1
|
Pokorná P, Mlýnský V, Bussi G, Šponer J, Stadlbauer P. Molecular dynamics simulations reveal the parallel stranded d(GGGA) 3GGG DNA quadruplex folds via multiple paths from a coil-like ensemble. Int J Biol Macromol 2024; 261:129712. [PMID: 38286387 DOI: 10.1016/j.ijbiomac.2024.129712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/31/2024]
Abstract
G-quadruplexes (G4s) are non-canonical nucleic acid structures that fold through complex processes. Characterization of the G4 folding landscape may help to elucidate biological roles of G4s but is challenging both experimentally and computationally. Here, we achieved complete folding of a three-quartet parallel DNA G4 with (GGGA)3GGG sequence using all-atom explicit-solvent enhanced-sampling molecular dynamics (MD) simulations. The simulations suggested early formation of guanine stacks in the G-tracts, which behave as semi-rigid blocks in the folding process. The folding continues via the formation of a collapsed compact coil-like ensemble. Structuring of the G4 from the coil then proceeds via various cross-like, hairpin, slip-stranded and two-quartet ensembles and can bypass the G-triplex structure. Folding of the parallel G4 does not appear to involve any salient intermediates and is a multi-pathway process. We also carried out an extended set of simulations of parallel G-hairpins. While parallel G-hairpins are extremely unstable when isolated, they are more stable inside the coil structure. On the methodology side, we show that the AMBER DNA force field predicts the folded G4 to be less stable than the unfolded ensemble, uncovering substantial force-field issues. Overall, we provide unique atomistic insights into the folding landscape of parallel-stranded G4 but also reveal limitations of current state-of-the-art MD techniques.
Collapse
Affiliation(s)
- Pavlína Pokorná
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 61200, Czech Republic
| | - Vojtěch Mlýnský
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 61200, Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), via Bonomea 265, Trieste 34136, Italy
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 61200, Czech Republic
| | - Petr Stadlbauer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 61200, Czech Republic.
| |
Collapse
|
2
|
Galer P, Wang B, Plavec J, Šket P. Unveiling the structural mechanism of a G-quadruplex pH-Driven switch. Biochimie 2023; 214:73-82. [PMID: 37573019 DOI: 10.1016/j.biochi.2023.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/21/2023] [Accepted: 08/06/2023] [Indexed: 08/14/2023]
Abstract
The human telomere oligonucleotide, d[TAGGG(TTAGGG)2TTAGG] (TAGGG), can adopt two distinct 2-G-quartet G-quadruplex structures at pH 7.0 and 5.0, referred to as the TD and KDH+ forms, respectively. By using a combination of NMR and computational techniques, we determined high-resolution structures of both forms, which revealed unique loop architectures, base triples, and base pairs that play a crucial role in the pH-driven structural transformation of TAGGG. Our study demonstrated that TAGGG represents a reversible pH-driven switch system where the stability and pH-induced structural transformation of the G-quadruplexes are influenced by the terminal residues and base triples. Gaining insight into the factors that regulate the formation of G-quadruplexes and their pH-sensitive structural equilibrium holds great potential for the rational design of novel DNA based pH-driven switches. These advancements in understanding create exciting opportunities for applications in the field of nanotechnology, specifically in the development of bio-nano-motors.
Collapse
Affiliation(s)
- Petra Galer
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
| | - Baifan Wang
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia; EN-FIST Center of Excellence, SI-1000, Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Primož Šket
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
3
|
Zalar M, Wang B, Plavec J, Šket P. Insight into Tetramolecular DNA G-Quadruplexes Associated with ALS and FTLD: Cation Interactions and Formation of Higher-Ordered Structure. Int J Mol Sci 2023; 24:13437. [PMID: 37686239 PMCID: PMC10487854 DOI: 10.3390/ijms241713437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The G4C2 hexanucleotide repeat expansion in the c9orf72 gene is a major genetic cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), with the formation of G-quadruplexes directly linked to the development of these diseases. Cations play a crucial role in the formation and structure of G-quadruplexes. In this study, we investigated the impact of biologically relevant potassium ions on G-quadruplex structures and utilized 15N-labeled ammonium cations as a substitute for K+ ions to gain further insights into cation binding and exchange dynamics. Through nuclear magnetic resonance spectroscopy and molecular dynamics simulations, we demonstrate that the single d(G4C2) repeat, in the presence of 15NH4+ ions, adopts a tetramolecular G-quadruplex with an all-syn quartet at the 5'-end. The movement of 15NH4+ ions through the central channel of the G-quadruplex, as well as to the bulk solution, is governed by the vacant cation binding site, in addition to the all-syn quartet at the 5'-end. Furthermore, the addition of K+ ions to G-quadruplexes folded in the presence of 15NH4+ ions induces stacking of G-quadruplexes via their 5'-end G-quartets, leading to the formation of stable higher-ordered species.
Collapse
Affiliation(s)
- Matja Zalar
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (M.Z.); (B.W.); (J.P.)
| | - Baifan Wang
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (M.Z.); (B.W.); (J.P.)
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (M.Z.); (B.W.); (J.P.)
- EN-FIST Center of Excellence, Trg OF 13, SI-1000 Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Primož Šket
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (M.Z.); (B.W.); (J.P.)
| |
Collapse
|
4
|
Stadlbauer P, Mlýnský V, Krepl M, Šponer J. Complexity of Guanine Quadruplex Unfolding Pathways Revealed by Atomistic Pulling Simulations. J Chem Inf Model 2023; 63:4716-4731. [PMID: 37458574 PMCID: PMC10428220 DOI: 10.1021/acs.jcim.3c00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Indexed: 08/15/2023]
Abstract
Guanine quadruplexes (GQs) are non-canonical nucleic acid structures involved in many biological processes. GQs formed in single-stranded regions often need to be unwound by cellular machinery, so their mechanochemical properties are important. Here, we performed steered molecular dynamics simulations of human telomeric GQs to study their unfolding. We examined four pulling regimes, including a very slow setup with pulling velocity and force load accessible to high-speed atomic force microscopy. We identified multiple factors affecting the unfolding mechanism, i.e.,: (i) the more the direction of force was perpendicular to the GQ channel axis (determined by GQ topology), the more the base unzipping mechanism happened, (ii) the more parallel the direction of force was, GQ opening and cross-like GQs were more likely to occur, (iii) strand slippage mechanism was possible for GQs with an all-anti pattern in a strand, and (iv) slower pulling velocity led to richer structural dynamics with sampling of more intermediates and partial refolding events. We also identified that a GQ may eventually unfold after a force drop under forces smaller than those that the GQ withstood before the drop. Finally, we found out that different unfolding intermediates could have very similar chain end-to-end distances, which reveals some limitations of structural interpretations of single-molecule spectroscopic data.
Collapse
Affiliation(s)
- Petr Stadlbauer
- Institute of Biophysics of the Czech
Academy of Sciences, Královopolská 135, Brno 612 00, Czech Republic
| | - Vojtěch Mlýnský
- Institute of Biophysics of the Czech
Academy of Sciences, Královopolská 135, Brno 612 00, Czech Republic
| | - Miroslav Krepl
- Institute of Biophysics of the Czech
Academy of Sciences, Královopolská 135, Brno 612 00, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech
Academy of Sciences, Královopolská 135, Brno 612 00, Czech Republic
| |
Collapse
|
5
|
Gao C, Deng J, Anwar N, Umer M, Chen J, Wu Q, Dong X, Xu H, He Y, Wang Z. Molecular crowding promotes the aggregation of parallel structured G-quadruplexes. Int J Biol Macromol 2023; 240:124442. [PMID: 37062387 DOI: 10.1016/j.ijbiomac.2023.124442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023]
Abstract
G-quadruplexes are widely distributed in cells and are usually essential in mediating biological processes. The intracellular environment is often in a state of molecular crowding, and the current research considerably focuses on the effect of molecular crowding on the conformation of telomeric G-quadruplexes. However, G-quadruplex-forming oligonucleotides are primarily located in the promoter region of the proto-oncogene and on mRNA inside the cell and are reported to fold into parallel structures. Thus, studying the interaction mechanism between ligands and parallel structured G-quadruplexes under crowding conditions is crucial for the design of drugs targeting G-quadruplexes. In our study, molecular crowding was simulated through polyethylene glycol with an average molecular weight of 200 (PEG200) to investigate the parallel structure of the canonical G-quadruplexes c-KIT1, c-MYC, and 32KRAS and their interactions with ligands. Circular dichroism (CD) spectral scanning, fluorescence resonance energy transfer (FRET), and native polyacrylamide gel electrophoresis (PAGE) analysis revealed that molecular crowding failed to induce oligonucleotides to form parallel G-quadruplex structures in the explored model sequences while induced telomeric G-rich sequences to form antiparallel G-quadruplexes in solution without K+. Molecular crowding did not induce changes in their parallel structures but promoted the formation of G-quadruplex aggregates. Moreover, to some extent, molecular crowding also induced a looser structure of the monomer G-quadruplexes. Further studies showed that molecular crowding did not alter the binding stoichiometry of the ligand 3,11-difluoro-6,8,13-trimethyl-8H-quino [4,3,2-kl] acridinium methosulfate (RHPS4) to c-KIT1, while it inhibited its interaction with parallel structured G-quadruplexes. This work provides new insights into developing anticancer drugs targeting parallel structured G-quadruplexes.
