1
|
Liu Y, Lomeli I, Kron SJ. Therapy-Induced Cellular Senescence: Potentiating Tumor Elimination or Driving Cancer Resistance and Recurrence? Cells 2024; 13:1281. [PMID: 39120312 PMCID: PMC11312217 DOI: 10.3390/cells13151281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Cellular senescence has been increasingly recognized as a hallmark of cancer, reflecting its association with aging and inflammation, its role as a response to deregulated proliferation and oncogenic stress, and its induction by cancer therapies. While therapy-induced senescence (TIS) has been linked to resistance, recurrence, metastasis, and normal tissue toxicity, TIS also has the potential to enhance therapy response and stimulate anti-tumor immunity. In this review, we examine the Jekyll and Hyde nature of senescent cells (SnCs), focusing on how their persistence while expressing the senescence-associated secretory phenotype (SASP) modulates the tumor microenvironment through autocrine and paracrine mechanisms. Through the SASP, SnCs can mediate both resistance and response to cancer therapies. To fulfill the unmet potential of cancer immunotherapy, we consider how SnCs may influence tumor inflammation and serve as an antigen source to potentiate anti-tumor immune response. This new perspective suggests treatment approaches based on TIS to enhance immune checkpoint blockade. Finally, we describe strategies for mitigating the detrimental effects of senescence, such as modulating the SASP or targeting SnC persistence, which may enhance the overall benefits of cancer treatment.
Collapse
Affiliation(s)
| | | | - Stephen J. Kron
- Ludwig Center for Metastasis Research and Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Wang N, Hu Y, Wang S, Xu Q, Jiao X, Wang Y, Yan L, Cao H, Shao F. Development of a novel disulfidptosis-related lncRNA signature for prognostic and immune response prediction in clear cell renal cell carcinoma. Sci Rep 2024; 14:624. [PMID: 38182642 PMCID: PMC10770353 DOI: 10.1038/s41598-024-51197-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024] Open
Abstract
Disulfidptosis, a novel form of regulated cell death, occurs due to the aberrant accumulation of intracellular cystine and other disulfides. Moreover, targeting disulfidptosis could identify promising approaches for cancer treatment. Long non-coding RNAs (lncRNAs) are known to be critically implicated in clear cell renal cell carcinoma (ccRCC) development. Currently, the involvement of disulfidptosis-related lncRNAs in ccRCC is yet to be elucidated. This study primarily dealt with identifying and validating a disulfidptosis-related lncRNAs-based signature for predicting the prognosis and immune landscape of individuals with ccRCC. Clinical and RNA sequencing data of ccRCC samples were accessed from The Cancer Genome Atlas (TCGA) database. Pearson correlation analysis was conducted for the identification of the disulfidptosis-related lncRNAs. Additionally, univariate Cox regression analysis, Least Absolute Shrinkage and Selection Operator Cox regression, and stepwise multivariate Cox analysis were executed to develop a novel risk prognostic model. The prognosis-predictive capacity of the model was then assessed using an integrated method. Variation in biological function was noted using GO, KEGG, and GSEA. Additionally, immune cell infiltration, the tumor mutational burden (TMB), and tumor immune dysfunction and exclusion (TIDE) scores were calculated to investigate differences in the immune landscape. Finally, the expression of hub disulfidptosis-related lncRNAs was validated using qPCR. We established a novel signature comprised of eight lncRNAs that were associated with disulfidptosis (SPINT1-AS1, AL121944.1, AC131009.3, AC104088.3, AL035071.1, LINC00886, AL035587.2, and AC007743.1). Kaplan-Meier and receiver operating characteristic curves demonstrated the acceptable predictive potency of the model. The nomogram and C-index confirmed the strong correlation between the risk signature and clinical decision-making. Furthermore, immune cell infiltration analysis and ssGSEA revealed significantly different immune statuses among risk groups. TMB analysis revealed the link between the high-risk group and high TMB. It is worth noting that the cumulative effect of the patients belonging to the high-risk group and having elevated TMB led to decreased patient survival times. The high-risk group depicted greater TIDE scores in contrast with the low-risk group, indicating greater potential for immune escape. Finally, qPCR validated the hub disulfidptosis-related lncRNAs in cell lines. The established novel signature holds potential regarding the prognosis prediction of individuals with ccRCC as well as predicting their responses to immunotherapy.
