1
|
Hananya N, Koren S, Muir TW. Interrogating epigenetic mechanisms with chemically customized chromatin. Nat Rev Genet 2024; 25:255-271. [PMID: 37985791 PMCID: PMC11176933 DOI: 10.1038/s41576-023-00664-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 11/22/2023]
Abstract
Genetic and genomic techniques have proven incredibly powerful for identifying and studying molecular players implicated in the epigenetic regulation of DNA-templated processes such as transcription. However, achieving a mechanistic understanding of how these molecules interact with chromatin to elicit a functional output is non-trivial, owing to the tremendous complexity of the biochemical networks involved. Advances in protein engineering have enabled the reconstitution of 'designer' chromatin containing customized post-translational modification patterns, which, when used in conjunction with sophisticated biochemical and biophysical methods, allow many mechanistic questions to be addressed. In this Review, we discuss how such tools complement established 'omics' techniques to answer fundamental questions on chromatin regulation, focusing on chromatin mark establishment and protein-chromatin interactions.
Collapse
Affiliation(s)
- Nir Hananya
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Shany Koren
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
2
|
Ramos-Alonso L, Chymkowitch P. Maintaining transcriptional homeostasis during cell cycle. Transcription 2024; 15:1-21. [PMID: 37655806 PMCID: PMC11093055 DOI: 10.1080/21541264.2023.2246868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Abstract
The preservation of gene expression patterns that define cellular identity throughout the cell division cycle is essential to perpetuate cellular lineages. However, the progression of cells through different phases of the cell cycle severely disrupts chromatin accessibility, epigenetic marks, and the recruitment of transcriptional regulators. Notably, chromatin is transiently disassembled during S-phase and undergoes drastic condensation during mitosis, which is a significant challenge to the preservation of gene expression patterns between cell generations. This article delves into the specific gene expression and chromatin regulatory mechanisms that facilitate the preservation of transcriptional identity during replication and mitosis. Furthermore, we emphasize our recent findings revealing the unconventional role of yeast centromeres and mitotic chromosomes in maintaining transcriptional fidelity beyond mitosis.
Collapse
Affiliation(s)
- Lucía Ramos-Alonso
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Pierre Chymkowitch
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Fütterer A, Rodriguez-Acebes S, Méndez J, Gutiérrez J, Martínez-A C. PARP1, DIDO3, and DHX9 Proteins Mutually Interact in Mouse Fibroblasts, with Effects on DNA Replication Dynamics, Senescence, and Oncogenic Transformation. Cells 2024; 13:159. [PMID: 38247850 PMCID: PMC10814579 DOI: 10.3390/cells13020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
The regulated formation and resolution of R-loops is a natural process in physiological gene expression. Defects in R-loop metabolism can lead to DNA replication stress, which is associated with a variety of diseases and, ultimately, with cancer. The proteins PARP1, DIDO3, and DHX9 are important players in R-loop regulation. We previously described the interaction between DIDO3 and DHX9. Here, we show that, in mouse embryonic fibroblasts, the three proteins are physically linked and dependent on PARP1 activity. The C-terminal truncation of DIDO3 leads to the impairment of this interaction; concomitantly, the cells show increased replication stress and senescence. DIDO3 truncation also renders the cells partially resistant to in vitro oncogenic transformation, an effect that can be reversed by immortalization. We propose that PARP1, DIDO3, and DHX9 proteins form a ternary complex that regulates R-loop metabolism, preventing DNA replication stress and subsequent senescence.
Collapse
Affiliation(s)
- Agnes Fütterer
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain;
| | - Sara Rodriguez-Acebes
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain; (S.R.-A.); (J.M.)
| | - Juan Méndez
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain; (S.R.-A.); (J.M.)
| | - Julio Gutiérrez
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain;
| | - Carlos Martínez-A
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain;
| |
Collapse
|
4
|
Harris RJ, Heer M, Levasseur MD, Cartwright TN, Weston B, Mitchell JL, Coxhead JM, Gaughan L, Prendergast L, Rico D, Higgins JMG. Release of Histone H3K4-reading transcription factors from chromosomes in mitosis is independent of adjacent H3 phosphorylation. Nat Commun 2023; 14:7243. [PMID: 37945563 PMCID: PMC10636195 DOI: 10.1038/s41467-023-43115-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Histone modifications influence the recruitment of reader proteins to chromosomes to regulate events including transcription and cell division. The idea of a histone code, where combinations of modifications specify unique downstream functions, is widely accepted and can be demonstrated in vitro. For example, on synthetic peptides, phosphorylation of Histone H3 at threonine-3 (H3T3ph) prevents the binding of reader proteins that recognize trimethylation of the adjacent lysine-4 (H3K4me3), including the TAF3 component of TFIID. To study these combinatorial effects in cells, we analyzed the genome-wide distribution of H3T3ph and H3K4me2/3 during mitosis. We find that H3T3ph anti-correlates with adjacent H3K4me2/3 in cells, and that the PHD domain of TAF3 can bind H3K4me2/3 in isolated mitotic chromatin despite the presence of H3T3ph. Unlike in vitro, H3K4 readers are still displaced from chromosomes in mitosis in Haspin-depleted cells lacking H3T3ph. H3T3ph is therefore unlikely to be responsible for transcriptional downregulation during cell division.
Collapse
Affiliation(s)
- Rebecca J Harris
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 1HH, UK
| | - Maninder Heer
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 1HH, UK
| | - Mark D Levasseur
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 1HH, UK
| | - Tyrell N Cartwright
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 1HH, UK
| | - Bethany Weston
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 1HH, UK
| | - Jennifer L Mitchell
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 1HH, UK
| | - Jonathan M Coxhead
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 1HH, UK
| | - Luke Gaughan
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 1HH, UK
- Newcastle University Centre for Cancer, Faculty of Medical Sciences, Framlington Place, Newcastle Upon Tyne, NE2 1HH, UK
| | - Lisa Prendergast
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 1HH, UK
| | - Daniel Rico
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 1HH, UK.