Collapse
Affiliation(s)
- Chao Gao
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jieya Deng
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Naureen Anwar
- Department of Zoology, University of Narowal, Narowal, Punjab 51600, Pakistan
| | - Muhammad Umer
- Institute for Forest Resources and Environment of Guizhou and Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang 550025, China
| | - Jixin Chen
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qiao Wu
- Wuhan Botanical Garden, Chinese Academy of Science, Wuhan 40074, China
| | - Xingxing Dong
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hua Xu
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yi He
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Zhangqian Wang
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
6
|
Castelli M, Doria F, Freccero M, Colombo G, Moroni E. Studying the Dynamics of a Complex G-Quadruplex System: Insights into the Comparison of MD and NMR Data. J Chem Theory Comput 2022; 18:4515-4528. [PMID: 35666124 PMCID: PMC9281369 DOI: 10.1021/acs.jctc.2c00291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Molecular dynamics
(MD) simulations are coming of age in the study
of nucleic acids, including specific tertiary structures such as G-quadruplexes.
While being precious for providing structural and dynamic information
inaccessible to experiments at the atomistic level of resolution,
MD simulations in this field may still be limited by several factors.
These include the force fields used, different models for ion parameters,
ionic strengths, and water models. We address various aspects of this
problem by analyzing and comparing microsecond-long atomistic simulations
of the G-quadruplex structure formed by the human immunodeficiency
virus long terminal repeat (HIV LTR)-III sequence for which nuclear
magnetic resonance (NMR) structures are available. The system is studied
in different conditions, systematically varying the ionic strengths,
ion numbers, and water models. We comparatively analyze the dynamic
behavior of the G-quadruplex motif in various conditions and assess
the ability of each simulation to satisfy the nuclear magnetic resonance
(NMR)-derived experimental constraints and structural parameters.
The conditions taking into account K+-ions to neutralize
the system charge, mimicking the intracellular ionic strength, and
using the four-atom water model are found to be the best in reproducing
the experimental NMR constraints and data. Our analysis also reveals
that in all of the simulated environments residues belonging to the
duplex moiety of HIV LTR-III exhibit the highest flexibility.
Collapse
Affiliation(s)
- Matteo Castelli
- Department of Chemistry, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy
| | - Filippo Doria
- Department of Chemistry, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy
| | - Mauro Freccero
- Department of Chemistry, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy
| | - Giorgio Colombo
- Department of Chemistry, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy.,Institute of Chemical Sciences and Technologies SCITEC-CNR, Via Mario Bianco, 9, 20131 Milano, Italy
| | - Elisabetta Moroni
- Institute of Chemical Sciences and Technologies SCITEC-CNR, Via Mario Bianco, 9, 20131 Milano, Italy
| |
Collapse
|
7
|
Liu YC, Yang DY, Sheu SY. Insights into the free energy landscape and salt-controlled mechanism of the conformational conversions between human telomeric G-quadruplex structures. Int J Biol Macromol 2021; 191:230-242. [PMID: 34536474 DOI: 10.1016/j.ijbiomac.2021.09.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/23/2021] [Accepted: 09/10/2021] [Indexed: 12/16/2022]
Abstract
G-quadruplexes have become attractive drug targets in cancer therapy. However, due to the polymorphism of G-quadruplex structures, it is difficult to experimentally verify the relevant structures of multiple intermediates and transition states in dynamic equilibrium. Hence, understanding the mechanism by which structural conversions of G-quadruplexes occur is still challenging. We conducted targeted molecular dynamics simulation with umbrella sampling to investigate how salt affects the conformational conversion of human telomeric G-quadruplex. Our results explore a unique view into the structures and energy barrier of the intermediates and transition states in the interconversion process. The pathway of G-quadruplex conformational interconversion was mapped out by a free energy landscape, consisting of branched parallel pathways with multiple energy basins. We propose a salt-controlled mechanism that as the salt concentration increases, the conformational conversion mechanism switches from multi-pathway folding to sequential folding pathways. The hybrid-I and hybrid-II structures are intermediates in the basket-propeller transformation. In high-salt solutions, the conformational conversion upon K+ binding is more feasible than upon Na+ binding. The free energy barrier for conformational conversions ranges from 1.6 to 4.6 kcal/mol. Our work will be beneficial in developing anticancer agents.
Collapse
Affiliation(s)
- Yu-Cheng Liu
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Dah-Yen Yang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan.
| | - Sheh-Yi Sheu
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
| |
Collapse
|
8
|
Li N, Gao Y, Qiu F, Zhu T. Benchmark Force Fields for the Molecular Dynamic Simulation of G-Quadruplexes. Molecules 2021; 26:5379. [PMID: 34500812 PMCID: PMC8434458 DOI: 10.3390/molecules26175379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/29/2022] Open
Abstract
G-quadruplexes have drawn widespread attention for serving as a potential anti-cancer target and their application in material science. Molecular dynamics (MD) simulation is the key theoretical tool in the study of GQ's structure-function relationship. In this article, we systematically benchmarked the five force fields of parmbsc0, parmbsc1, OL15, AMOEBA, and Drude2017 on the MD simulation of G-quadruplex from four aspects: structural stability, central ion channel stability, description of Hoogsteen hydrogen bond network, and description of the main chain dihedral angle. The results show that the overall performance of the Drude force field is the best. Although there may be a certain over-polarization effect, it is still the best choice for the MD simulation of G-quadruplexes.
Collapse
Affiliation(s)
- Na Li
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China;
| | - Ya Gao
- School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Feng Qiu
- Institute of Artificial Intelligence on Education, Shanghai Normal University, Shanghai 200234, China
| | - Tong Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China;
- NYU-ECNU Center for Computational Chemistry, New York University Shanghai, Shanghai 200062, China
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| |
Collapse
|
9
|
Sheng Y, Cao B, Ou M, Wang Y, Yuan S, Zhang N, Zou T, Liu Y. Nucleocapsid protein preferentially binds the stem-loop of duplex/quadruplex hybrid that unfolds the quadruplex structure. Chem Commun (Camb) 2021; 57:5298-5301. [PMID: 33942834 DOI: 10.1039/d1cc01767e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
NCp7 protein binds the duplex/quadruplex hybrid structure, which decreases the thermal stability of DNA and unfolds the G-quadruplex structure. Interestingly, the duplex in the stem-loop region is the more favorable binding site of NCp7. The NCp7 binding twists the top G-tetrad, weakens hydrogen bonding and causes K+ ejection, hence disrupting the G4 structure.
Collapse
Affiliation(s)
- Yaping Sheng
- Department of Pharmacy, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230001, China.
| | - Bei Cao
- Warshel Institute for Computational Biology and General Education Division, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
| | - Mingxi Ou
- Department of Pharmacy, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230001, China.
| | - Yu Wang
- Department of Pharmacy, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230001, China.
| | - Siming Yuan
- Department of Pharmacy, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230001, China.
| | - Na Zhang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230031, China
| | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.
| | - Yangzhong Liu
- Department of Pharmacy, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230001, China.
| |
Collapse
|
10
|
Salsbury AM, Lemkul JA. Cation competition and recruitment around the c-kit1 G-quadruplex using polarizable simulations. Biophys J 2021; 120:2249-2261. [PMID: 33794153 PMCID: PMC8390831 DOI: 10.1016/j.bpj.2021.03.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/22/2021] [Accepted: 03/25/2021] [Indexed: 11/24/2022] Open
Abstract
Nucleic acid-ion interactions are fundamentally important to the physical, energetic, and conformational properties of DNA and RNA. These interactions help fold and stabilize highly ordered secondary and tertiary structures, such as G-quadruplexes (GQs), which are functionally relevant in telomeres, replication initiation sites, and promoter sequences. The c-kit proto-oncogene encodes for a receptor tyrosine kinase and is linked to gastrointestinal stromal tumors, mast cell disease, and leukemia. This gene contains three unique GQ-forming sequences that have proposed antagonistic effects on gene expression. The dominant GQ, denoted c-kit1, has been shown to decrease expression of c-kit transcripts, making the c-kit1 GQ a promising drug target. Toward disease intervention, more information is needed regarding its conformational dynamics and ion binding properties. Therefore, we performed molecular dynamics simulations of the c-kit1 GQ with K+, Na+, Li+, and mixed salt solutions using the Drude-2017 polarizable force field. We evaluated GQ structure, ion sampling, core energetics, ion dehydration and binding, and ion competition and found that each analysis supported the known GQ-ion specificity trend (K+ > Na+ > Li+). We also found that K+ ions coordinate in the tetrad core antiprismatically, whereas Na+ and Li+ align coplanar to guanine tetrads, partially because of their attraction to surrounding water. Further, we showed that K+ occupancy is higher around the c-kit1 GQ and its nucleobases than Na+ and Li+, which tend to interact with backbone and sugar moieties. Finally, we showed that K+ binding to the c-kit1 GQ is faster and more frequent than Na+ and Li+. Such descriptions of GQ-ion dynamics suggest the rate of dehydration as the dominant factor for preference of K+ by DNA GQs and provide insight into noncanonical nucleic acids for which little experimental data exist.
