1
|
Armingol E, Baghdassarian HM, Lewis NE. The diversification of methods for studying cell-cell interactions and communication. Nat Rev Genet 2024; 25:381-400. [PMID: 38238518 PMCID: PMC11139546 DOI: 10.1038/s41576-023-00685-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 05/20/2024]
Abstract
No cell lives in a vacuum, and the molecular interactions between cells define most phenotypes. Transcriptomics provides rich information to infer cell-cell interactions and communication, thus accelerating the discovery of the roles of cells within their communities. Such research relies heavily on algorithms that infer which cells are interacting and the ligands and receptors involved. Specific pressures on different research niches are driving the evolution of next-generation computational tools, enabling new conceptual opportunities and technological advances. More sophisticated algorithms now account for the heterogeneity and spatial organization of cells, multiple ligand types and intracellular signalling events, and enable the use of larger and more complex datasets, including single-cell and spatial transcriptomics. Similarly, new high-throughput experimental methods are increasing the number and resolution of interactions that can be analysed simultaneously. Here, we explore recent progress in cell-cell interaction research and highlight the diversification of the next generation of tools, which have yielded a rich ecosystem of tools for different applications and are enabling invaluable discoveries.
Collapse
Affiliation(s)
- Erick Armingol
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA.
- Department of Paediatrics, University of California, San Diego, La Jolla, CA, USA.
| | - Hratch M Baghdassarian
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Paediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Nathan E Lewis
- Department of Paediatrics, University of California, San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Wang Y, Zhang X, Wang Z. Cellular barcoding: From developmental tracing to anti-tumor drug discovery. Cancer Lett 2023:216281. [PMID: 37336285 DOI: 10.1016/j.canlet.2023.216281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/31/2023] [Accepted: 06/10/2023] [Indexed: 06/21/2023]
Abstract
Clonal evolution has gained immense attention in explaining cancer cell status, history, and fate during cancer progression. Current single-cell or spatial transcriptome technologies have broadened our understanding of various mechanisms underlying cancer initiation, relapse, and drug resistance. However, technical challenges still hinder a better understanding of the dynamics of distinctive phenotypic states and abnormal trajectories from normal physiological transition to malignant stages. Cellular barcoding enabled lineage tracing on parallelly massive cells at single-cell resolution through different mechanisms lately, enabling new insights into exploring developmental trajectories, cancer progression, and targeted therapies. This review summarizes the latest noteworthy and robust strategies for different types of cellular barcodes. To introduce the major characteristics, advantages and limitations of these different strategies, this review will further guide in choosing or improving cellular barcoding technologies and their applications in cancer research.
Collapse
Affiliation(s)
- Yuqing Wang
- Medical Center of Hematology, The Second Affiliated Hospital, Army Medical University, Chongqing, 40037, China; State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 40037, China
| | - Xi Zhang
- Medical Center of Hematology, The Second Affiliated Hospital, Army Medical University, Chongqing, 40037, China; State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 40037, China; Jinfeng Laboratory, Chongqing, 401329, China.
| | - Zheng Wang
- Medical Center of Hematology, The Second Affiliated Hospital, Army Medical University, Chongqing, 40037, China; State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 40037, China; Bio-Med Informatics Research Center & Clinical Research Center, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China; Jinfeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
3
|
Herholt A, Sahoo VK, Popovic L, Wehr MC, Rossner MJ. Dissecting intercellular and intracellular signaling networks with barcoded genetic tools. Curr Opin Chem Biol 2021; 66:102091. [PMID: 34644670 DOI: 10.1016/j.cbpa.2021.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/25/2021] [Accepted: 09/03/2021] [Indexed: 11/19/2022]
Abstract
The power of next-generation sequencing has stimulated the development of many analysis techniques for transcriptomics and genomics. More recently, the concept of 'molecular barcoding' has broadened the spectrum of sequencing-based applications to dissect different aspects of intracellular and intercellular signaling. In these assay formats, barcode reporters replace standard reporter genes. The virtually infinitive number of expressed barcode sequences allows high levels of multiplexing, hence accelerating experimental progress. Furthermore, reporter barcodes are used to quantitatively monitor a variety of biological events in living cells which has already provided much insight into complex cellular signaling and will further increase our knowledge in the future.