Collapse
Affiliation(s)
- Ning Wang
- Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Department of Nephrology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Yifeng Hu
- Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Department of Nephrology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Shasha Wang
- Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Department of Nephrology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Qin Xu
- Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Department of Nephrology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaojing Jiao
- Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Department of Nephrology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Yanliang Wang
- Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Department of Nephrology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Lei Yan
- Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Department of Nephrology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Huixia Cao
- Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Department of Nephrology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Fengmin Shao
- Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Department of Nephrology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
3
|
Gu J, Chen J, Yin Q, Dong M, Zhang Y, Chen M, Chen X, Min J, He X, Tan Y, Zheng L, Jiang H, Wang B, Li X, Chen H. lncRNA JPX-Enriched Chromatin Microenvironment Mediates Vascular Smooth Muscle Cell Senescence and Promotes Atherosclerosis. Arterioscler Thromb Vasc Biol 2024; 44:156-176. [PMID: 37942612 DOI: 10.1161/atvbaha.122.319250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Senescence is a series of degenerative changes in the structure and physiological function of an organism. Whether JPX (just proximal to XIST)-a newly identified age-related noncoding RNA by us-is associated with atherosclerosis is still unknown. Our study was to investigate the role of JPX and provide insights into potential therapies targeting atherosclerosis. METHODS We analyzed clinical data from multiple tissues including meniscus tissue, leukemia cells, and peripheral blood monocytes to identify age-related noncoding RNAs in senescent vascular smooth muscle cells (VSMCs). The molecular mechanism of JPX was investigated by capture hybridization analysis of RNA targets and chromatin immunoprecipitation. IGVTools and real-time quantitative polymerase chain reaction were used to evaluate the JPX expression during phenotype regulation in age-related disease models. The therapeutic potential of JPX was evaluated after establishing an atherosclerosis model in smooth muscle-specific Jpx knockout mice. RESULTS JPX expression was upregulated in activated ras allele (H-rasV12)-induced senescent VSMCs and atherosclerotic arteries. JPX knockdown substantially reduced the elevation of senescence-associated secretory phenotype (SASP) genes in senescent VSMCs. Cytoplasmic DNA leaked from mitochondria via mitochondrial permeability transition pore formed by VDAC1 (voltage-dependent anion channel 1) oligomer activates the STING (stimulator of interferon gene) pathway. JPX could act as an enhancer for the SASP genes and functions as a scaffold molecule through interacting with phosphorylated p65/RelA and BRD4 (bromodomain-containing protein 4) in chromatin remodeling complex, promoting the transcription of SASP genes via epigenetic regulation. Smooth muscle knockout of Jpx in ApoeKO mice resulted in a decrease in plaque area, a reduction in SASP gene expression, and a decrease in senescence compared with controls. CONCLUSIONS As an enhancer RNA, JPX can integrate p65 and BRD4 to form a chromatin remodeling complex, activating SASP gene transcription and promoting cellular senescence. These findings suggest that JPX is a potential therapeutic target for the treatment of age-related atherosclerosis.
Collapse
Affiliation(s)
- Jiaming Gu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy (J.G., Q.Y., M.D., Y.Z., M.C., X.C., J.M., X.H., Y.T., L.Z., H.J., X.L., H.C.), Nanjing Medical University, China
| | - Jiajing Chen
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China (J.C.)
| | - Quanwen Yin
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy (J.G., Q.Y., M.D., Y.Z., M.C., X.C., J.M., X.H., Y.T., L.Z., H.J., X.L., H.C.), Nanjing Medical University, China
| | - Mengdie Dong
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy (J.G., Q.Y., M.D., Y.Z., M.C., X.C., J.M., X.H., Y.T., L.Z., H.J., X.L., H.C.), Nanjing Medical University, China
| | - Yunjia Zhang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy (J.G., Q.Y., M.D., Y.Z., M.C., X.C., J.M., X.H., Y.T., L.Z., H.J., X.L., H.C.), Nanjing Medical University, China
| | - Minghong Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy (J.G., Q.Y., M.D., Y.Z., M.C., X.C., J.M., X.H., Y.T., L.Z., H.J., X.L., H.C.), Nanjing Medical University, China
| | - Xiang Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy (J.G., Q.Y., M.D., Y.Z., M.C., X.C., J.M., X.H., Y.T., L.Z., H.J., X.L., H.C.), Nanjing Medical University, China
| | - Jiao Min
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy (J.G., Q.Y., M.D., Y.Z., M.C., X.C., J.M., X.H., Y.T., L.Z., H.J., X.L., H.C.), Nanjing Medical University, China
| | - Xian He
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy (J.G., Q.Y., M.D., Y.Z., M.C., X.C., J.M., X.H., Y.T., L.Z., H.J., X.L., H.C.), Nanjing Medical University, China
| | - Yongkang Tan
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy (J.G., Q.Y., M.D., Y.Z., M.C., X.C., J.M., X.H., Y.T., L.Z., H.J., X.L., H.C.), Nanjing Medical University, China
| | - Longbin Zheng
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy (J.G., Q.Y., M.D., Y.Z., M.C., X.C., J.M., X.H., Y.T., L.Z., H.J., X.L., H.C.), Nanjing Medical University, China
| | - Hong Jiang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy (J.G., Q.Y., M.D., Y.Z., M.C., X.C., J.M., X.H., Y.T., L.Z., H.J., X.L., H.C.), Nanjing Medical University, China
| | - Bingjian Wang
- Department of Cardiology, Huai'an First People's Hospital Affiliated With Nanjing Medical University, China (B.W., H.C.)
| | - Xuesong Li
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy (J.G., Q.Y., M.D., Y.Z., M.C., X.C., J.M., X.H., Y.T., L.Z., H.J., X.L., H.C.), Nanjing Medical University, China
| | - Hongshan Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy (J.G., Q.Y., M.D., Y.Z., M.C., X.C., J.M., X.H., Y.T., L.Z., H.J., X.L., H.C.), Nanjing Medical University, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine (H.C.), Nanjing Medical University, China
- Department of Cardiology, Huai'an First People's Hospital Affiliated With Nanjing Medical University, China (B.W., H.C.)
