1
|
Yang Y, Zhong Y, Chen L. EIciRNAs in focus: current understanding and future perspectives. RNA Biol 2025; 22:1-12. [PMID: 39711231 DOI: 10.1080/15476286.2024.2443876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/14/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024] Open
Abstract
Circular RNAs (circRNAs) are a unique class of covalently closed single-stranded RNA molecules that play diverse roles in normal physiology and pathology. Among the major types of circRNA, exon-intron circRNA (EIciRNA) distinguishes itself by its sequence composition and nuclear localization. Recent RNA-seq technologies and computational methods have facilitated the detection and characterization of EIciRNAs, with features like circRNA intron retention (CIR) and tissue-specificity being characterized. EIciRNAs have been identified to exert their functions via mechanisms such as regulating gene transcription, and the physiological relevance of EIciRNAs has been reported. Within this review, we present a summary of the current understanding of EIciRNAs, delving into their identification and molecular functions. Additionally, we emphasize factors regulating EIciRNA biogenesis and the physiological roles of EIciRNAs based on recent research. We also discuss the future challenges in EIciRNA exploration, underscoring the potential for novel functions and functional mechanisms of EIciRNAs for further investigation.
Collapse
Affiliation(s)
- Yan Yang
- Department of Cardiology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Yinchun Zhong
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Liang Chen
- Department of Cardiology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
2
|
Zhang J, Zhao F. Circular RNA discovery with emerging sequencing and deep learning technologies. Nat Genet 2025:10.1038/s41588-025-02157-7. [PMID: 40247051 DOI: 10.1038/s41588-025-02157-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/07/2025] [Indexed: 04/19/2025]
Abstract
Circular RNA (circRNA) represents a type of RNA molecule characterized by a closed-loop structure that is distinct from linear RNA counterparts. Recent studies have revealed the emerging role of these circular transcripts in gene regulation and disease pathogenesis. However, their low expression levels and high sequence similarity to linear RNAs present substantial challenges for circRNA detection and characterization. Recent advances in long-read and single-cell RNA sequencing technologies, coupled with sophisticated deep learning-based algorithms, have revolutionized the investigation of circRNAs at unprecedented resolution and scale. This Review summarizes recent breakthroughs in circRNA discovery, characterization and functional analysis algorithms. We also discuss the challenges associated with integrating large-scale circRNA sequencing data and explore the potential future development of artificial intelligence (AI)-driven algorithms to unlock the full potential of circRNA research in biomedical applications.
Collapse
Affiliation(s)
- Jinyang Zhang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Fangqing Zhao
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
O'Leary E, Jiang Y, Kristensen LS, Hansen TB, Kjems J. The therapeutic potential of circular RNAs. Nat Rev Genet 2025; 26:230-244. [PMID: 39789148 DOI: 10.1038/s41576-024-00806-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 01/12/2025]
Abstract
Over the past decade, research into circular RNA (circRNA) has increased rapidly, and over the past few years, circRNA has emerged as a promising therapeutic platform. The regulatory functions of circRNAs, including their roles in templating protein translation and regulating protein and RNA functions, as well as their unique characteristics, such as increased stability and a favourable immunological profile compared with mRNAs, make them attractive candidates for RNA-based therapies. Here, we describe the properties of circRNAs, their therapeutic potential and technologies for their synthesis. We also discuss the prospects and challenges to be overcome to unlock the full potential of circRNAs as drugs.
Collapse
Affiliation(s)
| | - Yanyi Jiang
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | | | | | - Jørgen Kjems
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark.
- Department of Molecular Biology and Genetics (MBG), Aarhus University, Aarhus, Denmark.
| |
Collapse
|
4
|
Koch P, Zhang Z, Genuth NR, Susanto TT, Haimann M, Khmelinskaia A, Byeon GW, Dey S, Barna M, Leppek K. A versatile toolbox for determining IRES activity in cells and embryonic tissues. EMBO J 2025:10.1038/s44318-025-00404-5. [PMID: 40082722 DOI: 10.1038/s44318-025-00404-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 01/26/2025] [Accepted: 02/18/2025] [Indexed: 03/16/2025] Open
Abstract
Widespread control of gene expression through translation has emerged as a key level of spatiotemporal regulation of protein expression. A prominent mechanism by which ribosomes can confer gene regulation is via internal ribosomal entry sites (IRESes), whose functions have however, remained difficult to rigorously characterize. Here we present a set of technologies in embryos and cells, including IRES-mediated translation of circular RNA (circRNA) reporters, single-molecule messenger (m)RNA isoform imaging, PacBio long-read sequencing, and isoform-sensitive mRNA quantification along polysome profiles as a new toolbox for understanding IRES regulation. Using these techniques, we investigate a broad range of cellular IRES RNA elements including Hox IRESes. We show IRES-dependent translation in circRNAs, as well as the relative expression, localization, and translation of an IRES-containing mRNA isoform in specific embryonic tissues. We thereby provide a new resource of technologies to elucidate the roles of versatile IRES elements in gene regulation and embryonic development.
Collapse
Affiliation(s)
- Philipp Koch
- Institute of Clinical Chemistry and Clinical Pharmacology, Biomedical Center II (BMZ II), Venusberg-Campus 1, University Hospital Bonn, University of Bonn, Bonn, 53127, Germany
| | - Zijian Zhang
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Naomi R Genuth
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Teodorus Theo Susanto
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- Epigenetic and Epitranscriptomic Systems, Genome Institute of Singapore, A*STAR, Singapore, 138672, Singapore
| | - Martin Haimann
- Institute of Clinical Chemistry and Clinical Pharmacology, Biomedical Center II (BMZ II), Venusberg-Campus 1, University Hospital Bonn, University of Bonn, Bonn, 53127, Germany
| | - Alena Khmelinskaia
- Transdisciplinary Research Area "Building Blocks of Matter and Fundamental Interactions", University of Bonn, Bonn, 53113, Germany
- Life and Medical Sciences Institute, University of Bonn, Bonn, 53121, Germany
- Department of Chemistry, Ludwig-Maximilians-Universität München, München, 81377, Germany
| | - Gun Woo Byeon
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Saurabh Dey
- Institute of Clinical Chemistry and Clinical Pharmacology, Biomedical Center II (BMZ II), Venusberg-Campus 1, University Hospital Bonn, University of Bonn, Bonn, 53127, Germany
| | - Maria Barna
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA.
| | - Kathrin Leppek
- Institute of Clinical Chemistry and Clinical Pharmacology, Biomedical Center II (BMZ II), Venusberg-Campus 1, University Hospital Bonn, University of Bonn, Bonn, 53127, Germany.
| |
Collapse
|
5
|
Márton É, Varga A, Domoszlai D, Buglyó G, Balázs A, Penyige A, Balogh I, Nagy B, Szilágyi M. Non-Coding RNAs in Cancer: Structure, Function, and Clinical Application. Cancers (Basel) 2025; 17:579. [PMID: 40002172 PMCID: PMC11853212 DOI: 10.3390/cancers17040579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
We are on the brink of a paradigm shift in both theoretical and clinical oncology. Genomic and transcriptomic profiling, alongside personalized approaches that account for individual patient variability, are increasingly shaping discourse. Discussions on the future of personalized cancer medicine are mainly dominated by the potential of non-coding RNAs (ncRNAs), which play a prominent role in cancer progression and metastasis formation by regulating the expression of oncogenic or tumor suppressor proteins at transcriptional and post-transcriptional levels; furthermore, their cell-free counterparts might be involved in intercellular communication. Non-coding RNAs are considered to be promising biomarker candidates for early diagnosis of cancer as well as potential therapeutic agents. This review aims to provide clarity amidst the vast body of literature by focusing on diverse species of ncRNAs, exploring the structure, origin, function, and potential clinical applications of miRNAs, siRNAs, lncRNAs, circRNAs, snRNAs, snoRNAs, eRNAs, paRNAs, YRNAs, vtRNAs, and piRNAs. We discuss molecular methods used for their detection or functional studies both in vitro and in vivo. We also address the challenges that must be overcome to enter a new era of cancer diagnosis and therapy that will reshape the future of oncology.
Collapse
Affiliation(s)
- Éva Márton
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - Alexandra Varga
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - Dóra Domoszlai
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - Gergely Buglyó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - Anita Balázs
- Department of Integrative Health Sciences, Institute of Health Sciences, Faculty of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary;
| | - András Penyige
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - István Balogh
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - Melinda Szilágyi
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| |
Collapse
|
6
|
Bibi A, Bartekova M, Gandhi S, Greco S, Madè A, Sarkar M, Stopa V, Tastsoglou S, de Gonzalo-Calvo D, Devaux Y, Emanueli C, Hatzigeorgiou AG, Nossent AY, Zhou Z, Martelli F. Circular RNA regulatory role in pathological cardiac remodelling. Br J Pharmacol 2025; 182:316-339. [PMID: 38830749 DOI: 10.1111/bph.16434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/14/2024] [Accepted: 04/12/2024] [Indexed: 06/05/2024] Open
Abstract
Cardiac remodelling involves structural, cellular and molecular alterations in the heart after injury, resulting in progressive loss of heart function and ultimately leading to heart failure. Circular RNAs (circRNAs) are a recently rediscovered class of non-coding RNAs that play regulatory roles in the pathogenesis of cardiovascular diseases, including heart failure. Thus, a more comprehensive understanding of the role of circRNAs in the processes governing cardiac remodelling may set the ground for the development of circRNA-based diagnostic and therapeutic strategies. In this review, the current knowledge about circRNA origin, conservation, characteristics and function is summarized. Bioinformatics and wet-lab methods used in circRNA research are discussed. The regulatory function of circRNAs in cardiac remodelling mechanisms such as cell death, cardiomyocyte hypertrophy, inflammation, fibrosis and metabolism is highlighted. Finally, key challenges and opportunities in circRNA research are discussed, and orientations for future work to address the pharmacological potential of circRNAs in heart failure are proposed. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Alessia Bibi
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Physiology, Comenius University in Bratislava, Bratislava, Slovakia
| | - Shrey Gandhi
- Institute of Immunology, University of Münster, Münster, Germany
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
| | - Simona Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Alisia Madè
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Moumita Sarkar
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Victoria Stopa
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Spyros Tastsoglou
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Artemis G Hatzigeorgiou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - A Yaël Nossent
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| |
Collapse
|
7
|
Zhang J, Hou L, Ma L, Cai Z, Ye S, Liu Y, Ji P, Zuo Z, Zhao F. Real-time and programmable transcriptome sequencing with PROFIT-seq. Nat Cell Biol 2024; 26:2183-2194. [PMID: 39443694 PMCID: PMC11628399 DOI: 10.1038/s41556-024-01537-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
The high diversity and complexity of the eukaryotic transcriptome make it difficult to effectively detect specific transcripts of interest. Current targeted RNA sequencing methods often require complex pre-sequencing enrichment steps, which can compromise the comprehensive characterization of the entire transcriptome. Here we describe programmable full-length isoform transcriptome sequencing (PROFIT-seq), a method that enriches target transcripts while maintaining unbiased quantification of the whole transcriptome. PROFIT-seq employs combinatorial reverse transcription to capture polyadenylated, non-polyadenylated and circular RNAs, coupled with a programmable control system that selectively enriches target transcripts during sequencing. This approach achieves over 3-fold increase in effective data yield and reduces the time required for detecting specific pathogens or key mutations by 75%. We applied PROFIT-seq to study colorectal polyp development, revealing the intricate relationship between host immune responses and bacterial infection. PROFIT-seq offers a powerful tool for accurate and efficient sequencing of target transcripts while preserving overall transcriptome quantification, with broad applications in clinical diagnostics and targeted enrichment scenarios.