Collapse
Affiliation(s)
- Alexander Herholt
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany; Systasy Bioscience GmbH, Balanstr. 6, 81669 Munich, Germany
| | - Vivek K Sahoo
- Systasy Bioscience GmbH, Balanstr. 6, 81669 Munich, Germany
| | - Luksa Popovic
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany; Systasy Bioscience GmbH, Balanstr. 6, 81669 Munich, Germany
| | - Michael C Wehr
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany; Systasy Bioscience GmbH, Balanstr. 6, 81669 Munich, Germany
| | - Moritz J Rossner
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany.
| |
Collapse
|
4
|
Efficient retroelement-mediated DNA writing in bacteria. Cell Syst 2021; 12:860-872.e5. [PMID: 34358440 DOI: 10.1016/j.cels.2021.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 11/03/2020] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
The ability to efficiently and dynamically change information stored in genomes would enable powerful strategies for studying cell biology and controlling cellular phenotypes. Current recombineering-mediated DNA writing platforms in bacteria are limited to specific laboratory conditions, often suffer from suboptimal editing efficiencies, and are not suitable for in situ applications. To overcome these limitations, we engineered a retroelement-mediated DNA writing system that enables efficient and precise editing of bacterial genomes without the requirement for target-specific elements or selection. We demonstrate that this DNA writing platform enables a broad range of applications, including efficient, scarless, and cis-element-independent editing of targeted microbial genomes within complex communities, the high-throughput mapping of spatial information and cellular interactions into DNA memory, and the continuous evolution of cellular traits.
Collapse
|
5
|
Timonidis N, Tiesinga PHE. Progress towards a cellularly resolved mouse mesoconnectome is empowered by data fusion and new neuroanatomy techniques. Neurosci Biobehav Rev 2021; 128:569-591. [PMID: 34119523 DOI: 10.1016/j.neubiorev.2021.06.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/02/2021] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
Over the past decade there has been a rapid improvement in techniques for obtaining large-scale cellular level data related to the mouse brain connectome. However, a detailed mapping of cell-type-specific projection patterns is lacking, which would, for instance, allow us to study the role of circuit motifs in cognitive processes. In this work, we review advanced neuroanatomical and data fusion techniques within the context of a proposed Multimodal Connectomic Integration Framework for augmenting the cellularly resolved mouse mesoconnectome. First, we emphasize the importance of registering data modalities to a common reference atlas. We then review a number of novel experimental techniques that can provide data for characterizing cell-types in the mouse brain. Furthermore, we examine a number of data integration strategies, which involve fine-grained cell-type classification, spatial inference of cell densities, latent variable models for the mesoconnectome and multi-modal factorisation. Finally, we discuss a number of use cases which depend on connectome augmentation techniques, such as model simulations of functional connectivity and generating mechanistic hypotheses for animal disease models.
Collapse
Affiliation(s)
- Nestor Timonidis
- Neuroinformatics department, Donders Centre for Neuroscience, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Paul H E Tiesinga
- Neuroinformatics department, Donders Centre for Neuroscience, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
6
|
Sun YC, Chen X, Fischer S, Lu S, Zhan H, Gillis J, Zador AM. Integrating barcoded neuroanatomy with spatial transcriptional profiling enables identification of gene correlates of projections. Nat Neurosci 2021; 24:873-885. [PMID: 33972801 PMCID: PMC8178227 DOI: 10.1038/s41593-021-00842-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/19/2021] [Indexed: 02/07/2023]
Abstract
Functional circuits consist of neurons with diverse axonal projections and gene expression. Understanding the molecular signature of projections requires high-throughput interrogation of both gene expression and projections to multiple targets in the same cells at cellular resolution, which is difficult to achieve using current technology. Here, we introduce BARseq2, a technique that simultaneously maps projections and detects multiplexed gene expression by in situ sequencing. We determined the expression of cadherins and cell-type markers in 29,933 cells and the projections of 3,164 cells in both the mouse motor cortex and auditory cortex. Associating gene expression and projections in 1,349 neurons revealed shared cadherin signatures of homologous projections across the two cortical areas. These cadherins were enriched across multiple branches of the transcriptomic taxonomy. By correlating multigene expression and projections to many targets in single neurons with high throughput, BARseq2 provides a potential path to uncovering the molecular logic underlying neuronal circuits.