- Newcastle University Centre for Cancer, Faculty of Medical Sciences, Framlington Place, Newcastle Upon Tyne, NE2 1HH, UK.
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad Sevilla-Universidad Pablo de Olavide-Junta de Andalucía, 41092, Seville, Spain.
| | - Jonathan M G Higgins
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 1HH, UK.
- Newcastle University Centre for Cancer, Faculty of Medical Sciences, Framlington Place, Newcastle Upon Tyne, NE2 1HH, UK.
| |
Collapse
|
5
|
Coleman OD, Macdonald J, Thomson B, Ward JA, Stubbs CJ, McAllister TE, Clark S, Amin S, Cao Y, Abboud MI, Zhang Y, Sanganee H, Huber KVM, Claridge TDW, Kawamura A. Cyclic peptides target the aromatic cage of a PHD-finger reader domain to modulate epigenetic protein function. Chem Sci 2023; 14:7136-7146. [PMID: 37416723 PMCID: PMC10321576 DOI: 10.1039/d2sc05944d] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/15/2023] [Indexed: 07/08/2023] Open
Abstract
Plant homeodomain fingers (PHD-fingers) are a family of reader domains that can recruit epigenetic proteins to specific histone modification sites. Many PHD-fingers recognise methylated lysines on histone tails and play crucial roles in transcriptional regulation, with their dysregulation linked to various human diseases. Despite their biological importance, chemical inhibitors for targeting PHD-fingers are very limited. Here we report a potent and selective de novo cyclic peptide inhibitor (OC9) targeting the Nε-trimethyllysine-binding PHD-fingers of the KDM7 histone demethylases, developed using mRNA display. OC9 disrupts PHD-finger interaction with histone H3K4me3 by engaging the Nε-methyllysine-binding aromatic cage through a valine, revealing a new non-lysine recognition motif for the PHD-fingers that does not require cation-π interaction. PHD-finger inhibition by OC9 impacted JmjC-domain mediated demethylase activity at H3K9me2, leading to inhibition of KDM7B (PHF8) but stimulation of KDM7A (KIAA1718), representing a new approach for selective allosteric modulation of demethylase activity. Chemoproteomic analysis showed selective engagement of OC9 with KDM7s in T cell lymphoblastic lymphoma SUP T1 cells. Our results highlight the utility of mRNA-display derived cyclic peptides for targeting challenging epigenetic reader proteins to probe their biology, and the broader potential of this approach for targeting protein-protein interactions.
Collapse
Affiliation(s)
- Oliver D Coleman
- School of Natural and Environmental Sciences - Chemistry, Newcastle University Newcastle NE1 7RU UK
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
- Radcliffe Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford Roosevelt Drive Old Road Campus Oxford OX3 7BN UK
| | - Jessica Macdonald
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Ben Thomson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Jennifer A Ward
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford Old Road Campus Oxford OX3 7FZ UK
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford Oxford OX3 7FZ UK
| | - Christopher J Stubbs
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca Cambridge CB4 0WG UK
| | - Tom E McAllister
- School of Natural and Environmental Sciences - Chemistry, Newcastle University Newcastle NE1 7RU UK
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
- Radcliffe Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford Roosevelt Drive Old Road Campus Oxford OX3 7BN UK
| | - Shane Clark
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Siddique Amin
- School of Natural and Environmental Sciences - Chemistry, Newcastle University Newcastle NE1 7RU UK
| | - Yimang Cao
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Martine I Abboud
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Yijia Zhang
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Hitesh Sanganee
- Emerging Innovations Unit, Discovery Sciences, R&D, AstraZeneca Cambridge UK
| | - Kilian V M Huber
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford Old Road Campus Oxford OX3 7FZ UK
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford Oxford OX3 7FZ UK
| | - Tim D W Claridge
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Akane Kawamura
- School of Natural and Environmental Sciences - Chemistry, Newcastle University Newcastle NE1 7RU UK
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
- Radcliffe Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford Roosevelt Drive Old Road Campus Oxford OX3 7BN UK
| |
Collapse
|
6
|
Azemin WA, Alias N, Ali AM, Shamsir MS. In silico analysis prediction of HepTH1-5 as a potential therapeutic agent by targeting tumour suppressor protein networks. J Biomol Struct Dyn 2023; 41:1141-1167. [PMID: 34935583 DOI: 10.1080/07391102.2021.2017349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Many studies reported that the activation of tumour suppressor protein, p53 induced the human hepcidin expression. However, its expression decreased when p53 was silenced in human hepatoma cells. Contrary to Tilapia hepcidin TH1-5, HepTH1-5 was previously reported to trigger the p53 activation through the molecular docking approach. The INhibitor of Growth (ING) family members are also shown to directly interact with p53 and promote cell cycle arrest, senescence, apoptosis and participate in DNA replication and DNA damage responses to suppress the tumour initiation and progression. However, the interrelation between INGs and HepTH1-5 remains unknown. Therefore, this study aims to identify the mechanism and their protein interactions using in silico approaches. The finding revealed that HepTH1-5 and its ligands had interacted mostly on hotspot residues of ING proteins which involved in histone modifications via acetylation, phosphorylation, and methylation. This proves that HepTH1-5 might implicate in an apoptosis signalling pathway and preserve the protein structure and function of INGs by reducing the perturbation of histone binding upon oxidative stress response. This study would provide theoretical guidance for the design and experimental studies to decipher the role of HepTH1-5 as a potential therapeutic agent for cancer therapy. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wan-Atirah Azemin
