1
|
Zhang X, Malle MG, Thomsen RP, Sørensen RS, Sørensen EW, Hatzakis NS, Kjems J. Deconvoluting the Effect of Cell-Penetrating Peptides for Enhanced and Controlled Insertion of Large-Scale DNA Nanopores. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18422-18433. [PMID: 38573069 DOI: 10.1021/acsami.3c18636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
DNA nanopores have emerged as powerful tools for molecular sensing, but the efficient insertion of large DNA nanopores into lipid membranes remains challenging. In this study, we investigate the potential of cell-penetrating peptides (CPPs), specifically SynB1 and GALA, to enhance the insertion efficiency of large DNA nanopores. We constructed SynB1- or GALA-functionalized DNA nanopores with an 11 nm inner diameter and visualized and quantified their membrane insertion using a TIRF microscopy-based single-liposome assay. The results demonstrated that incorporating an increasing number of SynB1 or GALA peptides into the DNA nanopore significantly enhanced the membrane perforation. Kinetic analysis revealed that the DNA nanopore scaffold played a role in prearranging the CPPs, which facilitated membrane interaction and pore formation. Notably, the use of pH-responsive GALA peptides allowed highly efficient and pH-controlled insertion of large DNA pores. Furthermore, single-channel recording elucidated that the insertion process of single GALA-modified nanopores into planar lipid bilayers was dynamic, likely forming transient large toroidal pores. Overall, our study highlights the potential of CPPs as insertion enhancers for DNA nanopores, which opens avenues for improved molecule sensing and the controlled release of cargo molecules.
Collapse
Affiliation(s)
- Xialin Zhang
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C 8000, Denmark
| | | | - Rasmus P Thomsen
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C 8000, Denmark
| | | | | | - Nikos S Hatzakis
- Department of Chemistry, University of Copenhagen, Copenhagen 2100, Denmark
- Novonordisk Center for Protein Research, University of Copenhagen, Copenhagen 2100, Denmark
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C 8000, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C 8000, Denmark
| |
Collapse
|
2
|
Peng Z, Iwabuchi S, Izumi K, Takiguchi S, Yamaji M, Fujita S, Suzuki H, Kambara F, Fukasawa G, Cooney A, Di Michele L, Elani Y, Matsuura T, Kawano R. Lipid vesicle-based molecular robots. LAB ON A CHIP 2024; 24:996-1029. [PMID: 38239102 PMCID: PMC10898420 DOI: 10.1039/d3lc00860f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/12/2023] [Indexed: 02/28/2024]
Abstract
A molecular robot, which is a system comprised of one or more molecular machines and computers, can execute sophisticated tasks in many fields that span from nanomedicine to green nanotechnology. The core parts of molecular robots are fairly consistent from system to system and always include (i) a body to encapsulate molecular machines, (ii) sensors to capture signals, (iii) computers to make decisions, and (iv) actuators to perform tasks. This review aims to provide an overview of approaches and considerations to develop molecular robots. We first introduce the basic technologies required for constructing the core parts of molecular robots, describe the recent progress towards achieving higher functionality, and subsequently discuss the current challenges and outlook. We also highlight the applications of molecular robots in sensing biomarkers, signal communications with living cells, and conversion of energy. Although molecular robots are still in their infancy, they will unquestionably initiate massive change in biomedical and environmental technology in the not too distant future.
Collapse
Affiliation(s)
- Zugui Peng
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Shoji Iwabuchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Kayano Izumi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Sotaro Takiguchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Misa Yamaji
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Shoko Fujita
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Harune Suzuki
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Fumika Kambara
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Genki Fukasawa
- School of Life Science and Technology, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-Ku, Tokyo 152-8550, Japan
| | - Aileen Cooney
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Lorenzo Di Michele
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
- FabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
- FabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Tomoaki Matsuura
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-Ku, Tokyo 152-8550, Japan
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| |
Collapse
|
3
|
Xing Y, Rottensteiner A, Ciccone J, Howorka S. Functional Nanopores Enabled with DNA. Angew Chem Int Ed Engl 2023; 62:e202303103. [PMID: 37186432 DOI: 10.1002/anie.202303103] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023]
Abstract
Membrane-spanning nanopores are used in label-free single-molecule sensing and next-generation portable nucleic acid sequencing, and as powerful research tools in biology, biophysics, and synthetic biology. Naturally occurring protein and peptide pores, as well as synthetic inorganic nanopores, are used in these applications, with their limitations. The structural and functional repertoire of nanopores can be considerably expanded by functionalising existing pores with DNA strands and by creating an entirely new class of nanopores with DNA nanotechnology. This review outlines progress in this area of functional DNA nanopores and outlines developments to open up new applications.