Collapse
Affiliation(s)
- Yu-Chi Sun
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Xiaoyin Chen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| | | | - Shaina Lu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Huiqing Zhan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Jesse Gillis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | |
Collapse
|
7
|
Wu X, Zhang Q, Gong L, He M. Sequencing-Based High-Throughput Neuroanatomy: From Mapseq to Bricseq and Beyond. Neurosci Bull 2021; 37:746-750. [PMID: 33683648 PMCID: PMC8099946 DOI: 10.1007/s12264-021-00646-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/06/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
- Xiaoyang Wu
- Department of Neurology, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qi Zhang
- Department of Neurology, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ling Gong
- Department of Neurology, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Miao He
- Department of Neurology, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
8
|
Alon S, Goodwin DR, Sinha A, Wassie AT, Chen F, Daugharthy ER, Bando Y, Kajita A, Xue AG, Marrett K, Prior R, Cui Y, Payne AC, Yao CC, Suk HJ, Wang R, Yu CCJ, Tillberg P, Reginato P, Pak N, Liu S, Punthambaker S, Iyer EPR, Kohman RE, Miller JA, Lein ES, Lako A, Cullen N, Rodig S, Helvie K, Abravanel DL, Wagle N, Johnson BE, Klughammer J, Slyper M, Waldman J, Jané-Valbuena J, Rozenblatt-Rosen O, Regev A, Church GM, Marblestone AH, Boyden ES. Expansion sequencing: Spatially precise in situ transcriptomics in intact biological systems. Science 2021; 371:eaax2656. [PMID: 33509999 PMCID: PMC7900882 DOI: 10.1126/science.aax2656] [Citation(s) in RCA: 193] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/13/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022]
Abstract
Methods for highly multiplexed RNA imaging are limited in spatial resolution and thus in their ability to localize transcripts to nanoscale and subcellular compartments. We adapt expansion microscopy, which physically expands biological specimens, for long-read untargeted and targeted in situ RNA sequencing. We applied untargeted expansion sequencing (ExSeq) to the mouse brain, which yielded the readout of thousands of genes, including splice variants. Targeted ExSeq yielded nanoscale-resolution maps of RNAs throughout dendrites and spines in the neurons of the mouse hippocampus, revealing patterns across multiple cell types, layer-specific cell types across the mouse visual cortex, and the organization and position-dependent states of tumor and immune cells in a human metastatic breast cancer biopsy. Thus, ExSeq enables highly multiplexed mapping of RNAs from nanoscale to system scale.
Collapse
Affiliation(s)
- Shahar Alon
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
- Faculty of Engineering, Gonda Brain Research Center and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Daniel R Goodwin
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
| | - Anubhav Sinha
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, MIT, Cambridge, MA, USA
| | - Asmamaw T Wassie
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Fei Chen
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Evan R Daugharthy
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | - Yosuke Bando
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- Kioxia Corporation, Minato-ku, Tokyo, Japan
| | | | - Andrew G Xue
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
| | | | | | - Yi Cui
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
| | - Andrew C Payne
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Chun-Chen Yao
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ho-Jun Suk
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, MIT, Cambridge, MA, USA
| | - Ru Wang
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
| | - Chih-Chieh Jay Yu
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Paul Tillberg
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
| | - Paul Reginato
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | - Nikita Pak
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
- Department of Mechanical Engineering, MIT, Cambridge, MA, USA
| | - Songlei Liu
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | - Sukanya Punthambaker
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | - Eswar P R Iyer
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | - Richie E Kohman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | | | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Ana Lako
- Center for Immuno-Oncology (CIO), Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nicole Cullen
- Center for Immuno-Oncology (CIO), Dana-Farber Cancer Institute, Boston, MA, USA
| | - Scott Rodig
- Center for Immuno-Oncology (CIO), Dana-Farber Cancer Institute, Boston, MA, USA
| | - Karla Helvie
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Daniel L Abravanel
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Nikhil Wagle
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Bruce E Johnson
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Michal Slyper
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Julia Waldman
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Department of Biology, MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | | | - Edward S Boyden
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA.