Collapse
Affiliation(s)
- Jinyang Zhang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lingling Hou
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lianjun Ma
- Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhengyi Cai
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shujun Ye
- Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Liu
- Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Peifeng Ji
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhenqiang Zuo
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fangqing Zhao
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
8
|
Verwilt J, Vromman M. Current Understandings and Open Hypotheses on Extracellular Circular RNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1872. [PMID: 39506237 DOI: 10.1002/wrna.1872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 11/08/2024]
Abstract
Circular RNAs (circRNAs) are closed RNA loops present in humans and other organisms. Various circRNAs have an essential role in diseases, including cancer. Cells can release circRNAs into the extracellular space of adjacent biofluids and can be present in extracellular vesicles. Due to their circular nature, extracellular circRNAs (excircRNAs) are more stable than their linear counterparts and are abundant in many biofluids, such as blood plasma and urine. circRNAs' link with disease suggests their extracellular counterparts have high biomarker potential. However, circRNAs and the extracellular space are challenging research domains, as they consist of complex biological systems plagued with nomenclature issues and a wide variety of protocols with different advantages and disadvantages. Here, we summarize what is known about excircRNAs, the current challenges in the field, and what is needed to improve extracellular circRNA research.
Collapse
Affiliation(s)
- Jasper Verwilt
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, Antwerp, Belgium
| | - Marieke Vromman
- CNRS UMR3244 (Dynamics of Genetic Information), Sorbonne University, PSL University, Institut Curie, Centre de Recherche, Paris, France
| |
Collapse
|
9
|
Wang H, Gao Y, Bai J, Liu H, Li Y, Zhang J, Ma C, Zhao X, Zhang L, Wan K, Zhu D. CircLMBR1 inhibits phenotypic transformation of hypoxia-induced pulmonary artery smooth muscle via the splicing factor PUF60. Eur J Pharmacol 2024; 980:176855. [PMID: 39059570 DOI: 10.1016/j.ejphar.2024.176855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/04/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024]
Abstract
Phenotypic transformation of pulmonary artery smooth muscle cells (PASMCs) contributes to vascular remodeling in hypoxic pulmonary hypertension (PH). Recent studies have suggested that circular RNAs (circRNAs) may play important roles in the vascular remodeling of hypoxia-induced PH. However, whether circRNAs cause pulmonary vascular remodeling by regulating the phenotypic transformation in PH has not been investigated. Microarray and RT-qPCR analysis identified that circLMBR1, a novel circRNA, decreased in mouse lung tissues of the hypoxia-SU5416 PH model, as well as in human PASMCs and mouse PASMCs exposed to hypoxia. Overexpression of circLMBR1 in the Semaxinib (SU5416) mouse model ameliorated hypoxia-induced PH and vascular remodeling in the lungs. Notably, circLMBR1 was mainly distributed in the nucleus and bound to the splicing factor PUF60. CircLMBR1 suppressed the phenotypic transformation of human PASMCs and vascular remodeling by inhibiting PUF60 expression. Furthermore, we identified U2AF65 as the downstream regulatory factor of PUF60. U2AF65 directly interacted with the pre-mRNA of the contractile phenotype marker smooth muscle protein 22-α (SM22α) and inhibited its splicing. Meanwhile, hypoxia exposure increased the formation of the PUF60-U2AF65 complex, thereby inhibiting SM22α production and inducing the transition of human PASMCs from a contractile phenotype to a synthetic phenotype. Overall, our results verified the important role of circLMBR1 in the pathological process of PH. We also proposed a new circLMBR1/PUF60-U2AF65/pre-SM22α pathway that could regulate the phenotypic transformation and proliferation of human PASMCs. This study may provide new perspectives for the diagnosis and treatment of PH.
Collapse
MESH Headings
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/drug effects
- Animals
- Humans
- Mice
- Vascular Remodeling/drug effects
- Vascular Remodeling/genetics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Phenotype
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Male
- Splicing Factor U2AF/genetics
- Splicing Factor U2AF/metabolism
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/genetics
- Hypoxia/metabolism
- Hypoxia/genetics
- Mice, Inbred C57BL
- Cell Hypoxia
- Indoles/pharmacology
- Pyrroles
Collapse
Affiliation(s)
- Hongdan Wang
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, PR China; College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Yupei Gao
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, PR China; College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - June Bai
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, PR China; College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Huiyu Liu
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, PR China; College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Yiying Li
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, PR China; College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Junting Zhang
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, PR China; College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Cui Ma
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, PR China; College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, 163319, PR China
| | - Xijuan Zhao
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, PR China; College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, 163319, PR China
| | - Lixin Zhang
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, PR China; College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, 163319, PR China
| | - Kuiyu Wan
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, PR China
| | - Daling Zhu
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, PR China; College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China; Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, Harbin, 150081, PR China.
| |
Collapse
|
10
|
Mei S, Ma X, Zhou L, Wuyun Q, Cai Z, Yan J, Ding H. Circular RNA in Cardiovascular Diseases: Biogenesis, Function and Application. Biomolecules 2024; 14:952. [PMID: 39199340 PMCID: PMC11352787 DOI: 10.3390/biom14080952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Cardiovascular diseases pose a significant public health challenge globally, necessitating the development of effective treatments to mitigate the risk of cardiovascular diseases. Recently, circular RNAs (circRNAs), a novel class of non-coding RNAs, have been recognized for their role in cardiovascular disease. Aberrant expression of circRNAs is closely linked with changes in various cellular and pathophysiological processes within the cardiovascular system, including metabolism, proliferation, stress response, and cell death. Functionally, circRNAs serve multiple roles, such as acting as a microRNA sponge, providing scaffolds for proteins, and participating in protein translation. Owing to their unique properties, circRNAs may represent a promising biomarker for predicting disease progression and a potential target for cardiovascular drug development. This review comprehensively examines the properties, biogenesis, and potential mechanisms of circRNAs, enhancing understanding of their role in the pathophysiological processes impacting cardiovascular disease. Furthermore, the prospective clinical applications of circRNAs in the diagnosis, prognosis, and treatment of cardiovascular disease are addressed.
Collapse
Affiliation(s)
- Shuai Mei
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Xiaozhu Ma
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Li Zhou
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Qidamugai Wuyun
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Ziyang Cai
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Jiangtao Yan
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Hu Ding
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China
| |
Collapse
|
11
|
Digby B, Finn S, Ó Broin P. Computational approaches and challenges in the analysis of circRNA data. BMC Genomics 2024; 25:527. [PMID: 38807085 PMCID: PMC11134749 DOI: 10.1186/s12864-024-10420-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
Circular RNAs (circRNA) are a class of non-coding RNA, forming a single-stranded covalently closed loop structure generated via back-splicing. Advancements in sequencing methods and technologies in conjunction with algorithmic developments of bioinformatics tools have enabled researchers to characterise the origin and function of circRNAs, with practical applications as a biomarker of diseases becoming increasingly relevant. Computational methods developed for circRNA analysis are predicated on detecting the chimeric back-splice junction of circRNAs whilst mitigating false-positive sequencing artefacts. In this review, we discuss in detail the computational strategies developed for circRNA identification, highlighting a selection of tool strengths, weaknesses and assumptions. In addition to circRNA identification tools, we describe methods for characterising the role of circRNAs within the competing endogenous RNA (ceRNA) network, their interactions with RNA-binding proteins, and publicly available databases for rich circRNA annotation.
Collapse
Affiliation(s)
- Barry Digby
- School of Mathematical and Statistical Sciences, University of Galway, Galway, Ireland.
| | - Stephen Finn
- Discipline of Histopathology, School of Medicine, Trinity College Dublin and Cancer Molecular Diagnostic Laboratory, Dublin, Ireland
| | - Pilib Ó Broin
- School of Mathematical and Statistical Sciences, University of Galway, Galway, Ireland
| |
Collapse
|
12
|
Drula R, Braicu C, Neagoe IB. Current advances in circular RNA detection and investigation methods: Are we running in circles? WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1850. [PMID: 38702943 DOI: 10.1002/wrna.1850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 05/06/2024]
Abstract
Circular RNAs (circRNAs), characterized by their closed-loop structure, have emerged as significant transcriptomic regulators, with roles spanning from microRNA sponging to modulation of gene expression and potential peptide coding. The discovery and functional analysis of circRNAs have been propelled by advancements in both experimental and bioinformatics tools, yet the field grapples with challenges related to their detection, isoform diversity, and accurate quantification. This review navigates through the evolution of circRNA research methodologies, from early detection techniques to current state-of-the-art approaches that offer comprehensive insights into circRNA biology. We examine the limitations of existing methods, particularly the difficulty in differentiating circRNA isoforms and distinguishing circRNAs from their linear counterparts. A critical evaluation of various bioinformatics tools and novel experimental strategies is presented, emphasizing the need for integrated approaches to enhance our understanding and interpretation of circRNA functions. Our insights underscore the dynamic and rapidly advancing nature of circRNA research, highlighting the ongoing development of analytical frameworks designed to address the complexity of circRNAs and facilitate the assessment of their clinical utility. As such, this comprehensive overview aims to catalyze further advancements in circRNA study, fostering a deeper understanding of their roles in cellular processes and potential implications in disease. This article is categorized under: RNA Methods > RNA Nanotechnology RNA Methods > RNA Analyses in Cells RNA Methods > RNA Analyses In Vitro and In Silico.
Collapse
Affiliation(s)
- Rareș Drula
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana-Berindan Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
13
|
Biferali B, Mocciaro E, Runfola V, Gabellini D. Long non-coding RNAs and their role in muscle regeneration. Curr Top Dev Biol 2024; 158:433-465. [PMID: 38670715 DOI: 10.1016/bs.ctdb.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
In mammals, most of the genome is transcribed to generate a large and heterogeneous variety of non-protein coding RNAs, that are broadly grouped according to their size. Long noncoding RNAs include a very large and versatile group of molecules. Despite only a minority of them has been functionally characterized, there is emerging evidence indicating long noncoding RNAs as important regulators of expression at multiple levels. Several of them have been shown to be modulated during myogenic differentiation, playing important roles in the regulation of skeletal muscle development, differentiation and homeostasis, and contributing to neuromuscular diseases. In this chapter, we have summarized the current knowledge about long noncoding RNAs in skeletal muscle and discussed specific examples of long noncoding RNAs (lncRNAs and circRNAs) regulating muscle stem cell biology. We have also discussed selected long noncoding RNAs involved in the most common neuromuscular diseases.
Collapse
Affiliation(s)
- Beatrice Biferali
- Gene Expression Regulation Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Emanuele Mocciaro
- Gene Expression Regulation Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Runfola
- Gene Expression Regulation Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Davide Gabellini
- Gene Expression Regulation Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
14
|
Budnick A, Franklin MJ, Utley D, Edwards B, Charles M, Hornstein ED, Sederoff H. Long- and short-read sequencing methods discover distinct circular RNA pools in Lotus japonicus. THE PLANT GENOME 2024; 17:e20429. [PMID: 38243772 DOI: 10.1002/tpg2.20429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/21/2024]
Abstract
Circular RNAs (circRNAs) are covalently closed single-stranded RNAs, generated through a back-splicing process that links a downstream 5' site to an upstream 3' end. The only distinction in the sequence between circRNA and their linear cognate RNA is the back splice junction. Their low abundance and sequence similarity with their linear origin RNA have made the discovery and identification of circRNA challenging. We have identified almost 6000 novel circRNAs from Lotus japonicus leaf tissue using different enrichment, amplification, and sequencing methods as well as alternative bioinformatics pipelines. The different methodologies identified different pools of circRNA with little overlap. We validated circRNA identified by the different methods using reverse transcription polymerase chain reaction and characterized sequence variations using nanopore sequencing. We compared validated circRNA identified in L. japonicus to other plant species and showed conservation of high-confidence circRNA-expressing genes. This is the first identification of L. japonicus circRNA and provides a resource for further characterization of their function in gene regulation. CircRNAs identified in this study originated from genes involved in all biological functions of eukaryotic cells. The comparison of methodologies and technologies to sequence, identify, analyze, and validate circRNA from plant tissues will enable further research to characterize the function and biogenesis of circRNA in L. japonicus.