Collapse
Affiliation(s)
- Yongzheng Xing
- Department of Chemistry, Institute for Structural and Molecular Biology, University College London, London, WC1H 0AJ, UK
| | - Alexia Rottensteiner
- Department of Chemistry, Institute for Structural and Molecular Biology, University College London, London, WC1H 0AJ, UK
| | - Jonah Ciccone
- Department of Chemistry, Institute for Structural and Molecular Biology, University College London, London, WC1H 0AJ, UK
| | - Stefan Howorka
- Department of Chemistry, Institute for Structural and Molecular Biology, University College London, London, WC1H 0AJ, UK
| |
Collapse
|
4
|
Zhan P, Peil A, Jiang Q, Wang D, Mousavi S, Xiong Q, Shen Q, Shang Y, Ding B, Lin C, Ke Y, Liu N. Recent Advances in DNA Origami-Engineered Nanomaterials and Applications. Chem Rev 2023; 123:3976-4050. [PMID: 36990451 PMCID: PMC10103138 DOI: 10.1021/acs.chemrev.3c00028] [Citation(s) in RCA: 65] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Indexed: 03/31/2023]
Abstract
DNA nanotechnology is a unique field, where physics, chemistry, biology, mathematics, engineering, and materials science can elegantly converge. Since the original proposal of Nadrian Seeman, significant advances have been achieved in the past four decades. During this glory time, the DNA origami technique developed by Paul Rothemund further pushed the field forward with a vigorous momentum, fostering a plethora of concepts, models, methodologies, and applications that were not thought of before. This review focuses on the recent progress in DNA origami-engineered nanomaterials in the past five years, outlining the exciting achievements as well as the unexplored research avenues. We believe that the spirit and assets that Seeman left for scientists will continue to bring interdisciplinary innovations and useful applications to this field in the next decade.
Collapse
Affiliation(s)
- Pengfei Zhan
- 2nd Physics
Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Andreas Peil
- 2nd Physics
Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Qiao Jiang
- National
Center for Nanoscience and Technology, No 11, BeiYiTiao Zhongguancun, Beijing 100190, China
| | - Dongfang Wang
- School
of Biomedical Engineering and Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Shikufa Mousavi
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Qiancheng Xiong
- Department
of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Nanobiology
Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
| | - Qi Shen
- Department
of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Nanobiology
Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
- Department
of Molecular Biophysics and Biochemistry, Yale University, 266
Whitney Avenue, New Haven, Connecticut 06511, United States
| | - Yingxu Shang
- National
Center for Nanoscience and Technology, No 11, BeiYiTiao Zhongguancun, Beijing 100190, China
| | - Baoquan Ding
- National
Center for Nanoscience and Technology, No 11, BeiYiTiao Zhongguancun, Beijing 100190, China
| | - Chenxiang Lin
- Department
of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Nanobiology
Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
- Department
of Biomedical Engineering, Yale University, 17 Hillhouse Avenue, New Haven, Connecticut 06511, United States
| | - Yonggang Ke
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Na Liu
- 2nd Physics
Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Max Planck
Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| |
Collapse
|
5
|
Xing Y, Dorey A, Howorka S. Multi-Stimuli-Responsive and Mechano-Actuated Biomimetic Membrane Nanopores Self-Assembled from DNA. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300589. [PMID: 37029712 DOI: 10.1002/adma.202300589] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/31/2023] [Indexed: 06/04/2023]
Abstract
In bioinspired design, biological templates are mimicked in structure and function by highly controllable synthetic means. Of interest are static barrel-like nanopores that enable molecular transport across membranes for use in biosensing, sequencing, and biotechnology. However, biological ion channels offer additional functions such as dynamic changes of the entire pore shape between open and closed states, and triggering of dynamic processes with biochemical and physical stimuli. To better capture this complexity, this report presents multi-stimuli and mechano-responsive biomimetic nanopores which are created with DNA nanotechnology. The nanopores switch between open and closed states, whereby specific binding of DNA and protein molecules as stimuli locks the pores in the open state. Furthermore, the physical stimulus of high transmembrane voltage switches the pores into a closed state. In addition, the pore diameters are larger and more tunable than those of natural templates. These multi-stimuli-responsive and mechanically actuated nanopores mimic several aspects of complex biological channels yet offer easier control over pore size, shape and stimulus response. The designer pores are expected to be applied in biosensing and synthetic biology.
Collapse
Affiliation(s)
- Yongzheng Xing
- Department of Chemistry & Institute of Structural and Molecular Biology, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Adam Dorey
- Department of Chemistry & Institute of Structural and Molecular Biology, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Stefan Howorka
- Department of Chemistry & Institute of Structural and Molecular Biology, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| |
Collapse
|
6
|
Shen Q, Xiong Q, Zhou K, Feng Q, Liu L, Tian T, Wu C, Xiong Y, Melia TJ, Lusk CP, Lin C. Functionalized DNA-Origami-Protein Nanopores Generate Large Transmembrane Channels with Programmable Size-Selectivity. J Am Chem Soc 2023; 145:1292-1300. [PMID: 36577119 PMCID: PMC9852090 DOI: 10.1021/jacs.2c11226] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The DNA-origami technique has enabled the engineering of transmembrane nanopores with programmable size and functionality, showing promise in building biosensors and synthetic cells. However, it remains challenging to build large (>10 nm), functionalizable nanopores that spontaneously perforate lipid membranes. Here, we take advantage of pneumolysin (PLY), a bacterial toxin that potently forms wide ring-like channels on cell membranes, to construct hybrid DNA-protein nanopores. This PLY-DNA-origami complex, in which a DNA-origami ring corrals up to 48 copies of PLY, targets the cholesterol-rich membranes of liposomes and red blood cells, readily forming uniformly sized pores with an average inner diameter of ∼22 nm. Such hybrid nanopores facilitate the exchange of macromolecules between perforated liposomes and their environment, with the exchange rate negatively correlating with the macromolecule size (diameters of gyration: 8-22 nm). Additionally, the DNA ring can be decorated with intrinsically disordered nucleoporins to further restrict the diffusion of traversing molecules, highlighting the programmability of the hybrid nanopores. PLY-DNA pores provide an enabling biophysical tool for studying the cross-membrane translocation of ultralarge molecules and open new opportunities for analytical chemistry, synthetic biology, and nanomedicine.
