1
|
Lam SY, Umar MI, Zhao H, Zhao J, Kwok CK. Capture of RNA G-quadruplex structures using an l-RNA aptamer. RSC Chem Biol 2024:d4cb00161c. [PMID: 39219982 PMCID: PMC11359968 DOI: 10.1039/d4cb00161c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
G-quadruplexes (dG4 and rG4) are nucleic acid secondary structures formed by the self-assembly of certain G-rich sequences, and they have distinctive chemical properties and play crucial roles in fundamental biological processes. Small molecule G4 ligands were shown to be crucial in characterizing G4s and understanding their functions. Nevertheless, concerns regarding the specificity of these synthetic ligands for further investigation of G4s, especially for rG4 isolation purposes, have been raised. In comparison to G4 ligands, we propose a novel magnetic bead-based pulldown assay that enables the selective capture of general rG4s using functionalized l-Apt.4-1c from both simple buffer and complex media, including total RNA and the cell lysate. We found that our l-RNA aptamer can pulldown general rG4s with a higher efficiency and specificity than the G4 small molecule ligand BioTASQ v.1 in the presence of non-target competitors, including dG4 and non-G4 structures. Our findings reveal that biotinylated l-aptamers can serve as effective molecular tools for the affinity-based enrichment of rG4 of interest using this new assay, which was also verified by quantitative reverse transcription-polymerase chain reaction (RT-qPCR) on endogenous transcripts. This work provides new and important insights into rG4 isolation using a functionalized l-aptamer, which can potentially be applied in a transcript-specific or transcriptome-wide manner in the future.
Collapse
Affiliation(s)
- Sin Yu Lam
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong Kowloon Tong Hong Kong SAR 999077 China
| | - Mubarak Ishaq Umar
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong Kowloon Tong Hong Kong SAR 999077 China
- RNA Molecular Biology Group, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health Bethesda MD USA
| | - Haizhou Zhao
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong Kowloon Tong Hong Kong SAR 999077 China
| | - Jieyu Zhao
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong Kowloon Tong Hong Kong SAR 999077 China
| | - Chun Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong Kowloon Tong Hong Kong SAR 999077 China
- Shenzhen Research Institute of City University of Hong Kong Shenzhen China
| |
Collapse
|
2
|
Zhou W, Wan W, Miao W, Bao Y, Liu Y, Jia G, Li C. K +-Specification with Flavone P0 Probe in a G-Quadruplex DNA. Anal Chem 2024; 96:10835-10840. [PMID: 38889097 DOI: 10.1021/acs.analchem.4c02368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
G-quadruplex (G4) DNA is considered as a prospective therapeutic target due to its potential biological significance. To understand G4 biological roles and function, a G4-specific fluorescent probe is necessary. However, it is difficult for versatile G4 to precisely recognize without perturbing their folding dynamics. Herein, we reported that flavone P0 can be a fluorescent probe for G4 DNA-specific recognition and have developed a highly selective detection of K+ ion by dimeric G4/P0 system. When comparing various nucleic acid structures, including G4, i-motif, ss/ds-DNA, and triplex, an apparent fluorescence enhancement is observed in the presence of G4 DNA for 85-fold, but only 8-fold for non-G4 DNA. Furthermore, based on fluorescent probe of flavone P0 for G4 DNA screening, the noncovalent dimeric G4/P0 system is exploited as a K+ sensor, that selectively responds to K+ with a 513-fold fluorescence enhancement and a detection range for K+ ion concentration from 0 to 500 mM. This K+ sensor also has a remarkably anti-interference ability for other metal cations, especially for a high concentration of Na+. These results have demonstrated that flavone P0 is an efficient tool for monitoring G-quadruplex DNA and endows flavone P0 with bioanalytical and medicinal applications.