Collapse
Affiliation(s)
- Asa Budnick
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Megan J Franklin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Delecia Utley
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Brianne Edwards
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Melodi Charles
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Eli D Hornstein
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Heike Sederoff
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
15
|
Kamali MJ, Salehi M, Mostafavi M, Morovatshoar R, Akbari M, Latifi N, Barzegari O, Ghadimi F, Daraei A. Hijacking and rewiring of host CircRNA/miRNA/mRNA competitive endogenous RNA (ceRNA) regulatory networks by oncoviruses during development of viral cancers. Rev Med Virol 2024; 34:e2530. [PMID: 38517354 DOI: 10.1002/rmv.2530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
A significant portion of human cancers are caused by oncoviruses (12%-25%). Oncoviruses employ various strategies to promote their replication and induce tumourigenesis in host cells, one of which involves modifying the gene expression patterns of the host cells, leading to the rewiring of genes and resulting in significant changes in cellular processes and signalling pathways. In recent studies, a specific mode of gene regulation known as circular RNA (circRNA)-mediated competing endogenous RNA (ceRNA) networks has emerged as a key player in this context. CircRNAs, a class of non-coding RNA molecules, can interact with other RNA molecules, such as mRNAs and microRNAs (miRNAs), through a process known as ceRNA crosstalk. This interaction occurs when circRNAs, acting as sponges, sequester miRNAs, thereby preventing them from binding to their target mRNAs and modulating their expression. By rewiring the host cell genome, oncoviruses have the ability to manipulate the expression and activity of circRNAs, thereby influencing the ceRNA networks that can profoundly impact cellular processes such as cell proliferation, differentiation, apoptosis, and immune responses. This review focuses on a comprehensive evaluation of the latest findings on the involvement of virus-induced reprogramming of host circRNA-mediated ceRNA networks in the development and pathophysiology of human viral cancers, including cervical cancer, gastric cancer, nasopharyngeal carcinoma, Kaposi's sarcoma, hepatocellular carcinoma, and diffuse large B cell lymphoma. Understanding these mechanisms can improve our knowledge of how oncoviruses contribute to human tumourigenesis and identify potential targets for developing optimised therapies and diagnostic tools for viral cancers.
Collapse
Affiliation(s)
- Mohammad Javad Kamali
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Salehi
- Department of Medical Genetics, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehrnaz Mostafavi
- Department of Physics, Faculty of Allied Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Morovatshoar
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mitra Akbari
- Eye Department, Eye Research Center, Amiralmomenin Hospital, School of Medicine, Guilan University of Medical Science, Rasht, Iran
| | - Narges Latifi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Omid Barzegari
- Department of Medical Genetics, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Fatemeh Ghadimi
- Department of Medical Genetics, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Abdolreza Daraei
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
16
|
Saleem A, Khan MU, Zahid T, Khurram I, Ghani MU, Ullah I, Munir R, Calina D, Sharifi-Rad J. Biological role and regulation of circular RNA as an emerging biomarker and potential therapeutic target for cancer. Mol Biol Rep 2024; 51:296. [PMID: 38340202 DOI: 10.1007/s11033-024-09211-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/04/2024] [Indexed: 02/12/2024]
Abstract
Circular RNAs (circRNAs) are a unique family of endogenous RNAs devoid of 3' poly-A tails and 5' end caps. These single-stranded circRNAs, found in the cytoplasm, are synthesized via back-splicing mechanisms, merging introns, exons, or both, resulting in covalently closed circular loops. They are profusely expressed across the eukaryotic transcriptome and offer heightened stability against exonuclease RNase R compared to linear RNA counterparts. This review endeavors to provide a comprehensive overview of circRNAs' characteristics, biogenesis, and mechanisms of action. Furthermore, aimed to shed light on the potential of circRNAs as significant biomarkers in various cancer types. It has been performed an exhaustive literature review, drawing on recent studies and findings related to circRNA characteristics, synthesis, function, evaluation techniques, and their associations with oncogenesis. CircRNAs are intricately associated with tumor progression and development. Their multifaceted roles encompass gene regulation through the sponging of proteins and microRNAs, controlling transcription and splicing, interacting with RNA binding proteins (RBPs), and facilitating gene translation. Due to these varied roles, circRNAs have become a focal point in tumor pathology investigations, given their promising potential as both biomarkers and therapeutic agents. CircRNAs, due to their unique biogenesis and multifunctionality, hold immense promise in the realm of oncology. Their stability, widespread expression, and intricate involvement in gene regulation underscore their prospective utility as reliable biomarkers and therapeutic targets in cancer. As our understanding of circRNAs deepens, advanced techniques for their detection, evaluation, and manipulation will likely emerge. These advancements might catalyze the translation of circRNA-based diagnostics and therapeutics into clinical practice, potentially revolutionizing cancer care and prognosis.
Collapse
Affiliation(s)
- Ayman Saleem
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Umer Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan.
| | - Tazeen Zahid
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Iqra Khurram
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Usman Ghani
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Inam Ullah
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Rakhtasha Munir
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | | |
Collapse
|
17
|
Bao H, Li J, Zhao Q, Yang Q, Xu Y. Circular RNAs in Breast Cancer: An Update. Biomolecules 2024; 14:158. [PMID: 38397395 PMCID: PMC10887059 DOI: 10.3390/biom14020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/14/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Breast cancer (BC), characterized by high heterogeneity, is the most commonly reported malignancy among females across the globe. Every year, many BC patients die owing to delayed diagnosis and treatment. Increasing researches have indicated that aberrantly expressed circular RNAs (circRNAs) are implicated in the tumorigenesis and progression of various tumors, including BC. Hence, this article provides a summary of the biogenesis and functions of circRNAs, as well as an examination of how circRNAs regulate the progression of BC. Moreover, circRNAs have aroused incremental attention as potential diagnostic and prognostic biomarkers for BC. Exosomes enriched with circRNAs can be secreted into the tumor microenvironment to mediate intercellular communication, affecting the progression of BC. Detecting the expression levels of exosomal circRNAs may provide reference for BC diagnosis and prognosis prediction. Illuminating insights into the earlier diagnosis and better treatment regimens of BC will be potentially available following elucidation of deeper regulatory mechanisms of circRNAs in this malignancy.
Collapse
Affiliation(s)
- Haolin Bao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jiehan Li
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Qihang Zhao
- Department of Mammary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Qingling Yang
- Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, Bengbu 233030, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, Bengbu 233030, China
- State Key Laboratory of Oncology in South China, Cancer Center of Sun Yat-Sen University, Guangzhou 510060, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
- Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
18
|
Gutierrez-Camino A, Caron M, Richer C, Fuchs C, Illarregi U, Poncelet L, St-Onge P, Bataille AR, Tremblay-Dauphinais P, Lopez-Lopez E, Camos M, Ramirez-Orellana M, Astigarraga I, Lécuyer É, Bourque G, Martin-Guerrero I, Sinnett D. CircRNAome of Childhood Acute Lymphoblastic Leukemia: Deciphering Subtype-Specific Expression Profiles and Involvement in TCF3::PBX1 ALL. Int J Mol Sci 2024; 25:1477. [PMID: 38338754 PMCID: PMC10855129 DOI: 10.3390/ijms25031477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
Childhood B-cell acute lymphoblastic leukemia (B-ALL) is a heterogeneous disease comprising multiple molecular subgroups with subtype-specific expression profiles. Recently, a new type of ncRNA, termed circular RNA (circRNA), has emerged as a promising biomarker in cancer, but little is known about their role in childhood B-ALL. Here, through RNA-seq analysis in 105 childhood B-ALL patients comprising six genetic subtypes and seven B-cell controls from two independent cohorts we demonstrated that circRNAs properly stratified B-ALL subtypes. By differential expression analysis of each subtype vs. controls, 156 overexpressed and 134 underexpressed circRNAs were identified consistently in at least one subtype, most of them with subtype-specific expression. TCF3::PBX1 subtype was the one with the highest number of unique and overexpressed circRNAs, and the circRNA signature could effectively discriminate new patients with TCF3::PBX1 subtype from others. Our results indicated that NUDT21, an RNA-binding protein (RBP) involved in circRNA biogenesis, may contribute to this circRNA enrichment in TCF3::PBX1 ALL. Further functional characterization using the CRISPR-Cas13d system demonstrated that circBARD1, overexpressed in TCF3::PBX1 patients and regulated by NUDT21, might be involved in leukemogenesis through the activation of p38 via hsa-miR-153-5p. Our results suggest that circRNAs could play a role in the pathogenesis of childhood B-ALL.
Collapse
Affiliation(s)
- Angela Gutierrez-Camino
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; (A.G.-C.); (M.C.); (C.R.); (C.F.); (L.P.); (P.S.-O.); (A.R.B.); (P.T.-D.)
| | - Maxime Caron
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; (A.G.-C.); (M.C.); (C.R.); (C.F.); (L.P.); (P.S.-O.); (A.R.B.); (P.T.-D.)
- Department of Human Genetics, McGill University, Montreal, QC H3A 0G4, Canada;
| | - Chantal Richer
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; (A.G.-C.); (M.C.); (C.R.); (C.F.); (L.P.); (P.S.-O.); (A.R.B.); (P.T.-D.)
| | - Claire Fuchs
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; (A.G.-C.); (M.C.); (C.R.); (C.F.); (L.P.); (P.S.-O.); (A.R.B.); (P.T.-D.)
| | - Unai Illarregi
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (U.I.); (I.M.-G.)
| | - Lucas Poncelet
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; (A.G.-C.); (M.C.); (C.R.); (C.F.); (L.P.); (P.S.-O.); (A.R.B.); (P.T.-D.)
| | - Pascal St-Onge
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; (A.G.-C.); (M.C.); (C.R.); (C.F.); (L.P.); (P.S.-O.); (A.R.B.); (P.T.-D.)
| | - Alain R. Bataille
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; (A.G.-C.); (M.C.); (C.R.); (C.F.); (L.P.); (P.S.-O.); (A.R.B.); (P.T.-D.)
| | - Pascal Tremblay-Dauphinais
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; (A.G.-C.); (M.C.); (C.R.); (C.F.); (L.P.); (P.S.-O.); (A.R.B.); (P.T.-D.)
| | - Elixabet Lopez-Lopez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
- Pediatric Oncology Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain;
| | - Mireia Camos
- Hematology Laboratory, Sant Joan de Déu Research Institute, Esplugues de Llobregat, 08950 Barcelona, Spain;
| | - Manuel Ramirez-Orellana
- Department of Pediatric Hematology and Oncology, Niño Jesús University Hospital, 28009 Madrid, Spain;
| | - Itziar Astigarraga
- Pediatric Oncology Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain;
- Department of Pediatrics, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Éric Lécuyer
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada;
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montreal, QC H3A 0G4, Canada;
| | - Idoia Martin-Guerrero
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (U.I.); (I.M.-G.)
- Pediatric Oncology Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain;
| | - Daniel Sinnett
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; (A.G.-C.); (M.C.); (C.R.); (C.F.); (L.P.); (P.S.-O.); (A.R.B.); (P.T.-D.)
- Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
19
|
Dhandhanya UK, Mukhopadhyay K, Kumar M. An accretive detection method for in silico identification and validation of circular RNAs in wheat (Triticum aestivum L.) using RT-qPCR. Mol Biol Rep 2024; 51:162. [PMID: 38252357 DOI: 10.1007/s11033-023-09138-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Circular RNAs (circRNAs) are novel class of non-coding RNAs, which are involved in various functions at the transcriptional and post-transcriptional level in response to a fungal pathogen (Puccinia triticina), including microRNA (miRNA) sponge, RNA binding proteins sponge, regulation of parental gene and biomarkers. Detailed analysis of wheat circRNAs is essential to accelerate the regulated expression of fungal miRNAs. Therefore, we suggest a protocol to aid circRNA identification through RNA-Seq data using various algorithms based on perl script followed by validation through divergent primer designing, standard PCR, and RT-qPCR assays. METHODS AND RESULT The divergent primer has been widely used to detect, validate, and quantify back-spliced junction (BSJ) of circRNAs. The procedure covers index file formation, circRNA identification and BSJ detections. However, the laboratory validation of circRNA includes wheat genomic DNA isolation, RNA isolation and its cDNA conversion upto validation. In this study, we identified 28 circRNAs from RNA-Seq of S0 and R0, wherein six circRNAs are commonly present and 75% of the identified circRNAs were belongs to inter-genic, 14% were exonic and intronic category were 11%. Divergent primer designing method successfully validated the two circRNAs via RT-qPCR assay, where circRNA_2 showed less relative expression pattern than circRNA_1 in contrast with housekeeping genes. CONCLUSION Thus, our results of identified and validated circRNAs showed that, this protocol is quite helpful, relatively easy, reliable, and accurate for large datasets as other algorithms need various dependencies and have complex scripts with high chances of error occurrence. Additionally, analysis time will vary depending on the expertise level and the number of RNA-Seq data. This proposed protocol can also be used for a wide range of monocotyledons belonging to the Poaceae plant family.
Collapse
Affiliation(s)
- Umang Kumar Dhandhanya
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Kunal Mukhopadhyay
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Manish Kumar
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
20
|
Masante L, Susin G, Baudet ML. Droplet Digital PCR for the Detection and Quantification of Bona Fide CircRNAs. Methods Mol Biol 2024; 2765:107-126. [PMID: 38381336 DOI: 10.1007/978-1-0716-3678-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
CircRNAs are covalently closed RNA molecules gaining increasing attention over the years. Initially considered mere splicing errors, circRNAs are now recognized as a novel class of endogenous, conserved RNAs, expressed in many different species. The unique structure, the low levels of expression, and the almost complete sequence overlap with the cognate linear RNA make their detection and quantification challenging. Moreover, it has become crucial to prove the circular nature of the targeted transcript and unequivocally distinguish the circRNA from its linear counterpart. Nowadays, the most widely used technique to quantify circRNA expression is real-time quantitative PCR (qPCR). However, in the particular case of quantification of circles, it shows several technical shortcomings which affect the accuracy of the quantification. To precisely assess circRNA expression level, droplet digital PCR (ddPCR) is rapidly taking over for the more popular qPCR. In this chapter, we describe the detailed procedure based on droplets partitioning to quantify both linear and circRNA abundancy and demonstrate the circularity of the transcript under study with high precision, in a single experiment.
Collapse
Affiliation(s)
- Linda Masante
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy
| | - Giorgia Susin
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy
| | - Marie-Laure Baudet
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy.
| |
Collapse
|
21
|
Jakobi T. State-of-the-Art Circular RNA Analytics Using the Circtools Software Suite. Methods Mol Biol 2024; 2765:23-46. [PMID: 38381332 DOI: 10.1007/978-1-0716-3678-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Circular RNAs (circRNAs) are types of RNA molecules that have been discovered relatively recently and have been found to be widely expressed in eukaryotic cells. Unlike canonical linear RNA molecules, circRNAs form a covalently closed continuous loop structure without a 5' or 3' end. They are generated by a process called back-splicing, in which a downstream splice donor site is joined to an upstream splice acceptor site. CircRNAs have been found to play important roles in various biological processes, including gene regulation, alternative splicing, and protein translation. They can act as sponges for microRNAs or RNA-binding proteins and can also encode peptides or proteins. Additionally, circRNAs have been implicated in several diseases, including cancer, neurological disorders, and cardiovascular diseases.This protocol provides all necessary steps to detect and analyze circRNAs in silico from RNA sequencing data using the circtools circRNA analytics software suite. The protocol starts from raw sequencing data with circRNA detection via back-splice events and includes statistical testing of circRNAs as well as primer design for follow-up wet lab experiments.
Collapse
Affiliation(s)
- Tobias Jakobi
- Department of Internal Medicine and the Translational Cardiovascular Research Center, University of Arizona - College of Medicine - Phoenix, Phoenix, AZ, USA.
| |
Collapse
|
22
|
Xiao MS, Wilusz JE. Purification of Circular RNAs Using Poly(A) Tailing Followed by RNase R Digestion. Methods Mol Biol 2024; 2765:3-19. [PMID: 38381331 DOI: 10.1007/978-1-0716-3678-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Thousands of eukaryotic protein-coding genes can be alternatively spliced to yield linear mRNAs and circular RNAs (circRNAs). Some circRNAs accumulate to higher levels than their cognate linear mRNAs, but the vast majority are expressed at low levels. Hence, for most circRNAs, only a handful of sequencing reads, if any, that span the backsplicing junction are observed in standard RNA-seq libraries. It thus has become common to use the 3'-5' exonuclease ribonuclease R (RNase R) to selectively degrade linear RNAs when aiming to prove transcript circularity or biochemically enrich circRNAs. However, RNase R fails to degrade linear RNAs with structured 3' ends or internal G-quadruplex structures. To overcome these shortcomings, we describe an improved protocol for circRNA purification from total RNA that employs a poly(A) tailing step prior to RNase R digestion, which is performed in a Li+ containing buffer (rather than K+) to destabilize G-quadruplexes. This biochemical method enables higher enrichment (two- to threefold) of circRNAs to be obtained compared to standard RNase R protocols due to more efficient removal of linear RNAs. By then performing quantitative RT-PCR (RT-qPCR) or generating RNA-seq libraries, the expression of individual circRNAs can be examined or the entire set of expressed circRNAs defined using established annotation algorithms. We describe step-by-step methods for annotating circRNAs using the CIRI2 and CIRCexplorer2 algorithms. In total, this overall approach can be used to enrich for circRNAs from any total RNA sample, thereby enabling one to quickly identify and validate circRNAs of interest for functional studies.
Collapse
Affiliation(s)
- Mei-Sheng Xiao
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Jeremy E Wilusz
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
23
|
Wang Y, Wang J, Gruninger RJ, McAllister TA, Li M, Guan LL. Assessment of different enrichment methods revealed the optimal approach to identify bovine circRnas. RNA Biol 2024; 21:1-13. [PMID: 38797889 PMCID: PMC11135877 DOI: 10.1080/15476286.2024.2356334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/14/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Although circular RNAs (circRNAs) play important roles in regulating gene expression, the understanding of circRNAs in livestock animals is scarce due to the significant challenge to characterize them from a biological sample. In this study, we assessed the outcomes of bovine circRNA identification using six enrichment approaches with the combination of ribosomal RNAs removal (Ribo); linear RNAs degradation (R); linear RNAs and RNAs with structured 3' ends degradation (RTP); ribosomal RNAs coupled with linear RNAs elimination (Ribo-R); ribosomal RNA, linear RNAs and RNAs with poly (A) tailing elimination (Ribo-RP); and ribosomal RNA, linear RNAs and RNAs with structured 3' ends elimination (Ribo-RTP), respectively. RNA-sequencing analysis revealed that different approaches led to varied ratio of uniquely mapped reads, false-positive rate of identifying circRNAs, and the number of circRNAs per million clean reads (Padj <0.05). Out of 2,285 and 2,939 highly confident circRNAs identified in liver and rumen tissues, respectively, 308 and 260 were commonly identified from five methods, with Ribo-RTP method identified the highest number of circRNAs. Besides, 507 of 4,051 identified bovine highly confident circRNAs had shared splicing sites with human circRNAs. The findings from this work provide optimized methods to identify bovine circRNAs from cattle tissues for downstream research of their biological roles in cattle.
Collapse
Affiliation(s)
- Yixin Wang
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Jian Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Robert J. Gruninger
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Tim A. McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Mingzhou Li
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
24
|
Li G, Zeng F, Luo J, Liang C, Xiao Q. MNCLCDA: predicting circRNA-drug sensitivity associations by using mixed neighbourhood information and contrastive learning. BMC Med Inform Decis Mak 2023; 23:291. [PMID: 38110886 PMCID: PMC10729363 DOI: 10.1186/s12911-023-02384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/01/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND circRNAs play an important role in drug resistance and cancer development. Recently, many studies have shown that the expressions of circRNAs in human cells can affect the sensitivity of cells to therapeutic drugs, thus significantly influencing the therapeutic effects of these drugs. Traditional biomedical experiments required to verify this sensitivity relationship are not only time-consuming but also expensive. Hence, the development of an efficient computational approach that can accurately predict the novel associations between drug sensitivities and circRNAs is a crucial and pressing need. METHODS In this research, we present a novel computational framework called MNCLCDA, which aims to predict the potential associations between drug sensitivities and circRNAs to assist with medical research. First, MNCLCDA quantifies the similarity between the given drug and circRNA using drug structure information, circRNA gene sequence information, and GIP kernel information. Due to the existence of noise in similarity information, we employ a preprocessing approach based on random walk with restart for similarity networks to efficiently capture the useful features of circRNAs and drugs. Second, we use a mixed neighbourhood graph convolutional network to obtain the neighbourhood information of nodes. Then, a graph-based contrastive learning method is used to enhance the robustness of the model, and finally, a double Laplace-regularized least-squares method is used to predict potential circRNA-drug associations through the kernel matrices in the circRNA and drug spaces. RESULTS Numerous experimental results show that MNCLCDA outperforms six other advanced methods. In addition, the excellent performance of our proposed model in case studies illustrates that MNCLCDA also has the ability to predict the associations between drug sensitivity and circRNA in practical situations. CONCLUSIONS After a large number of experiments, it is illustrated that MNCLCDA is an efficient tool for predicting the potential associations between drug sensitivities and circRNAs, thereby can provide some guidance for clinical trials.
Collapse
Affiliation(s)
- Guanghui Li
- School of Information Engineering, East China Jiaotong University, Nanchang, China.
| | - Feifan Zeng
- School of Information Engineering, East China Jiaotong University, Nanchang, China
| | - Jiawei Luo
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China.
| | - Cheng Liang
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Qiu Xiao
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
| |
Collapse
|
25
|
Shu H, Zhang Z, Liu J, Chen P, Yang C, Wu Y, Wu D, Cao Y, Chu Y, Li L. Circular RNAs: An emerging precise weapon for diabetic nephropathy diagnosis and therapy. Biomed Pharmacother 2023; 168:115818. [PMID: 37939612 DOI: 10.1016/j.biopha.2023.115818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023] Open
Abstract
Diabetic nephropathy (DN) is a prevalent chronic microvascular complication associated with diabetes mellitus and represents a major cause of chronic kidney disease and renal failure. Current treatment strategies for DN primarily focus on symptom alleviation, lacking effective approaches to halt or reverse DN progression. Circular RNA (circRNA), characterized by a closed-loop structure, has emerged as a novel non-coding RNA regulator of gene expression, attributed to its conservation, stability, specificity, and multifunctionality. Dysregulation of circRNA expression is closely associated with DN progression, whereby circRNA impacts kidney cell injury by modulating cell cycle, differentiation, cell death, as well as influencing the release of inflammatory factors and stromal fibronectin expression. Consequently, circRNA is considered a predictive biomarker and a potential therapeutic target for DN. This review provides an overview of the latest research progress in the classification, functions, monitoring methods, and databases related to circRNA. The paper focuses on elucidating the impact and underlying mechanisms of circRNA on kidney cells under diabetic conditions, aiming to offer novel insights into the prevention, diagnosis, and treatment of DN.
