1
|
Wojtaszek JL, Williams RS. From the TOP: Formation, recognition and resolution of topoisomerase DNA protein crosslinks. DNA Repair (Amst) 2024; 142:103751. [PMID: 39180935 PMCID: PMC11404304 DOI: 10.1016/j.dnarep.2024.103751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
Since the report of "DNA untwisting" activity in 1972, ∼50 years of research has revealed seven topoisomerases in humans (TOP1, TOP1mt, TOP2α, TOP2β, TOP3α, TOP3β and Spo11). These conserved regulators of DNA topology catalyze controlled breakage to the DNA backbone to relieve the torsional stress that accumulates during essential DNA transactions including DNA replication, transcription, and DNA repair. Each topoisomerase-catalyzed reaction involves the formation of a topoisomerase cleavage complex (TOPcc), a covalent protein-DNA reaction intermediate formed between the DNA phosphodiester backbone and a topoisomerase catalytic tyrosine residue. A variety of perturbations to topoisomerase reaction cycles can trigger failure of the enzyme to re-ligate the broken DNA strand(s), thereby generating topoisomerase DNA-protein crosslinks (TOP-DPC). TOP-DPCs pose unique threats to genomic integrity. These complex lesions are comprised of structurally diverse protein components covalently linked to genomic DNA, which are bulky DNA adducts that can directly impact progression of the transcription and DNA replication apparatus. A variety of genome maintenance pathways have evolved to recognize and resolve TOP-DPCs. Eukaryotic cells harbor tyrosyl DNA phosphodiesterases (TDPs) that directly reverse 3'-phosphotyrosyl (TDP1) and 5'-phoshotyrosyl (TDP2) protein-DNA linkages. The broad specificity Mre11-Rad50-Nbs1 and APE2 nucleases are also critical for mitigating topoisomerase-generated DNA damage. These DNA-protein crosslink metabolizing enzymes are further enabled by proteolytic degradation, with the proteasome, Spartan, GCNA, Ddi2, and FAM111A proteases implicated thus far. Strategies to target, unfold, and degrade the protein component of TOP-DPCs have evolved as well. Here we survey mechanisms for addressing Topoisomerase 1 (TOP1) and Topoisomerase 2 (TOP2) DPCs, highlighting systems for which molecular structure information has illuminated function of these critical DNA damage response pathways.
Collapse
Affiliation(s)
- Jessica L Wojtaszek
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, United States
| | - R Scott Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, United States.
| |
Collapse
|
2
|
Vollmar M, Tirunagari S, Harrus D, Armstrong D, Gáborová R, Gupta D, Afonso MQL, Evans G, Velankar S. Dataset from a human-in-the-loop approach to identify functionally important protein residues from literature. Sci Data 2024; 11:1032. [PMID: 39333508 PMCID: PMC11436914 DOI: 10.1038/s41597-024-03841-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/29/2024] [Indexed: 09/29/2024] Open
Abstract
We present a novel system that leverages curators in the loop to develop a dataset and model for detecting structure features and functional annotations at residue-level from standard publication text. Our approach involves the integration of data from multiple resources, including PDBe, EuropePMC, PubMedCentral, and PubMed, combined with annotation guidelines from UniProt, and LitSuggest and HuggingFace models as tools in the annotation process. A team of seven annotators manually curated ten articles for named entities, which we utilized to train a starting PubmedBert model from HuggingFace. Using a human-in-the-loop annotation system, we iteratively developed the best model with commendable performance metrics of 0.90 for precision, 0.92 for recall, and 0.91 for F1-measure. Our proposed system showcases a successful synergy of machine learning techniques and human expertise in curating a dataset for residue-level functional annotations and protein structure features. The results demonstrate the potential for broader applications in protein research, bridging the gap between advanced machine learning models and the indispensable insights of domain experts.
Collapse
Affiliation(s)
- Melanie Vollmar
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
| | - Santosh Tirunagari
- Literature Services, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Deborah Harrus
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - David Armstrong
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Romana Gáborová
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Deepti Gupta
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Marcelo Querino Lima Afonso
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Genevieve Evans
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Sameer Velankar
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| |
Collapse
|
3
|
Kwah JK, Bhandari N, Rourke C, Gassaway G, Jaramillo-Lambert A. Mutations in tyrosyl-DNA phosphodiesterase 2 suppress top-2 induced chromosome segregation defects during Caenorhabditis elegans spermatogenesis. J Biol Chem 2024; 300:107446. [PMID: 38844130 PMCID: PMC11261448 DOI: 10.1016/j.jbc.2024.107446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 07/01/2024] Open
Abstract
Meiosis reduces ploidy through two rounds of chromosome segregation preceded by one round of DNA replication. In meiosis I, homologous chromosomes segregate, while in meiosis II, sister chromatids separate from each other. Topoisomerase II (Topo II) is a conserved enzyme that alters DNA structure by introducing transient double-strand breaks. During mitosis, Topo II relieves topological stress associated with unwinding DNA during replication, recombination, and sister chromatid segregation. Topo II also plays a role in maintaining mitotic chromosome structure. However, the role and regulation of Topo II during meiosis is not well-defined. Previously, we found an allele of Topo II, top-2(it7), disrupts homologous chromosome segregation during meiosis I of Caenorhabditis elegans spermatogenesis. In a genetic screen, we identified different point mutations in 5'-tyrosyl-DNA phosphodiesterase two (Tdp2, C. elegans tdpt-1) that suppress top-2(it7) embryonic lethality. Tdp2 removes trapped Top-2-DNA complexes. The tdpt-1 suppressing mutations rescue embryonic lethality, ameliorate chromosome segregation defects, and restore TOP-2 protein levels of top-2(it7). Here, we show that both TOP-2 and TDPT-1 are expressed in germ line nuclei but occupy different compartments until late meiotic prophase. We also demonstrate that tdpt-1 suppression is due to loss of function of the protein and that the tdpt-1 mutations do not have a phenotype independent of top-2(it7) in meiosis. Lastly, we found that the tdpt-1 suppressing mutations either impair the phosphodiesterase activity, affect the stability of TDPT-1, or disrupt protein interactions. This suggests that the WT TDPT-1 protein is inhibiting chromosome biological functions of an impaired TOP-2 during meiosis.