Collapse
Affiliation(s)
- Wenqin Zhou
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, China
| | - Wang Wan
- Key Laboratory of Separation Science for Analytical Chemistry, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, China
| | - Wenhui Miao
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, China
| | - Yu Bao
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, China
| | - Yu Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, China
| | - Guoqing Jia
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, China
| | - Can Li
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, China
| |
Collapse
|
3
|
Ciaco S, Aronne R, Fiabane M, Mori M. The Rise of Bacterial G-Quadruplexes in Current Antimicrobial Discovery. ACS OMEGA 2024; 9:24163-24180. [PMID: 38882119 PMCID: PMC11170735 DOI: 10.1021/acsomega.4c01731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024]
Abstract
Antimicrobial resistance (AMR) is a silent critical issue that poses several challenges to health systems. While the discovery of novel antibiotics is currently stalled and prevalently focused on chemical variations of the scaffolds of available drugs, novel targets and innovative strategies are urgently needed to face this global threat. In this context, bacterial G-quadruplexes (G4s) are emerging as timely and profitable targets for the design and development of antimicrobial agents. Indeed, they are expressed in regulatory regions of bacterial genomes, and their modulation has been observed to provide antimicrobial effects with translational perspectives in the context of AMR. In this work, we review the current knowledge of bacterial G4s as well as their modulation by small molecules, including tools and techniques suitable for these investigations. Finally, we critically analyze the needs and future directions in the field, with a focus on the development of small molecules as bacterial G4s modulators endowed with remarkable drug-likeness.
Collapse
Affiliation(s)
- Stefano Ciaco
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Rossella Aronne
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Martina Fiabane
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
4
|
Canat A, Veillet A, Batrin R, Dubourg C, Lhoumaud P, Arnau-Romero P, Greenberg MVC, Bonhomme F, Arimondo PB, Illingworth R, Fabre E, Therizols P. DAXX safeguards heterochromatin formation in embryonic stem cells. J Cell Sci 2023; 136:jcs261092. [PMID: 37655670 DOI: 10.1242/jcs.261092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023] Open
Abstract
Genomes comprise a large fraction of repetitive sequences folded into constitutive heterochromatin, which protect genome integrity and cell identity. De novo formation of heterochromatin during preimplantation development is an essential step for preserving the ground-state of pluripotency and the self-renewal capacity of embryonic stem cells (ESCs). However, the molecular mechanisms responsible for the remodeling of constitutive heterochromatin are largely unknown. Here, we identify that DAXX, an H3.3 chaperone essential for the maintenance of mouse ESCs in the ground state, accumulates in pericentromeric regions independently of DNA methylation. DAXX recruits PML and SETDB1 to promote the formation of heterochromatin, forming foci that are hallmarks of ground-state ESCs. In the absence of DAXX or PML, the three-dimensional (3D) architecture and physical properties of pericentric and peripheral heterochromatin are disrupted, resulting in de-repression of major satellite DNA, transposable elements and genes associated with the nuclear lamina. Using epigenome editing tools, we observe that H3.3, and specifically H3.3K9 modification, directly contribute to maintaining pericentromeric chromatin conformation. Altogether, our data reveal that DAXX is crucial for the maintenance and 3D organization of the heterochromatin compartment and protects ESC viability.