- Faculty of Bioresources and Food Industry, School of Agriculture Science and Biotechnology, Universiti Sultan Zainal Abidin, Besut, Malaysia.,Faculty of Science, Bioinformatics Research Group (BIRG), Department of Biosciences, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Nadiawati Alias
- Faculty of Bioresources and Food Industry, School of Agriculture Science and Biotechnology, Universiti Sultan Zainal Abidin, Besut, Malaysia
| | - Abdul Manaf Ali
- Faculty of Bioresources and Food Industry, School of Agriculture Science and Biotechnology, Universiti Sultan Zainal Abidin, Besut, Malaysia
| | - Mohd Shahir Shamsir
- Faculty of Science, Bioinformatics Research Group (BIRG), Department of Biosciences, Universiti Teknologi Malaysia, Skudai, Malaysia.,Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Pagoh Higher Education Hub, Muar, Malaysia
| |
Collapse
|
7
|
Roles and regulation of Haspin kinase and its impact on carcinogenesis. Cell Signal 2022; 93:110303. [DOI: 10.1016/j.cellsig.2022.110303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 01/15/2023]
|
8
|
Distinct roles of haspin in stem cell division and male gametogenesis. Sci Rep 2021; 11:19901. [PMID: 34615946 PMCID: PMC8494884 DOI: 10.1038/s41598-021-99307-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/17/2021] [Indexed: 02/05/2023] Open
Abstract
The kinase haspin phosphorylates histone H3 at threonine-3 (H3T3ph) during mitosis. H3T3ph provides a docking site for the Chromosomal Passenger Complex at the centromere, enabling correction of erratic microtubule-chromosome contacts. Although this mechanism is operational in all dividing cells, haspin-null mice do not exhibit developmental anomalies, apart from aberrant testis architecture. Investigating this problem, we show here that mouse embryonic stem cells that lack or overexpress haspin, albeit prone to chromosome misalignment during metaphase, can still divide, expand and differentiate. RNA sequencing reveals that haspin dosage affects severely the expression levels of several genes that are involved in male gametogenesis. Consistent with a role in testis-specific expression, H3T3ph is detected not only in mitotic spermatogonia and meiotic spermatocytes, but also in non-dividing cells, such as haploid spermatids. Similarly to somatic cells, the mark is erased in the end of meiotic divisions, but re-installed during spermatid maturation, subsequent to methylation of histone H3 at lysine-4 (H3K4me3) and arginine-8 (H3R8me2). These serial modifications are particularly enriched in chromatin domains containing histone H3 trimethylated at lysine-27 (H3K27me3), but devoid of histone H3 trimethylated at lysine-9 (H3K9me3). The unique spatio-temporal pattern of histone H3 modifications implicates haspin in the epigenetic control of spermiogenesis.
Collapse
|
9
|
Phosphorylation of H3-Thr3 by Haspin Is Required for Primary Cilia Regulation. Int J Mol Sci 2021; 22:ijms22147753. [PMID: 34299370 PMCID: PMC8307231 DOI: 10.3390/ijms22147753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 01/19/2023] Open
Abstract
Primary cilia are commonly found on most quiescent, terminally differentiated cells and play a major role in the regulation of the cell cycle, cell motility, sensing, and cell–cell communication. Alterations in ciliogenesis and cilia maintenance are causative of several human diseases, collectively known as ciliopathies. A key determinant of primary cilia is the histone deacetylase HDAC6, which regulates their length and resorption and whose distribution is regulated by the death inducer-obliterator 3 (Dido3). Here, we report that the atypical protein kinase Haspin is a key regulator of cilia dynamics. Cells defective in Haspin activity exhibit longer primary cilia and a strong delay in cilia resorption upon cell cycle reentry. We show that Haspin is active in quiescent cells, where it phosphorylates threonine 3 of histone H3, a known mitotic Haspin substrate. Forcing Dido3 detachment from the chromatin prevents Haspin inhibition from impacting cilia dynamics, suggesting that Haspin activity is required for the relocalization of Dido3–HDAC6 to the basal body. Exploiting the zebrafish model, we confirmed the physiological relevance of this mechanism. Our observations shed light on a novel player, Haspin, in the mechanisms that govern the determination of cilia length and the homeostasis of mature cilia.
Collapse
|
10
|
Sha QQ, Zhu YZ, Xiang Y, Yu JL, Fan XY, Li YC, Wu YW, Shen L, Fan HY. Role of CxxC-finger protein 1 in establishing mouse oocyte epigenetic landscapes. Nucleic Acids Res 2021; 49:2569-2582. [PMID: 33621320 PMCID: PMC7969028 DOI: 10.1093/nar/gkab107] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
During oogenesis, oocytes gain competence and subsequently undergo meiotic maturation and prepare for embryonic development; trimethylated histone H3 on lysine-4 (H3K4me3) mediates a wide range of nuclear events during these processes. Oocyte-specific knockout of CxxC-finger protein 1 (CXXC1, also known as CFP1) impairs H3K4me3 accumulation and causes changes in chromatin configurations. This study investigated the changes in genomic H3K4me3 landscapes in oocytes with Cxxc1 knockout and the effects on other epigenetic factors such as the DNA methylation, H3K27me3, H2AK119ub1 and H3K36me3. H3K4me3 is overall decreased after knocking out Cxxc1, including both the promoter region and the gene body. CXXC1 and MLL2, which is another histone H3 methyltransferase, have nonoverlapping roles in mediating H3K4 trimethylation during oogenesis. Cxxc1 deletion caused a decrease in DNA methylation levels and affected H3K27me3 and H2AK119ub1 distributions, particularly at regions with high DNA methylation levels. The changes in epigenetic networks implicated by Cxxc1 deletion were correlated with the transcriptional changes in genes in the corresponding genomic regions. This study elucidates the epigenetic changes underlying the phenotypes and molecular defects in oocytes with deleted Cxxc1 and highlights the role of CXXC1 in orchestrating multiple factors that are involved in establishing the appropriate epigenetic states of maternal genome.