Collapse
Affiliation(s)
- Ji Kent Kwah
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Nirajan Bhandari
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Christine Rourke
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Gabriella Gassaway
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | | |
Collapse
|
4
|
Zakharenko AL, Dyrkheeva NS, Luzina OA, Filimonov AS, Mozhaitsev ES, Malakhova AA, Medvedev SP, Zakian SM, Salakhutdinov NF, Lavrik OI. Usnic Acid Derivatives Inhibit DNA Repair Enzymes Tyrosyl-DNA Phosphodiesterases 1 and 2 and Act as Potential Anticancer Agents. Genes (Basel) 2023; 14:1931. [PMID: 37895279 PMCID: PMC10606488 DOI: 10.3390/genes14101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/04/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Tyrosyl-DNA phosphodiesterase 1 and 2 (Tdp1 and Tdp2) are DNA repair enzymes that repair DNA damage caused by various agents, including anticancer drugs. Thus, these enzymes resist anticancer therapy and could be the reason for resistance to such widely used drugs such as topotecan and etoposide. In the present work, we found compounds capable of inhibiting both enzymes among derivatives of (-)-usnic acid. Both (+)- and (-)-enantiomers of compounds act equally effectively against Tdp1 with IC50 values in the range of 0.02-0.2 μM; only (-)-enantiomers inhibited Tdp2 with IC50 values in the range of 6-9 μM. Surprisingly, the compounds protect HEK293FT wild type cells from the cytotoxic effect of etoposide (CC50 3.0-3.9 μM in the presence of compounds and 2.4 μM the presence of DMSO) but potentiate it against Tdp2 knockout cells (CC50 1.2-1.6 μM in the presence of compounds against 2.3 μM in the presence of DMSO). We assume that the sensitizing effect of the compounds in the absence of Tdp2 is associated with the effective inhibition of Tdp1, which could take over the functions of Tdp2.
Collapse
Affiliation(s)
- Alexandra L. Zakharenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (N.S.D.); (O.I.L.)
| | - Nadezhda S. Dyrkheeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (N.S.D.); (O.I.L.)
| | - Olga A. Luzina
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (O.A.L.); (A.S.F.); (E.S.M.); (N.F.S.)
| | - Aleksandr S. Filimonov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (O.A.L.); (A.S.F.); (E.S.M.); (N.F.S.)
| | - Evgenii S. Mozhaitsev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (O.A.L.); (A.S.F.); (E.S.M.); (N.F.S.)
| | - Anastasia A. Malakhova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.A.M.); (S.P.M.); (S.M.Z.)
| | - Sergey P. Medvedev
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.A.M.); (S.P.M.); (S.M.Z.)
| | - Suren M. Zakian
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.A.M.); (S.P.M.); (S.M.Z.)
| | - Nariman F. Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (O.A.L.); (A.S.F.); (E.S.M.); (N.F.S.)
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (N.S.D.); (O.I.L.)
| |
Collapse
|
5
|
Zagnoli-Vieira G, Brazina J, Van Den Bogaert K, Huybrechts W, Molenaers G, Caldecott KW, Van Esch H. Inactivating TDP2 missense mutation in siblings with congenital abnormalities reminiscent of fanconi anemia. Hum Genet 2023; 142:1417-1427. [PMID: 37558815 PMCID: PMC10449949 DOI: 10.1007/s00439-023-02589-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/15/2023] [Indexed: 08/11/2023]
Abstract
Mutations in TDP2, encoding tyrosyl-DNA phosphodiesterase 2, have been associated with a syndromal form of autosomal recessive spinocerebellar ataxia, type 23 (SCAR23). This is a very rare and progressive neurodegenerative disorder described in only nine patients to date, and caused by splice site or nonsense mutations that result in greatly reduced or absent TDP2 protein. TDP2 is required for the rapid repair of DNA double-strand breaks induced by abortive DNA topoisomerase II (TOP2) activity, important for genetic stability in post-mitotic cells such as neurons. Here, we describe a sibship that is homozygous for the first TDP2 missense mutation (p.Glu152Lys) and which presents with clinical features overlapping both SCAR23 and Fanconi anemia (FA). We show that in contrast to previously reported SCAR23 patients, fibroblasts derived from the current patient retain significant levels of TDP2 protein. However, this protein is catalytically inactive, resulting in reduced rates of repair of TOP2-induced DNA double-strand breaks and cellular hypersensitivity to the TOP2 poison, etoposide. The TDP2-mutated patient-derived fibroblasts do not display increased chromosome breakage following treatment with DNA crosslinking agents, but both TDP2-mutated and FA cells exhibit increased chromosome breakage in response to etoposide. This suggests that the FA pathway is required in response to TOP2-induced DNA lesions, providing a possible explanation for the clinical overlap between FA and the current TDP2-mutated patients. When reviewing the relatively small number of patients with SCAR23 that have been reported, it is clear that the phenotype of such patients can extend beyond neurological features, indicating that the TDP2 protein influences not only neural homeostasis but also other tissues as well.
Collapse
Affiliation(s)
- Guido Zagnoli-Vieira
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, UK.
- Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge, CB2 1QN, UK.
| | - Jan Brazina
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| | - Kris Van Den Bogaert
- Center for Human Genetics, University Hospitals Leuven, Herestraat 49, 3000, Louvain, Belgium
| | - Wim Huybrechts
- Center for Human Genetics, University Hospitals Leuven, Herestraat 49, 3000, Louvain, Belgium
| | - Guy Molenaers
- Pediatric Orthopedics, Department of Orthopedics, University Hospitals Leuven, Herestraat 49, 3000, Louvain, Belgium
| | - Keith W Caldecott
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, UK.
| | - Hilde Van Esch
- Center for Human Genetics, University Hospitals Leuven, Herestraat 49, 3000, Louvain, Belgium.
| |
Collapse
|
6
|
Shimizu N, Hamada Y, Morozumi R, Yamamoto J, Iwai S, Sugiyama KI, Ide H, Tsuda M. Repair of topoisomerase 1-induced DNA damage by tyrosyl-DNA phosphodiesterase 2 (TDP2) is dependent on its magnesium binding. J Biol Chem 2023; 299:104988. [PMID: 37392847 PMCID: PMC10407441 DOI: 10.1016/j.jbc.2023.104988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023] Open
Abstract
Topoisomerases are enzymes that relax DNA supercoiling during replication and transcription. Camptothecin, a topoisomerase 1 (TOP1) inhibitor, and its analogs trap TOP1 at the 3'-end of DNA as a DNA-bound intermediate, resulting in DNA damage that can kill cells. Drugs with this mechanism of action are widely used to treat cancers. It has previously been shown that tyrosyl-DNA phosphodiesterase 1 (TDP1) repairs TOP1-induced DNA damage generated by camptothecin. In addition, tyrosyl-DNA phosphodiesterase 2 (TDP2) plays critical roles in repairing topoisomerase 2 (TOP2)-induced DNA damage at the 5'-end of DNA and in promoting the repair of TOP1-induced DNA damage in the absence of TDP1. However, the catalytic mechanism by which TDP2 processes TOP1-induced DNA damage has not been elucidated. In this study, we found that a similar catalytic mechanism underlies the repair of TOP1- and TOP2-induced DNA damage by TDP2, with Mg2+-TDP2 binding playing a role in both repair mechanisms. We show chain-terminating nucleoside analogs are incorporated into DNA at the 3'-end and abort DNA replication to kill cells. Furthermore, we found that Mg2+-TDP2 binding also contributes to the repair of incorporated chain-terminating nucleoside analogs. Overall, these findings reveal the role played by Mg2+-TDP2 binding in the repair of both 3'- and 5'-blocking DNA damage.
