisms governing CRISPR adaptation. Specifically, the conserved protein machinery Cas1-Cas2 is the cornerstone of adaptive immunity in a range of diverse CRISPR-Cas systems.
Collapse
Affiliation(s)
- Simon A Jackson
- Department of Microbiology and Immunology, University of Otago, Post Office Box 56, Dunedin 9054, New Zealand
| | - Rebecca E McKenzie
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, Netherlands
| | - Robert D Fagerlund
- Department of Microbiology and Immunology, University of Otago, Post Office Box 56, Dunedin 9054, New Zealand
| | - Sebastian N Kieper
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, Netherlands
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, Post Office Box 56, Dunedin 9054, New Zealand. .,Bio-Protection Research Centre, University of Otago, Post Office Box 56, Dunedin 9054, New Zealand
| | - Stan J J Brouns
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, Netherlands. .,Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
29
|
Koonin EV. Evolution of RNA- and DNA-guided antivirus defense systems in prokaryotes and eukaryotes: common ancestry vs convergence. Biol Direct 2017; 12:5. [PMID: 28187792 PMCID: PMC5303251 DOI: 10.1186/s13062-017-0177-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/06/2017] [Indexed: 12/18/2022] Open
Abstract
Abstract Complementarity between nucleic acid molecules is central to biological information transfer processes. Apart from the basal processes of replication, transcription and translation, complementarity is also employed by multiple defense and regulatory systems. All cellular life forms possess defense systems against viruses and mobile genetic elements, and in most of them some of the defense mechanisms involve small guide RNAs or DNAs that recognize parasite genomes and trigger their inactivation. The nucleic acid-guided defense systems include prokaryotic Argonaute (pAgo)-centered innate immunity and CRISPR-Cas adaptive immunity as well as diverse branches of RNA interference (RNAi) in eukaryotes. The archaeal pAgo machinery is the direct ancestor of eukaryotic RNAi that, however, acquired additional components, such as Dicer, and enormously diversified through multiple duplications. In contrast, eukaryotes lack any heritage of the CRISPR-Cas systems, conceivably, due to the cellular toxicity of some Cas proteins that would get activated as a result of operon disruption in eukaryotes. The adaptive immunity function in eukaryotes is taken over partly by the PIWI RNA branch of RNAi and partly by protein-based immunity. In this review, I briefly discuss the interplay between homology and analogy in the evolution of RNA- and DNA-guided immunity, and attempt to formulate some general evolutionary principles for this ancient class of defense systems. Reviewers This article was reviewed by Mikhail Gelfand and Bojan Zagrovic.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, 20894, USA.
| |
Collapse
|
30
|
Bipartite Network Analysis of the Archaeal Virosphere: Evolutionary Connections between Viruses and Capsidless Mobile Elements. J Virol 2016; 90:11043-11055. [PMID: 27681128 DOI: 10.1128/jvi.01622-16] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 09/19/2016] [Indexed: 11/20/2022] Open
Abstract
Archaea and particularly hyperthermophilic crenarchaea are hosts to many unusual viruses with diverse virion shapes and distinct gene compositions. As is typical of viruses in general, there are no universal genes in the archaeal virosphere. Therefore, to obtain a comprehensive picture of the evolutionary relationships between viruses, network analysis methods are more productive than traditional phylogenetic approaches. Here we present a comprehensive comparative analysis of genomes and proteomes from all currently known taxonomically classified and unclassified, cultivated and uncultivated archaeal viruses. We constructed a bipartite network of archaeal viruses that includes two classes of nodes, the genomes and gene families that connect them. Dissection of this network using formal community detection methods reveals strong modularity, with 10 distinct modules and 3 putative supermodules. However, compared to similar previously analyzed networks of eukaryotic and bacterial viruses, the archaeal virus network is sparsely connected. With the exception of the tailed viruses related to bacteriophages of the order Caudovirales and the families Turriviridae and Sphaerolipoviridae that are linked to a distinct supermodule of eukaryotic and bacterial viruses, there are few connector genes shared by different archaeal virus modules. In contrast, most of these modules include, in addition to viruses, capsidless mobile elements, emphasizing tight evolutionary connections between the two types of entities in archaea. The relative contributions of distinct evolutionary origins, in particular from nonviral elements, and insufficient sampling to the sparsity of the archaeal virus network remain to be determined by further exploration of the archaeal virosphere. IMPORTANCE Viruses infecting archaea are among the most mysterious denizens of the virosphere. Many of these viruses display no genetic or even morphological relationship to viruses of bacteria and eukaryotes, raising questions regarding their origins and position in the global virosphere. Analysis of 5,740 protein sequences from 116 genomes allowed dissection of the archaeal virus network and showed that most groups of archaeal viruses are evolutionarily connected to capsidless mobile genetic elements, including various plasmids and transposons. This finding could reflect actual independent origins of the distinct groups of archaeal viruses from different nonviral elements, providing important insights into the emergence and evolution of the archaeal virome.