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanjing Medical University, China (H.C.)
| |
Collapse
|
4
|
Martyshkina YS, Tereshchenko VP, Bogdanova DA, Rybtsov SA. Reliable Hallmarks and Biomarkers of Senescent Lymphocytes. Int J Mol Sci 2023; 24:15653. [PMID: 37958640 PMCID: PMC10647376 DOI: 10.3390/ijms242115653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
The phenomenon of accumulation of senescent adaptive immunity cells in the elderly is attracting attention due to the increasing risk of global epidemics and aging of the global population. Elderly people are predisposed to various infectious and age-related diseases and are at higher risk of vaccination failure. The accumulation of senescent cells increases age-related background inflammation, "Inflammaging", causing lymphocyte exhaustion and cardiovascular, neurodegenerative, autoimmune and cancer diseases. Here, we present a comprehensive contemporary review of the mechanisms and phenotype of senescence in the adaptive immune system. Although modern research has not yet identified specific markers of aging lymphocytes, several sets of markers facilitate the separation of the aging population based on normal memory and exhausted cells for further genetic and functional analysis. The reasons for the higher predisposition of CD8+ T-lymphocytes to senescence compared to the CD4+ population are also discussed. We point out approaches for senescent-lymphocyte-targeting markers using small molecules (senolytics), antibodies and immunization against senescent cells. The suppression of immune senescence is the most relevant area of research aimed at developing anti-aging and anti-cancer therapy for prolonging the lifespan of the global population.
Collapse
Affiliation(s)
- Yuliya S. Martyshkina
- Division of Immunobiology and Biomedicine, Center for Genetics and Life Sciences, Sirius University of Science and Technology, Olimpiyskiy Ave. b.1, Sirius 354340, Krasnodar Region, Russia; (Y.S.M.)
| | - Valeriy P. Tereshchenko
- Resource Center for Cell Technology and Immunology, Sirius University of Science and Technology, Olimpiyskiy Ave. b.1, Sirius 354340, Krasnodar Region, Russia
| | - Daria A. Bogdanova
- Division of Immunobiology and Biomedicine, Center for Genetics and Life Sciences, Sirius University of Science and Technology, Olimpiyskiy Ave. b.1, Sirius 354340, Krasnodar Region, Russia; (Y.S.M.)
| | - Stanislav A. Rybtsov
- Resource Center for Cell Technology and Immunology, Sirius University of Science and Technology, Olimpiyskiy Ave. b.1, Sirius 354340, Krasnodar Region, Russia
| |
Collapse
|
5
|
Chen YH, Zhang X, Chou CH, Hsueh MF, Attarian D, Li YJ, Kraus VB. Association of Dipeptidylpeptidase 4 (CD26) With Chondrocyte Senescence and Radiographic Progression in Knee Osteoarthritis. Arthritis Rheumatol 2023; 75:1120-1131. [PMID: 36704903 PMCID: PMC10313751 DOI: 10.1002/art.42455] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 12/01/2022] [Accepted: 03/07/2023] [Indexed: 01/28/2023]
Abstract
OBJECTIVE To evaluate the association of dipeptidylpeptidase 4 (DPP-4; also known as CD26) with cellular senescence of human cartilage and progression of knee osteoarthritis (OA). METHODS Articular cartilage sections and chondrocytes were acquired from 35 individuals undergoing total knee replacement for OA to evaluate the following: 1) the association between OA severity and established senescence markers (senescence-associated β-galactosidase activity and p16), which was quantified using immunohistochemistry and flow cytometry (n = 19 samples); 2) the coexpression of DPP-4 with established senescence markers, which was assessed using flow cytometry; and 3) expression levels of anabolic and catabolic genes, senescence-related genes, and senescence-associated secretory phenotypes in DPP-4+ and DPP-4- cells, which were isolated using fluorescence-activated cell sorting or magnetic-activated cell sorting (n = 16 samples). The concentration of soluble DPP-4 was measured in samples of synovial fluid and samples of plasma from the Prediction of Osteoarthritis Progression cohort and then evaluated for association with the severity of radiographic knee OA at baseline (n = 65 samples) and the progression of structural radiographic OA (n = 57 samples) over a 3-year period. RESULTS DPP-4 expression was associated with higher senescence-associated β-galactosidase activity, p16 expression, senescence-related gene and catabolic gene (ADAMTS5, MMP13, IL6, and IL8) expression, higher senescence-associated secretory phenotype secretion, and lower anabolic gene (COL2A1 and ACAN) expression in primary chondrocytes. Synovial fluid DPP-4 concentration was associated with radiographic OA progression (odds ratio 105.32; P = 0.015), proteases (synovial fluid matrix metalloproteinase 1 and matrix metalloproteinase 3), aggrecan degradation (synovial fluid sulfated glycosaminoglycan), indicators of activated macrophages (synovial fluid CD14 and CD163), and inflammation (synovial fluid interleukin-6). CONCLUSION Our study identifies DPP-4 as a key surface marker in senescent chondrocytes and a predictor of radiographic OA progression.