- McGovern Institute, MIT, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Department of Biology, MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| |
Collapse
|
9
|
Cheffer A, Flitsch LJ, Krutenko T, Röderer P, Sokhranyaeva L, Iefremova V, Hajo M, Peitz M, Schwarz MK, Brüstle O. Human stem cell-based models for studying autism spectrum disorder-related neuronal dysfunction. Mol Autism 2020; 11:99. [PMID: 33308283 PMCID: PMC7733257 DOI: 10.1186/s13229-020-00383-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
The controlled differentiation of pluripotent stem cells (PSCs) into neurons and glia offers a unique opportunity to study early stages of human central nervous system development under controlled conditions in vitro. With the advent of cell reprogramming and the possibility to generate induced pluripotent stem cells (iPSCs) from any individual in a scalable manner, these studies can be extended to a disease- and patient-specific level. Autism spectrum disorder (ASD) is considered a neurodevelopmental disorder, with substantial evidence pointing to early alterations in neurogenesis and network formation as key pathogenic drivers. For that reason, ASD represents an ideal candidate for stem cell-based disease modeling. Here, we provide a concise review on recent advances in the field of human iPSC-based modeling of syndromic and non-syndromic forms of ASD, with a particular focus on studies addressing neuronal dysfunction and altered connectivity. We further discuss recent efforts to translate stem cell-based disease modeling to 3D via brain organoid and cell transplantation approaches, which enable the investigation of disease mechanisms in a tissue-like context. Finally, we describe advanced tools facilitating the assessment of altered neuronal function, comment on the relevance of iPSC-based models for the assessment of pharmaceutical therapies and outline potential future routes in stem cell-based ASD research.
Collapse
Affiliation(s)
- Arquimedes Cheffer
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Lea Jessica Flitsch
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Tamara Krutenko
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Pascal Röderer
- Life & Brain GmbH, Platform Cellomics, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Liubov Sokhranyaeva
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Vira Iefremova
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Mohamad Hajo
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Michael Peitz
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
- Life & Brain GmbH, Platform Cellomics, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
- Cell Programming Core Facility, University of Bonn Medical Faculty, Bonn, Germany
| | - Martin Karl Schwarz
- Life & Brain GmbH, Platform Cellomics, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany.
| |
Collapse
|
10
|
SYNPLA, a method to identify synapses displaying plasticity after learning. Proc Natl Acad Sci U S A 2020; 117:3214-3219. [PMID: 31974314 DOI: 10.1073/pnas.1919911117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Which neural circuits undergo synaptic changes when an animal learns? Although it is widely accepted that changes in synaptic strength underlie many forms of learning and memory, it remains challenging to connect changes in synaptic strength at specific neural pathways to specific behaviors and memories. Here we introduce SYNPLA (synaptic proximity ligation assay), a synapse-specific, high-throughput, and potentially brain-wide method capable of detecting circuit-specific learning-induced synaptic plasticity.
Collapse
|
11
|
Maffei M, Morelli C, Graham E, Patriarca S, Donzelli L, Doleschall B, de Castro Reis F, Nocchi L, Chadick CH, Reymond L, Corrêa IR, Johnsson K, Hackett JA, Heppenstall PA. A ligand-based system for receptor-specific delivery of proteins. Sci Rep 2019; 9:19214. [PMID: 31844114 PMCID: PMC6915567 DOI: 10.1038/s41598-019-55797-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/30/2019] [Indexed: 12/24/2022] Open
Abstract
Gene delivery using vector or viral-based methods is often limited by technical and safety barriers. A promising alternative that circumvents these shortcomings is the direct delivery of proteins into cells. Here we introduce a non-viral, ligand-mediated protein delivery system capable of selectively targeting primary skin cells in-vivo. Using orthologous self-labelling tags and chemical cross-linkers, we conjugate large proteins to ligands that bind their natural receptors on the surface of keratinocytes. Targeted CRE-mediated recombination was achieved by delivery of ligand cross-linked CRE protein to the skin of transgenic reporter mice, but was absent in mice lacking the ligand's cell surface receptor. We further show that ligands mediate the intracellular delivery of Cas9 allowing for CRISPR-mediated gene editing in the skin more efficiently than adeno-associated viral gene delivery. Thus, a ligand-based system enables the effective and receptor-specific delivery of large proteins and may be applied to the treatment of skin-related genetic diseases.