Collapse
Affiliation(s)
| | - Justin A Lemkul
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia; Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia.
| |
Collapse
|
11
|
Ortiz de Luzuriaga I, Lopez X, Gil A. Learning to Model G-Quadruplexes: Current Methods and Perspectives. Annu Rev Biophys 2021; 50:209-243. [PMID: 33561349 DOI: 10.1146/annurev-biophys-060320-091827] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
G-quadruplexes have raised considerable interest during the past years for the development of therapies against cancer. These noncanonical structures of DNA may be found in telomeres and/or oncogene promoters, and it has been observed that the stabilization of such G-quadruplexes may disturb tumor cell growth. Nevertheless, the mechanisms leading to folding and stabilization of these G-quadruplexes are still not well established, and they are the focus of much current work in this field. In seminal works, stabilization was observed to be produced by cations. However, subsequent studies showed that different kinds of small molecules, from planar and nonplanar organic molecules to square-planar and octahedral metal complexes, may also lead to the stabilization of G-quadruplexes. Thus, the comprehension and rationalization of the interaction of these small molecules with G-quadruplexes are also important topics of current interest in medical applications. To shed light on the questions arising from the literature on the formation of G-quadruplexes, their stabilization, and their interaction with small molecules, synergies between experimental studies and computational works are needed. In this review, we mainly focus on in silico approaches and provide a broad compilation of different leading studies carried out to date by different computational methods. We divide these methods into twomain categories: (a) classical methods, which allow for long-timescale molecular dynamics simulations and the corresponding analysis of dynamical information, and (b) quantum methods (semiempirical, quantum mechanics/molecular mechanics, and density functional theory methods), which allow for the explicit simulation of the electronic structure of the system but, in general, are not capable of being used in long-timescale molecular dynamics simulations and, therefore, give a more static picture of the relevant processes.
Collapse
Affiliation(s)
- Iker Ortiz de Luzuriaga
- CIC nanoGUNE BRTA, 20018 Donostia, Euskadi, Spain; .,Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Uniberstitatea, UPV/EHU, 20080 Donostia, Euskadi, Spain
| | - Xabier Lopez
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Uniberstitatea, UPV/EHU, 20080 Donostia, Euskadi, Spain.,Donostia International Physics Center, 20018 Donostia, Spain
| | - Adrià Gil
- CIC nanoGUNE BRTA, 20018 Donostia, Euskadi, Spain; .,BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal;
| |
Collapse
|
12
|
Pal S, Paul S. An in silico investigation of the binding modes and pathway of APTO-253 on c-KIT G-quadruplex DNA. Phys Chem Chem Phys 2021; 23:3361-3376. [PMID: 33502401 DOI: 10.1039/d0cp05210h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The stability of c-KIT G-quadruplex DNA via ligands has been a significant concern in the growing field of cancer therapy. Thus, it is very important to understand the mechanism behind the high binding affinity of the small drug molecules on the c-KIT G-quadruplex DNA. In this study, we have investigated the binding mode and pathway of the APTO-253 ligand on the c-KIT G-quadruplex DNA employing a total of 10 μs all atom molecular dynamics simulations and further 8.82 μs simulations via the umbrella sampling method using both OL15 and BSC1 latest force fields for DNA structures. From the cluster structure analysis, mainly three binding pathways i.e., top, bottom and side loop stacking modes are identified. Moreover, RMSD, RMSF and 2D-RMSD values indicate that the c-KIT G-quadruplex DNA and APTO-253 molecules are stable throughout the simulation run. Furthermore, the number of hydrogen bonds in each tetrad and the distance between the two central K+ cations confirm that the c-KIT G-quadruplex DNA maintains its conformation in the process of complex formation with the APTO-253 ligand. The binding free energies and the minimum values in the potential of mean forces suggest that the binding processes are energetically favorable. Furthermore, we have found that the bottom stacking mode is the most favorable binding mode among all the three modes for the OL15 force field. However, for the BSC1 force field, both the top and bottom binding modes of the APTO-253 ligand in c-KIT G-quadruplex DNA are comparable to each other. To investigate the driving force for the complex formation, we have noticed that the van der Waals (vdW) and π-π stacking interactions are mainly responsible. Our detailed studies provide useful information for the discovery of novel drugs in the field of stabilization of G-quadruplex DNAs.
Collapse
Affiliation(s)
- Saikat Pal
- Department of Chemistry, Indian Institute of Technology, Guwahati Assam, 781039, India.
| | | |
Collapse
|
13
|
Islam B, Stadlbauer P, Vorlíčková M, Mergny JL, Otyepka M, Šponer J. Stability of Two-Quartet G-Quadruplexes and Their Dimers in Atomistic Simulations. J Chem Theory Comput 2020; 16:3447-3463. [PMID: 32163706 DOI: 10.1021/acs.jctc.9b01068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
G-quadruplexes (GQs) are four-stranded noncanonical DNA and RNA architectures that can be formed by guanine-rich sequences. The stability of GQs increases with the number of G-quartets, and three G-quartets generally form stable GQs. However, the stability of two-quartet GQs is an open issue. To understand the intrinsic stability of two-quartet GQ stems, we have carried out a series of unbiased molecular dynamics (MD) simulations (505 μs in total) of two- and four-quartet DNA and RNA GQs, with attention paid mainly to parallel-stranded arrangements. We used AMBER DNA parmOL15 and RNA parmOL3 force fields and tested different ion and water models. Two-quartet parallel-stranded DNA GQs unfolded in all the simulations, while the equivalent RNA GQ was stable in most of the simulations. GQs composed of two stacked units of two-quartet GQs were stable for both DNA and RNA. The simulations suggest that a minimum of three quartets are needed to form an intrinsically stable all-anti parallel-stranded DNA GQ. Parallel two-quartet DNA GQ may exist if substantially stabilized by another molecule or structural element, including multimerization. On the other hand, we predict that isolated RNA two-quartet parallel GQs may form, albeit being weakly stable. We also show that ionic parameters and water models should be chosen with caution because some parameter combinations can cause spurious instability of GQ stems. Some in-so-far unnoticed limitations of force-field description of multiple ions inside the GQs are discussed, which compromise the capability of simulations to fully capture the effect of increase in the number of quartets on the GQ stability.
Collapse
Affiliation(s)
- Barira Islam
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Petr Stadlbauer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Michaela Vorlíčková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Jean-Louis Mergny
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Michal Otyepka
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic.,Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
14
|
Salsbury AM, Dean TJ, Lemkul JA. Polarizable Molecular Dynamics Simulations of Two c-kit Oncogene Promoter G-Quadruplexes: Effect of Primary and Secondary Structure on Loop and Ion Sampling. J Chem Theory Comput 2020; 16:3430-3444. [PMID: 32307997 DOI: 10.1021/acs.jctc.0c00191] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
G-quadruplexes (GQs) are highly ordered nucleic acid structures that play fundamental roles in regulating gene expression and maintaining genomic stability. GQs are topologically diverse and enriched in promoter sequences of growth regulatory genes and proto-oncogenes, suggesting that they may serve as attractive targets for drug design at the level of transcription rather than inhibiting the activity of the protein products of these genes. The c-kit promoter contains three adjacent GQ-forming sequences that have proposed antagonistic effects on gene expression and thus are promising drug targets for diseases such as gastrointestinal stromal tumors, mast cell disease, and leukemia. Because GQ stability is influenced by primary structure, secondary structure, and ion interactions, a greater understanding of GQ structure, dynamics, and ion binding properties is needed to develop novel, GQ-targeting therapeutics. Here, we performed molecular dynamics simulations to systematically study the c-kit2 and c-kit* GQs, evaluating nonpolarizable and polarizable force fields (FFs) and examining the effects of base substitutions and cation type (K+, Na+, and Li+) on the dynamics of their isolated and linked structures. We found that the Drude polarizable FF outperformed the additive CHARMM36 FF in two- and three-tetrad GQs and solutions of KCl, NaCl, and LiCl. Drude simulations with different cations agreed with the known GQ stabilization preference (K+ > Na+ > Li+) and illustrated that tetrad core-ion coordination differs as a function of cation type. Finally, we showed that differences in primary and secondary structure influence loop sampling, ion binding, and core-ion energetics of GQs.