Collapse
Affiliation(s)
- Qian-Qian Sha
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Ye-Zhang Zhu
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Xiang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jia-Li Yu
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Ying Fan
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou 510005, China
| | - Yan-Chu Li
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yun-Wen Wu
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Li Shen
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Heng-Yu Fan
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
11
|
Basu A, Mestres I, Sahu SK, Tiwari N, Khongwir B, Baumgart J, Singh A, Calegari F, Tiwari VK. Phf21b imprints the spatiotemporal epigenetic switch essential for neural stem cell differentiation. Genes Dev 2020; 34:1190-1209. [PMID: 32820037 PMCID: PMC7462064 DOI: 10.1101/gad.333906.119] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 07/21/2020] [Indexed: 12/24/2022]
Abstract
Cerebral cortical development in mammals involves a highly complex and organized set of events including the transition of neural stem and progenitor cells (NSCs) from proliferative to differentiative divisions to generate neurons. Despite progress, the spatiotemporal regulation of this proliferation-differentiation switch during neurogenesis and the upstream epigenetic triggers remain poorly known. Here we report a cortex-specific PHD finger protein, Phf21b, which is highly expressed in the neurogenic phase of cortical development and gets induced as NSCs begin to differentiate. Depletion of Phf21b in vivo inhibited neuronal differentiation as cortical progenitors lacking Phf21b were retained in the proliferative zones and underwent faster cell cycles. Mechanistically, Phf21b targets the regulatory regions of cell cycle promoting genes by virtue of its high affinity for monomethylated H3K4. Subsequently, Phf21b recruits the lysine-specific demethylase Lsd1 and histone deacetylase Hdac2, resulting in the simultaneous removal of monomethylation from H3K4 and acetylation from H3K27, respectively. Intriguingly, mutations in the Phf21b locus associate with depression and mental retardation in humans. Taken together, these findings establish how a precisely timed spatiotemporal expression of Phf21b creates an epigenetic program that triggers neural stem cell differentiation during cortical development.
Collapse
Affiliation(s)
- Amitava Basu
- Institute of Molecular Biology, 55128 Mainz, Germany
| | - Iván Mestres
- Center for Regenerative Therapies Dresden (CRTD), School of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | | | - Neha Tiwari
- Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | | | - Jan Baumgart
- Translational Animal Research Center (TARC), University Medical Centre, Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Aditi Singh
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queens University Belfast, Belfast BT9 7BL, United Kingdom
| | - Federico Calegari
- Center for Regenerative Therapies Dresden (CRTD), School of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Vijay K Tiwari
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queens University Belfast, Belfast BT9 7BL, United Kingdom
| |
Collapse
|
12
|
Kupai A, Vaughan RM, Dickson BM, Rothbart SB. A Degenerate Peptide Library Approach to Reveal Sequence Determinants of Methyllysine-Driven Protein Interactions. Front Cell Dev Biol 2020; 8:241. [PMID: 32328492 PMCID: PMC7160673 DOI: 10.3389/fcell.2020.00241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/23/2020] [Indexed: 11/19/2022] Open
Abstract
Lysine methylation facilitates protein-protein interactions through the activity of methyllysine (Kme) “reader” proteins. Functions of Kme readers have historically been studied in the context of histone interactions, where readers aid in chromatin-templated processes such as transcription, DNA replication and repair. However, there is growing evidence that Kme readers also function through interactions with non-histone proteins. To facilitate expanded study of Kme reader activities, we developed a high-throughput binding assay to reveal the sequence determinants of Kme-driven protein interactions. The assay queries a degenerate methylated lysine-oriented peptide library (Kme-OPL) to identify the key residues that modulate reader binding. The assay recapitulated methyl order and amino acid sequence preferences associated with histone Kme readers. The assay also revealed methylated sequences that bound Kme readers with higher affinity than histones. Proteome-wide scoring was applied to assay results to help prioritize future study of Kme reader interactions. The platform was also used to design sequences that directed specificity among closely related reader domains, an application which may have utility in the development of peptidomimetic inhibitors. Furthermore, we used the platform to identify binding determinants of site-specific histone Kme antibodies and surprisingly revealed that only a few amino acids drove epitope recognition. Collectively, these studies introduce and validate a rapid, unbiased, and high-throughput binding assay for Kme readers, and we envision its use as a resource for expanding the study of Kme-driven protein interactions.
Collapse
Affiliation(s)
- Ariana Kupai
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, United States
| | - Robert M Vaughan
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, United States
| | - Bradley M Dickson
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, United States
| | - Scott B Rothbart
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, United States
| |
Collapse
|
13
|
Schmitz ML, Higgins JMG, Seibert M. Priming chromatin for segregation: functional roles of mitotic histone modifications. Cell Cycle 2020; 19:625-641. [PMID: 31992120 DOI: 10.1080/15384101.2020.1719585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Posttranslational modifications (PTMs) of histone proteins are important for various cellular processes including regulation of gene expression and chromatin structure, DNA damage response and chromosome segregation. Here we comprehensively review mitotic histone PTMs, in particular phosphorylations, and discuss their interplay and functions in the control of dynamic protein-protein interactions as well as their contribution to centromere and chromosome structure and function during cell division. Histone phosphorylations can create binding sites for mitotic regulators such as the chromosomal passenger complex, which is required for correction of erroneous spindle attachments and chromosome bi-orientation. Other histone PTMs can alter the structural properties of nucleosomes and the accessibility of chromatin. Epigenetic marks such as lysine methylations are maintained during mitosis and may also be important for mitotic transcription as well as bookmarking of transcriptional states to ensure the transmission of gene expression programs through cell division. Additionally, histone phosphorylation can dissociate readers of methylated histones without losing epigenetic information. Through all of these processes, mitotic histone PTMs play a functional role in priming the chromatin for faithful chromosome segregation and preventing genetic instability, one of the characteristic hallmarks of cancer cells.