Collapse
Affiliation(s)
- Yu-Hsiu Chen
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
- Division of Rheumatology/Immunology/Allergy, Department of Internal Medicine Tri-Service General Hospital, National Defense Medical Center, Taiwan
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Xin Zhang
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Ching-Heng Chou
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Ming-Feng Hsueh
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - David Attarian
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Yi-Ju Li
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Virginia Byers Kraus
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
6
|
Tian Y, Li X, Bai C, Yang Z, Zhang L, Luo J, Zhang W. lncRNA MIR503HG Targets miR-191-5p/PLCD1 Axis and Negatively Modulates Apoptosis, Extracellular Matrix Disruption, and Inflammation in Abdominal Aortic Aneurysm. Mediators Inflamm 2023; 2023:4003618. [PMID: 37228901 PMCID: PMC10205412 DOI: 10.1155/2023/4003618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/09/2022] [Accepted: 04/05/2023] [Indexed: 05/27/2023] Open
Abstract
As the most prevalent subtype of aortic aneurysm, abdominal aortic aneurysm (AAA) features the apoptosis, extracellular matrix (ECM) disruption, and inflammation response of vascular smooth muscle cells (VSMCs). Noncoding RNAs (ncRNAs) are crucial factors in AAA progression, while the investigations have not been fully explained. miR-191-5p upregulation is found in aortic aneurysm. However, its role in AAA has not been addressed. This research purposed to excavate the possible and associated molecular axis of miR-191-5p in AAA. In our study, miR-191-5p level was detected to be high in the tissues from AAA patients in comparison with the control group. After miR-191-5p expression was enhanced, cell viability was repressed, cell apoptosis was boosted, and ECM disruption and the inflammation response were fortified. Furthermore, the relationship among MIR503HG, miR-191-5p, and phospholipase C delta 1 (PLCD1) in VSMCs was disclosed via mechanism assays. Decreased MIR503HG lacked the inhibition on miR-191-5p targeting PLCD1, resulting in downregulation of PLCD1, which facilitated the progression of AAA. Thus, targeting MIR503HG/miR-191-5p/PLCD1 pathway will provide an additional method for the cure of AAA patients.
Collapse
Affiliation(s)
- Ye Tian
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000 Xinjiang Uygur Autonomous Region, China
| | - Xinxi Li
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000 Xinjiang Uygur Autonomous Region, China
| | - Chao Bai
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000 Xinjiang Uygur Autonomous Region, China
| | - Zhenwei Yang
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000 Xinjiang Uygur Autonomous Region, China
| | - Lei Zhang
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000 Xinjiang Uygur Autonomous Region, China
| | - Jun Luo
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000 Xinjiang Uygur Autonomous Region, China
| | - Wenbin Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000 Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
7
|
Wechter N, Rossi M, Anerillas C, Tsitsipatis D, Piao Y, Fan J, Martindale JL, De S, Mazan-Mamczarz K, Gorospe M. Single-cell transcriptomic analysis uncovers diverse and dynamic senescent cell populations. Aging (Albany NY) 2023; 15:2824-2851. [PMID: 37086265 DOI: 10.18632/aging.204666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/03/2023] [Indexed: 04/23/2023]
Abstract
Senescence is a state of enduring growth arrest triggered by sublethal cell damage. Given that senescent cells actively secrete proinflammatory and matrix-remodeling proteins, their accumulation in tissues of older persons has been linked to many diseases of aging. Despite intense interest in identifying robust markers of senescence, the highly heterogeneous and dynamic nature of the senescent phenotype has made this task difficult. Here, we set out to comprehensively analyze the senescent transcriptome of human diploid fibroblasts at the individual-cell scale by performing single-cell RNA-sequencing analysis through two approaches. First, we characterized the different cell states in cultures undergoing senescence triggered by different stresses, and found distinct cell subpopulations that expressed mRNAs encoding proteins with roles in growth arrest, survival, and the secretory phenotype. Second, we characterized the dynamic changes in the transcriptomes of cells as they developed etoposide-induced senescence; by tracking cell transitions across this process, we found two different senescence programs that developed divergently, one in which cells expressed traditional senescence markers such as p16 (CDKN2A) mRNA, and another in which cells expressed long noncoding RNAs and splicing was dysregulated. Finally, we obtained evidence that the proliferation status at the time of senescence initiation affected the path of senescence, as determined based on the expressed RNAs. We propose that a deeper understanding of the transcriptomes during the progression of different senescent cell phenotypes will help develop more effective interventions directed at this detrimental cell population.