Collapse
Affiliation(s)
- Alexa M Salsbury
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Tanner J Dean
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Justin A Lemkul
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
15
|
Pal S, Paul S. Understanding The Role of Reline, a Natural DES, on Temperature-Induced Conformational Changes of C-Kit G-Quadruplex DNA: A Molecular Dynamics Study. J Phys Chem B 2020; 124:3123-3136. [PMID: 32207949 DOI: 10.1021/acs.jpcb.0c00644] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The noncanonical guanine-rich DNAs have drawn particular attention to the scientific world due to their controllable diverse and polymorphic structures. Apart from biological and medical significance, G-quadruplex DNAs are widely used in various fields such as nanotechnology, nanomachine, biosensors, and biocatalyst. So far, the applications of the G-quadruplex DNA are mainly limited in the water medium. Recently, a new generation of solvent named deep eutectic solvent (DES) has become very popular and has been widely used as a reaction medium of biocatalytic reactions and long-term storage medium for nucleic acids, even at high temperature. Hence, it is essential to understand the role of DES on temperature-induced conformational changes of a G-quadruplex DNA. In this research work, we have explored the temperature-mediated conformational dynamics of c-kit oncogene promoter G-quadruplex DNA in reline medium in the temperature range of 300-500 K, using a total of 10 μs unbiased all-atom molecular dynamics simulation. Here, from RMSD, RMSF, Rg and principal component analyses, we notice that the c-kit G-quadruplex DNA is stable up to 450 K in reline medium. However, it unfolds in water medium at 450 K. It is found that the hydrogen bonding interactions between c-kit G-quadruplex DNA and reline play a key role in the stabilization of the G-quadruplex DNA even at high temperature. Furthermore, in this work we have observed a very interesting and distinctive phenomenon of the central cation of the G-quadruplex DNA. Its position was seen to fluctuate between the two tetrad cores, that is, the region between tetrad-1 and tetrad-2 and that between tetrad-2 and tetrad-3 and vice versa at 450 and 500 K in reline medium which is absent in water medium at 450 K. Moreover, the rate of its oscillation is increased when temperature is increased.
Collapse
Affiliation(s)
- Saikat Pal
- Department of Chemistry, Indian Institute of Technology, Guwahati Assam, India, 781039
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati Assam, India, 781039
| |
Collapse
|
16
|
Mulholland K, Sullivan HJ, Garner J, Cai J, Chen B, Wu C. Three-Dimensional Structure of RNA Monomeric G-Quadruplex Containing ALS and FTD Related G4C2 Repeat and Its Binding with TMPyP4 Probed by Homology Modeling based on Experimental Constraints and Molecular Dynamics Simulations. ACS Chem Neurosci 2020; 11:57-75. [PMID: 31800202 DOI: 10.1021/acschemneuro.9b00572] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The G-quadruplex-forming hexanucleotide repeat expansion (HRE), d(G4C2)n, within the human C9orf72 gene is the root cause for familial amyotrophic lateral sclerosis-frontotemporal dementia (ALS-FTD). A recent study has shown that TMPyP4 has good potential to work as a RNA G-quadruplex binder in treating ALS and FTD. Although the high-resolution structure of the monomeric DNA antiparallel G-quadruplex form of the monomeric hexanucleotide repeat was recently solved, the RNA parallel G-quadruplex structure and its complex with TMPyP4 are not available yet. In this study, we first constructed the homology model for the parallel monomeric RNA G-quadruplex of r(G4C2)3G4 based on experimental constraints and the parallel monomeric G-quadruplex DNA crystal structure. Although the G-tetra core of the homology model was stable observed in 15 μs molecular dynamics (MD) simulations, we observed that the loops adopt additional conformations besides the initial crystal conformation, where TMPyP4 binding was found to reduce the loop fluctuation of the RNA monomeric G-quadruplex. Next, we probed the elusive binding behavior of TMPyP4 to the RNA monomeric G-quadruplex. Encouragingly, the binding modes observed are similar to the modes observed in two experimental complexes of a parallel DNA G-quadruplex with TMPyP4. We also constructed a Markov state model to provide insights into the binding pathways. Together, the findings from our study may assist future development of G-quadruplex-specific ligands in the treatment of neurodegenerative diseases like ALS and FTD.
Collapse
Affiliation(s)
- Kelly Mulholland
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Holli-Joi Sullivan
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Joseph Garner
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Jun Cai
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Brian Chen
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Chun Wu
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
17
|
Molecular dynamics simulations of G-quadruplexes: The basic principles and their application to folding and ligand binding. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2020. [DOI: 10.1016/bs.armc.2020.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Portella G, Orozco M, Vendruscolo M. Determination of a Structural Ensemble Representing the Dynamics of a G-Quadruplex DNA. Biochemistry 2019; 59:379-388. [PMID: 31815441 DOI: 10.1021/acs.biochem.9b00493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It is increasingly recognized that the structures and dynamics of G-quadruplex DNA molecules are dictated by their sequences and greatly affected by environmental factors. The core guanine tetrads (G-tetrads) coordinate cations and display a strong conformational rigidity compared with that of the connecting loops. Although long loops linking the G-tetrads are typically disfavored, when present, they provide a striking illustration of the dynamics of short, single-stranded DNA regions. In addition to their role in determining the stability of the G-quadruplex state, these loops are also interesting as potential drug targets. To characterize accurately the dynamics of this DNA state, we apply here the principles of structural ensemble determination developed in the past two decades for protein molecules to DNA molecules. We thus perform extensive molecular dynamics simulations restrained with nuclear magnetic resonance residual dipolar couplings to determine a structural ensemble of the human CEB25 minisatellite G-quadruplex, which contains a connecting loop of nine nucleotides. This structural ensemble displays a wide set of arrangements for the loop and a compact, well-defined G-quadruplex core. Our results show the importance of stacking interactions in the loop and strengthen the ability of the closing base pairs to confer a large thermodynamic stability to the G-quadruplex structure.
Collapse
Affiliation(s)
- Guillem Portella
- Department of Chemistry , University of Cambridge , Cambridge CB2 1EW , U.K.,Institute for Research in Biomedicine (IRB Barcelona) , Barcelona Institute for Science and Technology (BIST) , 08028 Barcelona , Spain.,Joint BSC-CRG-IRB Research Program in Computational Biology , 08028 Barcelona , Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona) , Barcelona Institute for Science and Technology (BIST) , 08028 Barcelona , Spain.,Joint BSC-CRG-IRB Research Program in Computational Biology , 08028 Barcelona , Spain.,Department of Biochemistry and Biomedicine , University of Barcelona , 08028 Barcelona , Spain
| | | |
Collapse
|
19
|
Stadlbauer P, Kührová P, Vicherek L, Banáš P, Otyepka M, Trantírek L, Šponer J. Parallel G-triplexes and G-hairpins as potential transitory ensembles in the folding of parallel-stranded DNA G-Quadruplexes. Nucleic Acids Res 2019; 47:7276-7293. [PMID: 31318975 PMCID: PMC6698752 DOI: 10.1093/nar/gkz610] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/26/2019] [Accepted: 07/03/2019] [Indexed: 12/29/2022] Open
Abstract
Guanine quadruplexes (G4s) are non-canonical nucleic acids structures common in important genomic regions. Parallel-stranded G4 folds are the most abundant, but their folding mechanism is not fully understood. Recent research highlighted that G4 DNA molecules fold via kinetic partitioning mechanism dominated by competition amongst diverse long-living G4 folds. The role of other intermediate species such as parallel G-triplexes and G-hairpins in the folding process has been a matter of debate. Here, we use standard and enhanced-sampling molecular dynamics simulations (total length of ∼0.9 ms) to study these potential folding intermediates. We suggest that parallel G-triplex per se is rather an unstable species that is in local equilibrium with a broad ensemble of triplex-like structures. The equilibrium is shifted to well-structured G-triplex by stacked aromatic ligand and to a lesser extent by flanking duplexes or nucleotides. Next, we study propeller loop formation in GGGAGGGAGGG, GGGAGGG and GGGTTAGGG sequences. We identify multiple folding pathways from different unfolded and misfolded structures leading towards an ensemble of intermediates called cross-like structures (cross-hairpins), thus providing atomistic level of description of the single-molecule folding events. In summary, the parallel G-triplex is a possible, but not mandatory short-living (transitory) intermediate in the folding of parallel-stranded G4.