Collapse
Affiliation(s)
- Mariano Maffei
- European Molecular Biology Laboratory (EMBL) Rome, Adriano Buzzati-Traverso Campus, 00015, Monterotondo, Italy.
| | - Chiara Morelli
- European Molecular Biology Laboratory (EMBL) Rome, Adriano Buzzati-Traverso Campus, 00015, Monterotondo, Italy.,Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Ellie Graham
- European Molecular Biology Laboratory (EMBL) Rome, Adriano Buzzati-Traverso Campus, 00015, Monterotondo, Italy
| | - Stefano Patriarca
- European Molecular Biology Laboratory (EMBL) Rome, Adriano Buzzati-Traverso Campus, 00015, Monterotondo, Italy
| | - Laura Donzelli
- European Molecular Biology Laboratory (EMBL) Rome, Adriano Buzzati-Traverso Campus, 00015, Monterotondo, Italy
| | - Balint Doleschall
- European Molecular Biology Laboratory (EMBL) Rome, Adriano Buzzati-Traverso Campus, 00015, Monterotondo, Italy
| | - Fernanda de Castro Reis
- European Molecular Biology Laboratory (EMBL) Rome, Adriano Buzzati-Traverso Campus, 00015, Monterotondo, Italy
| | - Linda Nocchi
- European Molecular Biology Laboratory (EMBL) Rome, Adriano Buzzati-Traverso Campus, 00015, Monterotondo, Italy
| | - Cora H Chadick
- European Molecular Biology Laboratory (EMBL) Rome, Adriano Buzzati-Traverso Campus, 00015, Monterotondo, Italy
| | - Luc Reymond
- Biomolecular Screening Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.,National Center of Competence in Research (NCCR) in Chemical Biology, 1015, Lausanne, Switzerland
| | | | - Kai Johnsson
- Department of Chemical Biology, Max Plank Institute for Medical Research, 69120, Heidelberg, Germany
| | - Jamie A Hackett
- European Molecular Biology Laboratory (EMBL) Rome, Adriano Buzzati-Traverso Campus, 00015, Monterotondo, Italy
| | - Paul A Heppenstall
- European Molecular Biology Laboratory (EMBL) Rome, Adriano Buzzati-Traverso Campus, 00015, Monterotondo, Italy.
| |
Collapse
|
12
|
Hoffecker IT, Yang Y, Bernardinelli G, Orponen P, Högberg B. A computational framework for DNA sequencing microscopy. Proc Natl Acad Sci U S A 2019; 116:19282-19287. [PMID: 31484777 PMCID: PMC6765314 DOI: 10.1073/pnas.1821178116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe a method whereby microscale spatial information such as the relative positions of biomolecules on a surface can be transferred to a sequence-based format and reconstructed into images without conventional optics. Barcoded DNA "polymerase colony" (polony) amplification techniques enable one to distinguish specific locations of a surface by their sequence. Image formation is based on pairwise fusion of uniquely tagged and spatially adjacent polonies. The network of polonies connected by shared borders forms a graph whose topology can be reconstructed from pairs of barcodes fused during a polony cross-linking phase, the sequences of which are determined by recovery from the surface and next-generation (next-gen) sequencing. We developed a mathematical and computational framework for this principle called polony adjacency reconstruction for spatial inference and topology and show that Euclidean spatial data may be stored and transmitted in the form of graph topology. Images are formed by transferring molecular information from a surface of interest, which we demonstrated in silico by reconstructing images formed from stochastic transfer of hypothetical molecular markers. The theory developed here could serve as a basis for an automated, multiplexable, and potentially superresolution imaging method based purely on molecular information.
Collapse
Affiliation(s)
- Ian T Hoffecker
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Yunshi Yang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Giulio Bernardinelli
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Pekka Orponen
- Department of Computer Science, Aalto University, FI-00076 Aalto, Finland
| | - Björn Högberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17177 Stockholm, Sweden;
| |
Collapse
|
13
|
Boulgakov AA, Ellington AD, Marcotte EM. Bringing Microscopy-By-Sequencing into View. Trends Biotechnol 2019; 38:154-162. [PMID: 31416630 DOI: 10.1016/j.tibtech.2019.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 01/07/2023]
Abstract
The spatial distribution of molecules and cells is fundamental to understanding biological systems. Traditionally, microscopies based on electromagnetic waves such as visible light have been used to localize cellular components by direct visualization. However, these techniques suffer from limitations of transmissibility and throughput. Complementary to optical approaches, biochemical techniques such as crosslinking can colocalize molecules without suffering the same limitations. However, biochemical approaches are often unable to combine individual colocalizations into a map across entire cells or tissues. Microscopy-by-sequencing techniques aim to biochemically colocalize DNA-barcoded molecules and, by tracking their thus unique identities, reconcile all colocalizations into a global spatial map. Here, we review this new field and discuss its enormous potential to answer a broad spectrum of questions.