Collapse
Affiliation(s)
- M Lienhard Schmitz
- Institute of Biochemistry, Medical Faculty, Member of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| | - Jonathan M G Higgins
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Markus Seibert
- Institute of Biochemistry, Medical Faculty, Member of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
14
|
Karakkat JV, Kaimala S, Sreedharan SP, Jayaprakash P, Adeghate EA, Ansari SA, Guccione E, Mensah-Brown EPK, Starling Emerald B. The metabolic sensor PASK is a histone 3 kinase that also regulates H3K4 methylation by associating with H3K4 MLL2 methyltransferase complex. Nucleic Acids Res 2019; 47:10086-10103. [PMID: 31529049 PMCID: PMC6821284 DOI: 10.1093/nar/gkz786] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/19/2022] Open
Abstract
The metabolic sensor Per-Arnt-Sim (Pas) domain-containing serine/threonine kinase (PASK) is expressed predominantly in the cytoplasm of different cell types, although a small percentage is also expressed in the nucleus. Herein, we show that the nuclear PASK associates with the mammalian H3K4 MLL2 methyltransferase complex and enhances H3K4 di- and tri-methylation. We also show that PASK is a histone kinase that phosphorylates H3 at T3, T6, S10 and T11. Taken together, these results suggest that PASK regulates two different H3 tail modifications involving H3K4 methylation and H3 phosphorylation. Using muscle satellite cell differentiation and functional analysis after loss or gain of Pask expression using the CRISPR/Cas9 system, we provide evidence that some of the regulatory functions of PASK during development and differentiation may occur through the regulation of these histone modifications.
Collapse
Affiliation(s)
- Jimsheena V Karakkat
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, UAE
| | - Suneesh Kaimala
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, UAE
| | - Sreejisha P Sreedharan
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, UAE
| | - Princy Jayaprakash
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, UAE
| | - Ernest A Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, UAE
| | - Suraiya A Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, UAE
| | - Ernesto Guccione
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 138673, Singapore
| | - Eric P K Mensah-Brown
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, UAE
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, UAE
| |
Collapse
|
15
|
The PHD finger of Spp1 mediates histone modification cross-talk. Biochem J 2019; 476:2351-2354. [PMID: 31462441 DOI: 10.1042/bcj20190492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 11/17/2022]
Abstract
Binding of the Spp1 PHD finger to histone H3K4me3 is sensitive to adjacent post-translational modifications in the histone tail. This commentary discusses the findings of He and colleagues [Biochem. J. 476, 1957-1973] which show that the PHD finger binds to H3K4me3 in a selective manner which is conserved in the Saccharomyces pombe and mammalian orthologues of Spp1.
Collapse
|
16
|
Structural basis for histone H3K4me3 recognition by the N-terminal domain of the PHD finger protein Spp1. Biochem J 2019; 476:1957-1973. [PMID: 31253666 DOI: 10.1042/bcj20190091] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/21/2019] [Accepted: 06/28/2019] [Indexed: 02/07/2023]
Abstract
Saccharomyces cerevisiae Spp1, a plant homeodomain (PHD) finger containing protein, is a critical subunit of the histone H3K4 methyltransferase complex of proteins associated with Set1 (COMPASS). The chromatin binding affinity of the PHD finger of Spp1 has been proposed to modulate COMPASS activity. During meiosis, Spp1 plays another role in promoting programmed double-strand break (DSB) formation by binding H3K4me3 via its PHD finger and interacting with a DSB protein, Mer2. However, how the Spp1 PHD finger performs site-specific readout of H3K4me3 is still not fully understood. In the present study, we determined the crystal structure of the highly conserved Spp1 N-terminal domain (Sc_Spp1NTD) in complex with the H3K4me3 peptide. The structure shows that Sc_Spp1NTD comprises a PHD finger responsible for methylated H3K4 recognition and a C3H-type zinc finger necessary to ensure the overall structural stability. Our isothermal titration calorimetry results show that binding of H3K4me3 to Sc_Spp1NTD is mildly inhibited by H3R2 methylation, weakened by H3T6 phosphorylation, and abrogated by H3T3 phosphorylation. This histone modification cross-talk, which is conserved in the Saccharomyces pombe and mammalian orthologs of Sc_Spp1 in vitro, can be rationalized structurally and might contribute to the roles of Spp1 in COMPASS activity regulation and meiotic recombination.
