1
|
Easo George J, Basak R, Yadav I, Tan CJ, van Kan JA, Wien F, Arluison V, van der Maarel JRC. Effect of base methylation on binding and mobility of bacterial protein Hfq on double-stranded DNA. LAB ON A CHIP 2024; 24:5137-5144. [PMID: 39363842 DOI: 10.1039/d4lc00628c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Regulation of protein mobility is a fundamental aspect of cellular processes. In this study, we examined the impact of DNA methylation on the diffusion of nucleoid associated protein Hfq. This protein is one of the most abundant proteins that shapes the bacterial chromosome and is involved in several aspects of nucleic acid metabolism. Fluorescence microscopy was employed to monitor the movement of Hfq along double-stranded DNA, which was stretched due to confinement within a nanofluidic channel. The mobility of Hfq is significantly influenced by DNA methylation. Our results underscore the importance of bacterial epigenetic modifications in governing the movement of nucleoid associated proteins such as Hfq. Increased levels of methylation result in enhanced binding affinity, which in turn slows down the diffusion of Hfq on DNA. The reported control of protein mobility by DNA methylation has potential implications for the mechanisms involved in target DNA search processes and dynamic modelling of the bacterial chromosome.
Collapse
Affiliation(s)
- Jijo Easo George
- Department of Physics, National University of Singapore, 117542, Singapore.
| | - Rajib Basak
- Department of Physics, National University of Singapore, 117542, Singapore.
| | - Indresh Yadav
- Department of Physics, National University of Singapore, 117542, Singapore.
| | - Chuan Jie Tan
- Department of Physics, National University of Singapore, 117542, Singapore.
| | - Jeroen A van Kan
- Department of Physics, National University of Singapore, 117542, Singapore.
| | - Frank Wien
- Synchrotron SOLEIL, F-91192 Gif-sur-Yvette, France
| | - Véronique Arluison
- Laboratoire Léon Brillouin, CNRS UMR12, CEA Saclay, 91191 Gif-sur-Yvette, France
- UFR Sciences du vivant, Université Paris Cité, 75006 Paris, France
| | | |
Collapse
|
2
|
Mir FA, Amanullah A, Jain BP, Hyderi Z, Gautam A. Neuroepigenetics of ageing and neurodegeneration-associated dementia: An updated review. Ageing Res Rev 2023; 91:102067. [PMID: 37689143 DOI: 10.1016/j.arr.2023.102067] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Gene expression is tremendously altered in the brain during memory acquisition, recall, and forgetfulness. However, non-genetic factors, including environmental elements, epigenetic changes, and lifestyle, have grabbed significant attention in recent years regarding the etiology of neurodegenerative diseases (NDD) and age-associated dementia. Epigenetic modifications are essential in regulating gene expression in all living organisms in a DNA sequence-independent manner. The genes implicated in ageing and NDD-related memory disorders are epigenetically regulated by processes such as DNA methylation, histone acetylation as well as messenger RNA editing machinery. The physiological and optimal state of the epigenome, especially within the CNS of humans, plays an intricate role in helping us adjust to the changing environment, and alterations in it cause many brain disorders, but the mechanisms behind it still need to be well understood. When fully understood, these epigenetic landscapes could act as vital targets for pharmacogenetic rescue strategies for treating several diseases, including neurodegeneration- and age-induced dementia. Keeping this objective in mind, this updated review summarises the epigenetic changes associated with age and neurodegeneration-associated dementia.