Collapse
Affiliation(s)
- Noah Wechter
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD 21224, USA
| | - Martina Rossi
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD 21224, USA
| | - Carlos Anerillas
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD 21224, USA
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD 21224, USA
| | - Yulan Piao
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD 21224, USA
| | - Jinshui Fan
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD 21224, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD 21224, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD 21224, USA
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD 21224, USA
| |
Collapse
|
8
|
Wang C, Nistala R, Cao M, Pan Y, Behrens M, Doll D, Hammer RD, Nistala P, Chang HM, Yeh ETH, Kang X. Dipeptidylpeptidase 4 promotes survival and stemness of acute myeloid leukemia stem cells. Cell Rep 2023; 42:112105. [PMID: 36807138 PMCID: PMC10432577 DOI: 10.1016/j.celrep.2023.112105] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 11/11/2022] [Accepted: 01/29/2023] [Indexed: 02/19/2023] Open
Abstract
Leukemic-stem-cell-specific targeting may improve the survival of patients with acute myeloid leukemia (AML) by avoiding the ablative effects of standard regimens on normal hematopoiesis. Herein, we perform an unbiased screening of compounds targeting cell surface proteins and identify clinically used DPP4 inhibitors as strong suppressors of AML development in both murine AML models and primary human AML cells xenograft model. We find in retrovirus-induced AML mouse models that DPP4-deficient AML cell-transplanted mice exhibit delay and reversal of AML development, whereas deletion of DPP4 has no significant effect on normal hematopoiesis. DPP4 activates and sustains survival of AML stem cells that are critical for AML development in both human and animal models via binding with Src kinase and activation of nuclear factor κB (NF-κB) signaling. Thus, inhibition of DPP4 is a potential therapeutic strategy against AML development through suppression of survival and stemness of AML cells.
Collapse
Affiliation(s)
- Chen Wang
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Ravi Nistala
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA; Division of Nephrology, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Min Cao
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Yi Pan
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Madelaine Behrens
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Donald Doll
- Division of Hematology and Oncology, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Richard D Hammer
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Puja Nistala
- Division of Hematology and Oncology, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Hui-Ming Chang
- Department of Pharmacology and Toxicology, The University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Department of Internal Medicine, The University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Edward T H Yeh
- Department of Internal Medicine, The University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - XunLei Kang
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA; Division of Hematology and Oncology, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA.
| |
Collapse
|
9
|
Ji ML, Li Z, Hu XY, Zhang WT, Zhang HX, Lu J. Dynamic chromatin accessibility tuning by the long noncoding RNA ELDR accelerates chondrocyte senescence and osteoarthritis. Am J Hum Genet 2023; 110:606-624. [PMID: 36868238 PMCID: PMC10119164 DOI: 10.1016/j.ajhg.2023.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/10/2023] [Indexed: 03/05/2023] Open
Abstract
Epigenetic reprogramming plays a critical role in chondrocyte senescence during osteoarthritis (OA) pathology, but the underlying molecular mechanisms remain to be elucidated. Here, using large-scale individual datasets and genetically engineered (Col2a1-CreERT2;Eldrflox/flox and Col2a1-CreERT2;ROSA26-LSL-Eldr+/+ knockin) mouse models, we show that a novel transcript of long noncoding RNA ELDR is essential for the development of chondrocyte senescence. ELDR is highly expressed in chondrocytes and cartilage tissues of OA. Mechanistically, exon 4 of ELDR physically mediates a complex consisting of hnRNPL and KAT6A to regulate histone modifications of the promoter region of IHH, thereby activating hedgehog signaling and promoting chondrocyte senescence. Therapeutically, GapmeR-mediated silencing of ELDR in the OA model substantially attenuates chondrocyte senescence and cartilage degradation. Clinically, ELDR knockdown in cartilage explants from OA-affected individuals decreased the expression of senescence markers and catabolic mediators. Taken together, these findings uncover an lncRNA-dependent epigenetic driver in chondrocyte senescence, highlighting that ELDR could be a promising therapeutic avenue for OA.
Collapse
Affiliation(s)
- Ming-Liang Ji
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, Southeast University, Nanjing, China.
| | - Zhuang Li
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, Southeast University, Nanjing, China
| | - Xin Yue Hu
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, Southeast University, Nanjing, China
| | - Wei Tuo Zhang
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, Southeast University, Nanjing, China
| | - Hai Xiang Zhang
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, Southeast University, Nanjing, China
| | - Jun Lu
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, Southeast University, Nanjing, China.
| |
Collapse
|
10
|
Sabeena S. Role of noncoding RNAs with emphasis on long noncoding RNAs as cervical cancer biomarkers. J Med Virol 2023; 95:e28525. [PMID: 36702772 DOI: 10.1002/jmv.28525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/28/2022] [Accepted: 01/20/2023] [Indexed: 01/28/2023]
Abstract
Cervical cancer is a significant public health problem in developing countries, as most cases present at an advanced stage. This review aimed to analyze the role of noncoding RNAs as diagnostic and prognostic biomarkers in cervical cancers. Published studies on specific microRNA signatures in body fluids and cervical cancer tissues are highly heterogeneous, and there are no validated assays. The precision of the various immune-associated long noncoding (lncRNA) signatures should be assessed in clinical samples. Even though lncRNAs are tissue and cancer-specific, safe and appropriate methods for delivery to tumor tissues, toxicities and side effects are to be explored. Few studies have evaluated deregulated lncRNA expression levels with clinicopathological factors in a limited number of clinical samples. Prospective studies assessing the diagnostic and prognostic roles of circulating lncRNAs and P-Element-induced wimpy testis interacting PIWI RNAs (Piwil RNAs) in cervical cancer cases are essential. For the clinical application of lnc-RNA-based biomarkers, comprehensive research is needed as the impact of noncoding transcripts on molecular pathways is complex. The standardization and validation of deregulated ncRNAs in noninvasive samples of cervical cancer cases are needed.