Collapse
|
17
|
Petell CJ, Pham AT, Skela J, Strahl BD. Improved methods for the detection of histone interactions with peptide microarrays. Sci Rep 2019; 9:6265. [PMID: 31000785 PMCID: PMC6472351 DOI: 10.1038/s41598-019-42711-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/05/2019] [Indexed: 02/07/2023] Open
Abstract
Histone post-translational modifications contribute to chromatin function largely through the recruitment of effector proteins that contain specialized "reader" domains. While a significant number of reader domains have been characterized for their histone binding specificities, many of these domains remain poorly characterized. Peptide microarrays have been widely employed for the characterization of histone readers, as well as modifying enzymes and histone antibodies. While powerful, this platform has limitations in terms of its sensitivity and they frequently miss low affinity reader domain interactions. Here, we provide several technical changes that improve reader domain detection of low-affinity interactions. We show that 1% non-fat milk in 1X PBST as the blocking reagent during incubation improved reader-domain interaction results. Further, coupling this with post-binding high-salt washes and a brief, low-percentage formaldehyde cross-linking step prior to the high-salt washes provided the optimal balance between resolving specific low-affinity interactions and minimizing background or spurious signals. We expect this improved methodology will lead to the elucidation of previously unreported reader-histone interactions that will be important for chromatin function.
Collapse
Affiliation(s)
- Christopher J Petell
- Department of Biochemistry and Biophysics, 120 Mason Farm Rd, University of North Carolina at Chapel Hill, NC, Chapel Hill, 27599, USA
- UNC Lineberger Comprehensive Cancer Center, 450 West Drive, University of North Carolina at Chapel Hill, NC, Chapel Hill, 27599, USA
| | - Andrea T Pham
- Department of Biochemistry and Biophysics, 120 Mason Farm Rd, University of North Carolina at Chapel Hill, NC, Chapel Hill, 27599, USA
| | - Jessica Skela
- Department of Biochemistry and Biophysics, 120 Mason Farm Rd, University of North Carolina at Chapel Hill, NC, Chapel Hill, 27599, USA
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, 120 Mason Farm Rd, University of North Carolina at Chapel Hill, NC, Chapel Hill, 27599, USA.
- UNC Lineberger Comprehensive Cancer Center, 450 West Drive, University of North Carolina at Chapel Hill, NC, Chapel Hill, 27599, USA.
| |
Collapse
|
18
|
Zhai G, Dong H, Guo Z, Feng W, Jin J, Zhang T, Chen C, Chen P, Tian S, Bai X, Shi L, Fan E, Zhang Y, Zhang K. An Efficient Approach for Selective Enrichment of Histone Modification Readers Using Self-Assembled Multivalent Photoaffinity Peptide Probes. Anal Chem 2018; 90:11385-11392. [PMID: 30188686 DOI: 10.1021/acs.analchem.8b02342] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Histone post-translational modifications (HPTMs) provide signaling platforms to recruit proteins or protein complexes (e.g., transcription factors, the so-called "readers" of the histone code), changing DNA accessibility in the regulation of gene expression. Thus, it is an essential task to identify HPTM readers for understanding of epigenetic regulation. Herein we designed and prepared a novel HPTM probe based on self-assembled multivalent photo-cross-linking technique for selective enrichment and identification of HPTM readers. By use of trimethylation of histone H3 lysine 4, we showcased that the functionalized HPTM probe was able to capture its reader with high enrichment efficiency and remarkable specificity even in a complex environment. Notably, this approach was readily applicable for exploring crosstalk among multiple HPTMs. Combining the probes with a mass spectrometry-based proteomic approach, our approach reached a fairly high coverage of known H3K4me3 readers. We further demonstrated that the HPTM probes can enrich a new type of HPTM readers and uncovered several novel putative binders of crotonylation of histone H3 lysine 9, expanding the repertoire of readers for this epigenetic mark. More broadly, our work provides a general strategy for rapid and robust interrogating HPTM readers and will be of great importance to elucidate epigenetic mechanism in regulating gene activity.
Collapse
Affiliation(s)
- Guijin Zhai
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Treatment (Ministry of Education), Cancer Institute and Hospital , Tianjin Medical University , Tianjin 300070 , China
| | - Hanyang Dong
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Treatment (Ministry of Education), Cancer Institute and Hospital , Tianjin Medical University , Tianjin 300070 , China
| | - Zhenchang Guo
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Treatment (Ministry of Education), Cancer Institute and Hospital , Tianjin Medical University , Tianjin 300070 , China
| | - Wei Feng
- School of Biomedical Engineering , Tianjin Medical University , Tianjin 300070 , China
| | - Jin Jin
- College of Pharmacy , Nankai University , Tianjin 300071 , China
| | - Tao Zhang
- School of Biomedical Engineering , Tianjin Medical University , Tianjin 300070 , China
| | - Cong Chen
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Treatment (Ministry of Education), Cancer Institute and Hospital , Tianjin Medical University , Tianjin 300070 , China
| | - Pu Chen
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Treatment (Ministry of Education), Cancer Institute and Hospital , Tianjin Medical University , Tianjin 300070 , China
| | - Shanshan Tian
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Treatment (Ministry of Education), Cancer Institute and Hospital , Tianjin Medical University , Tianjin 300070 , China
| | - Xue Bai
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Treatment (Ministry of Education), Cancer Institute and Hospital , Tianjin Medical University , Tianjin 300070 , China
| | - Lei Shi
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Treatment (Ministry of Education), Cancer Institute and Hospital , Tianjin Medical University , Tianjin 300070 , China
| | - Enguo Fan
- Institut für Biochemie und Molekularbiologie , Universität Freiburg , Stefan-Meier-Straße 17 , Freiburg 79104 , Germany
| | - Yukui Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China
| | - Kai Zhang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Treatment (Ministry of Education), Cancer Institute and Hospital , Tianjin Medical University , Tianjin 300070 , China
| |
Collapse
|
19
|
CFP1 coordinates histone H3 lysine-4 trimethylation and meiotic cell cycle progression in mouse oocytes. Nat Commun 2018; 9:3477. [PMID: 30154440 PMCID: PMC6113306 DOI: 10.1038/s41467-018-05930-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/27/2018] [Indexed: 12/27/2022] Open
Abstract
Trimethylation of histone H3 on lysine-4 (H3K4me3) is associated with gene-regulatory elements, but its transcription-independent function in cell division is unclear. CxxC-finger protein-1 (CFP1) is a major mediator of H3K4 trimethylation in mouse oocytes. Here we report that oocyte-specific knockout of Cxxc1, inhibition of CFP1 function, or abrogation of H3K4 methylation in oocytes each causes a delay of meiotic resumption as well as metaphase I arrest owing to defective spindle assembly and chromosome misalignment. These phenomena are partially attributed to insufficient phosphorylation of histone H3 at threonine-3. CDK1 triggers cell division–coupled degradation and inhibitory phosphorylation of CFP1. Preventing CFP1 degradation and phosphorylation causes CFP1 accumulation on chromosomes and impairs meiotic maturation and preimplantation embryo development. Therefore, CFP1-mediated H3K4 trimethylation provides 3a permission signal for the G2–M transition. Dual inhibition of CFP1 removes the SETD1–CFP1 complex from chromatin and ensures appropriate chromosome configuration changes during meiosis and mitosis. The transcription-independent function of trimethylation of histone H3 (H3K4me) in cell division is unclear. Here, Heng-Yu Fan and colleagues report that CFP1, a subunit of the H3K4 methyltransferase, is required for oocyte meiosis, being phosphorylated and degraded during cell cycle transition.