Collapse
Affiliation(s)
- Haiying Shu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Zhen Zhang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; School of First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, China
| | - Jieting Liu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China.
| | - Peijian Chen
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Can Yang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yan Wu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Dan Wu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yanan Cao
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yanhui Chu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China.
| | - Luxin Li
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China.
| |
Collapse
|
26
|
Demircan T, Süzek BE. The Dynamic Landscapes of Circular RNAs in Axolotl, a Regenerative Medicine Model, with Implications for Early Phase of Limb Regeneration. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:526-535. [PMID: 37943672 DOI: 10.1089/omi.2023.0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Circular RNAs (circRNAs) are of relevance to regenerative medicine and play crucial roles in post-transcriptional and translational regulation of biological processes. circRNAs are a class of RNA molecules that are formed through a unique splicing process, resulting in a covalently closed-loop structure. Recent advancements in RNA sequencing technologies and specialized computational tools have facilitated the identification and functional characterization of circRNAs. These molecules are known to exhibit stability, developmental regulation, and specific expression patterns in different tissues and cell types across various organisms. However, our understanding of circRNA expression and putative function in model organisms for regeneration is limited. In this context, this study reports, for the first time, on the repertoire of circRNAs in axolotl, a widely used model organism for regeneration. We generated RNA-seq data from intact limb, wound, and blastema tissues of axolotl during limb regeneration. The analysis revealed the presence of 35,956 putative axolotl circRNAs, among which 5331 unique circRNAs exhibited orthology with human circRNAs. In silico data analysis underlined the potential roles of axolotl circRNAs in cell cycle, cell death, and cell senescence-related pathways during limb regeneration, suggesting the participation of circRNAs in regulation of diverse functions pertinent to regenerative medicine. These new observations help advance our understanding of the dynamic landscape of axolotl circRNAs, and by extension, inform future regenerative medicine research and innovation that harness this model organism.
Collapse
Affiliation(s)
- Turan Demircan
- Medical Biology Department, School of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Barış Ethem Süzek
- Department of Computer Engineering, Faculty of Engineering, Muğla Sıtkı Koçman University, Muğla, Turkey
- Bioinformatics Graduate Program, Graduate School of Natural and Applied Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey
| |
Collapse
|
27
|
Zebardast A, Latifi T, shirzad M, Goodarzi G, Ebrahimi Fana S, Samavarchi Tehrani S, Yahyapour Y. Critical involvement of circular RNAs in virus-associated cancers. Genes Dis 2023; 10:2296-2305. [PMID: 37554189 PMCID: PMC10404876 DOI: 10.1016/j.gendis.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 12/09/2022] Open
Abstract
Virus-related cancer is cancer where viral infection leads to the malignant transformation of the host's infected cells. Seven viruses (e.g., human papillomavirus (HPV), Epstein-Barr virus (EBV), Kaposi's sarcoma herpesvirus (KSHV), Hepatitis B virus (HBV), Hepatitis C virus (HCV), Human T-lymphotropic virus (HTLV), and Merkel cell polyomavirus (MCV)) that infect humans have been identified as an oncogene and have been associated with several human malignancies. Recently, growing attention has been attracted to exploring the pathogenesis of virus-related cancers. One of the most mysterious molecules involved in carcinogenesis and progression of virus-related cancers is circular RNAs (circRNA). These emerging non-coding RNAs (ncRNAs), due to the absence of 5' and 3' ends, have high stability than linear RNAs and are found in some species across the eukaryotic organisms. Compelling evidence has revealed that viruses also encode a repertoire of circRNAs, as well as dysregulation of these viral circRNAs play a critical role in the pathogenesis and progression of different types of virus-related cancers. Therefore, understanding the exact role and function of the virally encoded circRNAs with virus-associated cancers will open a new road for increasing our knowledge about the RNA world. Hence, in this review, we will focus on emerging roles of virus-encoded circRNAs in multiple cancers, including cervical cancer, gastric cancer, Merkel cell carcinoma, nasopharyngeal carcinoma, Kaposi cancer, and liver cancer.
Collapse
Affiliation(s)
- Arghavan Zebardast
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Tayebeh Latifi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Moein shirzad
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol 47176, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Saeed Ebrahimi Fana
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Yousef Yahyapour
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol 47176, Iran
| |
Collapse
|
28
|
Feng X, Su Z, Cheng Y, Ma G, Zhang S. Messenger RNA chromatographic purification: advances and challenges. J Chromatogr A 2023; 1707:464321. [PMID: 37639849 DOI: 10.1016/j.chroma.2023.464321] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
Messenger RNA (mRNA) technologies have shown great potential in prophylactic vaccines and therapeutic medicines due to their adaptability, rapidity, efficacy, and safety. The purity of mRNA determines the efficacy and safety of mRNA drugs. Though chromatographic technologies are currently employed in mRNA purification, they are facing challenges, mainly arising from the large size, relatively simple chemical composition, instability, and high resemblance of by-products to the target mRNA. In this review, we will first make a comprehensive analysis of physiochemical properties differences between mRNA and proteins, then the major challenges facing in mRNA purification and general considerations are highlighted. A detailed summary of the state-of-arts in mRNA chromatographic purification will be provided, which are mainly classified into physicochemical property-based (size, charge, and hydrophobicity) and chemical structure-based (phosphate backbone, bases, cap structure, and poly A tail) technologies. Efforts in eliminating dsRNA byproducts via post in vitro transcript (IVT) purification and by manipulating the IVT process to reduce the generation of dsRNA are highlighted. Finally, a brief summary of the current status of chromatographic purification of the emerging circular mRNA (circRNA) is provided. We hope this review will provide some useful guidance for the Quality by Design (QbD) of mRNA downstream process development.
Collapse
Affiliation(s)
- Xue Feng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinses Academy of Sciences, Beijing 100190, China; Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia; Monash Suzhou Research Institute, Monash University, SIP, Suzhou 215000, China
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinses Academy of Sciences, Beijing 100190, China
| | - Yuan Cheng
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia; Monash Suzhou Research Institute, Monash University, SIP, Suzhou 215000, China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinses Academy of Sciences, Beijing 100190, China
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinses Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
29
|
He TT, Xu YF, Li X, Wang X, Li JY, Ou-Yang D, Cheng HS, Li HY, Qin J, Huang Y, Wang HY. A linear and circular dual-conformation noncoding RNA involved in oxidative stress tolerance in Bacillus altitudinis. Nat Commun 2023; 14:5722. [PMID: 37714854 PMCID: PMC10504365 DOI: 10.1038/s41467-023-41491-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023] Open
Abstract
Circular RNAs have been extensively studied in eukaryotes, but their presence and/or biological functionality in bacteria are unclear. Here, we show that a regulatory noncoding RNA (DucS) exists in both linear and circular conformation in Bacillus altitudinis. The linear forms promote B. altitudinis tolerance to H2O2 stress, partly through increased translation of a stress-responsive gene, htrA. The 3' end sequences of the linear forms are crucial for RNA circularization, and formation of circular forms can decrease the levels of the regulatory linear cognates. Bioinformatic analysis of available RNA-seq datasets from 30 bacterial species revealed multiple circular RNA candidates, distinct from DucS, for all the examined species. Experiments testing for the presence of selected circular RNA candidates in four species successfully validated 7 out of 9 candidates from B. altitudinis and 4 out of 5 candidates from Bacillus paralicheniformis; However, none of the candidates tested for Bacillus subtilis and Escherichia coli were detected. Our work identifies a dual-conformation regulatory RNA in B. altitutidinis, and indicates that circular RNAs exist in diverse bacteria. However, circularization of specific RNAs does not seem to be conserved across species, and the circularization mechanisms and biological functionality of the circular forms remain unclear.
Collapse
Affiliation(s)
- Ting-Ting He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yun-Fan Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Xiang Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Xia Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Jie-Yu Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Dan Ou-Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Han-Sen Cheng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Hao-Yang Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Jia Qin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yu Huang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Hai-Yan Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
30
|
He Z, Zhu Q. Circular RNAs: Emerging roles and new insights in human cancers. Biomed Pharmacother 2023; 165:115217. [PMID: 37506578 DOI: 10.1016/j.biopha.2023.115217] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Circular RNAs (circRNAs) are single-stranded, covalently closed RNA molecules formed by mRNA exon back-splicing. Although the circRNA functions remain largely unknown, their currently known biological activities include: acting as competing endogenous RNA (ceRNA) to adsorb microRNA (miRNA), binding proteins, regulating transcription or splicing, and ability to be translated into proteins or peptides. A growing number of studies have found that many circRNAs are abnormally expressed in various cancers, and their dysregulation is highly correlated with tumor progression. Therefore, diagnosis and treatment using circRNAs as biomarkers and therapeutic targets, respectively, has gradually become an attractive research topic. In this review, we introduced the canonical biogenesis pathways and degradation mechanisms of circRNAs. In addition, we examined the biological functions of circRNAs in vivo. Finally, we discussed the current clinical applications and challenges faced by circRNA, and proposed future directions for this promising research field.
Collapse
Affiliation(s)
- Zhilin He
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha 410013, Hunan, China.
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|
31
|
Pisignano G, Michael DC, Visal TH, Pirlog R, Ladomery M, Calin GA. Going circular: history, present, and future of circRNAs in cancer. Oncogene 2023; 42:2783-2800. [PMID: 37587333 PMCID: PMC10504067 DOI: 10.1038/s41388-023-02780-w] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 08/18/2023]
Abstract
To date, thousands of highly abundant and conserved single-stranded RNA molecules shaped into ring structures (circRNAs) have been identified. CircRNAs are multifunctional molecules that have been shown to regulate gene expression transcriptionally and post-transcriptionally and exhibit distinct tissue- and development-specific expression patterns associated with a variety of normal and disease conditions, including cancer pathogenesis. Over the past years, due to their intrinsic stability and resistance to ribonucleases, particular attention has been drawn to their use as reliable diagnostic and prognostic biomarkers in cancer diagnosis, treatment, and prevention. However, there are some critical caveats to their utility in the clinic. Their circular shape limits their annotation and a complete functional elucidation is lacking. This makes their detection and biomedical application still challenging. Herein, we review the current knowledge of circRNA biogenesis and function, and of their involvement in tumorigenesis and potential utility in cancer-targeted therapy.
Collapse
Affiliation(s)
- Giuseppina Pisignano
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - David C Michael
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Tanvi H Visal
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Radu Pirlog
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Ladomery
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol, BS16 1QY, UK
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
32
|
Gu A, Jaijyan DK, Yang S, Zeng M, Pei S, Zhu H. Functions of Circular RNA in Human Diseases and Illnesses. Noncoding RNA 2023; 9:38. [PMID: 37489458 PMCID: PMC10366867 DOI: 10.3390/ncrna9040038] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/26/2023] Open
Abstract
Circular RNAs (circRNAs) represent single-stranded RNA species that contain covalently closed 3' and 5' ends that provide them more stability than linear RNA, which has free ends. Emerging evidence indicates that circRNAs perform essential functions in many DNA viruses, including coronaviruses, Epstein-Barr viruses, cytomegalovirus, and Kaposi sarcoma viruses. Recent studies have confirmed that circRNAs are present in viruses, including DNA and RNA viruses, and play various important functions such as evading host immune response, disease pathogenesis, protein translation, miRNA sponges, regulating cell proliferation, and virus replication. Studies have confirmed that circRNAs can be biological signatures or pathological markers for autoimmune diseases, neurological diseases, and cancers. However, our understanding of circRNAs in DNA and RNA viruses is still limited, and functional evaluation of viral and host circRNAs is essential to completely understand their biological functions. In the present review, we describe the metabolism and cellular roles of circRNA, including its roles in various diseases and viral and cellular circRNA functions. Circular RNAs are found to interact with RNA, proteins, and DNA, and thus can modulate cellular processes, including translation, transcription, splicing, and other functions. Circular RNAs interfere with various signaling pathways and take part in vital functions in various biological, physiological, cellular, and pathophysiological processes. We also summarize recent evidence demonstrating cellular and viral circRNA's roles in DNA and RNA viruses in this growing field of research.