Collapse
Affiliation(s)
- Alexander A Boulgakov
- Center for Systems and Synthetic Biology, Institute of Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Andrew D Ellington
- Center for Systems and Synthetic Biology, Institute of Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Edward M Marcotte
- Center for Systems and Synthetic Biology, Institute of Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
14
|
He Q, Bao M, Hass K, Lin W, Qin P, Du K. Perspective of Molecular Diagnosis in Healthcare: From Barcode to Pattern Recognition. Diagnostics (Basel) 2019; 9:diagnostics9030075. [PMID: 31337082 PMCID: PMC6787598 DOI: 10.3390/diagnostics9030075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 11/28/2022] Open
Abstract
Barcode technology has a broad spectrum of applications including healthcare, food security, and environmental monitoring, due to its ability to encode large amounts of information. With the rapid development of modern molecular research, barcodes are utilized as a reporter with different molecular combinations to label many biomolecular targets, including genomic and metabolic elements, even with multiplex targeting. Along with the advancements in barcoded bioassay, the improvements of various designs of barcode components, encoding and decoding strategies, and their portable adoption are indispensable in satisfying multiple purposes, such as medical confirmation and point-of-care (POC) testing. This perspective briefly discusses the current direction and progress of barcodes development and provides a hypothesis for barcoded bioassay in the near future.
Collapse
Affiliation(s)
- Qian He
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA
- Precision Medicine and Public Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518057, China
| | - Mengdi Bao
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Kenneth Hass
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Wenxia Lin
- Department of QB3, University of California, Berkeley, CA 94720, USA
| | - Peiwu Qin
- Precision Medicine and Public Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518057, China.
| | - Ke Du
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA.
- Department of Microsystems Engineering, Rochester Institute of Technology, NY 14623, USA.
| |
Collapse
|
15
|
Abstract
The connections between neurons determine the computations performed by a neural network. Connections can be considered a “summary” of the statistical structure of the experience—data—on which the network was trained. Here, we propose a method for how neuronal network connectivity can be copied or “cloned” from one network to another. Our method relies on the use of DNA barcodes—short DNA sequences that allow tagging individual neurons with unique labels. In our study, we prove theorems that show that such a transfer of network connectivity is theoretically possible. The connections between neurons determine the computations performed by both artificial and biological neural networks. Recently, we have proposed SYNSeq, a method for converting the connectivity of a biological network into a form that can exploit the tremendous efficiencies of high-throughput DNA sequencing. In SYNSeq, each neuron is tagged with a random sequence of DNA—a “barcode”—and synapses are represented as barcode pairs. SYNSeq addresses the analysis problem, reducing a network into a suspension of barcode pairs. Here, we formulate a complementary synthesis problem: How can the suspension of barcode pairs be used to “clone” or copy the network back into an uninitialized tabula rasa network? Although this synthesis problem might be expected to be computationally intractable, we find that, surprisingly, this problem can be solved efficiently, using only neuron-local information. We present the “one-barcode–one-cell” (OBOC) algorithm, which forces all barcodes of a given sequence to coalesce into the same neuron, and show that it converges in a number of steps that is a power law of the network size. Rapid and reliable network cloning with single-synapse precision is thus theoretically possible.
Collapse
|
16
|
Gohl DM, Magli A, Garbe J, Becker A, Johnson DM, Anderson S, Auch B, Billstein B, Froehling E, McDevitt SL, Beckman KB. Measuring sequencer size bias using REcount: a novel method for highly accurate Illumina sequencing-based quantification. Genome Biol 2019; 20:85. [PMID: 31036053 PMCID: PMC6489363 DOI: 10.1186/s13059-019-1691-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/09/2019] [Indexed: 01/15/2023] Open
Abstract
Quantification of DNA sequence tags from engineered constructs such as plasmids, transposons, or other transgenes underlies many functional genomics measurements. Typically, such measurements rely on PCR followed by next-generation sequencing. However, PCR amplification can introduce significant quantitative error. We describe REcount, a novel PCR-free direct counting method. Comparing measurements of defined plasmid pools to droplet digital PCR data demonstrates that REcount is highly accurate and reproducible. We use REcount to provide new insights into clustering biases due to molecule length across different Illumina sequencers and illustrate the impacts on interpretation of next-generation sequencing data and the economics of data generation.