Collapse
|
20
|
Modes of Interaction of KMT2 Histone H3 Lysine 4 Methyltransferase/COMPASS Complexes with Chromatin. Cells 2018; 7:cells7030017. [PMID: 29498679 PMCID: PMC5870349 DOI: 10.3390/cells7030017] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/22/2018] [Accepted: 02/27/2018] [Indexed: 02/07/2023] Open
Abstract
Regulation of gene expression is achieved by sequence-specific transcriptional regulators, which convey the information that is contained in the sequence of DNA into RNA polymerase activity. This is achieved by the recruitment of transcriptional co-factors. One of the consequences of co-factor recruitment is the control of specific properties of nucleosomes, the basic units of chromatin, and their protein components, the core histones. The main principles are to regulate the position and the characteristics of nucleosomes. The latter includes modulating the composition of core histones and their variants that are integrated into nucleosomes, and the post-translational modification of these histones referred to as histone marks. One of these marks is the methylation of lysine 4 of the core histone H3 (H3K4). While mono-methylation of H3K4 (H3K4me1) is located preferentially at active enhancers, tri-methylation (H3K4me3) is a mark found at open and potentially active promoters. Thus, H3K4 methylation is typically associated with gene transcription. The class 2 lysine methyltransferases (KMTs) are the main enzymes that methylate H3K4. KMT2 enzymes function in complexes that contain a necessary core complex composed of WDR5, RBBP5, ASH2L, and DPY30, the so-called WRAD complex. Here we discuss recent findings that try to elucidate the important question of how KMT2 complexes are recruited to specific sites on chromatin. This is embedded into short overviews of the biological functions of KMT2 complexes and the consequences of H3K4 methylation.
Collapse
|
21
|
Bai X, Bi W, Dong H, Chen P, Tian S, Zhai G, Zhang K. An Integrated Approach Based on a DNA Self-Assembly Technique for Characterization of Crosstalk among Combinatorial Histone Modifications. Anal Chem 2018; 90:3692-3696. [DOI: 10.1021/acs.analchem.7b05174] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xue Bai
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Wenjing Bi
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Hanyang Dong
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Pu Chen
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Shanshan Tian
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Guijin Zhai
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Kai Zhang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
22
|
Tencer AH, Gatchalian J, Klein BJ, Khan A, Zhang Y, Strahl BD, van Wely KHM, Kutateladze TG. A Unique pH-Dependent Recognition of Methylated Histone H3K4 by PPS and DIDO. Structure 2017; 25:1530-1539.e3. [PMID: 28919441 DOI: 10.1016/j.str.2017.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/26/2017] [Accepted: 08/15/2017] [Indexed: 01/07/2023]
Abstract
The protein partner of Sans-fille (PPS) and its human homolog DIDO mediate diverse chromatin activities, including the regulation of stemness genes in embryonic stem cells and splicing in Drosophila. Here, we show that the PHD fingers of PPS and DIDO recognize the histone mark H3K4me3 in a pH-dependent manner: the binding is enhanced at high pH values but is decreased at low pH. Structural analysis reveals that the pH dependency is due to the presence of a histidine residue in the K4me3-binding aromatic cage of PPS. The pH-dependent mechanism is conserved in DIDO but is lost in yeast Bye1. Acidification of cells leads to the accelerated efflux of endogenous DIDO, indicating the pH-dependent sensing of H3K4me3 in vivo. This novel mode for the recognition of H3K4me3 establishes the PHD fingers of PPS and DIDO as unique epigenetic readers and high pH sensors and suggests a role for the histidine switch during mitosis.
Collapse
Affiliation(s)
- Adam H Tencer
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jovylyn Gatchalian
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Brianna J Klein
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Abid Khan
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Yi Zhang
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Brian D Strahl
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Karel H M van Wely
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, 28049 Madrid, Spain
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
23
|
Kumar R, Deivendran S, Santhoshkumar TR, Pillai MR. Signaling coupled epigenomic regulation of gene expression. Oncogene 2017. [DOI: 10.1038/onc.2017.201] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Andrews FH, Strahl BD, Kutateladze TG. Insights into newly discovered marks and readers of epigenetic information. Nat Chem Biol 2017; 12:662-8. [PMID: 27538025 DOI: 10.1038/nchembio.2149] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/11/2016] [Indexed: 02/06/2023]
Abstract
The field of chromatin biology has been advancing at an accelerated pace. Recent discoveries of previously uncharacterized sites and types of post-translational modifications (PTMs) and the identification of new sets of proteins responsible for the deposition, removal, and reading of these marks continue raising the complexity of an already exceedingly complicated biological phenomenon. In this Perspective article we examine the biological importance of new types and sites of histone PTMs and summarize the molecular mechanisms of chromatin engagement by newly discovered epigenetic readers. We also highlight the imperative role of structural insights in understanding PTM-reader interactions and discuss future directions to enhance the knowledge of PTM readout.