Collapse
Affiliation(s)
- Qi Shen
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Nanobiology Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, Connecticut 06511, United States
| | - Qiancheng Xiong
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Nanobiology Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
| | - Kaifeng Zhou
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, Connecticut 06511, United States
| | - Qingzhou Feng
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Nanobiology Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
| | - Longfei Liu
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Nanobiology Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
| | - Taoran Tian
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
| | - Chunxiang Wu
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, Connecticut 06511, United States
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, Connecticut 06511, United States
| | - Thomas J. Melia
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
| | - C. Patrick Lusk
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
| | - Chenxiang Lin
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Nanobiology Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
- Department of Biomedical Engineering, Yale University, 17 Hillhouse Ave, New Haven, Connecticut 06511, United States
| |
Collapse
|
7
|
Offenbartl‐Stiegert D, Rottensteiner A, Dorey A, Howorka S. A Light-Triggered Synthetic Nanopore for Controlling Molecular Transport Across Biological Membranes. Angew Chem Int Ed Engl 2022; 61:e202210886. [PMID: 36318092 PMCID: PMC10098474 DOI: 10.1002/anie.202210886] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Indexed: 11/06/2022]
Abstract
Controlling biological molecular processes with light is of interest in biological research and biomedicine, as light allows precise and selective activation in a non-invasive and non-toxic manner. A molecular process benefitting from light control is the transport of cargo across biological membranes, which is conventionally achieved by membrane-puncturing barrel-shaped nanopores. Yet, there is also considerable gain in constructing more complex gated pores. Here, we pioneer a synthetic light-gated nanostructure which regulates transport across membranes via a controllable lid. The light-triggered nanopore is self-assembled from six pore-forming DNA strands and a lid strand carrying light-switchable azobenzene molecules. Exposure to light opens the pore to allow small-molecule transport across membranes. Our light-triggered pore advances biomimetic chemistry and DNA nanotechnology and may be used in biotechnology, biosensing, targeted drug release, or synthetic cells.
Collapse
Affiliation(s)
- Daniel Offenbartl‐Stiegert
- Department of ChemistryInstitute for Structural and Molecular BiologyUniversity College LondonWC1H0AJLondonUK
| | - Alexia Rottensteiner
- Department of ChemistryInstitute for Structural and Molecular BiologyUniversity College LondonWC1H0AJLondonUK
| | - Adam Dorey
- Department of ChemistryInstitute for Structural and Molecular BiologyUniversity College LondonWC1H0AJLondonUK
| | - Stefan Howorka
- Department of ChemistryInstitute for Structural and Molecular BiologyUniversity College LondonWC1H0AJLondonUK
| |
Collapse
|
8
|
Qiao D, Chen Y, Tan H, Zhou R, Feng J. De novo design of transmembrane nanopores. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1354-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Xing Y, Dorey A, Jayasinghe L, Howorka S. Highly shape- and size-tunable membrane nanopores made with DNA. NATURE NANOTECHNOLOGY 2022; 17:708-713. [PMID: 35484212 DOI: 10.1038/s41565-022-01116-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Membrane nanopores are key for molecular transport in biology, portable DNA sequencing1-4, label-free single-molecule analysis5-14 and nanomedicine5. Transport traditionally relies on barrel-like channels of a few nanometres width, but there is considerable scientific and technological interest for much wider structures of tunable shape. Yet, these nanopores do not exist in nature and are challenging to build using existing de novo routes for proteins10,15-17. Here, we show that rational design with DNA can drastically expand the structural and functional range of membrane nanopores. Our design strategy bundles DNA duplexes into pore subunits that modularly arrange to form tunable pore shapes and lumen widths of up to tens of nanometres. Functional units for recognition or signalling can be optionally attached. By dialling in essential parameters, we demonstrate the utility and potential of the custom-engineered nanopores by electrical direct single-molecule sensing of 10-nm-sized proteins using widely used research and hand-held analysis devices. The designer nanopores illustrate how DNA nanotechnology can deliver functional biomolecular structures to be used in synthetic biology, single-molecule enzymology and biophysical analysis, as well as portable diagnostics and environmental screening.
Collapse
Affiliation(s)
- Yongzheng Xing
- Department of Chemistry & Institute of Structural Molecular Biology, University College London, London, UK
| | - Adam Dorey
- Department of Chemistry & Institute of Structural Molecular Biology, University College London, London, UK
| | | | - Stefan Howorka
- Department of Chemistry & Institute of Structural Molecular Biology, University College London, London, UK.
| |
Collapse
|
10
|
Gong Z, Tang Y, Ma N, Cao W, Wang Y, Wang S, Tian Y. Applications of DNA-Functionalized Proteins. Int J Mol Sci 2021; 22:12911. [PMID: 34884714 PMCID: PMC8657886 DOI: 10.3390/ijms222312911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
As an important component that constitutes all the cells and tissues of the human body, protein is involved in most of the biological processes. Inspired by natural protein systems, considerable efforts covering many discipline fields were made to design artificial protein assemblies and put them into application in recent decades. The rapid development of structural DNA nanotechnology offers significant means for protein assemblies and promotes their application. Owing to the programmability, addressability and accurate recognition ability of DNA, many protein assemblies with unprecedented structures and improved functions have been successfully fabricated, consequently creating many brand-new researching fields. In this review, we briefly introduced the DNA-based protein assemblies, and highlighted the limitations in application process and corresponding strategies in four aspects, including biological catalysis, protein detection, biomedicine treatment and other applications.