Collapse
Affiliation(s)
- Petr Stadlbauer
- Institute of Biophysics of the Czech Academy of Sciences, v. v. i., Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Šlechtitelů 27, 771 46 Olomouc, Czech Republic
| | - Petra Kührová
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Šlechtitelů 27, 771 46 Olomouc, Czech Republic.,Department of Physical Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Lukáš Vicherek
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Pavel Banáš
- Institute of Biophysics of the Czech Academy of Sciences, v. v. i., Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Šlechtitelů 27, 771 46 Olomouc, Czech Republic.,Department of Physical Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Michal Otyepka
- Institute of Biophysics of the Czech Academy of Sciences, v. v. i., Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Šlechtitelů 27, 771 46 Olomouc, Czech Republic.,Department of Physical Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Lukáš Trantírek
- Institute of Biophysics of the Czech Academy of Sciences, v. v. i., Královopolská 135, 612 65 Brno, Czech Republic.,Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, v. v. i., Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Šlechtitelů 27, 771 46 Olomouc, Czech Republic.,Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| |
Collapse
|
20
|
Why do G-quadruplexes dimerize through the 5'-ends? Driving forces for G4 DNA dimerization examined in atomic detail. PLoS Comput Biol 2019; 15:e1007383. [PMID: 31539370 PMCID: PMC6774569 DOI: 10.1371/journal.pcbi.1007383] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/02/2019] [Accepted: 09/09/2019] [Indexed: 12/25/2022] Open
Abstract
G-quadruplexes (G4) are secondary structures formed by guanine-rich nucleic acid sequences and shown to exist in living cells where they participate in regulation of gene expression and chromosome maintenance. G-quadruplexes with solvent-exposed guanine tetrads show the tendency to associate together through cofacial stacking, which may be important for packaging of G4-forming sequences and allows for the design of higher-order G4 DNA structures. To understand the molecular driving forces for G4 association, here, we study the binding interaction between two parallel-stranded G-quadruplexes using all-atom molecular dynamics simulations. The predicted dimerization free energies show that direct binding through the 5’-G-tetrads is the most preferred of all possible end-to-end stacking orientations, consistently with all available experimental data. Decomposition of dimerization enthalpies in combination with simulations at varying ionic strength further indicate that the observed orientational preferences arise from a fine balance between the electrostatic repulsion of the sugar-phosphate backbones and favorable counterion binding at the dimeric interface. We also demonstrate how these molecular-scale findings can be used to devise means of controlling G4 dimerization equilibrium, e.g., by altering salt concentration and using G4-targeted ligands. Native DNA usually folds to form the canonical double helix, however, under certain conditions, it can also fold into other secondary structures. Some of the most interesting ones are G-quadruplexes (G4)—compact DNA structures in which guanines assemble into multilayered tetrads, and whose formation has been reported at the ends of linear chromosomes (telomeres) and at different regulatory regions of the genome. Although structural and basic energetic properties, as well as some biological functions of G-quadruplexes are quite well understood, not much is known about their propensity to form agregated structures. A very high density of G-quadruplexes at telomeres along with their large exposed planar surfaces indeed favor G4 aggregation through end-to-end stacking, which might be important for the protection of telomeres and DNA packaging. In this research, using computer simulations, we provide insight into molecular origins of stability of the higher-order G-quadruplexes and explain in structural and energetic terms a strong preference for one particular end-to-end stacking orientation. Based on the recognized aggregation driving forces, we also suggest methods for controling the aggregation preferences openining up new opportunities for designing oligomeric G-quadruplexes.
Collapse
|
21
|
Bian Y, Song F, Cao Z, Zhao L, Yu J, Guo X, Wang J. Fast-Folding Pathways of the Thrombin-Binding Aptamer G-Quadruplex Revealed by a Markov State Model. Biophys J 2019; 114:1529-1538. [PMID: 29642024 DOI: 10.1016/j.bpj.2018.02.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 02/12/2018] [Accepted: 02/20/2018] [Indexed: 12/31/2022] Open
Abstract
G-quadruplex structures participate in many important cellular processes. For a better understanding of their functions, knowledge of the mechanism by which they fold into the functional native structures is necessary. In this work, we studied the folding process of the thrombin-binding aptamer G-quadruplex. Enabled by a computational paradigm that couples an advanced sampling method and a Markov state model, four folding intermediates were identified, including an antiparallel G-hairpin, two G-triplex structures, and a double-hairpin conformation. Likewise, a misfolded structure with a nonnative distribution of syn/anti guanines was also observed. Based on these states, a transition path analysis revealed three fast-folding pathways, along which the thrombin-binding aptamer would fold to the native state directly, with no evidence of potential nonnative competing conformations. The results also showed that the TGT-loop plays an important role in the folding process. The findings of this research may provide general insight about the folding of other G-quadruplex structures.
Collapse
Affiliation(s)
- Yunqiang Bian
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China.
| | - Feng Song
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Zanxia Cao
- Department of Physics, Dezhou University, Dezhou, China
| | - Liling Zhao
- Department of Physics, Dezhou University, Dezhou, China
| | - Jiafeng Yu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Xinlu Guo
- Wuxi Vocational Institute of Commerce, Wuxi, China; Taihu University of Wuxi, Wuxi, China
| | - Jihua Wang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China; Department of Physics, Dezhou University, Dezhou, China.
| |
Collapse
|
22
|
Andrałojć W, Małgowska M, Sarzyńska J, Pasternak K, Szpotkowski K, Kierzek R, Gdaniec Z. Unraveling the structural basis for the exceptional stability of RNA G-quadruplexes capped by a uridine tetrad at the 3' terminus. RNA (NEW YORK, N.Y.) 2019; 25:121-134. [PMID: 30341177 PMCID: PMC6298561 DOI: 10.1261/rna.068163.118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/16/2018] [Indexed: 05/24/2023]
Abstract
Uridine tetrads (U-tetrads) are a structural element encountered in RNA G-quadruplexes, for example, in the structures formed by the biologically relevant human telomeric repeat RNA. For these molecules, an unexpectedly strong stabilizing influence of a U-tetrad forming at the 3' terminus of a quadruplex was reported. Here we present the high-resolution solution NMR structure of the r(UGGUGGU)4 quadruplex which, in our opinion, provides an explanation for this stabilization. Our structure features a distinctive, abrupt chain reversal just prior to the 3' uridine tetrad. Similar "reversed U-tetrads" were already observed in the crystalline phase. However, our NMR structure coupled with extensive explicit solvent molecular dynamics (MD) simulations identifies some key features of this motif that up to now remained overlooked. These include the presence of an exceptionally stable 2'OH to phosphate hydrogen bond, as well as the formation of an additional K+ binding pocket in the quadruplex groove.
Collapse
Affiliation(s)
- Witold Andrałojć
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Magdalena Małgowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Joanna Sarzyńska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Karol Pasternak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Kamil Szpotkowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Zofia Gdaniec
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| |
Collapse
|
23
|
Salsbury AM, Lemkul JA. Molecular Dynamics Simulations of the c-kit1 Promoter G-Quadruplex: Importance of Electronic Polarization on Stability and Cooperative Ion Binding. J Phys Chem B 2018; 123:148-159. [DOI: 10.1021/acs.jpcb.8b11026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
24
|
Sullivan HJ, Readmond C, Radicella C, Persad V, Fasano TJ, Wu C. Binding of Telomestatin, TMPyP4, BSU6037, and BRACO19 to a Telomeric G-Quadruplex-Duplex Hybrid Probed by All-Atom Molecular Dynamics Simulations with Explicit Solvent. ACS OMEGA 2018; 3:14788-14806. [PMID: 30555989 PMCID: PMC6289566 DOI: 10.1021/acsomega.8b01574] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 09/11/2018] [Indexed: 06/09/2023]
Abstract
A promising anticancer therapeutic strategy is the stabilization of telomeric G-quadruplexes using G-quadruplex-binding small molecules. Although many G-quadruplex-specific ligands have been developed, their low potency and selectivity to G-quadruplexes over duplex remains unsolved. Recently, a crystal structure of a telomeric 3' quadruplex-duplex hybrid was reported and the quadruplex-duplex interface was suggested to a good target to address the issues. However, there are no high-resolution complex structures reported for G-quadruplex ligands except for a docked BSU6037. In this study, molecular dynamic (MD) binding simulations with a free ligand were used to study binding poses and dynamics of four representative ligands: telomestatin, TMPyP4, BSU6037, and BRACO19. The MD data showed that BSU6037 was able to fully intercalate into the interface whereas TMPyP4 and BRACO19 could only maintain partial intercalation into the interface and telomestatin only binds at the quadruplex and duplex ends. Both linear ligands, BSU6037 and BRACO19, were able to interact with the interface, yet they were not selective over duplex DNA. The DNA geometry, binding modes, and binding pathways were systematically characterized, and the binding energy was calculated and compared for each system. The interaction of the ligands to the interface was by the means of an induced-fit binding mechanism rather than a lock-key mechanism, consisting of the DNA unfolding at the interface to allow entrance of the drug and then the refolding and repacking of the DNA and the ligand to further stabilize the G-quadruplex. On the basis of the findings in this study, modifications were suggested to optimize the interface binding for TMPyp4 and telomestatin.
Collapse
Affiliation(s)
- Holli-Joi Sullivan
- Chemistry
& Biochemistry and Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Carolyn Readmond
- Chemistry
& Biochemistry and Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Christina Radicella
- Chemistry
& Biochemistry and Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Victoria Persad
- Chemistry
& Biochemistry and Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Thomas J. Fasano
- Chemistry
& Biochemistry and Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Chun Wu
- Chemistry
& Biochemistry and Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
25
|
Pal S, Paul S. Conformational deviation of Thrombin binding G-quadruplex aptamer (TBA) in presence of divalent cation Sr 2+: A classical molecular dynamics simulation study. Int J Biol Macromol 2018; 121:350-363. [PMID: 30308284 DOI: 10.1016/j.ijbiomac.2018.09.102] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 08/27/2018] [Accepted: 09/17/2018] [Indexed: 11/28/2022]
Abstract
Thrombin binding TBA-G-quadruplex aptamer (TBA) plays a major role in blood coagulation cascade. The 15-mer TBA sequence tends to form four-stranded TBA-G-quadruplex structure. In this research work, a series of explicit solvent classical MD simulations of the TBA is carried out using different salt (SrCl2) concentrations (0, 50, 100 and 200 mM). Here we have also testified the effect of salt concentration of divalent cation Sr2+ on the conformational change of quadruplex DNA. The structural deviations, fluctuations, torsional angles and the affinity of the ion are explored at different salt concentrations. It is found that the conformation of TBA-G-quadruplex at 0 mM and 50 mM salt concentrations, is very much different than the other salt concentrations (100 mM and 200 mM). Also observed are as follows: (i) no exchange of Sr2+ ion between inside and outside of the channel, (ii) an enhancement in the Sr2+ ion density around the phosphate region of the loop residues as salt concentration increases and (iii) the stacking of T3 and T4 residues of loop-1 that appears up to 50 mM concentration, vanishes as the salt concentration is increased further.