Collapse
Affiliation(s)
- Forest H Andrews
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, the University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
25
|
Shanle EK, Shinsky SA, Bridgers JB, Bae N, Sagum C, Krajewski K, Rothbart SB, Bedford MT, Strahl BD. Histone peptide microarray screen of chromo and Tudor domains defines new histone lysine methylation interactions. Epigenetics Chromatin 2017; 10:12. [PMID: 28293301 PMCID: PMC5348760 DOI: 10.1186/s13072-017-0117-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/01/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Histone posttranslational modifications (PTMs) function to regulate chromatin structure and function in part through the recruitment of effector proteins that harbor specialized "reader" domains. Despite efforts to elucidate reader domain-PTM interactions, the influence of neighboring PTMs and the target specificity of many reader domains is still unclear. The aim of this study was to use a high-throughput histone peptide microarray platform to interrogate 83 known and putative histone reader domains from the chromo and Tudor domain families to identify their interactions and characterize the influence of neighboring PTMs on these interactions. RESULTS Nearly a quarter of the chromo and Tudor domains screened showed interactions with histone PTMs by peptide microarray, revealing known and several novel methyllysine interactions. Specifically, we found that the CBX/HP1 chromodomains that recognize H3K9me also recognize H3K23me2/3-a poorly understood histone PTM. We also observed that, in addition to their interaction with H3K4me3, Tudor domains of the Spindlin family also recognized H4K20me3-a previously uncharacterized interaction. Several Tudor domains also showed novel interactions with H3K4me as well. CONCLUSIONS These results provide an important resource for the epigenetics and chromatin community on the interactions of many human chromo and Tudor domains. They also provide the basis for additional studies into the functional significance of the novel interactions that were discovered.
Collapse
Affiliation(s)
- Erin K Shanle
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA 23909 USA
| | - Stephen A Shinsky
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, NC 27599 USA.,Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, NC 27599 USA.,Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA USA
| | - Joseph B Bridgers
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, NC 27599 USA
| | - Narkhyun Bae
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957 USA
| | - Cari Sagum
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957 USA
| | - Krzysztof Krajewski
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, NC 27599 USA
| | - Scott B Rothbart
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503 USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957 USA
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, NC 27599 USA.,Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, NC 27599 USA
| |
Collapse
|
26
|
van Wely KHM, Mora Gallardo C, Vann KR, Kutateladze TG. Epigenetic countermarks in mitotic chromosome condensation. Nucleus 2017; 8:144-149. [PMID: 28045584 PMCID: PMC5403135 DOI: 10.1080/19491034.2016.1276144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mitosis in metazoans is characterized by abundant phosphorylation of histone H3 and involves the recruitment of condensin complexes to chromatin. The relationship between the 2 phenomena and their respective contributions to chromosome condensation in vivo remain poorly understood. Recent studies have shown that H3T3 phosphorylation decreases binding of histone readers to methylated H3K4 in vitro and is essential to displace the corresponding proteins from mitotic chromatin in vivo. Together with previous observations, these data provide further evidence for a role of mitotic histone H3 phosphorylation in blocking transcriptional programs or preserving the ‘memory’ PTMs. Mitotic protein exclusion can also have a role in depopulating the chromatin template for subsequent condensin loading. H3 phosphorylation thus serves as an integral step in the condensation of chromosome arms.
Collapse
Affiliation(s)
- Karel H M van Wely
- a Department of Immunology and Oncology , Centro Nacional de Biotecnología/CSIC , Madrid , Spain
| | - Carmen Mora Gallardo
- a Department of Immunology and Oncology , Centro Nacional de Biotecnología/CSIC , Madrid , Spain
| | - Kendra R Vann
- b Department of Pharmacology , University of Colorado School of Medicine , Aurora , CO , USA
| | - Tatiana G Kutateladze
- b Department of Pharmacology , University of Colorado School of Medicine , Aurora , CO , USA
| |
Collapse
|
27
|
Bobola N, Merabet S. Homeodomain proteins in action: similar DNA binding preferences, highly variable connectivity. Curr Opin Genet Dev 2016; 43:1-8. [PMID: 27768937 DOI: 10.1016/j.gde.2016.09.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 09/28/2016] [Indexed: 12/18/2022]
Abstract
Homeodomain proteins are evolutionary conserved proteins present in the entire eukaryote kingdom. They execute functions that are essential for life, both in developing and adult organisms. Most homeodomain proteins act as transcription factors and bind DNA to control the activity of other genes. In contrast to their similar DNA binding specificity, homeodomain proteins execute highly diverse and context-dependent functions. Several factors, including genome accessibility, DNA shape, combinatorial binding and the ability to interact with many transcriptional partners, diversify the activity of homeodomain proteins and culminate in the activation of highly dynamic, context-specific transcriptional programs. Clarifying how homeodomain transcription factors work is central to our understanding of development, disease and evolution.
Collapse
Affiliation(s)
- Nicoletta Bobola
- School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.
| | - Samir Merabet
- Institut de Génomique Fonctionnelle de Lyon, Centre National de Recherche Scientifique, Ecole Normale Supérieure de Lyon, France.
| |
Collapse
|