Collapse
Affiliation(s)
- Fayaz Ahmad Mir
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Zeeshan Hyderi
- Department of Biotechnology, Alagappa University, Karaikudi, India
| | - Akash Gautam
- Centre for Neural and Cognitive Sciences, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
3
|
Hajdu B, Hunyadi-Gulyás É, Kato K, Kawaguchi A, Nagata K, Gyurcsik B. Zinc binding of a Cys2His2-type zinc finger protein is enhanced by the interaction with DNA. J Biol Inorg Chem 2023; 28:301-315. [PMID: 36820987 PMCID: PMC10036435 DOI: 10.1007/s00775-023-01988-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/10/2023] [Indexed: 02/24/2023]
Abstract
Zinc finger proteins specifically recognize DNA sequences and, therefore, play a crucial role in living organisms. In this study the Zn(II)-, and DNA-binding of 1MEY#, an artificial zinc finger protein consisting of three finger units was characterized by multiple methods. Fluorimetric, circular dichroism and isothermal calorimetric titrations were applied to determine the accurate stability constant of a zinc finger protein. Assuming that all three zinc finger subunits behave identically, the obtained thermodynamic data for the Zn(II) binding were ΔHbinding site = - (23.5 - 28.0) kcal/mol (depending on the applied protonation state of the cysteines) and logβ'pH 7.4 = 12.2 ± 0.1, being similar to those of the CP1 consensus zinc finger peptide. The specific DNA binding of the protein can be characterized by logβ'pH 7.4 = 8.20 ± 0.08, which is comparable to the affinity of the natural zinc finger proteins (Sp1, WT1, TFIIIA) toward DNA. This value is ~ 1.9 logβ' unit higher than those determined for semi- or nonspecific DNA binding. Competitive circular dichroism and electrophoretic mobility shift measurements revealed that the conditional stability constant characteristic for Zn(II) binding of 1MEY# protein increased by 3.4 orders of magnitude in the presence of its target DNA sequence.
Collapse
Affiliation(s)
- Bálint Hajdu
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm Tér 7, 6720, Szeged, Hungary
| | - Éva Hunyadi-Gulyás
- Laboratory of Proteomics Research, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Temesvári Krt. 62, 6726, Szeged, Hungary
| | - Kohsuke Kato
- Department of Infection Biology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| | - Atsushi Kawaguchi
- Department of Infection Biology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| | - Kyosuke Nagata
- Department of Infection Biology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| | - Béla Gyurcsik
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm Tér 7, 6720, Szeged, Hungary.
| |
Collapse
|
4
|
Kho SH, Yee JY, Puang SJ, Han L, Chiang C, Rapisarda A, Goh WWB, Lee J, Sng JCG. DNA methylation levels of RELN promoter region in ultra-high risk, first episode and chronic schizophrenia cohorts of schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:81. [PMID: 36216926 PMCID: PMC9550813 DOI: 10.1038/s41537-022-00278-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
The essential role of the Reelin gene (RELN) during brain development makes it a prominent candidate in human epigenetic studies of Schizophrenia. Previous literature has reported differing levels of DNA methylation (DNAm) in patients with psychosis. Therefore, this study aimed to (1) examine and compare RELN DNAm levels in subjects at different stages of psychosis cross-sectionally, (2) analyse the effect of antipsychotics (AP) on DNAm, and (3) evaluate the effectiveness and applicability of RELN promoter DNAm as a possible biological-based marker for symptom severity in psychosis.. The study cohort consisted of 56 healthy controls, 87 ultra-high risk (UHR) individuals, 26 first-episode (FE) psychosis individuals and 30 chronic schizophrenia (CS) individuals. The Positive and Negative Syndrome Scale (PANSS) was used to assess Schizophrenia severity. After pyrosequencing selected CpG sites of peripheral blood, the Average mean DNAm levels were compared amongst the 4 subgroups. Our results showed differing levels of DNAm, with UHR having the lowest (7.72 ± 0.19) while the CS had the highest levels (HC: 8.78 ± 0.35; FE: 7.75 ± 0.37; CS: 8.82 ± 0.48). Significantly higher Average mean DNAm levels were found in CS subjects on AP (9.12 ± 0.61) compared to UHR without medication (UHR(-)) (7.39 ± 0.18). A significant association was also observed between the Average mean DNAm of FE and PANSS Negative symptom factor (R2 = 0.237, ß = -0.401, *p = 0.033). In conclusion, our findings suggested different levels of DNAm for subjects at different stages of psychosis. Those subjects that took AP have different DNAm levels. There were significant associations between FE DNAm and Negative PANSS scores. With more future experiments and on larger cohorts, there may be potential use of DNAm of the RELN gene as one of the genes for the biological-based marker for symptom severity in psychosis.