Collapse
Affiliation(s)
- Alison Gu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Dabbu Kumar Jaijyan
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Shaomin Yang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Mulan Zeng
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Shaokai Pei
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| |
Collapse
|
33
|
Schleif WS, Sarasua SM, DeLuca JM. Preanalytic and Analytic Quality System Considerations in Noncoding RNA Biomarker Development for Clinical Diagnostics. Genet Test Mol Biomarkers 2023; 27:172-182. [PMID: 37257182 DOI: 10.1089/gtmb.2022.0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023] Open
Abstract
A frequent topic of biomedical research is the potential clinical use of non-coding (nc) RNAs as quantitative biomarkers for a broad spectrum of health and disease. However, ncRNA analyses have not been pressed into widespread diagnostic use. Strong preclinical evidence suggests obstacles in the translation and reproducibility of this type of biomarker which may result from preanalytical and analytical variation in the non-standardized processes used to collect, process, and store samples, as well as the substantive differences between small and long ncRNA. We performed a narrative review of selected literature, through the lens of key laboratory-developed test (LDT) regulations under the Clinical Laboratory Improvement Amendments (CLIA) in the United States, to study critical gaps in ncRNA validation studies. This review describes the leading candidate ncRNA subclasses, their biogenesis and cellular function, and identifies specific pre-analytical variables with disproportionate impact on testing performance. We summarize these findings with strategic recommendations to clinicians and biomedical scientists involved in the design, conduct, and translation of ncRNA biomarker development.
Collapse
Affiliation(s)
- William S Schleif
- Healthcare Genetics Program, School of Nursing, College of Health, Education, and Human Development, Clemson University, Clemson, South Carolina, USA
- Program in Pediatric Biospecimen Science, Johns Hopkins All Children's Institute for Clinical and Translational Research, St. Petersburg, Florida, USA
| | - Sara M Sarasua
- Healthcare Genetics Program, School of Nursing, College of Health, Education, and Human Development, Clemson University, Clemson, South Carolina, USA
| | - Jane M DeLuca
- Healthcare Genetics Program, School of Nursing, College of Health, Education, and Human Development, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
34
|
Shi Y, Shang J. Circular RNA Expression Profiling by Microarray-A Technical and Practical Perspective. Biomolecules 2023; 13:679. [PMID: 37189426 PMCID: PMC10135611 DOI: 10.3390/biom13040679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Circular RNAs, as covalently circularized RNA loops, have many unique biochemical properties. Many circRNA biological functions and clinical indications are being continually discovered. Increasingly, circRNAs are being used as a new class of biomarkers, which are potentially superior to linear RNAs due to the unusual cell/tissue/disease specificities and the exonuclease-resistant stabilized circular form in the biofluids. Profiling circRNA expression has been a common step in circRNA research to provide much needed insight into circRNA biology and to facilitate rapid advances in the circRNA field. We will review circRNA microarrays as a practical and effective circRNA profiling technology for regularly equipped biological or clinical research labs, share valuable experiences, and highlight the significant findings from the profiling studies.
Collapse
Affiliation(s)
- Yanggu Shi
- Arraystar Inc., 9430 Key West Avenue #128, Rockville, MD 20850, USA
| | | |
Collapse
|
35
|
Hou L, Zhang J, Zhao F. Full-length circular RNA profiling by nanopore sequencing with CIRI-long. Nat Protoc 2023:10.1038/s41596-023-00815-w. [PMID: 37045995 DOI: 10.1038/s41596-023-00815-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/17/2023] [Indexed: 04/14/2023]
Abstract
Circular RNAs (circRNAs) have important roles in regulating developmental processes and disease progression. As most circRNA sequences are highly similar to their cognate linear transcripts, the current short-read sequencing-based methods rely on the back-spliced junction signal for distinguishing circular and linear reads, which does not allow circRNAs' full-length structure to be effectively reconstructed. Here we describe a long-read sequencing-based protocol, CIRI-long, for the detection of full-length circular RNAs. The CIRI-long protocol combines rolling circular reverse transcription and nanopore sequencing to capture full-length circRNA sequences. After poly(A) tailing, RNase R treatment, and size selection of polymerase chain reaction products, CIRI-long achieves an increased percentage (6%) of circular reads in the constructed library, which is 20-fold higher compared with previous Illumina-based strategies. This method can be applied in cell lines or tissue samples, enabling accurate detection of full-length circRNAs in the range of 100-3,000 bp. The entire protocol can be completed in 1 d, and can be scaled up for large-scale analysis using the nanopore barcoding kit and PromethION sequencing device. CIRI-long can serve as an effective and user-friendly protocol for characterizing full-length circRNAs, generating direct and convincing evidence for the existence of detected circRNAs. The analytical pipeline offers convenient functions for identification of full-length circRNA isoforms and integration of multiple datasets. The assembled full-length transcripts and their splicing patterns provide indispensable information to explore the biological function of circRNAs.
Collapse
Affiliation(s)
- Lingling Hou
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Jinyang Zhang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
36
|
Liu H, Ma H, Li Y, Zhao H. Advances in epigenetic modifications and cervical cancer research. Biochim Biophys Acta Rev Cancer 2023; 1878:188894. [PMID: 37011697 DOI: 10.1016/j.bbcan.2023.188894] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/19/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
Cervical cancer (CC) is an important public health problem for women, and perspectives and information regarding its prevention and treatment are quickly evolving. Human papilloma virus (HPV) has been recognized as a major contributor to CC development; however, HPV infection is not the only cause of CC. Epigenetics refers to changes in gene expression levels caused by non-gene sequence changes. Growing evidence suggests that the disruption of gene expression patterns which were governed by epigenetic modifications can result in cancer, autoimmune diseases, and various other maladies. This article mainly reviews the current research status of epigenetic modifications in CC based on four aspects, respectively DNA methylation, histone modification, noncoding RNA regulation and chromatin regulation, and we also discuss their functions and molecular mechanisms in the occurrence and progression of CC. This review provides new ideas for early screening, risk assessment, molecular targeted therapy and prognostic prediction of CC.
Collapse
|
37
|
Tong Y, Zhang S, Riddle S, Song R, Yue D. Circular RNAs in the Origin of Developmental Lung Disease: Promising Diagnostic and Therapeutic Biomarkers. Biomolecules 2023; 13:biom13030533. [PMID: 36979468 PMCID: PMC10046088 DOI: 10.3390/biom13030533] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/11/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Circular RNA (circRNA) is a newly discovered noncoding RNA that regulates gene transcription, binds to RNA-related proteins, and encodes protein microRNAs (miRNAs). The development of molecular biomarkers such as circRNAs holds great promise in the diagnosis and prognosis of clinical disorders. Importantly, circRNA-mediated maternal-fetus risk factors including environmental (high altitude), maternal (preeclampsia, smoking, and chorioamnionitis), placental, and fetal (preterm birth and low birth weight) factors are the early origins and likely to contribute to the occurrence and progression of developmental and pediatric cardiopulmonary disorders. Although studies of circRNAs in normal cardiopulmonary development and developmental diseases have just begun, some studies have revealed their expression patterns. Here, we provide an overview of circRNAs’ biogenesis and biological functions. Furthermore, this review aims to emphasize the importance of circRNAs in maternal-fetus risk factors. Likewise, the potential biomarker and therapeutic target of circRNAs in developmental and pediatric lung diseases are explored.
Collapse
Affiliation(s)
- Yajie Tong
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Shuqing Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Suzette Riddle
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rui Song
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
- Correspondence: (R.S.); (D.Y.); Tel.: +01-909-558-4325 (R.S.); +86-24-9661551125 (D.Y.)
| | - Dongmei Yue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Correspondence: (R.S.); (D.Y.); Tel.: +01-909-558-4325 (R.S.); +86-24-9661551125 (D.Y.)
| |
Collapse
|
38
|
The Tumorigenic Role of Circular RNA-MicroRNA Axis in Cancer. Int J Mol Sci 2023; 24:ijms24033050. [PMID: 36769372 PMCID: PMC9917898 DOI: 10.3390/ijms24033050] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of endogenous RNAs that control gene expression at the transcriptional and post-transcriptional levels. Recent studies have increasingly demonstrated that circRNAs act as novel diagnostic biomarkers and promising therapeutic targets for numerous cancer types by interacting with other non-coding RNAs such as microRNAs (miRNAs). The miRNAs are presented as crucial risk factors and regulatory elements in cancer by regulating the expression of their target genes. Some miRNAs are derived from transposable elements (MDTEs) that can transfer their location to another region of the genome. Genetic interactions between miRNAs and circular RNAs can form complex regulatory networks with various carcinogenic processes that play critical roles in tumorigenesis and cancer progression. This review focuses on the biological regulation of the correlative axis among circular RNAs, miRNAs, and their target genes in various cancer types and suggests the biological importance of MDTEs interacting with oncogenic or tumor-suppressive circRNAs in tumor progression.
Collapse
|
39
|
Wu H, Zheng S, He Q, Li Y. Recent Advances of Circular RNAs as Biomarkers for Osteosarcoma. Int J Gen Med 2023; 16:173-183. [PMID: 36687163 PMCID: PMC9850833 DOI: 10.2147/ijgm.s380834] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 11/30/2022] [Indexed: 01/15/2023] Open
Abstract
Osteosarcoma is the most common primary malignant bone tumor in young adult, which is prone to early metastasis and poor prognosis. The current treatment methods need to be improved. Circular RNA is a covalently blocked circular, non-coding RNA that plays an essential role in the occurrence, development, clinical diagnosis, and treatment of various diseases. Recently, an increasing number of circRNAs have been identified in osteosarcoma. Understanding its role in osteosarcoma is conducive to the early detection, diagnosis, and treatment of osteosarcoma. In this paper, we reviewed the mechanism of action of circular RNA in the occurrence and development of osteosarcoma and its clinical application in recent years.
Collapse
Affiliation(s)
- Hongliang Wu
- Department of Orthopedics, Fuzhou Second Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China,Department of Orthopedics, Fuzhou Second Hospital, Fuzhou, People’s Republic of China,Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Sihang Zheng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Qun He
- Department of Bioinformatics, School of Life Sciences, China Medical University, Shenyang, People’s Republic of China
| | - Yan Li
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China,Correspondence: Yan Li; Qun He, Email ;
| |
Collapse
|
40
|
Wang Z, Deng H, Jin Y, Luo M, Huang J, Wang J, Zhang K, Wang L, Zhou J. Circular RNAs: biology and clinical significance of breast cancer. RNA Biol 2023; 20:859-874. [PMID: 37882644 PMCID: PMC10730165 DOI: 10.1080/15476286.2023.2272468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2023] [Indexed: 10/27/2023] Open
Abstract
Circular RNAs (circRNAs) are novel noncoding RNAs with covalently closed-loop structures that can regulate eukaryotic gene expression. Due to their stable structure, circRNAs are widely distributed in the cytoplasm and have important biological functions, including as microRNA sponges, RNA-binding protein conjugates, transcription regulators, and translation templates. Breast cancer is among the most common malignant cancers diagnosed in women worldwide. Despite the development of comprehensive treatments, breast cancer still has high mortality rates. Recent studies have unmasked critical roles for circRNAs in breast cancer as regulators of tumour initiation, progression, and metastasis. Further, research has revealed that some circRNAs have the potential for use as diagnostic and prognostic biomarkers in clinical practice. Herein, we review the biogenesis and biological functions of circRNAs, as well as their roles in different breast cancer subtypes. Moreover, we provide a comprehensive summary of the clinical significance of circRNAs in breast cancer. CircRNAs are believed to be a hot focus in basic and clinical research of breast cancer, and innovative future research directions of circRNAs could be used as biomarkers, therapeutic targets, or novel drugs.Abbreviations: CeRNA: Competitive endogenous RNA; ciRNA: Circular intronic RNA; circRNA: Circular RNA; EIciRNA: Exon-intron circRNA; EMT: Epithelial-mesenchymal transition; IRES: Internal ribosome entry site; lncRNA: Long non-coding RNA; miRNA: MicroRNA; MRE: MiRNA response element; ncRNA: Non-coding RNA; RBP: RNA-binding protein; RNA-seq: RNA sequencing; RT-PCR: Reverse transcription-polymerase chain reaction.