Collapse
Affiliation(s)
- Antoine Canat
- Université de Paris, Laboratoire Génomes, Biologie Cellulaire et Thérapeutiques, CNRS UMR7212, INSERM U944, Institut de Recherche St Louis, F-75010 Paris, France
| | - Adeline Veillet
- Université de Paris, Laboratoire Génomes, Biologie Cellulaire et Thérapeutiques, CNRS UMR7212, INSERM U944, Institut de Recherche St Louis, F-75010 Paris, France
| | - Renaud Batrin
- Université de Paris, Laboratoire Génomes, Biologie Cellulaire et Thérapeutiques, CNRS UMR7212, INSERM U944, Institut de Recherche St Louis, F-75010 Paris, France
| | - Clara Dubourg
- Université de Paris, Laboratoire Génomes, Biologie Cellulaire et Thérapeutiques, CNRS UMR7212, INSERM U944, Institut de Recherche St Louis, F-75010 Paris, France
| | | | - Pol Arnau-Romero
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | | | - Frédéric Bonhomme
- Institut Pasteur, Université Paris Cité, CNRS, Epigenetic Chemical Biology, UMR 3523, F-75724 Paris, France
| | - Paola B Arimondo
- Institut Pasteur, Université Paris Cité, CNRS, Epigenetic Chemical Biology, UMR 3523, F-75724 Paris, France
| | - Robert Illingworth
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Emmanuelle Fabre
- Université de Paris, Laboratoire Génomes, Biologie Cellulaire et Thérapeutiques, CNRS UMR7212, INSERM U944, Institut de Recherche St Louis, F-75010 Paris, France
| | - Pierre Therizols
- Université de Paris, Laboratoire Génomes, Biologie Cellulaire et Thérapeutiques, CNRS UMR7212, INSERM U944, Institut de Recherche St Louis, F-75010 Paris, France
| |
Collapse
|
5
|
Zanin I, Ruggiero E, Nicoletto G, Lago S, Maurizio I, Gallina I, Richter SN. Genome-wide mapping of i-motifs reveals their association with transcription regulation in live human cells. Nucleic Acids Res 2023; 51:8309-8321. [PMID: 37528048 PMCID: PMC10484731 DOI: 10.1093/nar/gkad626] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/07/2023] [Accepted: 07/23/2023] [Indexed: 08/03/2023] Open
Abstract
i-Motifs (iMs) are four-stranded DNA structures that form at cytosine (C)-rich sequences in acidic conditions in vitro. Their formation in cells is still under debate. We performed CUT&Tag sequencing using the anti-iM antibody iMab and showed that iMs form within the human genome in live cells. We mapped iMs in two human cell lines and recovered C-rich sequences that were confirmed to fold into iMs in vitro. We found that iMs in cells are mainly present at actively transcribing gene promoters, in open chromatin regions, they overlap with R-loops, and their abundance and distribution are specific to each cell type. iMs with both long and short C-tracts were recovered, further extending the relevance of iMs. By simultaneously mapping G-quadruplexes (G4s), which form at guanine-rich regions, and comparing the results with iMs, we proved that the two structures can form in independent regions; however, when both iMs and G4s are present in the same genomic tract, their formation is enhanced. iMs and G4s were mainly found at genes with low and high transcription rates, respectively. Our findings support the in vivo formation of iM structures and provide new insights into their interplay with G4s as new regulatory elements in the human genome.
Collapse
Affiliation(s)
- Irene Zanin
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Emanuela Ruggiero
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Giulia Nicoletto
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Sara Lago
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Ilaria Maurizio
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Irene Gallina
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
- Microbiology and Virology Unit, Padua University Hospital, 35121 Padua, Italy
| |
Collapse
|
6
|
Han ZQ, Wen LN. Application of G-quadruplex targets in gastrointestinal cancers: Advancements, challenges and prospects. World J Gastrointest Oncol 2023; 15:1149-1173. [PMID: 37546556 PMCID: PMC10401460 DOI: 10.4251/wjgo.v15.i7.1149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/11/2023] [Accepted: 05/08/2023] [Indexed: 07/12/2023] Open
Abstract
Genomic instability and inflammation are considered to be two enabling characteristics that support cancer development and progression. G-quadruplex structure is a key element that contributes to genomic instability and inflammation. G-quadruplexes were once regarded as simply an obstacle that can block the transcription of oncogenes. A ligand targeting G-quadruplexes was found to have anticancer activity, making G-quadruplexes potential anticancer targets. However, further investigation has revealed that G-quadruplexes are widely distributed throughout the human genome and have many functions, such as regulating DNA replication, DNA repair, transcription, translation, epigenetics, and inflammatory response. G-quadruplexes play double regulatory roles in transcription and translation. In this review, we focus on G-quadruplexes as novel targets for the treatment of gastrointestinal cancers. We summarize the application basis of G-quadruplexes in gastrointestinal cancers, including their distribution sites, structural characteristics, and physiological functions. We describe the current status of applications for the treatment of esophageal cancer, pancreatic cancer, hepatocellular carcinoma, gastric cancer, colorectal cancer, and gastrointestinal stromal tumors, as well as the associated challenges. Finally, we review the prospective clinical applications of G-quadruplex targets, providing references for targeted treatment strategies in gastrointestinal cancers.