Collapse
Affiliation(s)
- Naoto Shimizu
- Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yusaku Hamada
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Ryosuke Morozumi
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Junpei Yamamoto
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Shigenori Iwai
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Kei-Ichi Sugiyama
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Hiroshi Ide
- Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.
| | - Masataka Tsuda
- Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan; Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan; Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan.
| |
Collapse
|
7
|
Jin N, Kan CM, Pei XM, Cheung WL, Ng SSM, Wong HT, Cheng HYL, Leung WW, Wong YN, Tsang HF, Chan AKC, Wong YKE, Cho WCS, Chan JKC, Tai WCS, Chan TF, Wong SCC, Yim AKY, Yu ACS. Cell-free circulating tumor RNAs in plasma as the potential prognostic biomarkers in colorectal cancer. Front Oncol 2023; 13:1134445. [PMID: 37091184 PMCID: PMC10115432 DOI: 10.3389/fonc.2023.1134445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/24/2023] [Indexed: 04/09/2023] Open
Abstract
BackgroundCell free RNA (cfRNA) contains transcript fragments from multiple cell types, making it useful for cancer detection in clinical settings. However, the pathophysiological origins of cfRNAs in plasma from colorectal cancer (CRC) patients remain unclear.MethodsTo identify the tissue-specific contributions of cfRNAs transcriptomic profile, we used a published single-cell transcriptomics profile to deconvolute cell type abundance among paired plasma samples from CRC patients who underwent tumor-ablative surgery. We further validated the differentially expressed cfRNAs in 5 pairs of CRC tumor samples and adjacent tissue samples as well as 3 additional CRC tumor samples using RNA-sequencing.ResultsThe transcriptomic component from intestinal secretory cells was significantly decreased in the in-house post-surgical cfRNA. The HPGD, PACS1, and TDP2 expression was consistent across cfRNA and tissue samples. Using the Cancer Genome Atlas (TCGA) CRC datasets, we were able to classify the patients into two groups with significantly different survival outcomes.ConclusionsThe three-gene signature holds promise in applying minimal residual disease (MRD) testing, which involves profiling remnants of cancer cells after or during treatment. Biomarkers identified in the present study need to be validated in a larger cohort of samples in order to ascertain their possible use in early diagnosis of CRC.
Collapse
Affiliation(s)
- Nana Jin
- R&D, Codex Genetics Limited, Hong Kong, Hong Kong SAR, China
| | - Chau-Ming Kan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Xiao Meng Pei
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Wing Lam Cheung
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Simon Siu Man Ng
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Heong Ting Wong
- Department of Pathology, Kiang Wu Hospital, Macau, Macau SAR, China
| | - Hennie Yuk-Lin Cheng
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Wing Wa Leung
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yee Ni Wong
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hin Fung Tsang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | | | - Yin Kwan Evelyn Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - William Chi Shing Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, Hong Kong SAR, China
| | | | - William Chi Shing Tai
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Ting-Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Sze Chuen Cesar Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- *Correspondence: Allen Chi-Shing Yu, ; Aldrin Kay-Yuen Yim, ; Sze Chuen Cesar Wong,
| | - Aldrin Kay-Yuen Yim
- R&D, Codex Genetics Limited, Hong Kong, Hong Kong SAR, China
- *Correspondence: Allen Chi-Shing Yu, ; Aldrin Kay-Yuen Yim, ; Sze Chuen Cesar Wong,
| | - Allen Chi-Shing Yu
- R&D, Codex Genetics Limited, Hong Kong, Hong Kong SAR, China
- *Correspondence: Allen Chi-Shing Yu, ; Aldrin Kay-Yuen Yim, ; Sze Chuen Cesar Wong,
| |
Collapse
|
8
|
Molecular basis for processing of topoisomerase 1-triggered DNA damage by Apn2/APE2. Cell Rep 2022; 41:111448. [DOI: 10.1016/j.celrep.2022.111448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 07/21/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022] Open
|
9
|
Bhandari N, Pfeiffer SC, Jaramillo-Lambert A. Characterization of N- and C-terminal endogenously tagged Tyrosyl-DNA phosphodiesterase 2 (TDPT-1) C. elegans strains. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000540. [PMID: 35622466 PMCID: PMC9010224 DOI: 10.17912/micropub.biology.000540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 11/09/2022]
Abstract
We have generated Tyrosyl-DNA phosphodiesterase 2 (TDPT-1) C. elegans strains where CRISPR/Cas9 was used to endogenously tag the protein at either the C- or N-terminus and validated the functionality of the resulting tagged TDPT-1 proteins. We have found that both the N-terminally tagged ( wrmScarlet::tdpt-1) and C-terminally tagged ( tdpt-1::3xflag ) worm TDPT-1 does not affect embryonic viability compared to wild type. Using the N-terminally tagged wrmScarlet::tdpt-1 strain we show, for the first time, that TDPT-1 is expressed in nuclei of the germ line and the soma. Moreover, we validate the expression of TDPT-1 at the protein level using the C-terminally tagged ( tdpt-1::3xflag ) strain.
Collapse
|
10
|
Crewe M, Madabhushi R. Topoisomerase-Mediated DNA Damage in Neurological Disorders. Front Aging Neurosci 2021; 13:751742. [PMID: 34899270 PMCID: PMC8656403 DOI: 10.3389/fnagi.2021.751742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/23/2021] [Indexed: 12/12/2022] Open
Abstract
The nervous system is vulnerable to genomic instability and mutations in DNA damage response factors lead to numerous developmental and progressive neurological disorders. Despite this, the sources and mechanisms of DNA damage that are most relevant to the development of neuronal dysfunction are poorly understood. The identification of primarily neurological abnormalities in patients with mutations in TDP1 and TDP2 suggest that topoisomerase-mediated DNA damage could be an important underlying source of neuronal dysfunction. Here we review the potential sources of topoisomerase-induced DNA damage in neurons, describe the cellular mechanisms that have evolved to repair such damage, and discuss the importance of these repair mechanisms for preventing neurological disorders.