Collapse
|
31
|
Arensburger P, Piégu B, Bigot Y. The future of transposable element annotation and their classification in the light of functional genomics - what we can learn from the fables of Jean de la Fontaine? Mob Genet Elements 2016; 6:e1256852. [PMID: 28090383 DOI: 10.1080/2159256x.2016.1256852] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/31/2016] [Indexed: 12/19/2022] Open
Abstract
Transposable element (TE) science has been significantly influenced by the pioneering ideas of David Finnegan near the end of the last century, as well as by the classification systems that were subsequently developed. Today, whole genome TE annotation is mostly done using tools that were developed to aid gene annotation rather than to specifically study TEs. We argue that further progress in the TE field is impeded both by current TE classification schemes and by a failure to recognize that TE biology is fundamentally different from that of multicellular organisms. Novel genome wide TE annotation methods are helping to redefine our understanding of TE sequence origins and evolution. We briefly discuss some of these new methods as well as ideas for possible alternative classification schemes. Our hope is to encourage the formation of a society to organize a larger debate on these questions and to promote the adoption of standards for annotation and an improved TE classification.
Collapse
Affiliation(s)
- Peter Arensburger
- Biological Sciences Department, California State Polytechnic University , Pomona, CA, USA
| | - Benoît Piégu
- Physiologie de la reproduction et des Comportements, UMR INRA-CNRS 7247, PRC , Nouzilly, France
| | - Yves Bigot
- Physiologie de la reproduction et des Comportements, UMR INRA-CNRS 7247, PRC , Nouzilly, France
| |
Collapse
|
32
|
Abstract
DNA transposons are defined segments of DNA that are able to move from one genomic location to another. Movement is facilitated by one or more proteins, called the transposase, typically encoded by the mobile element itself. Here, we first provide an overview of the classification of such mobile elements in a variety of organisms. From a mechanistic perspective, we have focused on one particular group of DNA transposons that encode a transposase with a DD(E/D) catalytic domain that is topologically similar to RNase H. For these, a number of three-dimensional structures of transpososomes (transposase-nucleic acid complexes) are available, and we use these to describe the basics of their mechanisms. The DD(E/D) group, in addition to being the largest and most common among all DNA transposases, is the one whose members have been used for a wide variety of genomic applications. Therefore, a second focus of the article is to provide a nonexhaustive overview of transposon applications. Although several non-transposon-based approaches to site-directed genome modifications have emerged in the past decade, transposon-based applications are highly relevant when integration specificity is not sought. In fact, for many applications, the almost-perfect randomness and high frequency of integration make transposon-based approaches indispensable.
Collapse
Affiliation(s)
- Alison B. Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
33
|
Béguin P, Charpin N, Koonin EV, Forterre P, Krupovic M. Casposon integration shows strong target site preference and recapitulates protospacer integration by CRISPR-Cas systems. Nucleic Acids Res 2016; 44:10367-10376. [PMID: 27655632 PMCID: PMC5137440 DOI: 10.1093/nar/gkw821] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 12/13/2022] Open
Abstract
Casposons are a recently discovered group of large DNA transposons present in diverse bacterial and archaeal genomes. For integration into the host chromosome, casposons employ an endonuclease that is homologous to the Cas1 protein involved in protospacer integration by the CRISPR-Cas adaptive immune system. Here we describe the site-preference of integration by the Cas1 integrase (casposase) encoded by the casposon of the archaeon Aciduliprofundum boonei. Oligonucleotide duplexes derived from the terminal inverted repeats (TIR) of the A. boonei casposon as well as mini-casposons flanked by the TIR inserted preferentially at a site reconstituting the original A. boonei target site. As in the A. boonei genome, the insertion was accompanied by a 15-bp direct target site duplication (TSD). The minimal functional target consisted of the 15-bp TSD segment and the adjacent 18-bp sequence which comprises the 3′ end of the tRNA-Pro gene corresponding to the TΨC loop. The functional casposase target site bears clear resemblance to the leader sequence-repeat junction which is the target for protospacer integration catalyzed by the Cas1–Cas2 adaptation module of CRISPR-Cas. These findings reinforce the mechanistic similarities and evolutionary connection between the casposons and the adaptation module of the prokaryotic adaptive immunity systems.