Collapse
Affiliation(s)
- Zong-Qiang Han
- Department of Laboratory Medicine, Beijing Xiaotangshan Hospital, Beijing 102211, China
| | - Li-Na Wen
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| |
Collapse
|
7
|
Miclot T, Bignon E, Terenzi A, Grandemange S, Barone G, Monari A. G-Quadruplex Recognition by DARPIns through Epitope/Paratope Analogy. Chemistry 2022; 28:e202201824. [PMID: 35791808 PMCID: PMC9804223 DOI: 10.1002/chem.202201824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 01/05/2023]
Abstract
We investigated the mechanisms leading to the specific recognition of Guanine Guadruplex (G4) by DARPins peptides, which can lead to the design of G4 s specific sensors. To this end we carried out all-atom molecular dynamic simulations to unravel the interactions between specific nucleic acids, including human-telomeric (h-telo), Bcl-2, and c-Myc, with different peptides, forming a DARPin/G4 complex. By comparing the sequences of DARPin with that of a peptide known for its high affinity for c-Myc, we show that the recognition cannot be ascribed to sequence similarity but, instead, depends on the complementarity between the three-dimensional arrangement of the molecular fragments involved: the α-helix/loops domain of DARPin and the G4 backbone. Our results reveal that DARPins tertiary structure presents a charged hollow region in which G4 can be hosted, thus the more complementary the structural shapes, the more stable the interaction.
Collapse
Affiliation(s)
- Tom Miclot
- Department of Biological, Chemical and Pharmaceutical Sciences and TechnologiesUniversità degli Studi di PalermoViale delle Scienze90128PalermoItaly,Université de Lorraine and CNRS LPCT UMR 701954000NancyFrance
| | | | - Alessio Terenzi
- Department of Biological, Chemical and Pharmaceutical Sciences and TechnologiesUniversità degli Studi di PalermoViale delle Scienze90128PalermoItaly
| | | | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences and TechnologiesUniversità degli Studi di PalermoViale delle Scienze90128PalermoItaly
| | - Antonio Monari
- Université de Lorraine and CNRS LPCT UMR 701954000NancyFrance,Université Paris Cité and CNRS, ITODYS75006ParisFrance
| |
Collapse
|
8
|
Liu L, Zhang W, Zhong MQ, Jia MH, Jiang F, Zhang Y, Xiao CD, Xiao X, Shen XC. Tetraphenylethene derivative that discriminates parallel G-quadruplexes. RSC Adv 2022; 12:14765-14775. [PMID: 35702216 PMCID: PMC9109478 DOI: 10.1039/d2ra01433e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022] Open
Abstract
G-Quadruplex (G4), as a non-canonical nucleic acid secondary structure, has been proved to be prevalent in genomes and plays important roles in many biological processes. Ligands targeting G4, especially small-molecular fluorescent light-up probes with selectivity for special conformations, are essential for studying the relationship between G4 folding and the cellular response. However, their development still remains challenging but is attracting massive attention. Here, we synthesized a new tetraphenylethene derivative, namely TPE-B, as a parallel G4 probe. Fluorescence experiments showed that TPE-B could give out a strong fluorescence response to the G4 structure. Moreover, it gave a much higher fluorescence intensity response to parallel G4s than anti-parallel ones, which indicated that TPE-B could serve as a special tool for probing parallel G4s. The circular dichroism (CD) spectra and melting curves showed that TPE-B could selectively bind and stabilize parallel G4s without changing their topology. ESI-MS studies showed that TPE-B could bind to parallel G4 with a 1 : 1 stoichiometry. The gel staining results showed that TPE-B was a good candidate for probing parallel G4s. Altogether, the TPE-B molecule may serve as a promising new probe that can discriminate parallel G4s. A tetraphenylethene derivative: 1,1′,1′′,1′′′-(((ethene-1,1,2,2-tetrayltetrakis(benzene-4,1-diyl)) tetrakis(oxy)) tetrakis(butane-4,1-diyl)) tetrakis(4-(dimethylamino) pyridin-1-ium) bromide (TPE-B) has been designed as a fluorescent light-up probe with high selectivity for parallel G-quadruplexes![]()
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town Guian New District Guizhou 550025 P. R. China
| | - Wei Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University Guiyang 550025 P. R. China
| | - Ming-Qing Zhong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town Guian New District Guizhou 550025 P. R. China
| | - Meng-Hao Jia
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town Guian New District Guizhou 550025 P. R. China