Collapse
Affiliation(s)
| | - Ram Madabhushi
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
11
|
Swan RL, Cowell IG, Austin CA. Mechanisms to repair stalled Topoisomerase II-DNA covalent complexes. Mol Pharmacol 2021; 101:24-32. [PMID: 34689119 DOI: 10.1124/molpharm.121.000374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/11/2021] [Indexed: 11/22/2022] Open
Abstract
DNA topoisomerases regulate the topological state of DNA, relaxing DNA supercoils and resolving catenanes and knots that result from biological processes such as transcription and replication. DNA topoisomerase II (TOP2) enzymes achieve this by binding DNA and introducing an enzyme-bridged DNA double-strand break (DSB) where each protomer of the dimeric enzyme is covalently attached to the 5' end of the cleaved DNA via an active site tyrosine phosphodiester linkage. The enzyme then passes a second DNA duplex though the DNA break, before religation and release of the enzyme. However, this activity is potentially hazardous to the cell, as failure to complete religation leads to persistent TOP2 protein-DNA covalent complexes which are cytotoxic. Indeed, this property of topoisomerase has been exploited in cancer therapy in the form of topoisomerase poisons which block the religation stage of the reaction cycle, leading to an accumulation of topoisomerase-DNA adducts. A number of parallel cellular processes have been identified that lead to removal of these covalent TOP2-DNA complexes facilitating repair of the resulting protein-free DSB by standard DNA repair pathways. These pathways presumably arose to repair spontaneous stalled or poisoned TOP2-DNA complexes, but understanding their mechanisms also has implications for cancer therapy, particularly resistance to anti-cancer TOP2 poisons and the genotoxic side effects of these drugs. Here we review recent progress in the understanding of the processing to TOP2 DNA covalent complexes., The basic components and mechanisms plus the additional layer of complexity posed by the post-translational modifications that modulate these pathways. Significance Statement Multiple pathways have been reported for removal and repair of TOP2-DNA covalent complexes to ensure the timely and efficient repair of TOP2-DNA covalent adducts to protect the genome. Post-translational modifications such as ubiquitination and SUMOylation are involved in the regulation of TOP2-DNA complex repair. Small molecule inhibitors of these post translational modifications may help to improve outcomes of TOP2 poison chemotherapy, for example by increasing TOP2 poison cytotoxicity and reducing genotoxicity, but this remains to be determined.
Collapse
Affiliation(s)
- Rebecca L Swan
- Biosciences Institute, Newcastle University, United Kingdom
| | - Ian G Cowell
- Institute for Cell and Molecular Biosciences, Newcastle University, United Kingdom
| | | |
Collapse
|
12
|
Zagnoli-Vieira G, Caldecott KW. Untangling trapped topoisomerases with tyrosyl-DNA phosphodiesterases. DNA Repair (Amst) 2020; 94:102900. [PMID: 32653827 DOI: 10.1016/j.dnarep.2020.102900] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/14/2020] [Accepted: 06/14/2020] [Indexed: 02/08/2023]
Abstract
DNA topoisomerases alleviate the torsional stress that is generated by processes that are central to genome metabolism such as transcription and DNA replication. To do so, these enzymes generate an enzyme intermediate known as the cleavage complex in which the topoisomerase is covalently linked to the termini of a DNA single- or double-strand break. Whilst cleavage complexes are normally transient they can occasionally become abortive, creating protein-linked DNA breaks that threaten genome stability and cell survival; a process promoted and exploited in the cancer clinic by the use of topoisomerase 'poisons'. Here, we review the consequences to genome stability and human health of abortive topoisomerase-induced DNA breakage and the cellular pathways that cells have adopted to mitigate them, with particular focus on an important class of enzymes known as tyrosyl-DNA phosphodiesterases.
Collapse
Affiliation(s)
- Guido Zagnoli-Vieira
- Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge, CB2 1QN, UK.
| | - Keith W Caldecott
- Genome Damage Stability Centre, University of Sussex, Falmer Road, Brighton, BN1 9RQ, UK.
| |
Collapse
|
13
|
Schellenberg MJ, Appel CD, Riccio AA, Butler LR, Krahn JM, Liebermann JA, Cortés-Ledesma F, Williams RS. Ubiquitin stimulated reversal of topoisomerase 2 DNA-protein crosslinks by TDP2. Nucleic Acids Res 2020; 48:6310-6325. [PMID: 32356875 DOI: 10.1093/nar/gkaa318] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 03/30/2020] [Accepted: 04/20/2020] [Indexed: 11/12/2022] Open
Abstract
Tyrosyl-DNA phosphodiesterase 2 (TDP2) reverses Topoisomerase 2 DNA-protein crosslinks (TOP2-DPCs) in a direct-reversal pathway licensed by ZATTZNF451 SUMO2 E3 ligase and SUMOylation of TOP2. TDP2 also binds ubiquitin (Ub), but how Ub regulates TDP2 functions is unknown. Here, we show that TDP2 co-purifies with K63 and K27 poly-Ubiquitinated cellular proteins independently of, and separately from SUMOylated TOP2 complexes. Poly-ubiquitin chains of ≥ Ub3 stimulate TDP2 catalytic activity in nuclear extracts and enhance TDP2 binding of DNA-protein crosslinks in vitro. X-ray crystal structures and small-angle X-ray scattering analysis of TDP2-Ub complexes reveal that the TDP2 UBA domain binds K63-Ub3 in a 1:1 stoichiometric complex that relieves a UBA-regulated autoinhibitory state of TDP2. Our data indicates that that poly-Ub regulates TDP2-catalyzed TOP2-DPC removal, and TDP2 single nucleotide polymorphisms can disrupt the TDP2-Ubiquitin interface.