Collapse
Affiliation(s)
- Daryl M. Gohl
- University of Minnesota Genomics Center, Minneapolis, MN 55455 USA
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 USA
| | - Alessandro Magli
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455 USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455 USA
| | - John Garbe
- University of Minnesota Genomics Center, Minneapolis, MN 55455 USA
| | - Aaron Becker
- University of Minnesota Genomics Center, Minneapolis, MN 55455 USA
| | | | - Shea Anderson
- University of Minnesota Genomics Center, Minneapolis, MN 55455 USA
| | - Benjamin Auch
- University of Minnesota Genomics Center, Minneapolis, MN 55455 USA
| | - Bradley Billstein
- University of Minnesota Genomics Center, Minneapolis, MN 55455 USA
- Present Address: Illumina, Inc, San Diego, CA 92122 USA
| | - Elyse Froehling
- University of Minnesota Genomics Center, Minneapolis, MN 55455 USA
| | - Shana L. McDevitt
- Vincent J. Coates Genomics Sequencing Laboratory, University of California, Berkeley, CA 94720 USA
| | | |
Collapse
|
17
|
Gardner E, Ellington A. Reprogramming the brain with synthetic neurobiology. Curr Opin Biotechnol 2018; 58:37-44. [PMID: 30458406 DOI: 10.1016/j.copbio.2018.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/26/2018] [Indexed: 12/28/2022]
Abstract
The mammalian brain is among the most complex organs known in biology. Historically, neuroscience techniques have consisted primarily of low-throughput microscopy and electrophysiological approaches. While these methods will continue to serve the community, the emerging field of synthetic neurobiology may be better equipped to scale with systems neuroscience. By using genetic techniques to achieve cell-type specificity, a map of the connectome, neural activation and recording, and ultimately to program neural development itself, we can begin to build a better framework with which to understand the brain's mechanisms.
Collapse
Affiliation(s)
- Elizabeth Gardner
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas, 2500 Speedway, Austin, TX 78712, USA
| | - Andrew Ellington
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas, 2500 Speedway, Austin, TX 78712, USA.
| |
Collapse
|
18
|
Kebschull JM, Zador AM. Cellular barcoding: lineage tracing, screening and beyond. Nat Methods 2018; 15:871-879. [PMID: 30377352 DOI: 10.1038/s41592-018-0185-x] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 09/26/2018] [Indexed: 01/14/2023]
Abstract
Cellular barcoding is a technique in which individual cells are labeled with unique nucleic acid sequences, termed barcodes, so that they can be tracked through space and time. Cellular barcoding can be used to track millions of cells in parallel, and thus is an efficient approach for investigating heterogeneous populations of cells. Over the past 25 years, cellular barcoding has been used for fate mapping, lineage tracing and high-throughput screening, and has led to important insights into developmental biology and gene function. Driven by plummeting sequencing costs and the power of synthetic biology, barcoding is now expanding beyond traditional applications and into diverse fields such as neuroanatomy and the recording of cellular activity. In this review, we discuss the fundamental principles of cellular barcoding, including the underlying mathematics, and its applications in both new and established fields.
Collapse
Affiliation(s)
- Justus M Kebschull
- Watson School of Biological Sciences, Cold Spring Harbor, NY, USA.,Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | |
Collapse
|
19
|
The State of the NIH BRAIN Initiative. J Neurosci 2018; 38:6427-6438. [PMID: 29921715 DOI: 10.1523/jneurosci.3174-17.2018] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 12/30/2022] Open
Abstract
The BRAIN Initiative arose from a grand challenge to "accelerate the development and application of new technologies that will enable researchers to produce dynamic pictures of the brain that show how individual brain cells and complex neural circuits interact at the speed of thought." The BRAIN Initiative is a public-private effort focused on the development and use of powerful tools for acquiring fundamental insights about how information processing occurs in the central nervous system (CNS). As the Initiative enters its fifth year, NIH has supported >500 principal investigators, who have answered the Initiative's challenge via hundreds of publications describing novel tools, methods, and discoveries that address the Initiative's seven scientific priorities. We describe scientific advances produced by individual laboratories, multi-investigator teams, and entire consortia that, over the coming decades, will produce more comprehensive and dynamic maps of the brain, deepen our understanding of how circuit activity can produce a rich tapestry of behaviors, and lay the foundation for understanding how its circuitry is disrupted in brain disorders. Much more work remains to bring this vision to fruition, and the National Institutes of Health continues to look to the diverse scientific community, from mathematics, to physics, chemistry, engineering, neuroethics, and neuroscience, to ensure that the greatest scientific benefit arises from this unique research Initiative.