Collapse
|
11
|
Targeted delivery strategy: A beneficial partner for emerging senotherapy. Biomed Pharmacother 2022; 155:113737. [PMID: 36156369 DOI: 10.1016/j.biopha.2022.113737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 01/10/2023] Open
Abstract
Numerous cutting-edge studies have confirmed that the slow accumulation of cell cycle arrested and secretory cells, called senescent cells (SCs), in tissues is an important negative factor, or even the culprit, in age- associated diseases such as non-alcoholic fatty liver, Alzheimer's disease, type 2 diabetes, atherosclerosis, and malignant tumors. With further understanding of cellular senescence, SCs are important effective targets for the treatment of senescence-related diseases, called the Senotherapy. However, existing therapies, including Senolytics (which lyse SCs) and Senostatic (which regulate senescence-associated secretory phenotype), do not have the properties to target SCs, and side effects due to non-specific distribution are one of the hindrances to clinical use of Senotherapy. In the past few decades, targeted delivery has attracted much attention and been developed as a recognized diagnostic and therapeutic novel tool, due to the advantages of visualization of targets, more accurate drug/gene delivery, and ultimately "reduced toxicity and enhanced efficacy". Despite considerable advances in achieving targeted delivery, it has not yet been widely used in Senotherapy. In this review, we clarify the challenge for Senotherapy, then discuss how different targeted strategies contribute to imaging or therapy for SCs in terms of different biomarkers of SCs. Finally, the emerging nano-Senotherapy is prospected.
Collapse
|
12
|
Perspectives on using bacteriophages in biogerontology research and interventions. Chem Biol Interact 2022; 366:110098. [PMID: 35995258 DOI: 10.1016/j.cbi.2022.110098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/25/2022] [Accepted: 08/07/2022] [Indexed: 11/23/2022]
Abstract
With the development of materials engineering, gerontology-related research on new tools for diagnostic and therapeutic applications, including precision and personalised medicine, has expanded significantly. Using nanotechnology, drugs can be precisely delivered to organs, tissues, cells, and cell organelles, thereby enhancing their therapeutic effects. Here, we discuss the possible use of bacteriophages as nanocarriers that can improve the safety, efficiency, and sensitivity of conventional medical therapies. Phages are a new class of targeted-delivery vectors, which can carry high concentrations of cargo and protect other nontargeted cells from the senescent cell killing effects of senolytics. Bacteriophages can also be subjected to chemical and/or genetic modifications that would acquire novel properties and improve their ability to detect senescent cells and deliver senolytics. Phage research in experimental biogerontology will also develop strategies to efficiently deliver senolytics, target senescent cells, activate extrinsic apoptosis pathways in senescent cells, trigger immune cells to recognise senescent cells, induce autophagy, promote cell and tissue regeneration, inhibit senescence-associated secretory phenotype (SASP) by senomorphic activity, stimulate the properties of mild stress-inducing hormetic agents and hormetins, and modulate the gut microbiome.
Collapse
|
13
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Baniahmad A, Branicki W, Taheri M, Eghbali A. Emerging Role of Non-Coding RNAs in Senescence. Front Cell Dev Biol 2022; 10:869011. [PMID: 35865636 PMCID: PMC9294638 DOI: 10.3389/fcell.2022.869011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Senescence is defined as a gradual weakening of functional features of a living organism. Cellular senescence is a process that is principally aimed to remove undesirable cells by prompting tissue remodeling. This process is also regarded as a defense mechanism induced by cellular damage. In the course of oncogenesis, senescence can limit tumor progression. However, senescence participates in the pathoetiology of several disorders such as fibrotic disorders, vascular disorders, diabetes, renal disorders and sarcopenia. Recent studies have revealed contribution of different classes of non-coding RNAs in the cellular senescence. Long non-coding RNAs, microRNAs and circular RNAs are three classes of these transcripts whose contributions in this process have been more investigated. In the current review, we summarize the available literature on the impact of these transcripts in the cellular senescence.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospitals, Jena, Germany
- *Correspondence: Aria Baniahmad, ; Mohammad Taheri, ; Ahmad Eghbali,
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospitals, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Aria Baniahmad, ; Mohammad Taheri, ; Ahmad Eghbali,
| | - Ahmad Eghbali
- Anesthesiology Research Center, Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Aria Baniahmad, ; Mohammad Taheri, ; Ahmad Eghbali,
| |
Collapse
|
14
|