Collapse
Affiliation(s)
- Saikat Pal
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India.
| |
Collapse
|
26
|
Havrila M, Stadlbauer P, Kührová P, Banáš P, Mergny JL, Otyepka M, Šponer J. Structural dynamics of propeller loop: towards folding of RNA G-quadruplex. Nucleic Acids Res 2018; 46:8754-8771. [PMID: 30165550 PMCID: PMC6158699 DOI: 10.1093/nar/gky712] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 07/03/2018] [Accepted: 07/27/2018] [Indexed: 02/04/2023] Open
Abstract
We have carried out an extended set of standard and enhanced-sampling MD simulations (for a cumulative simulation time of 620 μs) with the aim to study folding landscapes of the rGGGUUAGGG and rGGGAGGG parallel G-hairpins (PH) with propeller loop. We identify folding and unfolding pathways of the PH, which is bridged with the unfolded state via an ensemble of cross-like structures (CS) possessing mutually tilted or perpendicular G-strands interacting via guanine-guanine H-bonding. The oligonucleotides reach the PH conformation from the unfolded state via a conformational diffusion through the folding landscape, i.e. as a series of rearrangements of the H-bond interactions starting from compacted anti-parallel hairpin-like structures. Although isolated PHs do not appear to be thermodynamically stable we suggest that CS and PH-types of structures are sufficiently populated during RNA guanine quadruplex (GQ) folding within the context of complete GQ-forming sequences. These structures may participate in compact coil-like ensembles that involve all four G-strands and already some bound ions. Such ensembles can then rearrange into the fully folded parallel GQs via conformational diffusion. We propose that the basic atomistic folding mechanism of propeller loops suggested in this work may be common for their formation in RNA and DNA GQs.
Collapse
Affiliation(s)
- Marek Havrila
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Petr Stadlbauer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Petra Kührová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Jean-Louis Mergny
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
- Université de Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, Pessac, France
| | - Michal Otyepka
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech Republic
| |
Collapse
|
27
|
Islam B, Stadlbauer P, Krepl M, Havrila M, Haider S, Sponer J. Structural Dynamics of Lateral and Diagonal Loops of Human Telomeric G-Quadruplexes in Extended MD Simulations. J Chem Theory Comput 2018; 14:5011-5026. [DOI: 10.1021/acs.jctc.8b00543] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Barira Islam
- Institute of Biophysics
of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Petr Stadlbauer
- Institute of Biophysics
of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Miroslav Krepl
- Institute of Biophysics
of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Marek Havrila
- Institute of Biophysics
of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Shozeb Haider
- UCL School of
Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, U.K
| | - Jiri Sponer
- Institute of Biophysics
of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
28
|
|
29
|
Šponer J, Bussi G, Krepl M, Banáš P, Bottaro S, Cunha RA, Gil-Ley A, Pinamonti G, Poblete S, Jurečka P, Walter NG, Otyepka M. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chem Rev 2018; 118:4177-4338. [PMID: 29297679 PMCID: PMC5920944 DOI: 10.1021/acs.chemrev.7b00427] [Citation(s) in RCA: 366] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 12/14/2022]
Abstract
With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Sandro Bottaro
- Structural Biology and NMR Laboratory, Department of Biology , University of Copenhagen , Copenhagen 2200 , Denmark
| | - Richard A Cunha
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Alejandro Gil-Ley
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Giovanni Pinamonti
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Simón Poblete
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| |
Collapse
|
30
|
Harikrishna S, Kotaru S, Pradeepkumar PI. Ligand-induced conformational preorganization of loops of c-MYC G-quadruplex DNA and its implications in structure-specific drug design. MOLECULAR BIOSYSTEMS 2018. [PMID: 28650023 DOI: 10.1039/c7mb00175d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Stabilization of a G-quadruplex (G4) DNA structure in the proto-oncogene c-MYC using small molecule ligands has emerged as an attractive strategy for the development of anticancer therapeutics. To understand the subtle structural changes in the G4 structure upon ligand binding, molecular dynamics (MD) simulations of c-MYC G4 DNA were carried out in a complex with six different potent ligands: 3AQN, 6AQN, 3APN, 360A, Nap-Et, and Nap-Pr. The results show that the ligands 3AQN, 6AQN, 3APN, and 360A stabilize the G4 structure by making stacking interactions with the top quartet. On the other hand, Nap-Et and Nap-Pr bind at the groove of the G4 structure. These groove binding ligands make crucial H-bond contacts with the guanines and electrostatic interactions with the phosphate backbone. Two-dimensional dynamic correlation maps unraveled the ligand-induced correlated motions between the guanines in the quartet and a di-nucleotide present in the propeller loop-2 of the G4 structure. Cluster analysis and ONIOM calculations revealed the structural dynamics in the loop of the quadruplex upon ligand binding. Overall, the results from the present study suggest that engineering specific contacts with the propeller loop can be an efficient way to design c-MYC G4-specific ligands.
Collapse
Affiliation(s)
- S Harikrishna
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai - 400076, India.
| | - Saikiran Kotaru
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai - 400076, India.
| | - P I Pradeepkumar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai - 400076, India.
| |
Collapse
|
31
|
Havrila M, Stadlbauer P, Islam B, Otyepka M, Šponer J. Effect of Monovalent Ion Parameters on Molecular Dynamics Simulations of G-Quadruplexes. J Chem Theory Comput 2017; 13:3911-3926. [PMID: 28657760 DOI: 10.1021/acs.jctc.7b00257] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
G-quadruplexes (GQs) are key noncanonical DNA and RNA architectures stabilized by desolvated monovalent cations present in their central channels. We analyze extended atomistic molecular dynamics simulations (∼580 μs in total) of GQs with 11 monovalent cation parametrizations, assessing GQ overall structural stability, dynamics of internal cations, and distortions of the G-tetrad geometries. Majority of simulations were executed with the SPC/E water model; however, test simulations with TIP3P and OPC water models are also reported. The identity and parametrization of ions strongly affect behavior of a tetramolecular d[GGG]4 GQ, which is unstable with several ion parametrizations. The remaining studied RNA and DNA GQs are structurally stable, though the G-tetrad geometries are always deformed by bifurcated H-bonding in a parametrization-specific manner. Thus, basic 10-μs-scale simulations of fully folded GQs can be safely done with a number of cation parametrizations. However, there are parametrization-specific differences and basic force-field errors affecting the quantitative description of ion-tetrad interactions, which may significantly affect studies of the ion-binding processes and description of the GQ folding landscape. Our d[GGG]4 simulations indirectly suggest that such studies will also be sensitive to the water models. During exchanges with bulk water, the Na+ ions move inside the GQs in a concerted manner, while larger relocations of the K+ ions are typically separated. We suggest that the Joung-Cheatham SPC/E K+ parameters represent a safe choice in simulation studies of GQs, though variation of ion parameters can be used for specific simulation goals.
Collapse
Affiliation(s)
- Marek Havrila
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic.,CEITEC - Central European Institute of Technology, Masaryk University , Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Stadlbauer
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Barira Islam
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic.,CEITEC - Central European Institute of Technology, Masaryk University , Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
32
|
Harkness RW, Mittermaier AK. G-quadruplex dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017. [PMID: 28642152 DOI: 10.1016/j.bbapap.2017.06.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
G-quadruplexes (GQs) are four-stranded nucleic acid secondary structures formed by guanosine (G)-rich DNA and RNA sequences. It is becoming increasingly clear that cellular processes including gene expression and mRNA translation are regulated by GQs. GQ structures have been extensively characterized, however little attention to date has been paid to their conformational dynamics, despite the fact that many biological GQ sequences populate multiple structures of similar free energies, leading to an ensemble of exchanging conformations. The impact of these dynamics on biological function is currently not well understood. Recently, structural dynamics have been demonstrated to entropically stabilize GQ ensembles, potentially modulating gene expression. Transient, low-populated states in GQ ensembles may additionally regulate nucleic acid interactions and function. This review will underscore the interplay of GQ dynamics and biological function, focusing on several dynamic processes for biological GQs and the characterization of GQ dynamics by nuclear magnetic resonance (NMR) spectroscopy in conjunction with other biophysical techniques. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.