Collapse
Affiliation(s)
- Pierre Béguin
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris
| | - Nicole Charpin
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine Bethesda, MD 20894, USA
| | - Patrick Forterre
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris
| | - Mart Krupovic
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris
| |
Collapse
|
34
|
Wright AV, Doudna JA. Protecting genome integrity during CRISPR immune adaptation. Nat Struct Mol Biol 2016; 23:876-883. [PMID: 27595346 DOI: 10.1038/nsmb.3289] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/09/2016] [Indexed: 12/19/2022]
Abstract
Bacterial CRISPR-Cas systems include genomic arrays of short repeats flanking foreign DNA sequences and provide adaptive immunity against viruses. Integration of foreign DNA must occur specifically to avoid damaging the genome or the CRISPR array, but surprisingly promiscuous activity occurs in vitro. Here we reconstituted full-site DNA integration and show that the Streptococcus pyogenes type II-A Cas1-Cas2 integrase maintains specificity in part through limitations on the second integration step. At non-CRISPR sites, integration stalls at the half-site intermediate, thereby enabling reaction reversal. S. pyogenes Cas1-Cas2 is highly specific for the leader-proximal repeat and recognizes the repeat's palindromic ends, thus fitting a model of independent recognition by distal Cas1 active sites. These findings suggest that DNA-insertion sites are less common than suggested by previous work, thereby preventing toxicity during CRISPR immune adaptation and maintaining host genome integrity.
Collapse
Affiliation(s)
- Addison V Wright
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA.,Department of Chemistry, University of California, Berkeley, Berkeley, California, USA.,Innovative Genomics Initiative, University of California, Berkeley, Berkeley, California, USA.,Center for RNA Systems Biology, University of California, Berkeley, Berkeley, California, USA.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, USA.,Molecular Biophysics &Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
35
|
Mohanraju P, Makarova KS, Zetsche B, Zhang F, Koonin EV, van der Oost J. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science 2016; 353:aad5147. [PMID: 27493190 DOI: 10.1126/science.aad5147] [Citation(s) in RCA: 410] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adaptive immunity had been long thought of as an exclusive feature of animals. However, the discovery of the CRISPR-Cas defense system, present in almost half of prokaryotic genomes, proves otherwise. Because of the everlasting parasite-host arms race, CRISPR-Cas has rapidly evolved through horizontal transfer of complete loci or individual modules, resulting in extreme structural and functional diversity. CRISPR-Cas systems are divided into two distinct classes that each consist of three types and multiple subtypes. We discuss recent advances in CRISPR-Cas research that reveal elaborate molecular mechanisms and provide for a plausible scenario of CRISPR-Cas evolution. We also briefly describe the latest developments of a wide range of CRISPR-based applications.
Collapse
Affiliation(s)
- Prarthana Mohanraju
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6703 HB Wageningen, Netherlands
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Bernd Zetsche
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - John van der Oost
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6703 HB Wageningen, Netherlands.
| |
Collapse
|
36
|
Wang R, Li M, Gong L, Hu S, Xiang H. DNA motifs determining the accuracy of repeat duplication during CRISPR adaptation in Haloarcula hispanica. Nucleic Acids Res 2016; 44:4266-77. [PMID: 27085805 PMCID: PMC4872114 DOI: 10.1093/nar/gkw260] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/01/2016] [Indexed: 01/26/2023] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) acquire new spacers to generate adaptive immunity in prokaryotes. During spacer integration, the leader-preceded repeat is always accurately duplicated, leading to speculations of a repeat-length ruler. Here in Haloarcula hispanica, we demonstrate that the accurate duplication of its 30-bp repeat requires two conserved mid-repeat motifs, AACCC and GTGGG. The AACCC motif was essential and needed to be ∼10 bp downstream from the leader-repeat junction site, where duplication consistently started. Interestingly, repeat duplication terminated sequence-independently and usually with a specific distance from the GTGGG motif, which seemingly served as an anchor site for a molecular ruler. Accordingly, altering the spacing between the two motifs led to an aberrant duplication size (29, 31, 32 or 33 bp). We propose the adaptation complex may recognize these mid-repeat elements to enable measuring the repeat DNA for spacer integration.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Luyao Gong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Songnian Hu
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
37
|
Krupovic M, Koonin EV. Self-synthesizing transposons: unexpected key players in the evolution of viruses and defense systems. Curr Opin Microbiol 2016; 31:25-33. [PMID: 26836982 DOI: 10.1016/j.mib.2016.01.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 12/20/2022]
Abstract
Self-synthesizing transposons are the largest known transposable elements that encode their own DNA polymerases (DNAP). The Polinton/Maverick family of self-synthesizing transposons is widespread in eukaryotes and abundant in the genomes of some protists. In addition to the DNAP and a retrovirus-like integrase, most of the polintons encode homologs of the major and minor jelly-roll capsid proteins, DNA-packaging ATPase and capsid maturation protease. Therefore, polintons are predicted to alternate between the transposon and viral lifestyles although virion formation remains to be demonstrated. Polintons are related to a group of eukaryotic viruses known as virophages that parasitize on giant viruses of the family Mimiviridae and another recently identified putative family of polinton-like viruses (PLV) predicted to lead a similar, dual life style. Comparative genomic analysis of polintons, virophages, PLV and the other viruses with double-stranded (ds)DNA genomes infecting eukaryotes and prokaryotes suggests that the polintons evolved from bacterial tectiviruses and could have been the ancestors of a broad range of eukaryotic viruses including adenoviruses and members of the proposed order 'Megavirales' as well as linear cytoplasmic plasmids. Recently, a group of predicted self-synthesizing transposons was discovered also in prokaryotes. These elements, denoted casposons, encode a DNAP and a homolog of the CRISPR-associated Cas1 endonuclease that has an integrase activity but no capsid proteins. Thus, unlike polintons, casposons appear to be limited to the transposon life style although they could have evolved from viruses. The casposons are thought to have played a pivotal role in the origin of the prokaryotic adaptive immunity, giving rise to the adaptation module of the CRISPR-Cas systems.