Collapse
Affiliation(s)
- Sok-Hong Kho
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| | - Jie Yin Yee
- Research Division, Institute of Mental Health, Singapore, Singapore
| | - Shu Juan Puang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Luke Han
- Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Christine Chiang
- Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Attilio Rapisarda
- Research Division, Institute of Mental Health, Singapore, Singapore
- Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Wilson Wen Bin Goh
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jimmy Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Research Division, Institute of Mental Health, Singapore, Singapore
- Department of Psychosis, Institute of Mental Health, Singapore, Singapore
| | - Judy Chia Ghee Sng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
5
|
Ai K, Li X, Zhang P, Pan J, Li H, He Z, Zhang H, Yi L, Kang Y, Wang Y, Chen J, Li Y, Xiang X, Chai X, Zhang D. Genetic or siRNA inhibition of MBD2 attenuates the UUO- and I/R-induced renal fibrosis via downregulation of EGR1. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:77-86. [PMID: 35356685 PMCID: PMC8933641 DOI: 10.1016/j.omtn.2022.02.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 02/25/2022] [Indexed: 12/20/2022]
Abstract
DNA methylation plays a pivotal role in the progression of renal fibrosis. Methyl-CpG–binding domain protein 2 (MBD2), a protein reader of methylation, is involved in the development of acute kidney injury (AKI) caused by vancomycin. However, the role and mechanism of action of MBD2 in renal remain unclear. In this study, MBD2 mediated extracellular matrix (ECM) production induced by TGF-β1 in Boston University mouse proximal tubule (BUMPT) cells,and upregulated the expression EGR1 to promote ECM production in murine embryonic NIH 3T3 fibroblasts. ChIP analysis demonstrated that MBD2 physically interacted with the promoter region of the CpG islands of EGR1 genes and then activated their expression by inducing hypomethylation of the promoter region. In vivo, PT-MBD2-KO attenuated unilateral ureteral obstruction (UUO)-induced renal tubulointerstitial fibrosis via downregulation of EGR1, which was demonstrated by the downregulation of fibronectin (FN), collagen I and IV, α-SMA, and EGR1. Injection of MBD2-siRNA attenuated the UUO- and I/R-induced renal fibrosis. Those molecular changes were verified by biopsies from patients with obstructive nephropathy (OB). These data collectively demonstrated that inhibition of MBD2 reduces renal fibrosis via downregulating EGR1, which could be a target for treatment of fibrotic kidney disease.
Collapse
Affiliation(s)
- Kai Ai
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Department of Urology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Xiaozhou Li
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Pan Zhang
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Jian Pan
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Huiling Li
- Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Zhibiao He
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Hongliang Zhang
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Lei Yi
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Ye Kang
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Yinhuai Wang
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Junxiang Chen
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Yijian Li
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Xudong Xiang
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Xiangping Chai
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Dongshan Zhang
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| |
Collapse
|
6
|
Sharma R, Sharma S, Thakur A, Singh A, Singh J, Nepali K, Liou JP. The Role of Epigenetic Mechanisms in Autoimmune, Neurodegenerative, Cardiovascular, and Imprinting Disorders. Mini Rev Med Chem 2022; 22:1977-2011. [PMID: 35176978 DOI: 10.2174/1389557522666220217103441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/01/2021] [Accepted: 11/11/2021] [Indexed: 11/22/2022]
Abstract
Epigenetic mutations like aberrant DNA methylation, histone modifications, or RNA silencing are found in a number of human diseases. This review article discusses the epigenetic mechanisms involved in neurodegenerative disorders, cardiovascular disorders, auto-immune disorder, and genomic imprinting disorders. In addition, emerging epigenetic therapeutic strategies for the treatment of such disorders are presented. Medicinal chemistry campaigns highlighting the efforts of the chemists invested towards the rational design of small molecule inhibitors have also been included. Pleasingly, several classes of epigenetic inhibitors, DNMT, HDAC, BET, HAT, and HMT inhibitors along with RNA based therapies have exhibited the potential to emerge as therapeutics in the longer run. It is quite hopeful that epigenetic modulator-based therapies will advance to clinical stage investigations by leaps and bounds.