| | - Fei Jiang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town Guian New District Guizhou 550025 P. R. China
| | - Yan Zhang
- Department of Radiology, Affiliated Hospital of Guizhou Medical University Guiyang Guizhou 550001 P. R. China
| | - Chao-Da Xiao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town Guian New District Guizhou 550025 P. R. China .,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, Guizhou Medical University, University Town Guian New District Guizhou 550025 P. R. China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University Guiyang 550025 P. R. China
| | - Xiang-Chun Shen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town Guian New District Guizhou 550025 P. R. China .,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, Guizhou Medical University, University Town Guian New District Guizhou 550025 P. R. China
| |
Collapse
|
9
|
D'Atri V, Gabelica V. DNA and RNA telomeric G-quadruplexes: what topology features can be inferred from ion mobility mass spectrometry? Analyst 2019; 144:6074-6088. [PMID: 31528871 DOI: 10.1039/c9an01216h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Maintenance of the telomeres is key to chromosome integrity and cell proliferation. The G-quadruplex structures formed by telomeric DNA and RNA (TTAGGG and UUAGGG repeats, respectively) are key to this process. However, because these sequences are particularly polymorphic, solving high-resolution structures is not always possible, and there is a need for new methodologies to characterize the multiple structures coexisting in solution. In this context, we evaluated whether ion mobility spectrometry coupled to native mass spectrometry could help separate and assign the G-quadruplex topologies. We explored the circular dichroism spectra, multimer formation, cation binding, and ion mobility spectra of several 4-repeat and 8-repeat telomeric DNA and RNA sequences, both in NH4+ and in K+. In 1 mM K+ and 100 mM trimethylammonium acetate, all RNAs fold intramolecularly (no multimer). In 8-repeat sequences, the subunits are not independent: in DNA the first subunit disfavors the folding of the second one, whereas in RNA the two subunits fold cooperatively via cation-mediated stacking. Ion mobility spectrometry shows that gas-phase structures keep a memory of - but are not identical to - the solution ones. At the native charge states, the loops can rearrange in a variety of ways (unless they are constrained by pre-formed hydrogen bonds), thereby wrapping the core and masking the strand arrangements. Our study highlights that, to progress towards structural assignment from IM-MS experiments, deeper understanding of the solution-to-gas-phase rearrangement mechanisms is warranted.
Collapse
Affiliation(s)
- Valentina D'Atri
- University of Bordeaux, INSERM and CNRS, ARNA Laboratory, IECB site, 2 rue Robert Escarpit, 33600 Pessac, France.
| | | |
Collapse
|
10
|
Bian WX, Xie Y, Wang XN, Xu GH, Fu BS, Li S, Long G, Zhou X, Zhang XL. Binding of cellular nucleolin with the viral core RNA G-quadruplex structure suppresses HCV replication. Nucleic Acids Res 2019; 47:56-68. [PMID: 30462330 PMCID: PMC6326805 DOI: 10.1093/nar/gky1177] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/22/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a major cause of human chronic liver disease and hepatocellular carcinoma. G-quadruplex (G4) is an important four-stranded secondary structure of nucleic acids. Recently, we discovered that the core gene of HCV contains a G4 RNA structure; however, the interaction between the HCV core RNA G4 and host cellular proteins, and the roles of the HCV core RNA G4 in HCV infection and pathogenesis remain elusive. Here, we identified a cellular protein, nucleolin (NCL), which bound and stabilized the HCV core RNA G4 structure. We demonstrated the direct interaction and colocalization between NCL and wild-type core RNA G4 at both in vitro and in cell physiological conditions of the alive virus; however no significant interaction was found between NCL and G4-modified core RNA. NCL is also associated with HCV particles. HCV infection induced NCL mRNA and protein expression, while NCL suppressed wild-type viral replication and expression, but not G4-modified virus. Silencing of NCL greatly enhanced viral RNA replication. Our findings provide new insights that NCL may act as a host factor for anti-viral innate immunity, and binding of cellular NCL with the viral core RNA G4 structure is involved in suppressing HCV replication.