Collapse
Affiliation(s)
- Matthew J Schellenberg
- Structural Cell Biology Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, US Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - C Denise Appel
- Structural Cell Biology Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, US Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Amanda A Riccio
- Structural Cell Biology Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, US Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Logan R Butler
- Structural Cell Biology Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, US Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Juno M Krahn
- Structural Cell Biology Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, US Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Jenna A Liebermann
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla Universidad Pablo de Olavide-Junta de Andalucía, 41092 Sevilla, Spain
| | - Felipe Cortés-Ledesma
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla Universidad Pablo de Olavide-Junta de Andalucía, 41092 Sevilla, Spain.,Topology and DNA breaks Group, Spanish National Cancer Centre (CNIO), Madrid 28029, Spain
| | - R Scott Williams
- Structural Cell Biology Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, US Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| |
Collapse
|
14
|
Swan RL, Poh LLK, Cowell IG, Austin CA. Small Molecule Inhibitors Confirm Ubiquitin-Dependent Removal of TOP2-DNA Covalent Complexes. Mol Pharmacol 2020; 98:222-233. [PMID: 32587095 PMCID: PMC7416847 DOI: 10.1124/mol.119.118893] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 06/09/2020] [Indexed: 12/13/2022] Open
Abstract
DNA topoisomerase II (TOP2) is required for the unwinding and decatenation of DNA through the induction of an enzyme-linked double-strand break (DSB) in one DNA molecule and passage of another intact DNA duplex through the break. Anticancer drugs targeting TOP2 (TOP2 poisons) prevent religation of the DSB and stabilize a normally transient intermediate of the TOP2 reaction mechanism called the TOP2-DNA covalent complex. Subsequently, TOP2 remains covalently bound to each end of the enzyme-bridged DSB, which cannot be repaired until TOP2 is removed from the DNA. One removal mechanism involves the proteasomal degradation of the TOP2 protein, leading to the liberation of a protein-free DSB. Proteasomal degradation is often regulated by protein ubiquitination, and here we show that inhibition of ubiquitin-activating enzymes reduces the processing of TOP2A- and TOP2B-DNA complexes. Depletion or inhibition of ubiquitin-activating enzymes indicated that ubiquitination was required for the liberation of etoposide-induced protein-free DSBs and is therefore an important layer of regulation in the repair of TOP2 poison-induced DNA damage. TOP2-DNA complexes stabilized by etoposide were shown to be conjugated to ubiquitin, and this was reduced by inhibition or depletion of ubiquitin-activating enzymes. SIGNIFICANCE STATEMENT: There is currently great clinical interest in the ubiquitin-proteasome system and ongoing development of specific inhibitors. The results in this paper show that the therapeutic cytotoxicity of DNA topoisomerase II (TOP2) poisons can be enhanced through combination therapy with ubiquitin-activating enzyme inhibitors or by specific inhibition of the BMI/RING1A ubiquitin ligase, which would lead to increased cellular accumulation or persistence of TOP2-DNA complexes.
Collapse
Affiliation(s)
- Rebecca L Swan
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Luke L K Poh
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ian G Cowell
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Caroline A Austin
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
15
|
Dang X, Ogbu SC, Zhao J, Nguyen LNT, Cao D, Nguyen LN, Khanal S, Schank M, Thakuri BKC, Wu XY, Morrison ZD, Zhang J, Li Z, El Gazzar M, Ning S, Wang L, Wang Z, Moorman JP, Yao ZQ. Inhibition of topoisomerase IIA (Top2α) induces telomeric DNA damage and T cell dysfunction during chronic viral infection. Cell Death Dis 2020; 11:196. [PMID: 32193368 PMCID: PMC7081277 DOI: 10.1038/s41419-020-2395-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 02/02/2023]
Abstract
T cells play a critical role in controlling viral infection; however, the mechanisms regulating their responses remain incompletely understood. Here, we investigated the role of topoisomerase IIA (Top2α, an enzyme that is essential in resolving entangled DNA strands during replication) in telomeric DNA damage and T cell dysfunction during viral infection. We demonstrated that T cells derived from patients with chronic viral (HBV, HCV, and HIV) infection had lower Top2α protein levels and enzymatic activity, along with an accumulation of the Top2α cleavage complex (Top2cc) in genomic DNA. In addition, T cells from virally infected subjects with lower Top2α levels were vulnerable to Top2α inhibitor-induced cell apoptosis, indicating an important role for Top2α in preventing DNA topological disruption and cell death. Using Top2α inhibitor (ICRF193 or Etoposide)-treated primary T cells as a model, we demonstrated that disrupting the DNA topology promoted DNA damage and T cell apoptosis via Top2cc accumulation that is associated with protein-DNA breaks (PDB) at genomic DNA. Disruption of the DNA topology was likely due to diminished expression of tyrosyl-DNA phosphodiesterase 2 (TDP2), which was inhibited in T cells in vitro by Top2α inhibitor and in vivo by chronic viral infection. These results suggest that immune-evasive viruses (HBV, HCV, and HIV) can disrupt T cell DNA topology as a mechanism of dysregulating host immunity and establishing chronic infection. Thus, restoring the DNA topologic machinery may serve as a novel strategy to protect T cells from unwanted DNA damage and to maintain immune competence.
Collapse
Affiliation(s)
- Xindi Dang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Stella C Ogbu
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Juan Zhao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Lam Ngoc Thao Nguyen
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Dechao Cao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Lam Nhat Nguyen
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Sushant Khanal
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Madison Schank
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Bal Krishna Chand Thakuri
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Xiao Y Wu
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Zheng D Morrison
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Jinyu Zhang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Zhengke Li
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Mohamed El Gazzar
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Shunbin Ning
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Ling Wang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Zhengqiang Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Jonathan P Moorman
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
- Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN, 37614, USA
| | - Zhi Q Yao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA.
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA.
- Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN, 37614, USA.
| |
Collapse
|
16
|
Sun Y, Saha S, Wang W, Saha LK, Huang SYN, Pommier Y. Excision repair of topoisomerase DNA-protein crosslinks (TOP-DPC). DNA Repair (Amst) 2020; 89:102837. [PMID: 32200233 DOI: 10.1016/j.dnarep.2020.102837] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 12/13/2022]
Abstract
Topoisomerases are essential enzymes solving DNA topological problems such as supercoils, knots and catenanes that arise from replication, transcription, chromatin remodeling and other nucleic acid metabolic processes. They are also the targets of widely used anticancer drugs (e.g. topotecan, irinotecan, enhertu, etoposide, doxorubicin, mitoxantrone) and fluoroquinolone antibiotics (e.g. ciprofloxacin and levofloxacin). Topoisomerases manipulate DNA topology by cleaving one DNA strand (TOP1 and TOP3 enzymes) or both in concert (TOP2 enzymes) through the formation of transient enzyme-DNA cleavage complexes (TOPcc) with phosphotyrosyl linkages between DNA ends and the catalytic tyrosyl residue of the enzymes. Failure in the self-resealing of TOPcc results in persistent TOPcc (which we refer it to as topoisomerase DNA-protein crosslinks (TOP-DPC)) that threaten genome integrity and lead to cancers and neurodegenerative diseases. The cell prevents the accumulation of topoisomerase-mediated DNA damage by excising TOP-DPC and ligating the associated breaks using multiple pathways conserved in eukaryotes. Tyrosyl-DNA phosphodiesterases (TDP1 and TDP2) cleave the tyrosyl-DNA bonds whereas structure-specific endonucleases such as Mre11 and XPF (Rad1) incise the DNA phosphodiester backbone to remove the TOP-DPC along with the adjacent DNA segment. The proteasome and metalloproteases of the WSS1/Spartan family typify proteolytic repair pathways that debulk TOP-DPC to make the peptide-DNA bonds accessible to the TDPs and endonucleases. The purpose of this review is to summarize our current understanding of how the cell excises TOP-DPC and why, when and where the cell recruits one specific mechanism for repairing topoisomerase-mediated DNA damage, acquiring resistance to therapeutic topoisomerase inhibitors and avoiding genomic instability, cancers and neurodegenerative diseases.