Shan DD, Zheng QX, Wang J, Chen Z. Small nucleolar RNA host gene 3 functions as a novel biomarker in liver cancer and other tumour progression. World J Gastroenterol 2022; 28:1641-1655. [PMID: 35581965 PMCID: PMC9048787 DOI: 10.3748/wjg.v28.i16.1641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/09/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer has become the most life-threatening disease in the world. Mutations in and aberrant expression of genes encoding proteins and mutations in noncoding RNAs, especially long noncoding RNAs (lncRNAs), have significant effects in human cancers. LncRNAs have no protein-coding ability but function extensively in numerous physiological and pathological processes. Small nucleolar RNA host gene 3 (SNHG3) is a novel lncRNA and has been reported to be differentially expressed in various tumors, such as liver cancer, gastric cancer, and glioma. However, the interaction mechanisms for the regulation between SNHG3 and tumor progression are poorly understood. In this review, we summarize the results of SNHG3 studies in humans, animal models, and cells to underline the expression and role of SNHG3 in cancer. SNHG3 expression is upregulated in most tumors and is detrimental to patient prognosis. SNHG3 expression in lung adenocarcinoma remains controversial. Concurrently, SNHG3 affects oncogenes and tumor suppressor genes through various mechanisms, including competing endogenous RNA effects. A deeper understanding of the contribution of SNHG3 in clinical applications and tumor development may provide a new target for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Dan-Dan Shan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Qiu-Xian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
15
|
Yang Y, Liu S, He C, Lv T, Zeng L, Zhang F, Chen H, Zhao RC. LncRNA LYPLAL1-AS1 rejuvenates human adipose-derived mesenchymal stem cell senescence via transcriptional MIRLET7B inactivation. Cell Biosci 2022; 12:45. [PMID: 35449031 PMCID: PMC9022335 DOI: 10.1186/s13578-022-00782-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/31/2022] [Indexed: 12/12/2022] Open
Abstract
Background Mesenchymal stem cell (MSC) senescence is a phenotype of aging. Long noncoding RNAs (lncRNAs) are emerging as potential key regulators of senescence. However, the role of lncRNAs in MSC senescence remains largely unknown. Results We performed transcriptome analysis in senescent human adipose-derived MSCs (hADSCs) and identified that the lncRNA LYPLAL1 antisense RNA1 (LYPLAL1-AS1) was significantly downregulated in senescent hADSCs. LYPLAL1-AS1 expression in peripheral blood was lower in middle-aged healthy donors than in young adult donors, and correlated negatively with age. Knockdown of LYPLAL1-AS1 accelerated hADSC senescence, while LYPLAL1-AS1 overexpression attenuated it. Chromatin isolation by RNA purification (ChIRP) sequencing indicated that LYPLAL1-AS1 bound to the MIRLET7B promoter region and suppressed its transcription activity, as demonstrated by dual-luciferase assay. miR-let-7b, the transcript of MIRLET7B, was upregulated during hADSC senescence and was regulated by LYPLAL1-AS1. Furthermore, miR-let-7b mimics promoted hADSC senescence, while the inhibitors repressed it. Finally, LYPLAL1-AS1 overexpression reversed miR-let-7b-induced hADSC senescence. Conclusions Our data demonstrate that LYPLAL1-AS1 rejuvenates hADSCs through the transcriptional inhibition of MIRLET7B. Our work provides new insights into the mechanism of MSC senescence and indicates lncRNA LYPLAL1-AS1 and miR-let-7b as potential therapeutic targets in aging. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00782-x.
Collapse
Affiliation(s)
- Yanlei Yang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, The Ministry of Education Key Laboratory, Beijing, China.,Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, China
| | - Suying Liu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, The Ministry of Education Key Laboratory, Beijing, China
| | - Chengmei He
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, The Ministry of Education Key Laboratory, Beijing, China
| | - Taibiao Lv
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, The Ministry of Education Key Laboratory, Beijing, China
| | - Liuting Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, The Ministry of Education Key Laboratory, Beijing, China
| | - Fengchun Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, The Ministry of Education Key Laboratory, Beijing, China.
| | - Hua Chen
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, The Ministry of Education Key Laboratory, Beijing, China.
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, China. .,School of Life Sciences, Shanghai University, Shanghai, China.
| |
Collapse
|
16
|
Gao M, Liu S, Qi Y, Guo X, Shang X. ImReLnc: Identifying Immune-Related LncRNA Characteristics in Human Cancers Based on Heuristic Correlation Optimization. Front Genet 2022; 12:792541. [PMID: 35082835 PMCID: PMC8784420 DOI: 10.3389/fgene.2021.792541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play critical roles in cancer through gene expression and immune regulation. Identifying immune-related lncRNA (irlncRNA) characteristics would contribute to dissecting the mechanism of cancer pathogenesis. Some computational methods have been proposed to identify irlncRNA characteristics in human cancers, but most of them are aimed at identifying irlncRNA characteristics in specific cancer. Here, we proposed a new method, ImReLnc, to recognize irlncRNA characteristics for 33 human cancers and predict the pathogenicity levels of these irlncRNAs across cancer types. We first calculated the heuristic correlation coefficient between lncRNAs and mRNAs for immune-related enrichment analysis. Especially, we analyzed the relationship between lncRNAs and 17 immune-related pathways in 33 cancers to recognize the irlncRNA characteristics of each cancer. Then, we calculated the Pscore of the irlncRNA characteristics to evaluate their pathogenicity levels. The results showed that highly pathogenic irlncRNAs appeared in a higher proportion of known disease databases and had a significant prognostic effect on cancer. In addition, it was found that the expression of irlncRNAs in immune cells was higher than that of non-irlncRNAs, and the proportion of irlncRNAs related to the levels of immune infiltration was much higher than that of non-irlncRNAs. Overall, ImReLnc accurately identified the irlncRNA characteristics in multiple cancers based on the heuristic correlation coefficient. More importantly, ImReLnc effectively evaluated the pathogenicity levels of irlncRNAs across cancer types. ImReLnc is freely available at https://github.com/meihonggao/ImReLnc.