Collapse
Affiliation(s)
- Zhaoqiu Gong
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China; (Z.G.); (Y.T.); (N.M.); (W.C.); (Y.W.)
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Yuanyuan Tang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China; (Z.G.); (Y.T.); (N.M.); (W.C.); (Y.W.)
| | - Ningning Ma
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China; (Z.G.); (Y.T.); (N.M.); (W.C.); (Y.W.)
| | - Wenhong Cao
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China; (Z.G.); (Y.T.); (N.M.); (W.C.); (Y.W.)
| | - Yong Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China; (Z.G.); (Y.T.); (N.M.); (W.C.); (Y.W.)
| | - Shuang Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China; (Z.G.); (Y.T.); (N.M.); (W.C.); (Y.W.)
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Ye Tian
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China; (Z.G.); (Y.T.); (N.M.); (W.C.); (Y.W.)
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| |
Collapse
|
11
|
Fennouri A, List J, Ducrey J, Dupasquier J, Sukyte V, Mayer SF, Vargas RD, Pascual Fernandez L, Bertani F, Rodriguez Gonzalo S, Yang J, Mayer M. Tuning the Diameter, Stability, and Membrane Affinity of Peptide Pores by DNA-Programmed Self-Assembly. ACS NANO 2021; 15:11263-11275. [PMID: 34128638 DOI: 10.1021/acsnano.0c10311] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Protein pores recently enabled a breakthrough in bioanalytics by making it possible to sequence individual DNA and RNA strands during their translocation through the lumen of the pore. Despite this success and the overall promise of nanopore-based single-molecule analytics, protein pores have not yet reached their full potential for the analysis and characterization of globular biomolecules such as natively folded proteins. One reason is that the diameters of available protein pores are too small for accommodating the translocation of most folded globular proteins through their lumen. The work presented here provides a step toward overcoming this limitation by programmed self-assembly of α-helical pore-forming peptides with covalently attached single-stranded DNA (ssDNA). Specifically, hybridization of the peptide ceratotoxin A (CtxA) with N-terminally attached ssDNA to a complementary DNA template strand with 4, 8, or 12 hybridization sites made it possible to trigger the assembly of pores with various diameters ranging from approximately 0.5 to 4 nm. Hybridization of additional DNA strands to these assemblies achieved extended functionality in a modular fashion without the need for modifying the amino acid sequence of the peptides. For instance, functionalization of these semisynthetic biological nanopores with DNA-cholesterol anchors increased their affinity to lipid membranes compared to pores formed by native CtxA, while charged transmembrane segments prolonged their open-state lifetime. Assembly of these hybrid DNA-peptides by a template increased their cytotoxic activity and made it possible to kill cancer cells at 20-fold lower total peptide concentrations than nontemplated CtxA.
Collapse
Affiliation(s)
- Aziz Fennouri
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Jonathan List
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Julie Ducrey
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Jessica Dupasquier
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Viktorija Sukyte
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Simon F Mayer
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Reyner D Vargas
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Laura Pascual Fernandez
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Frederick Bertani
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Sandra Rodriguez Gonzalo
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Jerry Yang
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| | - Michael Mayer
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| |
Collapse
|
12
|
Sengar A, Ouldridge TE, Henrich O, Rovigatti L, Šulc P. A Primer on the oxDNA Model of DNA: When to Use it, How to Simulate it and How to Interpret the Results. Front Mol Biosci 2021; 8:693710. [PMID: 34235181 PMCID: PMC8256390 DOI: 10.3389/fmolb.2021.693710] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
The oxDNA model of Deoxyribonucleic acid has been applied widely to systems in biology, biophysics and nanotechnology. It is currently available via two independent open source packages. Here we present a set of clearly documented exemplar simulations that simultaneously provide both an introduction to simulating the model, and a review of the model's fundamental properties. We outline how simulation results can be interpreted in terms of-and feed into our understanding of-less detailed models that operate at larger length scales, and provide guidance on whether simulating a system with oxDNA is worthwhile.