Collapse
|
20
|
Scanga R, Chrastecka L, Mohammad R, Meadows A, Quan PL, Brouzes E. Click Chemistry Approaches to Expand the Repertoire of PEG-based Fluorinated Surfactants for Droplet Microfluidics. RSC Adv 2018; 8:12960-12974. [PMID: 31592185 PMCID: PMC6779154 DOI: 10.1039/c8ra01254g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We report the novel and simplified synthesis of fluorinated surfactants for droplet microfluidics. The range of applications of droplet microfluidics has greatly expanded during the last decade thanks to its ability to manipulate and process tiny amount of sample and reagents at high throughput in independent reactors. A critical component of the technology is the formulation of the immiscible oil phase that contains surfactants to stabilize droplets. The success of droplet microfluidics relies mostly on a single fluorinated formulation that uses a PFPE–PEG triblock surfactant. The synthesis of this surfactant is laborious and requires skills in synthetic chemistry preventing the wider community to explore the synthesis of surfactants with alternate structures. We sought to provide a simplified synthesis for novel PFPE–PEG surfactants based on click chemistry approaches such as copper-catalyzed azide-alkyne cycloaddition (CuAAC) and UV-activated thiol–yne reactions. Our strategy is based on converting a moisture sensitive intermediate typically used in the synthesis of the triblock PFPE–PEG surfactant into a stable and click ready molecule. We successfully combined that fluorinated tail with differently functionalized PEG and glycerol ethoxylate molecules to generate surfactants with diverse structures via CuACC and thiol–yne reactions. We report the characterization, biocompatibility and ability to stabilize emulsions of those surfactants, as well as the unique advantages and challenges of the strategy. Click-synthesis of fluorinated surfactants for droplet microfluidics.![]()
Collapse
Affiliation(s)
- Randall Scanga
- Department of chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Lucie Chrastecka
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Ridhwan Mohammad
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Austin Meadows
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Phenix-Lan Quan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Eric Brouzes
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA.,Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
21
|
From Designing the Molecules of Life to Designing Life: Future Applications Derived from Advances in DNA Technologies. Angew Chem Int Ed Engl 2018; 57:4313-4328. [DOI: 10.1002/anie.201707976] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/14/2017] [Indexed: 12/20/2022]
|
22
|
Kohman RE, Kunjapur AM, Hysolli E, Wang Y, Church GM. Vom Design der Moleküle des Lebens zum Design von Leben: Zukünftige Anwendungen von DNA-Technologien. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201707976] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Richie E. Kohman
- Wyss Institute for Biologically Inspired Engineering; Harvard University; Boston MA 02115 USA
| | | | - Eriona Hysolli
- Department of Genetics; Harvard Medical School; Boston MA 02115 USA
| | - Yu Wang
- Department of Genetics; Harvard Medical School; Boston MA 02115 USA
- Wyss Institute for Biologically Inspired Engineering; Harvard University; Boston MA 02115 USA
| | - George M. Church
- Department of Genetics; Harvard Medical School; Boston MA 02115 USA
- Wyss Institute for Biologically Inspired Engineering; Harvard University; Boston MA 02115 USA
| |
Collapse
|
23
|
Jones A, Reijmers LG. Mapping Brain Activity onto Molecularly Defined Cells. Neuron 2017; 96:248-249. [PMID: 29024648 DOI: 10.1016/j.neuron.2017.09.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The brain processes information and generates behavior by employing a wide array of different cell types. In this issue of Neuron, Wu et al. (2017) report a novel method that enables the efficient identification of molecularly defined cells that participate in a specific brain function.
Collapse
Affiliation(s)
- Alexander Jones
- Department of Neuroscience, School of Medicine, Tufts University, Boston, MA 02111, USA; Graduate Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Leon G Reijmers
- Department of Neuroscience, School of Medicine, Tufts University, Boston, MA 02111, USA.
| |
Collapse
|
24
|
Shendure J, Balasubramanian S, Church GM, Gilbert W, Rogers J, Schloss JA, Waterston RH. DNA sequencing at 40: past, present and future. Nature 2017; 550:345-353. [DOI: 10.1038/nature24286] [Citation(s) in RCA: 552] [Impact Index Per Article: 78.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/21/2017] [Indexed: 12/31/2022]
|