Collapse
Affiliation(s)
- Yilun Sun
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Sourav Saha
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Wenjie Wang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Liton Kumar Saha
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Shar-Yin Naomi Huang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
17
|
Szlachta K, Raimer HM, Comeau LD, Wang YH. CNCC: an analysis tool to determine genome-wide DNA break end structure at single-nucleotide resolution. BMC Genomics 2020; 21:25. [PMID: 31914926 PMCID: PMC6950916 DOI: 10.1186/s12864-019-6436-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/26/2019] [Indexed: 12/11/2022] Open
Abstract
Background DNA double-stranded breaks (DSBs) are potentially deleterious events in a cell. The end structures (blunt, 3′- and 5′-overhangs) at DSB sites contribute to the fate of their repair and provide critical information concerning the consequences of the damage. Therefore, there has been a recent eruption of DNA break mapping and sequencing methods that aim to map at single-nucleotide resolution where breaks are generated genome-wide. These methods provide high resolution data for the location of DSBs, which can encode the type of end-structure present at these breaks. However, genome-wide analysis of the resulting end structures has not been investigated following these sequencing methods. Results To address this analysis gap, we develop the use of a coverage-normalized cross correlation analysis (CNCC) to process the high-precision genome-wide break mapping data, and determine genome-wide break end structure distributions at single-nucleotide resolution. We take advantage of the single-nucleotide position and the knowledge of strandness from every mapped break to analyze the relative shifts between positive and negative strand encoded break nucleotides. By applying CNCC we can identify the most abundant end structures captured by a break mapping technique, and further can make comparisons between different samples and treatments. We validate our analysis with restriction enzyme digestions of genomic DNA and establish the sensitivity of the analysis using end structures that only exist as a minor fraction of total breaks. Finally, we demonstrate the versatility of our analysis by applying CNCC to the breaks resulting after treatment with etoposide and study the variety of resulting end structures. Conclusion For the first time, on a genome-wide scale, our analysis revealed the increase in the 5′ to 3′ end resection following etoposide treatment, and the global progression of the resection. Furthermore, our method distinguished the change in the pattern of DSB end structure with increasing doses of the drug. The ability of this method to determine DNA break end structures without a priori knowledge of break sequences or genomic position should have broad applications in understanding genome instability.
Collapse
Affiliation(s)
- Karol Szlachta
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, 22903-0733, USA
| | - Heather M Raimer
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, 22903-0733, USA
| | - Laurey D Comeau
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, 22903-0733, USA
| | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, 22903-0733, USA.
| |
Collapse
|
18
|
Riccio AA, Schellenberg MJ, Williams RS. Molecular mechanisms of topoisomerase 2 DNA-protein crosslink resolution. Cell Mol Life Sci 2020; 77:81-91. [PMID: 31728578 PMCID: PMC6960353 DOI: 10.1007/s00018-019-03367-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/11/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022]
Abstract
The compaction of DNA and the continuous action of DNA transactions, including transcription and DNA replication, create complex DNA topologies that require Type IIA Topoisomerases, which resolve DNA topological strain and control genome dynamics. The human TOP2 enzymes catalyze their reactions via formation of a reversible covalent enzyme DNA-protein crosslink, the TOP2 cleavage complex (TOP2cc). Spurious interactions of TOP2 with DNA damage, environmental toxicants and chemotherapeutic "poisons" perturbs the TOP2 reaction cycle, leading to an accumulation of DNA-protein crosslinks, and ultimately, genomic instability and cell death. Emerging evidence shows that TOP2-DNA protein crosslink (DPC) repair entails multiple strand break repair activities, such as removal of the poisoned TOP2 protein and rejoining of the DNA ends through homologous recombination (HR) or non-homologous end joining (NHEJ). Herein, we discuss the molecular mechanisms of TOP2-DPC resolution, with specific emphasis on the recently uncovered ZATTZnf451-licensed TDP2-catalyzed TOP2-DPC reversal mechanism.
Collapse
Affiliation(s)
- Amanda A Riccio
- Department of Health and Human Services, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, NC, USA
| | - Matthew J Schellenberg
- Department of Health and Human Services, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, NC, USA
| | - R Scott Williams
- Department of Health and Human Services, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, NC, USA.
| |
Collapse
|
19
|
Atkin ND, Raimer HM, Wang YH. Broken by the Cut: A Journey into the Role of Topoisomerase II in DNA Fragility. Genes (Basel) 2019; 10:E791. [PMID: 31614754 PMCID: PMC6826763 DOI: 10.3390/genes10100791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/05/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
DNA topoisomerase II (TOP2) plays a critical role in many processes such as replication and transcription, where it resolves DNA structures and relieves torsional stress. Recent evidence demonstrated the association of TOP2 with topologically associated domains (TAD) boundaries and CCCTC-binding factor (CTCF) binding sites. At these sites, TOP2 promotes interactions between enhancers and gene promoters, and relieves torsional stress that accumulates at these physical barriers. Interestingly, in executing its enzymatic function, TOP2 contributes to DNA fragility through re-ligation failure, which results in persistent DNA breaks when unrepaired or illegitimately repaired. Here, we discuss the biological processes for which TOP2 is required and the steps at which it can introduce DNA breaks. We describe the repair processes that follow removal of TOP2 adducts and the resultant broken DNA ends, and present how these processes can contribute to disease-associated mutations. Furthermore, we examine the involvement of TOP2-induced breaks in the formation of oncogenic translocations of leukemia and papillary thyroid cancer, as well as the role of TOP2 and proteins which repair TOP2 adducts in other diseases. The participation of TOP2 in generating persistent DNA breaks and leading to diseases such as cancer, could have an impact on disease treatment and prevention.
Collapse
Affiliation(s)
- Naomi D Atkin
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| | - Heather M Raimer
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
20
|
Abstract
DNA topoisomerases are enzymes that catalyze changes in the torsional and flexural strain of DNA molecules. Earlier studies implicated these enzymes in a variety of processes in both prokaryotes and eukaryotes, including DNA replication, transcription, recombination, and chromosome segregation. Studies performed over the past 3 years have provided new insight into the roles of various topoisomerases in maintaining eukaryotic chromosome structure and facilitating the decatenation of daughter chromosomes at cell division. In addition, recent studies have demonstrated that the incorporation of ribonucleotides into DNA results in trapping of topoisomerase I (TOP1)–DNA covalent complexes during aborted ribonucleotide removal. Importantly, such trapped TOP1–DNA covalent complexes, formed either during ribonucleotide removal or as a consequence of drug action, activate several repair processes, including processes involving the recently described nuclear proteases SPARTAN and GCNA-1. A variety of new TOP1 inhibitors and formulations, including antibody–drug conjugates and PEGylated complexes, exert their anticancer effects by also trapping these TOP1–DNA covalent complexes. Here we review recent developments and identify further questions raised by these new findings.