Collapse
Affiliation(s)
- A. Sengar
- Centre for Synthetic Biology, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - T. E. Ouldridge
- Centre for Synthetic Biology, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - O. Henrich
- Department of Physics, SUPA, University of Strathclyde, Glasgow, United Kingdom
| | - L. Rovigatti
- Department of Physics, Sapienza University of Rome, Rome, Italy
- CNR Institute of Complex Systems, Sapienza University of Rome, Rome, Italy
| | - P. Šulc
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
13
|
Wang W, Arias DS, Deserno M, Ren X, Taylor RE. Emerging applications at the interface of DNA nanotechnology and cellular membranes: Perspectives from biology, engineering, and physics. APL Bioeng 2020; 4:041507. [PMID: 33344875 PMCID: PMC7725538 DOI: 10.1063/5.0027022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022] Open
Abstract
DNA nanotechnology has proven exceptionally apt at probing and manipulating biological environments as it can create nanostructures of almost arbitrary shape that permit countless types of modifications, all while being inherently biocompatible. Emergent areas of particular interest are applications involving cellular membranes, but to fully explore the range of possibilities requires interdisciplinary knowledge of DNA nanotechnology, cell and membrane biology, and biophysics. In this review, we aim for a concise introduction to the intersection of these three fields. After briefly revisiting DNA nanotechnology, as well as the biological and mechanical properties of lipid bilayers and cellular membranes, we summarize strategies to mediate interactions between membranes and DNA nanostructures, with a focus on programmed delivery onto, into, and through lipid membranes. We also highlight emerging applications, including membrane sculpting, multicell self-assembly, spatial arrangement and organization of ligands and proteins, biomechanical sensing, synthetic DNA nanopores, biological imaging, and biomelecular sensing. Many critical but exciting challenges lie ahead, and we outline what strikes us as promising directions when translating DNA nanostructures for future in vitro and in vivo membrane applications.
Collapse
Affiliation(s)
- Weitao Wang
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - D. Sebastian Arias
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Markus Deserno
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
14
|
Berengut JF, Berengut JC, Doye JPK, Prešern D, Kawamoto A, Ruan J, Wainwright MJ, Lee LK. Design and synthesis of pleated DNA origami nanotubes with adjustable diameters. Nucleic Acids Res 2020; 47:11963-11975. [PMID: 31728524 PMCID: PMC7145641 DOI: 10.1093/nar/gkz1056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 12/31/2022] Open
Abstract
DNA origami allows for the synthesis of nanoscale structures and machines with nanometre precision and high yields. Tubular DNA origami nanostructures are particularly useful because their geometry facilitates a variety of applications including nanoparticle encapsulation, the construction of artificial membrane pores and as structural scaffolds that can uniquely spatially arrange nanoparticles in circular, linear and helical arrays. Here we report a system of parametrization for the design of radially symmetric DNA origami nanotubes with adjustable diameter, length, crossover density, pleat angle and chirality. The system is implemented into a computational algorithm that provides a practical means to navigate the complex geometry of DNA origami nanotube design. We apply this in the design, synthesis and characterization of novel DNA origami nanotubes. These include structures with pleated walls where the same number of duplexes can form nanotubes with different diameters, and to vary the diameter within the same structure. We also construct nanotubes that can be reconfigured into different chiral shapes. Finally, we explore the effect of strain on the local and global geometry of DNA origami nanotubes and demonstrate how pleated walls can provide a strategy to rigidify nanotubes and to construct closely packed parallel duplexes.
Collapse
Affiliation(s)
- Jonathan F Berengut
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences, UNSW Sydney, Kensington, NSW 2052, Australia.,Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | | | - Jonathan P K Doye
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Domen Prešern
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Akihiro Kawamoto
- Institute for Protein Research, Osaka University, Osaka, Kansai, 565-0871, Japan
| | - Juanfang Ruan
- Electron Microscopy Unit, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Madeleine J Wainwright
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Lawrence K Lee
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences, UNSW Sydney, Kensington, NSW 2052, Australia.,Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
15
|
Shen Q, Grome MW, Yang Y, Lin C. Engineering Lipid Membranes with Programmable DNA Nanostructures. ADVANCED BIOSYSTEMS 2020; 4:1900215. [PMID: 31934608 PMCID: PMC6957268 DOI: 10.1002/adbi.201900215] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Indexed: 12/18/2022]
Abstract
Lipid and DNA are abundant biomolecules with critical functions in cells. The water-insoluble, amphipathic lipid molecules are best known for their roles in energy storage (e.g. as triglyceride), signaling (e.g. as sphingolipid), and compartmentalization (e.g. by forming membrane-enclosed bodies). The soluble, highly negatively charged DNA, which stores cells' genetic information, has proven to be an excellent material for constructing programmable nanostructures in vitro thanks to its self-assembling capabilities. These two seemingly distant molecules make contact within cell nuclei, often via lipidated proteins, with proposed functions of modulating chromatin structures. Carefully formulated lipid/DNA complexes are promising reagents for gene therapy. The past few years saw an emerging research field of interfacing DNA nanostructures with lipid membranes, with an overarching goal of generating DNA/lipid hybrid materials that possess novel and controllable structure, dynamics, and function. An arsenal of DNA-based tools has been created to coat, mold, deform, and penetrate lipid bilayers, affording us the ability to manipulate membranes with nanoscopic precision. These membrane engineering methods not only enable quantitative biophysical studies, but also open new opportunities in synthetic biology (e.g. artificial cells) and therapeutics (e.g. drug delivery).