Collapse
Affiliation(s)
- Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Sachin Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Arshdeep Singh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jagjeet Singh
- School of Pharmacy, University of Queensland, Brisbane, QLD, Australia.,Department of Pharmacy, Rayat-Bahara Group of Institutes, Hoshiarpur, India
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
7
|
Gao X, Chen Q, Yao H, Tan J, Liu Z, Zhou Y, Zou Z. Epigenetics in Alzheimer's Disease. Front Aging Neurosci 2022; 14:911635. [PMID: 35813941 PMCID: PMC9260511 DOI: 10.3389/fnagi.2022.911635] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/24/2022] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with unknown pathogenesis and complex pathological manifestations. At present, a large number of studies on targeted drugs for the typical pathological phenomenon of AD (Aβ) have ended in failure. Although there are some drugs on the market that indirectly act on AD, their efficacy is very low and the side effects are substantial, so there is an urgent need to develop a new strategy for the treatment of AD. An increasing number of studies have confirmed epigenetic changes in AD. Although it is not clear whether these epigenetic changes are the cause or result of AD, they provide a new avenue of treatment for medical researchers worldwide. This article summarizes various epigenetic changes in AD, including DNA methylation, histone modification and miRNA, and concludes that epigenetics has great potential as a new target for the treatment of AD.
Collapse
Affiliation(s)
- Xiaodie Gao
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
- Department of Scientific Research, Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, China
| | - Qiang Chen
- Department of Scientific Research, Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, China
| | - Hua Yao
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
| | - Jie Tan
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
| | - Zheng Liu
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
- *Correspondence: Zheng Liu,
| | - Yan Zhou
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
- Yan Zhou,
| | - Zhenyou Zou
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
- Department of Scientific Research, Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, China
- Zhenyou Zou,
| |
Collapse
|
8
|
Iwahara J, Kolomeisky AB. Discrete-state stochastic kinetic models for target DNA search by proteins: Theory and experimental applications. Biophys Chem 2021; 269:106521. [PMID: 33338872 PMCID: PMC7855466 DOI: 10.1016/j.bpc.2020.106521] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022]
Abstract
To perform their functions, transcription factors and DNA-repair/modifying enzymes randomly search DNA in order to locate their specific targets on DNA. Discrete-state stochastic kinetic models have been developed to explain how the efficiency of the search process is influenced by the molecular properties of proteins and DNA as well as by other factors such as molecular crowding. These theoretical models not only offer explanations on the relation of microscopic processes to macroscopic behavior of proteins, but also facilitate the analysis and interpretation of experimental data. In this review article, we provide an overview on discrete-state stochastic kinetic models and explain how these models can be applied to experimental investigations using stopped-flow, single-molecule, nuclear magnetic resonance (NMR), and other biophysical and biochemical methods.
Collapse
Affiliation(s)
- Junji Iwahara
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Anatoly B Kolomeisky
- Department of Chemistry, Department of Chemical and Biomolecular Engineering, Department of Physics and Astronomy and Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| |
Collapse
|
9
|
Atlante A, Amadoro G, Bobba A, Latina V. Functional Foods: An Approach to Modulate Molecular Mechanisms of Alzheimer's Disease. Cells 2020; 9:E2347. [PMID: 33114170 PMCID: PMC7690784 DOI: 10.3390/cells9112347] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
A new epoch is emerging with intense research on nutraceuticals, i.e., "food or food product that provides medical or health benefits including the prevention and treatment of diseases", such as Alzheimer's disease. Nutraceuticals act at different biochemical and metabolic levels and much evidence shows their neuroprotective effects; in particular, they are able to provide protection against mitochondrial damage, oxidative stress, toxicity of β-amyloid and Tau and cell death. They have been shown to influence the composition of the intestinal microbiota significantly contributing to the discovery that differential microorganisms composition is associated with the formation and aggregation of cerebral toxic proteins. Further, the routes of interaction between epigenetic mechanisms and the microbiota-gut-brain axis have been elucidated, thus establishing a modulatory role of diet-induced epigenetic changes of gut microbiota in shaping the brain. This review examines recent scientific literature addressing the beneficial effects of some natural products for which mechanistic evidence to prevent or slowdown AD are available. Even if the road is still long, the results are already exceptional.