Collapse
Affiliation(s)
- Mary-Ann Bjornsti
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, 35294-0019, USA
| | - Scott H Kaufmann
- Departments of Oncology and Molecular Pharmacolgy & Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
21
|
Bazlekowa-Karaban M, Prorok P, Baconnais S, Taipakova S, Akishev Z, Zembrzuska D, Popov AV, Endutkin AV, Groisman R, Ishchenko AA, Matkarimov BT, Bissenbaev A, Le Cam E, Zharkov DO, Tudek B, Saparbaev M. Mechanism of stimulation of DNA binding of the transcription factors by human apurinic/apyrimidinic endonuclease 1, APE1. DNA Repair (Amst) 2019; 82:102698. [PMID: 31518879 DOI: 10.1016/j.dnarep.2019.102698] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 08/11/2019] [Accepted: 08/31/2019] [Indexed: 12/22/2022]
Abstract
Aerobic respiration generates reactive oxygen species (ROS), which can damage nucleic acids, proteins and lipids. A number of transcription factors (TFs) contain redox-sensitive cysteine residues at their DNA-binding sites, hence ROS-induced thiol oxidation strongly inhibits their recognition of the cognate DNA sequences. Major human apurinic/apyrimidinic (AP) endonuclease 1 (APE1/APEX1/HAP-1), referred also as a redox factor 1 (Ref-1), stimulates the DNA binding activities of the oxidized TFs such as AP-1 and NF-κB. Also, APE1 participates in the base excision repair (BER) and nucleotide incision repair (NIR) pathways to remove oxidative DNA base damage. At present, the molecular mechanism underlying the TF-stimulating/redox function of APE1 and its biological role remains disputed. Here, we provide evidence that, instead of direct cysteine reduction in TFs by APE1, APE1-catalyzed NIR and TF-stimulating activities may be based on transient cooperative binding of APE1 to DNA and induction of conformational changes in the helix. The structure of DNA duplex strongly influences NIR and TF-stimulating activities. Homologous plant AP endonucleases lacking conserved cysteine residues stimulate DNA binding of the p50 subunit of NF-κB. APE1 acts synergistically with low-molecular-weight reducing agents on TFs. Finally, APE1 stimulates DNA binding of the redox-insensitive p50-C62S mutant protein. Electron microscopy imaging of APE1 complexes with DNA revealed preferential polymerization of APE1 on the gapped and intrinsically curved DNA duplexes. Molecular modeling offers a structural explanation how full-length APE1 can oligomerize on DNA. In conclusion, we propose that DNA-directed APE1 oligomerization can be regarded as a substitute for diffusion of APE1 along the DNA contour to probe for anisotropic flexibility. APE1 oligomers exacerbate pre-existing distortions in DNA and enable both NIR activity and DNA binding by TFs regardless of their oxidation state.
Collapse
Affiliation(s)
- Milena Bazlekowa-Karaban
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale Contre le Cancer, CNRS UMR8200, Université Paris-Sud, Université Paris-Saclay, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Paulina Prorok
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale Contre le Cancer, CNRS UMR8200, Université Paris-Sud, Université Paris-Saclay, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; Institute of Human Genetics, UMR 9002, CNRS - University of Montpellier, Replication and Genome Dynamics, 141 rue de la Cardonille, 34396, Montpellier, France
| | - Sonia Baconnais
- CNRS UMR8126, Université Paris-Sud, Université Paris-Saclay, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France
| | - Sabira Taipakova
- Department of Molecular Biology and Genetics, Faculty of Biology, al-Farabi Kazakh National University, 0530040, Almaty, Kazakhstan
| | - Zhiger Akishev
- Department of Molecular Biology and Genetics, Faculty of Biology, al-Farabi Kazakh National University, 0530040, Almaty, Kazakhstan
| | - Dominika Zembrzuska
- Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Alexander V Popov
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Anton V Endutkin
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Regina Groisman
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale Contre le Cancer, CNRS UMR8200, Université Paris-Sud, Université Paris-Saclay, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France
| | - Alexander A Ishchenko
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale Contre le Cancer, CNRS UMR8200, Université Paris-Sud, Université Paris-Saclay, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France
| | - Bakhyt T Matkarimov
- National laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Amangeldy Bissenbaev
- Department of Molecular Biology and Genetics, Faculty of Biology, al-Farabi Kazakh National University, 0530040, Almaty, Kazakhstan
| | - Eric Le Cam
- CNRS UMR8126, Université Paris-Sud, Université Paris-Saclay, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France
| | - Dmitry O Zharkov
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Barbara Tudek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Murat Saparbaev
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale Contre le Cancer, CNRS UMR8200, Université Paris-Sud, Université Paris-Saclay, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France.
| |
Collapse
|
22
|
Kawale AS, Povirk LF. Tyrosyl-DNA phosphodiesterases: rescuing the genome from the risks of relaxation. Nucleic Acids Res 2019; 46:520-537. [PMID: 29216365 PMCID: PMC5778467 DOI: 10.1093/nar/gkx1219] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022] Open
Abstract
Tyrosyl–DNA Phosphodiesterases 1 (TDP1) and 2 (TDP2) are eukaryotic enzymes that clean-up after aberrant topoisomerase activity. While TDP1 hydrolyzes phosphotyrosyl peptides emanating from trapped topoisomerase I (Top I) from the 3′ DNA ends, topoisomerase 2 (Top II)-induced 5′-phosphotyrosyl residues are processed by TDP2. Even though the canonical functions of TDP1 and TDP2 are complementary, they exhibit little structural or sequence similarity. Homozygous mutations in genes encoding these enzymes lead to the development of severe neurodegenerative conditions due to the accumulation of transcription-dependent topoisomerase cleavage complexes underscoring the biological significance of these enzymes in the repair of topoisomerase–DNA lesions in the nervous system. TDP1 can promiscuously process several blocked 3′ ends generated by DNA damaging agents and nucleoside analogs in addition to hydrolyzing 3′-phosphotyrosyl residues. In addition, deficiency of these enzymes causes hypersensitivity to anti-tumor topoisomerase poisons. Thus, TDP1 and TDP2 are promising therapeutic targets and their inhibitors are expected to significantly synergize the effects of current anti-tumor therapies including topoisomerase poisons and other DNA damaging agents. This review covers the structural aspects, biology and regulation of these enzymes, along with ongoing developments in the process of discovering safe and effective TDP inhibitors.