Collapse
Affiliation(s)
- Zhanwei Wang
- Department of Breast Surgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Hao Deng
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Jin
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Luo
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Huang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Wang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kun Zhang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Wang
- Department of Emergency, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaojiao Zhou
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
41
|
Tsitsipatis D, Mazan-Mamczarz K, Si Y, Herman AB, Yang JH, Guha A, Piao Y, Fan J, Martindale JL, Munk R, Yang X, De S, Singh BK, Ho R, Gorospe M, King PH. Transcriptomic analysis of human ALS skeletal muscle reveals a disease-specific pattern of dysregulated circRNAs. Aging (Albany NY) 2022; 14:9832-9859. [PMID: 36585921 PMCID: PMC9831722 DOI: 10.18632/aging.204450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/13/2022] [Indexed: 01/01/2023]
Abstract
Circular RNAs are abundant, covalently closed transcripts that arise in cells through back-splicing and display distinct expression patterns across cells and developmental stages. While their functions are largely unknown, their intrinsic stability has made them valuable biomarkers in many diseases. Here, we set out to examine circRNA patterns in amyotrophic lateral sclerosis (ALS). By RNA-sequencing analysis, we first identified circRNAs and linear RNAs that were differentially abundant in skeletal muscle biopsies from ALS compared to normal individuals. By RT-qPCR analysis, we confirmed that 8 circRNAs were significantly elevated and 10 were significantly reduced in ALS, while the linear mRNA counterparts, arising from shared precursor RNAs, generally did not change. Several of these circRNAs were also differentially abundant in motor neurons derived from human induced pluripotent stem cells (iPSCs) bearing ALS mutations, and across different disease stages in skeletal muscle from a mouse model of ALS (SOD1G93A). Interestingly, a subset of the circRNAs significantly elevated in ALS muscle biopsies were significantly reduced in the spinal cord samples from ALS patients and ALS (SOD1G93A) mice. In sum, we have identified differentially abundant circRNAs in ALS-relevant tissues (muscle and spinal cord) that could inform about neuromuscular molecular programs in ALS and guide the development of therapies.
Collapse
Affiliation(s)
- Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ying Si
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294, USA
| | - Allison B. Herman
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jen-Hao Yang
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Abhishek Guha
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yulan Piao
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jinshui Fan
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jennifer L. Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Xiaoling Yang
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Brijesh K. Singh
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ritchie Ho
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Peter H. King
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294, USA
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
42
|
Sun X, Kang Y, Li M, Li Y, Song J. The emerging regulatory mechanisms and biological function of circular RNAs in skeletal muscle development. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - GENE REGULATORY MECHANISMS 2022; 1865:194888. [DOI: 10.1016/j.bbagrm.2022.194888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/07/2022]
|
43
|
Abstract
Covalently closed, single-stranded circular RNAs can be produced from viral RNA genomes as well as from the processing of cellular housekeeping noncoding RNAs and precursor messenger RNAs. Recent transcriptomic studies have surprisingly uncovered that many protein-coding genes can be subjected to backsplicing, leading to widespread expression of a specific type of circular RNAs (circRNAs) in eukaryotic cells. Here, we discuss experimental strategies used to discover and characterize diverse circRNAs at both the genome and individual gene scales. We further highlight the current understanding of how circRNAs are generated and how the mature transcripts function. Some circRNAs act as noncoding RNAs to impact gene regulation by serving as decoys or competitors for microRNAs and proteins. Others form extensive networks of ribonucleoprotein complexes or encode functional peptides that are translated in response to certain cellular stresses. Overall, circRNAs have emerged as an important class of RNAmolecules in gene expression regulation that impact many physiological processes, including early development, immune responses, neurogenesis, and tumorigenesis.
Collapse
Affiliation(s)
- Li Yang
- Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China;
| | - Jeremy E Wilusz
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, Texas, USA;
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China;
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
44
|
Nielsen AF, Bindereif A, Bozzoni I, Hanan M, Hansen TB, Irimia M, Kadener S, Kristensen LS, Legnini I, Morlando M, Jarlstad Olesen MT, Pasterkamp RJ, Preibisch S, Rajewsky N, Suenkel C, Kjems J. Best practice standards for circular RNA research. Nat Methods 2022; 19:1208-1220. [PMID: 35618955 PMCID: PMC9759028 DOI: 10.1038/s41592-022-01487-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/16/2022] [Indexed: 12/26/2022]
Abstract
Circular RNAs (circRNAs) are formed in all domains of life and via different mechanisms. There has been an explosion in the number of circRNA papers in recent years; however, as a relatively young field, circRNA biology has an urgent need for common experimental standards for isolating, analyzing, expressing and depleting circRNAs. Here we propose a set of guidelines for circRNA studies based on the authors' experience. This Perspective will specifically address the major class of circRNAs in Eukarya that are generated by a spliceosome-catalyzed back-splicing event. We hope that the implementation of best practice principles for circRNA research will help move the field forward and allow a better functional understanding of this fascinating group of RNAs.
Collapse
Affiliation(s)
- Anne F Nielsen
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus, Denmark
| | - Albrecht Bindereif
- Department of Biology and Chemistry, Institute of Biochemistry, Justus Liebig University of Giessen, Giessen, Germany
| | - Irene Bozzoni
- Department of Biology and Biotechnology, Charles Darwin, and Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Sapienza University of Rome, Rome, Italy
| | - Mor Hanan
- Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Thomas B Hansen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- TargoVax - Clinical Science, Oslo, Norway
| | - Manuel Irimia
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| | | | | | - Ivano Legnini
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Mariangela Morlando
- Department of Pharmaceutical Sciences, 'Department of Excellence 2018-2022', University of Perugia, Perugia, Italy
| | | | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Stephan Preibisch
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- HHMI Janelia Research campus, Ashburn, VA, USA
| | - Nikolaus Rajewsky
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Christin Suenkel
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Lonza - Drug Product Services, Basel, Switzerland
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark.
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus, Denmark.
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
45
|
A Review and In Silico Analysis of Tissue and Exosomal Circular RNAs: Opportunities and Challenges in Thyroid Cancer. Cancers (Basel) 2022; 14:cancers14194728. [PMID: 36230649 PMCID: PMC9564022 DOI: 10.3390/cancers14194728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Thyroid cancer is the most common endocrine neoplasm. Recently, knowledge of the molecular genetic changes of thyroid cancer has dramatically improved. Understanding the roles of these molecular changes in thyroid cancer tumorigenesis and progression is essential in developing a successful treatment strategy and improving disease outcomes. As a family of non-coding RNAs, circular RNAs (circRNAs) have been involved in several aspects of the physiological and pathological processes of the cells. The roles of circRNAs in cancer development and progress are evident. In the current review, we aimed to explore the clinical potential of circRNAs as potential diagnostic, prognostic, and therapeutic targets in thyroid cancer. Furthermore, screening the genome-wide circRNAs and performing functional enrichment analyses for all associated dysregulated circRNAs in thyroid cancer have been done. Given the unique advantages circRNAs have, such as superior stability, higher abundance, and presence in different body fluids, this family of non-coding RNAs could be promising diagnostic and prognostic biomarkers and potential therapeutic targets for thyroid cancer. Abstract Thyroid cancer (TC) is the most common endocrine tumor. The genetic and epigenetic molecular alterations of TC have become more evident in recent years. However, a deeper understanding of the roles these molecular changes play in TC tumorigenesis and progression is essential in developing a successful treatment strategy and improving patients’ prognoses. Circular RNAs (circRNAs), a family of non-coding RNAs, have been implicated in several aspects of carcinogenesis in multiple cancers, including TC. In the current review, we aimed to explore the clinical potential of circRNAs as putative diagnostic, prognostic, and therapeutic targets in TC. The current analyses, including genome-wide circRNA screening and functional enrichment for all deregulated circRNA expression signatures, show that circRNAs display atypical contributions, such as sponging for microRNAs, regulating transcription and translation processes, and decoying for proteins. Given their exceptional clinical advantages, such as higher stability, wider abundance, and occurrence in several body fluids, circRNAs are promising prognostic and theranostic biomarkers for TC.
Collapse
|
46
|
In Silico Identification and Characterization of circRNAs as Potential Virulence-Related miRNA/siRNA Sponges from Entamoeba histolytica and Encystment-Related circRNAs from Entamoeba invadens. Noncoding RNA 2022; 8:ncrna8050065. [PMID: 36287117 PMCID: PMC9607107 DOI: 10.3390/ncrna8050065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
Ubiquitous eukaryotic non-coding circular RNAs regulate transcription and translation. We have reported full-length intronic circular RNAs (flicRNAs) in Entamoeba histolytica with esterified 3′ss and 5′ss. Their 5′ss GU-rich elements are essential for their biogenesis and their suggested role in transcription regulation. Here, we explored whether exonic, exonic-intronic, and intergenic circular RNAs are also part of the E. histolytica and E. invadens ncRNA RNAome and investigated their possible functions. Available RNA-Seq libraries were analyzed with the CIRI-full software in search of circular exonic RNAs (circRNAs). The robustness of the analyses was validated using synthetic decoy sequences with bona fide back splice junctions. Differentially expressed (DE) circRNAs, between the virulent HM1:IMSS and the nonvirulent Rahman E. histolytica strains, were identified, and their miRNA sponging potential was analyzed using the intaRNA software. Respectively, 188 and 605 reverse overlapped circRNAs from E. invadens and E. histolytica were identified. The sequence composition of the circRNAs was mostly exonic although different to human circRNAs in other attributes. 416 circRNAs from E. histolytica were virulent-specific and 267 were nonvirulent-specific. Out of the common circRNAs, 32 were DE between strains. Finally, we predicted that 8 of the DE circRNAs could function as sponges of the bioinformatically reported miRNAs in E. histolytica, whose functions are still unknown. Our results extend the E. histolytica RNAome and allow us to devise a hypothesis to test circRNAs/miRNAs/siRNAs interactions in determining the virulent/nonvirulent phenotypes and to explore other regulatory mechanisms during amoebic encystment.