Collapse
Affiliation(s)
- Robert W Harkness
- McGill University Department of Chemistry, 801 Sherbrooke St. W., Montreal, QC H3A 0B8, Canada
| | - Anthony K Mittermaier
- McGill University Department of Chemistry, 801 Sherbrooke St. W., Montreal, QC H3A 0B8, Canada.
| |
Collapse
|
33
|
Islam B, Stadlbauer P, Gil-Ley A, Pérez-Hernández G, Haider S, Neidle S, Bussi G, Banas P, Otyepka M, Sponer J. Exploring the Dynamics of Propeller Loops in Human Telomeric DNA Quadruplexes Using Atomistic Simulations. J Chem Theory Comput 2017; 13:2458-2480. [PMID: 28475322 PMCID: PMC5514396 DOI: 10.1021/acs.jctc.7b00226] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
We
have carried out a series of extended unbiased molecular dynamics
(MD) simulations (up to 10 μs long, ∼162 μs in
total) complemented by replica-exchange with the collective variable
tempering (RECT) approach for several human telomeric DNA G-quadruplex
(GQ) topologies with TTA propeller loops. We used different AMBER
DNA force-field variants and also processed simulations by Markov
State Model (MSM) analysis. The slow conformational transitions in
the propeller loops took place on a scale of a few μs, emphasizing
the need for long simulations in studies of GQ dynamics. The propeller
loops sampled similar ensembles for all GQ topologies and for all
force-field dihedral-potential variants. The outcomes of standard
and RECT simulations were consistent and captured similar spectrum
of loop conformations. However, the most common crystallographic loop
conformation was very unstable with all force-field versions. Although
the loss of canonical γ-trans state of the
first propeller loop nucleotide could be related to the indispensable
bsc0 α/γ dihedral potential, even supporting this particular
dihedral by a bias was insufficient to populate the experimentally
dominant loop conformation. In conclusion, while our simulations were
capable of providing a reasonable albeit not converged sampling of
the TTA propeller loop conformational space, the force-field description
still remained far from satisfactory.
Collapse
Affiliation(s)
- Barira Islam
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic
| | - Petr Stadlbauer
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University , 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Alejandro Gil-Ley
- Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy
| | - Guillermo Pérez-Hernández
- Department for Mathematics and Computer Science, Freie Universität Berlin , Arnimallee 6, Berlin 14195, Germany
| | - Shozeb Haider
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, U.K
| | - Stephen Neidle
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, U.K
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy
| | - Pavel Banas
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University , 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Michal Otyepka
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University , 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Jiri Sponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University , 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
34
|
Gresh N, Naseem-Khan S, Lagardère L, Piquemal JP, Sponer JE, Sponer J. Channeling through Two Stacked Guanine Quartets of One and Two Alkali Cations in the Li +, Na +, K +, and Rb + Series. Assessment of the Accuracy of the SIBFA Anisotropic Polarizable Molecular Mechanics Potential. J Phys Chem B 2017; 121:3997-4014. [PMID: 28363025 DOI: 10.1021/acs.jpcb.7b01836] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Stacking of guanine quartets (GQs) can trigger the formation of DNA or RNA quadruple helices, which play numerous biochemical roles. The GQs are stabilized by alkali cations, mainly K+ and Na+, which can reside in, or channel through, the central axis of the GQ stems. Further, ion conduction through GQ wires can be leveraged for nanochemistry applications. G-quadruplex systems have been extensively studied by classical molecular dynamics (MD) simulations using pair-additive force fields or by quantum-chemical (QC) calculations. However, the non-polarizable force fields are very approximate, while QC calculations lack the necessary sampling. Thus, ultimate description of GQ systems would require long-enough simulations using advanced polarizable molecular mechanics (MM). However, to perform such calculations, it is first mandatory to evaluate the method's accuracy using benchmark QC. We report such an evaluation for SIBFA polarizable MM, bearing on the channeling (movement) of an alkali cation (Li+, Na+, K+, or Rb+) along the axis of two stacked G quartets interacting with either one or two ions. The QC energy profiles display markedly different features depending upon the cation but can be retrieved in the majority of cases by the SIBFA profiles. An appropriate balance of first-order (electrostatic and short-range repulsion) and second-order (polarization, charge-transfer, and dispersion) contributions within ΔE is mandatory. With two cations in the channel, the relative weights of the second-order contributions increase steadily upon increasing the ion size. In the G8 complexes with two K+ or two Rb+ cations, the sum of polarization and charge-transfer exceeds the first order terms for all ion positions.
Collapse
Affiliation(s)
- Nohad Gresh
- Laboratoire de Chimie Théorique, Sorbonne Universités , UPMC, UMR7616 CNRS, 75006Paris, France
| | - Sehr Naseem-Khan
- Laboratoire de Chimie Théorique, Sorbonne Universités , UPMC, UMR7616 CNRS, 75006Paris, France
| | - Louis Lagardère
- Laboratoire de Chimie Théorique, Sorbonne Universités , UPMC, UMR7616 CNRS, 75006Paris, France
| | - Jean-Philip Piquemal
- Laboratoire de Chimie Théorique, Sorbonne Universités , UPMC, UMR7616 CNRS, 75006Paris, France.,Institut Universitaire de France, Paris Cedex 05, 75231, France.,Department of Biomedical Engineering, The University of Texas at Austin , Austin, Texas, 78712, United States
| | - Judit E Sponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Kralovpolska 135, 612 65 Brno, Czech Republic.,CEITEC - Central European Institute of Technology, Masaryk University , Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jiri Sponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Kralovpolska 135, 612 65 Brno, Czech Republic.,CEITEC - Central European Institute of Technology, Masaryk University , Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
35
|
Dolinnaya NG, Ogloblina AM, Yakubovskaya MG. Structure, Properties, and Biological Relevance of the DNA and RNA G-Quadruplexes: Overview 50 Years after Their Discovery. BIOCHEMISTRY (MOSCOW) 2017; 81:1602-1649. [PMID: 28260487 PMCID: PMC7087716 DOI: 10.1134/s0006297916130034] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
G-quadruplexes (G4s), which are known to have important roles in regulation of key biological processes in both normal and pathological cells, are the most actively studied non-canonical structures of nucleic acids. In this review, we summarize the results of studies published in recent years that change significantly scientific views on various aspects of our understanding of quadruplexes. Modern notions on the polymorphism of DNA quadruplexes, on factors affecting thermodynamics and kinetics of G4 folding–unfolding, on structural organization of multiquadruplex systems, and on conformational features of RNA G4s and hybrid DNA–RNA G4s are discussed. Here we report the data on location of G4 sequence motifs in the genomes of eukaryotes, bacteria, and viruses, characterize G4-specific small-molecule ligands and proteins, as well as the mechanisms of their interactions with quadruplexes. New information on the structure and stability of G4s in telomeric DNA and oncogene promoters is discussed as well as proof being provided on the occurrence of G-quadruplexes in cells. Prominence is given to novel experimental techniques (single molecule manipulations, optical and magnetic tweezers, original chemical approaches, G4 detection in situ, in-cell NMR spectroscopy) that facilitate breakthroughs in the investigation of the structure and functions of G-quadruplexes.
Collapse
Affiliation(s)
- N G Dolinnaya
- Lomonosov Moscow State University, Department of Chemistry, Moscow, 119991, Russia.
| | | | | |
Collapse
|
36
|
Šponer J, Bussi G, Stadlbauer P, Kührová P, Banáš P, Islam B, Haider S, Neidle S, Otyepka M. Folding of guanine quadruplex molecules-funnel-like mechanism or kinetic partitioning? An overview from MD simulation studies. Biochim Biophys Acta Gen Subj 2016; 1861:1246-1263. [PMID: 27979677 DOI: 10.1016/j.bbagen.2016.12.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/04/2016] [Accepted: 12/11/2016] [Indexed: 01/18/2023]
Abstract
BACKGROUND Guanine quadruplexes (GQs) play vital roles in many cellular processes and are of much interest as drug targets. In contrast to the availability of many structural studies, there is still limited knowledge on GQ folding. SCOPE OF REVIEW We review recent molecular dynamics (MD) simulation studies of the folding of GQs, with an emphasis paid to the human telomeric DNA GQ. We explain the basic principles and limitations of all types of MD methods used to study unfolding and folding in a way accessible to non-specialists. We discuss the potential role of G-hairpin, G-triplex and alternative GQ intermediates in the folding process. We argue that, in general, folding of GQs is fundamentally different from funneled folding of small fast-folding proteins, and can be best described by a kinetic partitioning (KP) mechanism. KP is a competition between at least two (but often many) well-separated and structurally different conformational ensembles. MAJOR CONCLUSIONS The KP mechanism is the only plausible way to explain experiments reporting long time-scales of GQ folding and the existence of long-lived sub-states. A significant part of the natural partitioning of the free energy landscape of GQs comes from the ability of the GQ-forming sequences to populate a large number of syn-anti patterns in their G-tracts. The extreme complexity of the KP of GQs typically prevents an appropriate description of the folding landscape using just a few order parameters or collective variables. GENERAL SIGNIFICANCE We reconcile available computational and experimental studies of GQ folding and formulate basic principles characterizing GQ folding landscapes. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic; Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic.