Collapse
Affiliation(s)
- Ajinkya S Kawale
- Department of Pharmacology and Toxicology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Lawrence F Povirk
- Department of Pharmacology and Toxicology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
23
|
Yu LM, Hu Z, Chen Y, Ravji A, Lopez S, Plescia CB, Yu Q, Yang H, Abdelmalak M, Saha S, Agama K, Kiselev E, Marchand C, Pommier Y, An LK. Synthesis and structure-activity relationship of furoquinolinediones as inhibitors of Tyrosyl-DNA phosphodiesterase 2 (TDP2). Eur J Med Chem 2018; 151:777-796. [PMID: 29677635 DOI: 10.1016/j.ejmech.2018.04.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 10/17/2022]
Abstract
Tyrosyl-DNA phosphodiesterase 2 (TDP2) is a recently discovered enzyme specifically repairing topoisomerase II (TOP2)-mediated DNA damage. It has been shown that inhibition of TDP2 synergize with TOP2 inhibitors. Herein, we report the discovery of the furoquinolinedione chemotype as a suitable skeleton for the development of selective TDP2 inhibitors. Compound 1 was identified as a TDP2 inhibitor as a result of screening our in-house compound library for compounds selective for TDP2 vs. TDP1. Further SAR studies provide several selective TDP2 inhibitors at low-micromolar range. The most potent compound 74 shows inhibitory activity with IC50 of 1.9 and 2.1 μM against recombinant TDP2 and TDP2 in whole cell extracts (WCE), respectively.
Collapse
Affiliation(s)
- Le-Mao Yu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhu Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yu Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Azhar Ravji
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Sophia Lopez
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Caroline B Plescia
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Qian Yu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hui Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Monica Abdelmalak
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Sourav Saha
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Keli Agama
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Evgeny Kiselev
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Christophe Marchand
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Lin-Kun An
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
24
|
Maciejewski S, Ullmer W, Semler BL. VPg unlinkase/TDP2 in cardiovirus infected cells: Re-localization and proteolytic cleavage. Virology 2018; 516:139-146. [PMID: 29353210 DOI: 10.1016/j.virol.2018.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/05/2018] [Accepted: 01/09/2018] [Indexed: 10/18/2022]
Abstract
Cardioviruses cause diseases in many animals including, in rare cases, humans. Although they share common features with all picornaviruses, cardioviruses have unique properties that distinguish them from other family members, including enteroviruses. One feature shared by all picornaviruses is the covalent attachment of VPg to the 5' end of genomic RNA via a phosphotyrosyl linkage. For enteroviruses, this linkage is cleaved by a host cell protein, TDP2. Since TDP2 is divergently required during enterovirus infections, we determined if TDP2 is necessary during infection by the prototype cardiovirus, EMCV. We found that EMCV yields are reduced in the absence of TDP2. We observed a decrease in viral protein accumulation and viral RNA replication in the absence of TDP2. In contrast to enterovirus infections, we found that TDP2 is modified at peak times of EMCV infection. This finding suggests a unique mechanism for cardioviruses to regulate TDP2 activity during infection.
Collapse
Affiliation(s)
- Sonia Maciejewski
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Wendy Ullmer
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Bert L Semler
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
25
|
High-fidelity DNA replication in Mycobacterium tuberculosis relies on a trinuclear zinc center. Nat Commun 2017; 8:855. [PMID: 29021523 PMCID: PMC5636811 DOI: 10.1038/s41467-017-00886-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/02/2017] [Indexed: 01/07/2023] Open
Abstract
High-fidelity DNA replication depends on a proofreading 3′–5′ exonuclease that is associated with the replicative DNA polymerase. The replicative DNA polymerase DnaE1 from the major pathogen Mycobacterium tuberculosis (Mtb) uses its intrinsic PHP-exonuclease that is distinct from the canonical DEDD exonucleases found in the Escherichia coli and eukaryotic replisomes. The mechanism of the PHP-exonuclease is not known. Here, we present the crystal structure of the Mtb DnaE1 polymerase. The PHP-exonuclease has a trinuclear zinc center, coordinated by nine conserved residues. Cryo-EM analysis reveals the entry path of the primer strand in the PHP-exonuclease active site. Furthermore, the PHP-exonuclease shows a striking similarity to E. coli endonuclease IV, which provides clues regarding the mechanism of action. Altogether, this work provides important insights into the PHP-exonuclease and reveals unique properties that make it an attractive target for novel anti-mycobacterial drugs. The polymerase and histidinol phosphatase (PHP) domain in the DNA polymerase DnaE1 is essential for mycobacterial high-fidelity DNA replication. Here, the authors determine the DnaE1 crystal structure, which reveals the PHP-exonuclease mechanism that can be exploited for antibiotic development.
Collapse
|
26
|
Schellenberg MJ, Lieberman JA, Herrero-Ruiz A, Butler LR, Williams JG, Muñoz-Cabello AM, Mueller GA, London RE, Cortés-Ledesma F, Williams RS. ZATT (ZNF451)-mediated resolution of topoisomerase 2 DNA-protein cross-links. Science 2017; 357:1412-1416. [PMID: 28912134 DOI: 10.1126/science.aam6468] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 08/24/2017] [Indexed: 12/19/2022]
Abstract
Topoisomerase 2 (TOP2) DNA transactions proceed via formation of the TOP2 cleavage complex (TOP2cc), a covalent enzyme-DNA reaction intermediate that is vulnerable to trapping by potent anticancer TOP2 drugs. How genotoxic TOP2 DNA-protein cross-links are resolved is unclear. We found that the SUMO (small ubiquitin-related modifier) ligase ZATT (ZNF451) is a multifunctional DNA repair factor that controls cellular responses to TOP2 damage. ZATT binding to TOP2cc facilitates a proteasome-independent tyrosyl-DNA phosphodiesterase 2 (TDP2) hydrolase activity on stalled TOP2cc. The ZATT SUMO ligase activity further promotes TDP2 interactions with SUMOylated TOP2, regulating efficient TDP2 recruitment through a "split-SIM" SUMO2 engagement platform. These findings uncover a ZATT-TDP2-catalyzed and SUMO2-modulated pathway for direct resolution of TOP2cc.
Collapse
Affiliation(s)
- Matthew J Schellenberg
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709, USA
| | - Jenna Ariel Lieberman
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla Universidad Pablo de Olavide, 41092 Sevilla, Spain
| | - Andrés Herrero-Ruiz
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla Universidad Pablo de Olavide, 41092 Sevilla, Spain
| | - Logan R Butler
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709, USA
| | - Jason G Williams
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Ana M Muñoz-Cabello
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla Universidad Pablo de Olavide, 41092 Sevilla, Spain
| | - Geoffrey A Mueller
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709, USA
| | - Robert E London
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709, USA
| | - Felipe Cortés-Ledesma
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla Universidad Pablo de Olavide, 41092 Sevilla, Spain.
| | - R Scott Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709, USA.
| |
Collapse
|