Collapse
Affiliation(s)
- Mart Krupovic
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Institut Pasteur, Paris, France.
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
38
|
Arkhipova IR, Rice PA. Mobile genetic elements: in silico, in vitro, in vivo. Mol Ecol 2016; 25:1027-31. [PMID: 26822117 DOI: 10.1111/mec.13543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/15/2016] [Indexed: 11/27/2022]
Abstract
Mobile genetic elements (MGEs), also called transposable elements (TEs), represent universal components of most genomes and are intimately involved in nearly all aspects of genome organization, function and evolution. However, there is currently a gap between the fast pace of TE discovery in silico, driven by the exponential growth of comparative genomic studies, and a limited number of experimental models amenable to more traditional in vitro and in vivo studies of structural, mechanistic and regulatory properties of diverse MGEs. Experimental and computational scientists came together to bridge this gap at a recent conference, 'Mobile Genetic Elements: in silico, in vitro, in vivo', held at the Marine Biological Laboratory (MBL) in Woods Hole, MA, USA.
Collapse
Affiliation(s)
- Irina R Arkhipova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
| | - Phoebe A Rice
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 E. 57th Street, Chicago, IL, 60637, USA
| |
Collapse
|
39
|
Krupovic M, Shmakov S, Makarova KS, Forterre P, Koonin EV. Recent Mobility of Casposons, Self-Synthesizing Transposons at the Origin of the CRISPR-Cas Immunity. Genome Biol Evol 2016; 8:375-86. [PMID: 26764427 PMCID: PMC4779613 DOI: 10.1093/gbe/evw006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2016] [Indexed: 12/12/2022] Open
Abstract
Casposons are a superfamily of putative self-synthesizing transposable elements that are predicted to employ a homolog of Cas1 protein as a recombinase and could have contributed to the origin of the CRISPR-Cas adaptive immunity systems in archaea and bacteria. Casposons remain uncharacterized experimentally, except for the recent demonstration of the integrase activity of the Cas1 homolog, and given their relative rarity in archaea and bacteria, original comparative genomic analysis has not provided direct indications of their mobility. Here, we report evidence of casposon mobility obtained by comparison of the genomes of 62 strains of the archaeon Methanosarcina mazei. In these genomes, casposons are variably inserted in three distinct sites indicative of multiple, recent gains, and losses. Some casposons are inserted into other mobile genetic elements that might provide vehicles for horizontal transfer of the casposons. Additionally, many M. mazei genomes contain previously undetected solo terminal inverted repeats that apparently are derived from casposons and could resemble intermediates in CRISPR evolution. We further demonstrate the sequence specificity of casposon insertion and note clear parallels with the adaptation mechanism of CRISPR-Cas. Finally, besides identifying additional representatives in each of the three originally defined families, we describe a new, fourth, family of casposons.
Collapse
Affiliation(s)
- Mart Krupovic
- Unité Biologie Moléculaire Du Gène Chez Les Extrêmophiles, Department of Microbiology, Institut Pasteur, Paris, France
| | - Sergey Shmakov
- National Library of Medicine, National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | - Kira S Makarova
- National Library of Medicine, National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland
| | - Patrick Forterre
- Unité Biologie Moléculaire Du Gène Chez Les Extrêmophiles, Department of Microbiology, Institut Pasteur, Paris, France
| | - Eugene V Koonin
- National Library of Medicine, National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|