Collapse
Affiliation(s)
- Qi Shen
- Department of Cell Biology and Nanobiology Institute, Yale University
| | - Michael W Grome
- Department of Cell Biology and Nanobiology Institute, Yale University
| | - Yang Yang
- Department of Cell Biology and Nanobiology Institute, Yale University
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine
| | - Chenxiang Lin
- Department of Cell Biology and Nanobiology Institute, Yale University
| |
Collapse
|
16
|
|
17
|
Synthetic protein-conductive membrane nanopores built with DNA. Nat Commun 2019; 10:5018. [PMID: 31685824 PMCID: PMC6828756 DOI: 10.1038/s41467-019-12639-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 09/23/2019] [Indexed: 11/08/2022] Open
Abstract
AbstractNanopores are key in portable sequencing and research given their ability to transport elongated DNA or small bioactive molecules through narrow transmembrane channels. Transport of folded proteins could lead to similar scientific and technological benefits. Yet this has not been realised due to the shortage of wide and structurally defined natural pores. Here we report that a synthetic nanopore designed via DNA nanotechnology can accommodate folded proteins. Transport of fluorescent proteins through single pores is kinetically analysed using massively parallel optical readout with transparent silicon-on-insulator cavity chips vs. electrical recordings to reveal an at least 20-fold higher speed for the electrically driven movement. Pores nevertheless allow a high diffusive flux of more than 66 molecules per second that can also be directed beyond equillibria. The pores may be exploited to sense diagnostically relevant proteins with portable analysis technology, to create molecular gates for drug delivery, or to build synthetic cells.
Collapse
|
18
|
Jin J, Baker EG, Wood CW, Bath J, Woolfson DN, Turberfield AJ. Peptide Assembly Directed and Quantified Using Megadalton DNA Nanostructures. ACS NANO 2019; 13:9927-9935. [PMID: 31381314 PMCID: PMC6764022 DOI: 10.1021/acsnano.9b04251] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/05/2019] [Indexed: 05/02/2023]
Abstract
In nature, co-assembly of polypeptides, nucleic acids, and polysaccharides is used to create functional supramolecular structures. Here, we show that DNA nanostructures can be used to template interactions between peptides and to enable the quantification of multivalent interactions that would otherwise not be observable. Our functional building blocks are peptide-oligonucleotide conjugates comprising de novo designed dimeric coiled-coil peptides covalently linked to oligonucleotide tags. These conjugates are incorporated in megadalton DNA origami nanostructures and direct nanostructure association through peptide-peptide interactions. Free and bound nanostructures can be counted directly from electron micrographs, allowing estimation of the dissociation constants of the peptides linking them. Results for a single peptide-peptide interaction are consistent with the measured solution-phase free energy; DNA nanostructures displaying multiple peptides allow the effects of polyvalency to be probed. This use of DNA nanostructures as identifiers allows the binding strengths of homo- and heterodimeric peptide combinations to be measured in a single experiment and gives access to dissociation constants that are too low to be quantified by conventional techniques. The work also demonstrates that hybrid biomolecules can be programmed to achieve spatial organization of complex synthetic biomolecular assemblies.
Collapse
Affiliation(s)
- Juan Jin
- Department
of Physics, Clarendon Laboratory, University
of Oxford, Parks Road, Oxford OX1
3PU, United Kingdom
| | - Emily G. Baker
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Christopher W. Wood
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Jonathan Bath
- Department
of Physics, Clarendon Laboratory, University
of Oxford, Parks Road, Oxford OX1
3PU, United Kingdom
| | - Derek N. Woolfson
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
- School
of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
- Bristol
BioDesign Institute, BrisSynBio, University
of Bristol Research Centre in Synthetic Biology, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, United Kingdom
| | - Andrew J. Turberfield
- Department
of Physics, Clarendon Laboratory, University
of Oxford, Parks Road, Oxford OX1
3PU, United Kingdom
| |
Collapse
|
19
|
Pharmacological Targeting of Pore-Forming Toxins as Adjunctive Therapy for Invasive Bacterial Infection. Toxins (Basel) 2018; 10:toxins10120542. [PMID: 30562923 PMCID: PMC6316385 DOI: 10.3390/toxins10120542] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 12/23/2022] Open
Abstract
For many of the most important human bacterial infections, invasive disease severity is fueled by the cell damaging and pro-inflammatory effects of secreted pore-forming toxins (PFTs). Isogenic PFT-knockout mutants, e.g., Staphylococcus aureus lacking α-toxin or Streptococcus pneumoniae deficient in pneumolysin, show attenuation in animal infection models. This knowledge has inspired multi-model investigations of strategies to neutralize PFTs or counteract their toxicity as a novel pharmacological approach to ameliorate disease pathogenesis in clinical disease. Promising examples of small molecule, antibody or nanotherapeutic drug candidates that directly bind and neutralize PFTs, block their oligomerization or membrane receptor interactions, plug establishment membrane pores, or boost host cell resiliency to withstand PFT action have emerged. The present review highlights these new concepts, with a special focus on β-PFTs produced by leading invasive human Gram-positive bacterial pathogens. Such anti-virulence therapies could be applied as an adjunctive therapy to antibiotic-sensitive and -resistant strains alike, and further could be free of deleterious effects that deplete the normal microflora.