Collapse
Affiliation(s)
- Anna Atlante
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)-CNR, Via G. Amendola 122/O, 70126 Bari, Italy;
| | - Giuseppina Amadoro
- Institute of Translational Pharmacology (IFT)-CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy;
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy;
| | - Antonella Bobba
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)-CNR, Via G. Amendola 122/O, 70126 Bari, Italy;
| | - Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy;
| |
Collapse
|
10
|
Tecalco-Cruz AC, Ramírez-Jarquín JO, Alvarez-Sánchez ME, Zepeda-Cervantes J. Epigenetic basis of Alzheimer disease. World J Biol Chem 2020; 11:62-75. [PMID: 33024518 PMCID: PMC7520642 DOI: 10.4331/wjbc.v11.i2.62] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/30/2020] [Accepted: 09/10/2020] [Indexed: 02/05/2023] Open
Abstract
Alzheimer disease (AD) is the primary form of dementia that occurs spontaneously in older adults. Interestingly, the epigenetic profile of the cells forming the central nervous system changes during aging and may contribute to the progression of some neurodegenerative diseases such as AD. In this review, we present general insights into relevant epigenetic mechanisms and their relationship with aging and AD. The data suggest that some epigenetic changes during aging could be utilized as biomarkers and target molecules for the prevention and control of AD.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- Programa en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico 03100, Mexico
| | - Josué O Ramírez-Jarquín
- División de neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico 04510, Mexico
| | | | - Jesus Zepeda-Cervantes
- Biología celular y de desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico 04510, Mexico
| |
Collapse
|
11
|
Yu K, Davidson CE, Burshtyn DN. LILRB1 Intron 1 Has a Polymorphic Regulatory Region That Enhances Transcription in NK Cells and Recruits YY1. THE JOURNAL OF IMMUNOLOGY 2020; 204:3030-3041. [PMID: 32321755 DOI: 10.4049/jimmunol.2000164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/31/2020] [Indexed: 12/11/2022]
Abstract
LILRB1 is a highly polymorphic receptor expressed by subsets of innate and adaptive immune cells associated with viral and autoimmune diseases and targeted by pathogens for immune evasion. LILRB1 expression on human NK cells is variegated, and the frequency of LILRB1+ cells differs among people. However, little is known about the processes and factors mediating LILRB1 transcription in NK cells. LILRB1 gene expression in lymphoid and myeloid cells arises from two distinct promoters that are separated by the first exon and intron. In this study, we identified a polymorphic 3-kb region within LILRB1 intron 1 that is epigenetically marked as an active enhancer in human lymphoid cells and not monocytes. This region possesses multiple YY1 sites, and complexes of the promoter/enhancer combination were isolated using anti-YY1 in chromatin immunoprecipitation-loop. CRISPR-mediated deletion of the 3-kb region lowers LILRB1 expression in human NKL cells. Together, these results indicate the enhancer in intron 1 binds YY1 and suggest YY1 provides a scaffold function enabling enhancer function in regulating LILRB1 gene transcription in human NK cells.