Collapse
|
47
|
Turai PI, Nyirő G, Borka K, Micsik T, Likó I, Patócs A, Igaz P. Exploratory Circular RNA Profiling in Adrenocortical Tumors. Cancers (Basel) 2022; 14:cancers14174313. [PMID: 36077848 PMCID: PMC9454786 DOI: 10.3390/cancers14174313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The histological differential diagnosis of adrenocortical adenoma and carcinoma is difficult and requires great expertise. Measures taken towards the distinction of adrenal tumors are of paramount importance. The non-coding circular RNAs (circRNAs) were shown to be expressed in a tissue and tumor specific manner. CircRNAs are investigated as a useful adjunct to the differential diagnosis of benign and malignant tumors of several organs, but they have not been investigated in adrenocortical tumors yet. Here, we have performed circRNA profiling in adrenocortical tumors by next-generation sequencing to detect already known and de novo circRNAs. Out of the five most differentially expressed circRNAs, circPHC3 could be confirmed by TaqMan RT-qPCR to be overexpressed in carcinoma and adenoma vs. healthy tissues in an independent validation cohort. Abstract Differentiation of adrenocortical adenoma (ACA) and carcinoma (ACC) is often challenging even in the histological analysis. Circular RNAs (circRNAs) belonging to the group of non-coding RNAs have been implicated as relevant factors in tumorigenesis. Our aim was to explore circRNA expression profiles in adrenocortical tumors by next-generation sequencing followed by RT-qPCR validation. Archived FFPE (formalin-fixed, paraffin embedded) including 8 ACC, 8 ACA and 8 normal adrenal cortices (NAC) were used in the discovery cohort. For de novo and known circRNA expression profiling, a next-generation sequencing platform was used. CIRI2, CircExplorer2, AutoCirc bioinformatics tools were used for the discovery of circRNAs. The top five most differentially circRNAs were measured by RT-qPCR in an independent validation cohort (10 ACC, 8 ACA, 8 NAC). In silico predicted, interacting microRNAs potentially sponged by differentially expressed circRNAs were studied by individual RT-qPCR assays. We focused on overexpressed circRNAs here. Significantly differentially expressed circRNAs have been revealed between the cohorts by NGS. Only circPHC3 could be confirmed to be significantly overexpressed in ACC, ACA vs. NAC samples by RT-qPCR. We could not observe microRNA expression changes fully corresponding to our sponging hypothesis. To the best of our knowledge, our study is the first to investigate circRNAs in adrenocortical tumors. Further studies are warranted to explore their biological and diagnostic relevance.
Collapse
Affiliation(s)
- Péter István Turai
- Department of Endocrinology, ENS@T Research Center of Excellence, Faculty of Medicine, Semmelweis University, H-1083 Budapest, Hungary
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, H-1083 Budapest, Hungary
- MTA-SE Molecular Medicine Research Group, Eötvös Loránd Research Network, H-1083 Budapest, Hungary
| | - Gábor Nyirő
- Department of Endocrinology, ENS@T Research Center of Excellence, Faculty of Medicine, Semmelweis University, H-1083 Budapest, Hungary
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, H-1083 Budapest, Hungary
- MTA-SE Molecular Medicine Research Group, Eötvös Loránd Research Network, H-1083 Budapest, Hungary
- Department of Laboratory Medicine, Faculty of Medicine, Semmelweis University, H-1089 Budapest, Hungary
| | - Katalin Borka
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, H-1091 Budapest, Hungary
| | - Tamás Micsik
- Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary
| | - István Likó
- MTA-SE Hereditary Tumors Research Group, Eötvös Lóránd Research Network, H-1089 Budapest, Hungary
| | - Attila Patócs
- Department of Laboratory Medicine, Faculty of Medicine, Semmelweis University, H-1089 Budapest, Hungary
- MTA-SE Hereditary Tumors Research Group, Eötvös Lóránd Research Network, H-1089 Budapest, Hungary
- Department of Molecular Genetics, National Institute of Oncology, H-1122 Budapest, Hungary
| | - Peter Igaz
- Department of Endocrinology, ENS@T Research Center of Excellence, Faculty of Medicine, Semmelweis University, H-1083 Budapest, Hungary
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, H-1083 Budapest, Hungary
- MTA-SE Molecular Medicine Research Group, Eötvös Loránd Research Network, H-1083 Budapest, Hungary
- Correspondence:
| |
Collapse
|
48
|
Yang S, Liu X, Wang M, Cao D, Jaijyan DK, Enescu N, Liu J, Wu S, Wang S, Sun W, Xiao L, Gu A, Li Y, Zhou H, Tyagi S, Wu J, Tang Q, Zhu H. Circular RNAs Represent a Novel Class of Human Cytomegalovirus Transcripts. Microbiol Spectr 2022; 10:e0110622. [PMID: 35604147 PMCID: PMC9241847 DOI: 10.1128/spectrum.01106-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/26/2022] [Indexed: 01/03/2023] Open
Abstract
Human cytomegalovirus (HCMV) infects a large portion of the human population globally. Several HCMV-derived noncoding RNAs are involved in the regulation of viral gene expression and the virus life cycle. Here, we reported that circRNAs are a new class of HCMV transcripts. We bioinformatically predict 704 candidate circRNAs encoded by the TB40/E strain and 230 encoded by the HAN strain. We also systematically compare circRNA features, including the breakpoint sequence consensus, strand preference, length distribution, and exon numbers between host genome-encoded circRNAs and viral circRNAs, and showed that the unique characteristics of viral circRNAs are correlated with their genome types. Furthermore, we experimentally confirmed 324 back-splice junctions (BSJs) from three HCMV strains, Towne, TB40/E, and Toledo, and identified 4 representative HCMV circRNAs by RNase R treatment. Interestingly, we also showed that HCMV contains alternative back-splicing circRNAs. We developed a new amplified FISH method that allowed us to visualize circRNAs and quantify the number of circRNA molecules in the infected cells. The competitive endogenous RNA network analysis suggests that HCMV circRNAs play important roles in viral DNA synthesis via circRNA-miRNA-mRNA networks. Our findings highlight that circRNAs are an important component of the HCMV transcriptome that may contribute to viral replication and pathogenesis. IMPORTANCE HCMV infects 40% to 100% of the human population globally and may be a life-threatening pathogen in immunocompromised individuals. CircRNA is a family of unique RNA that is the most newly found and remains unknown in many aspects. Our current studies computationally identified HCMV-encoded circRNAs and confirmed the existence of the HCMV circRNAs in the infected cells. We systematically compared the features between host and different viral circRNAs and found that the unique characteristics of circRNAs were correlated with their genome types. We also first reported that HCMV contained alternative back-splicing circRNAs. More importantly, we developed a new amplified FISH method which allowed us for the first time not only to visualize circRNAs but also to quantify the number of circRNA molecules in the infected cells. This work describes a novel component of HCMV transcriptome bringing a new understanding of HCMV biology and disease.
Collapse
Affiliation(s)
| | | | - Mei Wang
- Jinan University, Guangzhou, Guangdong, China
| | - Di Cao
- Jinan University, Guangzhou, Guangdong, China
| | - Dabbu Kumar Jaijyan
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Nicole Enescu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Jian Liu
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou, Fujian, China
| | - Songbin Wu
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Sashuang Wang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Wuping Sun
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Lizu Xiao
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Alison Gu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Yaolan Li
- Jinan University, Guangzhou, Guangdong, China
| | - Hong Zhou
- Department of Microbiology, Howard University College of Medicine, Washington, DC, USA
| | - Sanjay Tyagi
- Public Health Research Institute, New Jersey Medical School, Newark, New Jersey, USA
- Department of Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Jianguo Wu
- Jinan University, Guangzhou, Guangdong, China
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC, USA
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|
49
|
Ni C, Qiu H, Zhang S, Zhang Q, Zhang R, Zhou J, Zhu J, Niu C, Wu R, Shao C, Mamun AA, Han B, Chu M, Jia C. CircRNA-3302 promotes endothelial-to-mesenchymal transition via sponging miR-135b-5p to enhance KIT expression in Kawasaki disease. Cell Death Dis 2022; 8:299. [PMID: 35768408 PMCID: PMC9243129 DOI: 10.1038/s41420-022-01092-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/09/2022]
Abstract
Endothelial-to-mesenchymal transition (EndMT) is implicated in myofibroblast-like cell-mediated damage to coronary artery wall of Kawasaki disease (KD) patients, which subsequently increases the risk of coronary artery aneurysm. Many circular RNAs (circRNAs) have been reported to be associated with cardiovascular diseases. However, the roles and underlying molecular mechanism of circRNAs in KD-associated EndMT remains indefinite. In this research, we screened out circRNA-3302 from human umbilical vein endothelial cells (HUVECs) treated by sera from healthy controls (HCs) or KD patients via circRNA sequencing (circRNA-seq). In addition, circRNA-3302 upregulation was verified in endothelial cells stimulated by KD serum and pathological KD mice modeled with Candida albicans cell wall extracts (CAWS). Moreover, in vitro experiments demonstrated that overexpression of circRNA-3302 could markedly induce EndMT, and silencing of circRNA-3302 significantly alleviated KD serum-mediated EndMT. To further explore the molecular mechanisms of circRNA-3302 inducing EndMT, RNA sequencing (RNA-seq), a dual-luciferase reporter system, nuclear and extra-nuclear RNA isolation, RT-qPCR and Western blot analyses and so on, were utilized. Our data demonstrated that circRNA-3302 contributed to the KD-associated EndMT via sponging miR-135b-5p to enhance KIT expression. Collectively, our results imply that circRNA-3302 plays an important role in KD-associated EndMT, providing new insights into minimizing the risks of developing coronary artery aneurysms.
Collapse
Affiliation(s)
- Chao Ni
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China.,Key Laboratory of Structural Malformations in Childern of Zhejiang Province, 325027, Wenzhou, China.,Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Huixian Qiu
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Shuchi Zhang
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China.,Key Laboratory of Structural Malformations in Childern of Zhejiang Province, 325027, Wenzhou, China.,Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Qihao Zhang
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China.,Key Laboratory of Structural Malformations in Childern of Zhejiang Province, 325027, Wenzhou, China.,Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Ruiyin Zhang
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China.,Key Laboratory of Structural Malformations in Childern of Zhejiang Province, 325027, Wenzhou, China.,Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Jinhui Zhou
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China.,Key Laboratory of Structural Malformations in Childern of Zhejiang Province, 325027, Wenzhou, China.,Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Jinshun Zhu
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China.,Key Laboratory of Structural Malformations in Childern of Zhejiang Province, 325027, Wenzhou, China.,Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Chao Niu
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China.,Key Laboratory of Structural Malformations in Childern of Zhejiang Province, 325027, Wenzhou, China.,Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Rongzhou Wu
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Chuxiao Shao
- Department of Hepatopancreatobiliary Surgery, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Hospital of Zhejiang University, Lishui, 323000, Zhejiang, China
| | - Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Bo Han
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| | - Maoping Chu
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China. .,Key Laboratory of Structural Malformations in Childern of Zhejiang Province, 325027, Wenzhou, China. .,Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China.
| | - Chang Jia
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China. .,Key Laboratory of Structural Malformations in Childern of Zhejiang Province, 325027, Wenzhou, China. .,Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China.
| |
Collapse
|
50
|
Liu CX, Chen LL. Circular RNAs: Characterization, cellular roles, and applications. Cell 2022; 185:2016-2034. [PMID: 35584701 DOI: 10.1016/j.cell.2022.04.021] [Citation(s) in RCA: 487] [Impact Index Per Article: 162.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 02/07/2023]
Abstract
Most circular RNAs are produced from the back-splicing of exons of precursor mRNAs. Recent technological advances have in part overcome problems with their circular conformation and sequence overlap with linear cognate mRNAs, allowing a better understanding of their cellular roles. Depending on their localization and specific interactions with DNA, RNA, and proteins, circular RNAs can modulate transcription and splicing, regulate stability and translation of cytoplasmic mRNAs, interfere with signaling pathways, and serve as templates for translation in different biological and pathophysiological contexts. Emerging applications of RNA circles to interfere with cellular processes, modulate immune responses, and direct translation into proteins shed new light on biomedical research. In this review, we discuss approaches used in circular RNA studies and the current understanding of their regulatory roles and potential applications.
Collapse
Affiliation(s)
- Chu-Xiao Liu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|