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy
| | - Petr Stadlbauer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic; Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Petra Kührová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Barira Islam
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Shozeb Haider
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Stephen Neidle
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
37
|
Stadlbauer P, Mazzanti L, Cragnolini T, Wales DJ, Derreumaux P, Pasquali S, Šponer J. Coarse-Grained Simulations Complemented by Atomistic Molecular Dynamics Provide New Insights into Folding and Unfolding of Human Telomeric G-Quadruplexes. J Chem Theory Comput 2016; 12:6077-6097. [DOI: 10.1021/acs.jctc.6b00667] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Petr Stadlbauer
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
- Regional
Centre of Advanced Technologies and Materials, Departments of Physical
Chemistry, Faculty of Science, Palacký University, 17. listopadu
1192/12, 771 46 Olomouc, Czech Republic
| | - Liuba Mazzanti
- Laboratoire
de Biochimie Théorique, IBPC, CNRS UPR9080, Université Sorbonne Paris Cite, Paris Diderot, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Tristan Cragnolini
- Department
of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW, U.K
| | - David J. Wales
- Department
of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Philippe Derreumaux
- Laboratoire
de Biochimie Théorique, IBPC, CNRS UPR9080, Université Sorbonne Paris Cite, Paris Diderot, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Samuela Pasquali
- Laboratoire
de Biochimie Théorique, IBPC, CNRS UPR9080, Université Sorbonne Paris Cite, Paris Diderot, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Jiří Šponer
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
| |
Collapse
|
38
|
Goldsmith G, Rathinavelan T, Yathindra N. Selective Preference of Parallel DNA Triplexes Is Due to the Disruption of Hoogsteen Hydrogen Bonds Caused by the Severe Nonisostericity between the G*GC and T*AT Triplets. PLoS One 2016; 11:e0152102. [PMID: 27010368 PMCID: PMC4807104 DOI: 10.1371/journal.pone.0152102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/08/2016] [Indexed: 12/14/2022] Open
Abstract
Implications of DNA, RNA and RNA.DNA hybrid triplexes in diverse biological functions, diseases and therapeutic applications call for a thorough understanding of their structure-function relationships. Despite exhaustive studies mechanistic rationale for the discriminatory preference of parallel DNA triplexes with G*GC & T*AT triplets still remains elusive. Here, we show that the highest nonisostericity between the G*GC & T*AT triplets imposes extensive stereochemical rearrangements contributing to context dependent triplex destabilisation through selective disruption of Hoogsteen scheme of hydrogen bonds. MD simulations of nineteen DNA triplexes with an assortment of sequence milieu reveal for the first time fresh insights into the nature and extent of destabilization from a single (non-overlapping), double (overlapping) and multiple pairs of nonisosteric base triplets (NIBTs). It is found that a solitary pair of NIBTs, feasible either at a G*GC/T*AT or T*AT/G*GC triplex junction, does not impinge significantly on triplex stability. But two overlapping pairs of NIBTs resulting from either a T*AT or a G*GC interruption disrupt Hoogsteen pair to a noncanonical mismatch destabilizing the triplex by ~10 to 14 kcal/mol, implying that their frequent incidence in multiples, especially, in short sequences could even hinder triplex formation. The results provide (i) an unambiguous and generalised mechanistic rationale for the discriminatory trait of parallel triplexes, including those studied experimentally (ii) clarity for the prevalence of antiparallel triplexes and (iii) comprehensive perspectives on the sequence dependent influence of nonisosteric base triplets useful in the rational design of TFO's against potential triplex target sites.
Collapse
Affiliation(s)
- Gunaseelan Goldsmith
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City Phase I, Bangalore, India
- Manipal University, Manipal, India
| | | | - Narayanarao Yathindra
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City Phase I, Bangalore, India
| |
Collapse
|
39
|
Kogut M, Kleist C, Czub J. Molecular dynamics simulations reveal the balance of forces governing the formation of a guanine tetrad-a common structural unit of G-quadruplex DNA. Nucleic Acids Res 2016; 44:3020-30. [PMID: 26980278 PMCID: PMC4838382 DOI: 10.1093/nar/gkw160] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/01/2016] [Indexed: 12/13/2022] Open
Abstract
G-quadruplexes (G4) are nucleic acid conformations of guanine-rich sequences, in which guanines are arranged in the square-planar G-tetrads, stacked on one another. G4 motifs form in vivo and are implicated in regulation of such processes as gene expression and chromosome maintenance. The structure and stability of various G4 topologies were determined experimentally; however, the driving forces for their formation are not fully understood at the molecular level. Here, we used all-atom molecular dynamics to probe the microscopic origin of the G4 motif stability. By computing the free energy profiles governing the dissociation of the 3′-terminal G-tetrad in the telomeric parallel-stranded G4, we examined the thermodynamic and kinetic stability of a single G-tetrad, as a common structural unit of G4 DNA. Our results indicate that the energetics of guanine association alone does not explain the overall stability of the G-tetrad and that interactions involving sugar–phosphate backbone, in particular, the constrained minimization of the phosphate–phosphate repulsion energy, are crucial in providing the observed enthalpic stabilization. This enthalpic gain is largely compensated by the unfavorable entropy change due to guanine association and optimization of the backbone topology.
Collapse
Affiliation(s)
- Mateusz Kogut
- Department of Physical Chemistry, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Cyprian Kleist
- Department of Physical Chemistry, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Jacek Czub
- Department of Physical Chemistry, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
40
|
Islam B, Stadlbauer P, Neidle S, Haider S, Sponer J. Can We Execute Reliable MM-PBSA Free Energy Computations of Relative Stabilities of Different Guanine Quadruplex Folds? J Phys Chem B 2016; 120:2899-912. [DOI: 10.1021/acs.jpcb.6b01059] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Barira Islam
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
| | - Petr Stadlbauer
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
| | - Stephen Neidle
- UCL School of Pharmacy, 29-39
Brunswick Square, London WC1N 1AX, U.K
| | - Shozeb Haider
- UCL School of Pharmacy, 29-39
Brunswick Square, London WC1N 1AX, U.K
| | - Jiri Sponer
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
- CEITEC
- Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
41
|
Abstract
Quadruplex-forming sequences are widely prevalent in human and other genomes, including bacterial ones. These sequences are over-represented in eukaryotic telomeres, promoters, and 5' untranslated regions. They can form quadruplex structures, which may be transient in many situations in normal cells since they can be effectively resolved by helicase action. Mutated helicases in cancer cells are unable to unwind quadruplexes, which are impediments to transcription, translation, or replication, depending on their location within a particular gene. Small molecules that can stabilize quadruplex structures augment these effects and produce cell and proliferation growth inhibition. This article surveys the chemical biology of quadruplexes. It critically examines the major classes of quadruplex-binding small molecules that have been developed to date and the various approaches to discovering selective agents. The challenges of requiring (and achieving) small-molecule targeted selectivity for a particular quadruplex are discussed in relation to the potential of these small molecules as clinically useful therapeutic agents.
Collapse
Affiliation(s)
- Stephen Neidle
- UCL School of Pharmacy, University College London , 29-39 Brunswick Square, London WC1N 1AX, U.K
| |
Collapse
|
42
|
Stadlbauer P, Kührová P, Banáš P, Koča J, Bussi G, Trantírek L, Otyepka M, Šponer J. Hairpins participating in folding of human telomeric sequence quadruplexes studied by standard and T-REMD simulations. Nucleic Acids Res 2015; 43:9626-44. [PMID: 26433223 PMCID: PMC4787745 DOI: 10.1093/nar/gkv994] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 09/22/2015] [Indexed: 11/13/2022] Open
Abstract
DNA G-hairpins are potential key structures participating in folding of human telomeric guanine quadruplexes (GQ). We examined their properties by standard MD simulations starting from the folded state and long T-REMD starting from the unfolded state, accumulating ∼130 μs of atomistic simulations. Antiparallel G-hairpins should spontaneously form in all stages of the folding to support lateral and diagonal loops, with sub-μs scale rearrangements between them. We found no clear predisposition for direct folding into specific GQ topologies with specific syn/anti patterns. Our key prediction stemming from the T-REMD is that an ideal unfolded ensemble of the full GQ sequence populates all 4096 syn/anti combinations of its four G-stretches. The simulations can propose idealized folding pathways but we explain that such few-state pathways may be misleading. In the context of the available experimental data, the simulations strongly suggest that the GQ folding could be best understood by the kinetic partitioning mechanism with a set of deep competing minima on the folding landscape, with only a small fraction of molecules directly folding to the native fold. The landscape should further include non-specific collapse processes where the molecules move via diffusion and consecutive random rare transitions, which could, e.g. structure the propeller loops.
Collapse
Affiliation(s)
- Petr Stadlbauer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
| | - Petra Kührová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Jaroslav Koča
- CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic National Center for Biomolecular Research, Faculty of Science, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy
| | - Lukáš Trantírek
- CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|