Collapse
|
20
|
Affiliation(s)
- Simona Ranallo
- Department of Chemical Sciences and Technologies , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 Rome , Italy
| | - Alessandro Porchetta
- Department of Chemical Sciences and Technologies , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 Rome , Italy
| | - Francesco Ricci
- Department of Chemical Sciences and Technologies , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 Rome , Italy
| |
Collapse
|
21
|
Houghtaling J, List J, Mayer M. Nanopore-Based, Rapid Characterization of Individual Amyloid Particles in Solution: Concepts, Challenges, and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802412. [PMID: 30225962 DOI: 10.1002/smll.201802412] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/15/2018] [Indexed: 06/08/2023]
Abstract
Aggregates of misfolded proteins are associated with several devastating neurodegenerative diseases. These so-called amyloids are therefore explored as biomarkers for the diagnosis of dementia and other disorders, as well as for monitoring disease progression and assessment of the efficacy of therapeutic interventions. Quantification and characterization of amyloids as biomarkers is particularly demanding because the same amyloid-forming protein can exist in different states of assembly, ranging from nanometer-sized monomers to micrometer-long fibrils that interchange dynamically both in vivo and in samples from body fluids ex vivo. Soluble oligomeric amyloid aggregates, in particular, are associated with neurotoxic effects, and their molecular organization, size, and shape appear to determine their toxicity. This concept article proposes that the emerging field of nanopore-based analytics on a single molecule and single aggregate level holds the potential to account for the heterogeneity of amyloid samples and to characterize these particles-rapidly, label-free, and in aqueous solution-with regard to their size, shape, and abundance. The article describes the concept of nanopore-based resistive pulse sensing, reviews previous work in amyloid analysis, and discusses limitations and challenges that will need to be overcome to realize the full potential of amyloid characterization on a single-particle level.
Collapse
Affiliation(s)
- Jared Houghtaling
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | - Jonathan List
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | - Michael Mayer
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| |
Collapse
|
22
|
|
23
|
Kurokawa T, Kiyonaka S, Nakata E, Endo M, Koyama S, Mori E, Tran NH, Dinh H, Suzuki Y, Hidaka K, Kawata M, Sato C, Sugiyama H, Morii T, Mori Y. DNA Origami Scaffolds as Templates for Functional Tetrameric Kir3 K +
Channels. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201709982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tatsuki Kurokawa
- Department of Synthetic Chemistry and Biological Chemistry; Graduate School of Engineering; Kyoto University, Kyotodaigakukatsura, Nishikyo-ku; Kyoto 615-8510 Japan
- Core Research for Evolutional Science and Technology (Japan); Science and Technology Agency; 4-1-8 Hon-cho, Kawaguchi Saitama 332-0012 Japan
| | - Shigeki Kiyonaka
- Department of Synthetic Chemistry and Biological Chemistry; Graduate School of Engineering; Kyoto University, Kyotodaigakukatsura, Nishikyo-ku; Kyoto 615-8510 Japan
- Core Research for Evolutional Science and Technology (Japan); Science and Technology Agency; 4-1-8 Hon-cho, Kawaguchi Saitama 332-0012 Japan
- Department of Technology and Ecology, Hall of Global Environmental Studies; Kyoto University, Kyotodaigakukatsura, Nishikyo-ku; Kyoto 615-8510 Japan
| | - Eiji Nakata
- Core Research for Evolutional Science and Technology (Japan); Science and Technology Agency; 4-1-8 Hon-cho, Kawaguchi Saitama 332-0012 Japan
- Institute of Advanced Energy; Kyoto University, Gokasho, Uji; Kyoto 611-0011 Japan
| | - Masayuki Endo
- Core Research for Evolutional Science and Technology (Japan); Science and Technology Agency; 4-1-8 Hon-cho, Kawaguchi Saitama 332-0012 Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS); Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku; Kyoto 606-8501 Japan
| | - Shohei Koyama
- Department of Synthetic Chemistry and Biological Chemistry; Graduate School of Engineering; Kyoto University, Kyotodaigakukatsura, Nishikyo-ku; Kyoto 615-8510 Japan
| | - Emiko Mori
- Department of Synthetic Chemistry and Biological Chemistry; Graduate School of Engineering; Kyoto University, Kyotodaigakukatsura, Nishikyo-ku; Kyoto 615-8510 Japan
- Core Research for Evolutional Science and Technology (Japan); Science and Technology Agency; 4-1-8 Hon-cho, Kawaguchi Saitama 332-0012 Japan
| | - Nam Ha Tran
- Department of Technology and Ecology, Hall of Global Environmental Studies; Kyoto University, Kyotodaigakukatsura, Nishikyo-ku; Kyoto 615-8510 Japan
| | - Huyen Dinh
- Institute of Advanced Energy; Kyoto University, Gokasho, Uji; Kyoto 611-0011 Japan
| | - Yuki Suzuki
- Core Research for Evolutional Science and Technology (Japan); Science and Technology Agency; 4-1-8 Hon-cho, Kawaguchi Saitama 332-0012 Japan
- Department of Chemistry; Graduate School of Science; Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku; Kyoto 606-8502 Japan
| | - Kumi Hidaka
- Department of Chemistry; Graduate School of Science; Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku; Kyoto 606-8502 Japan
| | - Masaaki Kawata
- Biomedical Research Institute; National Institute of Advanced Industrial Science and Technology; 1-1-1 Higashi, Tsukuba Ibaraki 305-8566 Japan
| | - Chikara Sato
- Biomedical Research Institute; National Institute of Advanced Industrial Science and Technology; 1-1-1 Higashi, Tsukuba Ibaraki 305-8566 Japan