Collapse
Affiliation(s)
- Kang Yu
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Chelsea E Davidson
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Deborah N Burshtyn
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada; .,Alberta Transplant Institute, University of Alberta, Edmonton, Alberta T6G 2H7, Canada; and.,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| |
Collapse
|
12
|
Hodges AJ, Hudson NO, Buck-Koehntop BA. Cys 2His 2 Zinc Finger Methyl-CpG Binding Proteins: Getting a Handle on Methylated DNA. J Mol Biol 2019:S0022-2836(19)30567-4. [PMID: 31628952 DOI: 10.1016/j.jmb.2019.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022]
Abstract
DNA methylation is an essential epigenetic modification involved in the maintenance of genomic stability, preservation of cellular identity, and regulation of the transcriptional landscape needed to maintain cellular function. In an increasing number of disease conditions, DNA methylation patterns are inappropriately distributed in a manner that supports the disease phenotype. Methyl-CpG binding proteins (MBPs) are specialized transcription factors that read and translate methylated DNA signals into recruitment of protein assemblies that can alter local chromatin architecture and transcription. MBPs thus play a key intermediary role in gene regulation for both normal and diseased cells. Here, we highlight established and potential structure-function relationships for the best characterized members of the zinc finger (ZF) family of MBPs in propagating DNA methylation signals into downstream cellular responses. Current and future investigations aimed toward expanding our understanding of ZF MBP cellular roles will provide needed mechanistic insight into normal and disease state functions, as well as afford evaluation for the potential of these proteins as epigenetic-based therapeutic targets.
Collapse
Affiliation(s)
- Amelia J Hodges
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Nicholas O Hudson
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Bethany A Buck-Koehntop
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
13
|
Liu X, Jiao B, Shen L. The Epigenetics of Alzheimer's Disease: Factors and Therapeutic Implications. Front Genet 2018; 9:579. [PMID: 30555513 PMCID: PMC6283895 DOI: 10.3389/fgene.2018.00579] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 11/08/2018] [Indexed: 02/05/2023] Open
Abstract
Alzheimer’s disease (AD) is a well-known neurodegenerative disorder that imposes a great burden on the world. The mechanisms of AD are not yet fully understood. Current insight into the role of epigenetics in the mechanism of AD focuses on DNA methylation, remodeling of chromatin, histone modifications and non-coding RNA regulation. This review summarizes the current state of knowledge regarding the role of epigenetics in AD and the possibilities for epigenetically based therapeutics. The general conclusion is that epigenetic mechanisms play a variety of crucial roles in the development of AD, and there are a number of viable possibilities for treatments based on modulating these effects, but significant advances in knowledge and technology will be needed to move these treatments from the bench to the bedside.
Collapse
Affiliation(s)
- Xiaolei Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
14
|
Hudson NO, Buck-Koehntop BA. Zinc Finger Readers of Methylated DNA. Molecules 2018; 23:E2555. [PMID: 30301273 PMCID: PMC6222495 DOI: 10.3390/molecules23102555] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 01/07/2023] Open
Abstract
DNA methylation is a prevalent epigenetic modification involved in regulating a number of essential cellular processes, including genomic accessibility and transcriptional outcomes. As such, aberrant alterations in global DNA methylation patterns have been associated with a growing number of disease conditions. Nevertheless, the full mechanisms by which DNA methylation information is interpreted and translated into genomic responses is not yet fully understood. Methyl-CpG binding proteins (MBPs) function as important mediators of this essential process by selectively reading DNA methylation signals and translating this information into down-stream cellular outcomes. The Cys₂His₂ zinc finger scaffold is one of the most abundant DNA binding motifs found within human transcription factors, yet only a few zinc finger containing proteins capable of conferring selectivity for mCpG over CpG sites have been characterized. This review summarizes our current structural understanding for the mechanisms by which the zinc finger MBPs evaluated to date read this essential epigenetic mark. Further, some of the biological implications for mCpG readout elicited by this family of MBPs are discussed.