Collapse
Affiliation(s)
- Wen-Xiu Bian
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Medical Research Institute and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, PR China
| | - Yan Xie
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Medical Research Institute and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, PR China
| | - Xiao-Ning Wang
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guo-Hua Xu
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
| | - Bo-Shi Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Hubei Province, Wuhan 430072, China
| | - Shu Li
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Medical Research Institute and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, PR China
| | - Gang Long
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Hubei Province, Wuhan 430072, China
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Medical Research Institute and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, PR China
| |
Collapse
|
11
|
Li D, Peng P, Yang Z, Lv B. Formation of G-quadruplex structure in supercoiled DNA under molecularly crowded conditions. RSC Adv 2019; 9:26248-26251. [PMID: 35531037 PMCID: PMC9070399 DOI: 10.1039/c9ra06370f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 11/29/2022] Open
Abstract
G-quadruplex is a secondary structure of nucleic acids that plays crucial roles in many significant biological processes. Potential G-quadruplex-forming sequences exist widely in various regions of the genome such as telomeres and gene promoters. In spite of the fact that G-quadruplex can be readily assembled from a single-stranded segment of DNA, its formation from duplex DNA is very difficult under physiological conditions because Watson–Crick interactions in guanine rich segments need to be weakened first. It is demonstrated in our studies that intrastrand G-quadruplex generated from a perfectly matched guanine-rich duplex in a circular DNA as a result of significant quadruplex stabilization and duplex destabilization created by the combined actions of negative DNA supercoiling and molecular crowding conditions. It is demonstrated that G-quadruplex generated from G-rich duplex in a circular DNA as a result of quadruplex stabilization and duplex destabilization created by the combined actions of negative DNA supercoiling and molecular crowding condition.![]()
Collapse
Affiliation(s)
- Dawei Li
- The Southern Modern Forestry Collaborative Innovation Center
- College of Biology and the Environment
- Nanjing Forestry University
- Nanjing
- China
| | - Peiwen Peng
- The Southern Modern Forestry Collaborative Innovation Center
- College of Biology and the Environment
- Nanjing Forestry University
- Nanjing
- China
| | - Zhaoqi Yang
- School of Pharmaceutical Sciences
- Jiangnan University
- Wuxi
- China
| | - Bei Lv
- Jiangsu Key Laboratory for Biofunctional Molecules
- College of Life Science and Chemistry
- Jiangsu Second Normal University
- Nanjing
- China
| |
Collapse
|
12
|
Fay MM, Lyons SM, Ivanov P. RNA G-Quadruplexes in Biology: Principles and Molecular Mechanisms. J Mol Biol 2017; 429:2127-2147. [PMID: 28554731 PMCID: PMC5603239 DOI: 10.1016/j.jmb.2017.05.017] [Citation(s) in RCA: 271] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 11/26/2022]
Abstract
G-quadruplexes (G4s) are extremely stable DNA or RNA secondary structures formed by sequences rich in guanine. These structures are implicated in many essential cellular processes, and the number of biological functions attributed to them continues to grow. While DNA G4s are well understood on structural and, to some extent, functional levels, RNA G4s and their functions have received less attention. The presence of bona fide RNA G4s in cells has long been a matter of debate. The development of G4-specific antibodies and ligands hinted on their presence in vivo, but recent advances in RNA sequencing coupled with chemical footprinting suggested the opposite. In this review, we will critically discuss the biology of RNA G4s focusing on the molecular mechanisms underlying their proposed functions.
Collapse
Affiliation(s)
- Marta M Fay
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Shawn M Lyons
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Pavel Ivanov
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|