| | - Hiroshi Sugiyama
- Core Research for Evolutional Science and Technology (Japan); Science and Technology Agency; 4-1-8 Hon-cho, Kawaguchi Saitama 332-0012 Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS); Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku; Kyoto 606-8501 Japan
- Department of Chemistry; Graduate School of Science; Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku; Kyoto 606-8502 Japan
| | - Takashi Morii
- Core Research for Evolutional Science and Technology (Japan); Science and Technology Agency; 4-1-8 Hon-cho, Kawaguchi Saitama 332-0012 Japan
- Institute of Advanced Energy; Kyoto University, Gokasho, Uji; Kyoto 611-0011 Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry; Graduate School of Engineering; Kyoto University, Kyotodaigakukatsura, Nishikyo-ku; Kyoto 615-8510 Japan
- Core Research for Evolutional Science and Technology (Japan); Science and Technology Agency; 4-1-8 Hon-cho, Kawaguchi Saitama 332-0012 Japan
- Department of Technology and Ecology, Hall of Global Environmental Studies; Kyoto University, Kyotodaigakukatsura, Nishikyo-ku; Kyoto 615-8510 Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS); Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku; Kyoto 606-8501 Japan
| |
Collapse
|
24
|
Kurokawa T, Kiyonaka S, Nakata E, Endo M, Koyama S, Mori E, Tran NH, Dinh H, Suzuki Y, Hidaka K, Kawata M, Sato C, Sugiyama H, Morii T, Mori Y. DNA Origami Scaffolds as Templates for Functional Tetrameric Kir3 K + Channels. Angew Chem Int Ed Engl 2018; 57:2586-2591. [PMID: 29341462 DOI: 10.1002/anie.201709982] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/15/2017] [Indexed: 01/17/2023]
Abstract
In native systems, scaffolding proteins play important roles in assembling proteins into complexes to transduce signals. This concept is yet to be applied to the assembly of functional transmembrane protein complexes in artificial systems. To address this issue, DNA origami has the potential to serve as scaffolds that arrange proteins at specific positions in complexes. Herein, we report that Kir3 K+ channel proteins are assembled through zinc-finger protein (ZFP)-adaptors at specific locations on DNA origami scaffolds. Specific binding of the ZFP-fused Kir3 channels and ZFP-based adaptors on DNA origami were confirmed by atomic force microscopy and gel electrophoresis. Furthermore, the DNA origami with ZFP binding sites nearly tripled the K+ channel current activity elicited by heterotetrameric Kir3 channels in HEK293T cells. Thus, our method provides a useful template to control the oligomerization states of membrane protein complexes in vitro and in living cells.
Collapse
Affiliation(s)
- Tatsuki Kurokawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigakukatsura, Nishikyo-ku, Kyoto, 615-8510, Japan.,Core Research for Evolutional Science and Technology (Japan), Science and Technology Agency, 4-1-8 Hon-cho, Kawaguchi, Saitama, 332-0012, Japan
| | - Shigeki Kiyonaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigakukatsura, Nishikyo-ku, Kyoto, 615-8510, Japan.,Core Research for Evolutional Science and Technology (Japan), Science and Technology Agency, 4-1-8 Hon-cho, Kawaguchi, Saitama, 332-0012, Japan.,Department of Technology and Ecology, Hall of Global Environmental Studies, Kyoto University, Kyotodaigakukatsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Eiji Nakata
- Core Research for Evolutional Science and Technology (Japan), Science and Technology Agency, 4-1-8 Hon-cho, Kawaguchi, Saitama, 332-0012, Japan.,Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Masayuki Endo
- Core Research for Evolutional Science and Technology (Japan), Science and Technology Agency, 4-1-8 Hon-cho, Kawaguchi, Saitama, 332-0012, Japan.,Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shohei Koyama
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigakukatsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Emiko Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigakukatsura, Nishikyo-ku, Kyoto, 615-8510, Japan.,Core Research for Evolutional Science and Technology (Japan), Science and Technology Agency, 4-1-8 Hon-cho, Kawaguchi, Saitama, 332-0012, Japan
| | - Nam Ha Tran
- Department of Technology and Ecology, Hall of Global Environmental Studies, Kyoto University, Kyotodaigakukatsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Huyen Dinh
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Yuki Suzuki
- Core Research for Evolutional Science and Technology (Japan), Science and Technology Agency, 4-1-8 Hon-cho, Kawaguchi, Saitama, 332-0012, Japan.,Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kumi Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Masaaki Kawata
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Chikara Sato
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Hiroshi Sugiyama
- Core Research for Evolutional Science and Technology (Japan), Science and Technology Agency, 4-1-8 Hon-cho, Kawaguchi, Saitama, 332-0012, Japan.,Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takashi Morii
- Core Research for Evolutional Science and Technology (Japan), Science and Technology Agency, 4-1-8 Hon-cho, Kawaguchi, Saitama, 332-0012, Japan.,Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigakukatsura, Nishikyo-ku, Kyoto, 615-8510, Japan.,Core Research for Evolutional Science and Technology (Japan), Science and Technology Agency, 4-1-8 Hon-cho, Kawaguchi, Saitama, 332-0012, Japan.,Department of Technology and Ecology, Hall of Global Environmental Studies, Kyoto University, Kyotodaigakukatsura, Nishikyo-ku, Kyoto, 615-8510, Japan.,Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|