Collapse
Affiliation(s)
- Nicholas O Hudson
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112-0850, USA.
| | | |
Collapse
|
15
|
Iwahara J, Zandarashvili L, Kemme CA, Esadze A. NMR-based investigations into target DNA search processes of proteins. Methods 2018; 148:57-66. [PMID: 29753002 DOI: 10.1016/j.ymeth.2018.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/04/2018] [Indexed: 10/16/2022] Open
Abstract
To perform their function, transcription factors and DNA-repair/modifying enzymes must first locate their targets in the vast presence of nonspecific, but structurally similar sites on genomic DNA. Before reaching their targets, these proteins stochastically scan DNA and dynamically move from one site to another on DNA. Solution NMR spectroscopy provides unique atomic-level insights into the dynamic DNA-scanning processes, which are difficult to gain by any other experimental means. In this review, we provide an introductory overview on the NMR methods for the structural, dynamic, and kinetic investigations of target DNA search by proteins. We also discuss advantages and disadvantages of these NMR methods over other methods such as single-molecule techniques and biochemical approaches.
Collapse
Affiliation(s)
- Junji Iwahara
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, United States.
| | - Levani Zandarashvili
- Department of Biochemistry and Biophysics, University of Pennsylvania, United States
| | - Catherine A Kemme
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, United States
| | - Alexandre Esadze
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, United States
| |
Collapse
|
16
|
Rao S, Chiu TP, Kribelbauer JF, Mann RS, Bussemaker HJ, Rohs R. Systematic prediction of DNA shape changes due to CpG methylation explains epigenetic effects on protein-DNA binding. Epigenetics Chromatin 2018; 11:6. [PMID: 29409522 PMCID: PMC5800008 DOI: 10.1186/s13072-018-0174-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 01/15/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND DNA shape analysis has demonstrated the potential to reveal structure-based mechanisms of protein-DNA binding. However, information about the influence of chemical modification of DNA is limited. Cytosine methylation, the most frequent modification, represents the addition of a methyl group at the major groove edge of the cytosine base. In mammalian genomes, cytosine methylation most frequently occurs at CpG dinucleotides. In addition to changing the chemical signature of C/G base pairs, cytosine methylation can affect DNA structure. Since the original discovery of DNA methylation, major efforts have been made to understand its effect from a sequence perspective. Compared to unmethylated DNA, however, little structural information is available for methylated DNA, due to the limited number of experimentally determined structures. To achieve a better mechanistic understanding of the effect of CpG methylation on local DNA structure, we developed a high-throughput method, methyl-DNAshape, for predicting the effect of cytosine methylation on DNA shape. RESULTS Using our new method, we found that CpG methylation significantly altered local DNA shape. Four DNA shape features-helix twist, minor groove width, propeller twist, and roll-were considered in this analysis. Distinct distributions of effect size were observed for different features. Roll and propeller twist were the DNA shape features most strongly affected by CpG methylation with an effect size depending on the local sequence context. Methylation-induced changes in DNA shape were predictive of the measured rate of cleavage by DNase I and suggest a possible mechanism for some of the methylation sensitivities that were recently observed for human Pbx-Hox complexes. CONCLUSIONS CpG methylation is an important epigenetic mark in the mammalian genome. Understanding its role in protein-DNA recognition can further our knowledge of gene regulation. Our high-throughput methyl-DNAshape method can be used to predict the effect of cytosine methylation on DNA shape and its subsequent influence on protein-DNA interactions. This approach overcomes the limited availability of experimental DNA structures that contain 5-methylcytosine.
Collapse
Affiliation(s)
- Satyanarayan Rao
- Computational Biology and Bioinformatics Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Tsu-Pei Chiu
- Computational Biology and Bioinformatics Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Judith F Kribelbauer
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.,Department of Systems Biology, Columbia University, New York, NY, 10032, USA.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Richard S Mann
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA.,Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA.,Department of Neuroscience, Columbia University, New York, NY, 10027, USA
| | - Harmen J Bussemaker
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA. .,Department of Systems Biology, Columbia University, New York, NY, 10032, USA.
| | - Remo Rohs
- Computational Biology and Bioinformatics Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA. .,Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA. .,Department of Physics & Astronomy, University of Southern California, Los Angeles, CA, 90089, USA. .,Department of Computer Science, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|