Collapse
Affiliation(s)
- Meihong Gao
- School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Shuhui Liu
- School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Yang Qi
- School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Xinpeng Guo
- School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Xuequn Shang
- School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
17
|
WITHDRAWN: LncRNA NEAT1/miR-211-3p/BMF axis is involved in regulating the senescence of HASMCs induced by ionizing radiation. Tissue Cell 2021. [DOI: 10.1016/j.tice.2021.101673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Yin Y, Chen H, Wang Y, Zhang L, Wang X. Roles of extracellular vesicles in the aging microenvironment and age-related diseases. J Extracell Vesicles 2021; 10:e12154. [PMID: 34609061 PMCID: PMC8491204 DOI: 10.1002/jev2.12154] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/12/2021] [Accepted: 09/21/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a persistently hypoproliferative state with diverse stressors in a specific aging microenvironment. Senescent cells have a double-edged sword effect: they can be physiologically beneficial for tissue repair, organ growth, and body homeostasis, and they can be pathologically harmful in age-related diseases. Among the hallmarks of senescence, the SASP, especially SASP-related extracellular vesicle (EV) signalling, plays the leading role in aging transmission via paracrine and endocrine mechanisms. EVs are successful in intercellular and interorgan communication in the aging microenvironment and age-related diseases. They have detrimental effects on downstream targets at the levels of immunity, inflammation, gene expression, and metabolism. Furthermore, EVs obtained from different donors are also promising materials and tools for antiaging treatments and are used for regeneration and rejuvenation in cell-free systems. Here, we describe the characteristics of cellular senescence and the aging microenvironment, concentrating on the production and function of EVs in age-related diseases, and provide new ideas for antiaging therapy with EVs.
Collapse
Affiliation(s)
- Yujia Yin
- Department of Obstetrics and GynecologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Huihui Chen
- Department of Obstetrics and GynecologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yizhi Wang
- Department of Obstetrics and GynecologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ludi Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological SciencesChinese Academy of Sciences, University of Chinese Academy of SciencesShanghaiChina
| | - Xipeng Wang
- Department of Obstetrics and GynecologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
19
|
Shen T, Lei T, Chen L, Zhu BB, Xu BL, Zhang CP, Wang HP. Gardenoside Hinders Caspase-1-Mediated Hepatocyte Pyroptosis Through the CTCF/DPP4 Signaling Pathway. Front Physiol 2021; 12:669202. [PMID: 34566670 PMCID: PMC8455910 DOI: 10.3389/fphys.2021.669202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/13/2021] [Indexed: 12/24/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD)is accompanied by typical inflammatory damage and cell death. As a pro-inflammatory form of cell death, pyroptosis participates in important pathological processes involved in NAFLD. Regulatory roles of both CCCTC-binding factor (CTCF) and dipeptidyl peptidase-4 (DPP4) have been reported in NAFLD, but it is still unclear whether the mechanism of action of gardenoside, a potential therapeutic for NAFLD, can be driven via these proteins. In this study, the direct interaction between CTCF and DPP4 was first confirmed by a dual-luciferase reporter assay system. Then, a cell model of NAFLD was established by induction with palmitic acid (PA) and lipopolysaccharide (LPS). A mouse NAFLD model was established, and the effect of gardenoside on both the cell and mouse models of NAFLD was also investigated. Increased lipid accumulation, NLRP3 inflammasome activation, and hepatocyte pyroptosis were recorded in NAFLD in vitro and in vivo. Gardenoside treatment effectively reduced the lipid accumulation, increased cell viability, reduced reactive oxygen species (ROS) generation, and attenuated pyroptosis and apoptosis in NAFLD in the in vitro and in vivo models. Alterations in these biological processes were evidenced by the decreased expression levels of several pro-pyroptotic markers including the NLR family, pyrin domain-containing 3 (NLRP3), apoptosis-related speckle-like protein (ASC), caspase-1 p20, Gasdermin D N-terminal domain (GSDMD-N), and IL-1β, along with simultaneously decreased CTCF and DPP4 levels. Importantly, CTCF silencing or DPP4 silencing exhibited effects similar to gardenoside treatment, while CTCF overexpression counteracted this trend, which indicated that CTCF might be a target responsible for gardenoside-induced alleviation of NAFLD, such therapeutic effects might be achieved through controlling the expression of the direct target of CTCF (DPP4) and several downstream molecules. In general, the current study provides a promising strategy for NAFLD treatment.
Collapse
Affiliation(s)
- Tian Shen
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Lei
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin Chen
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bing-Bing Zhu
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bi-Lin Xu
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cui-Ping Zhang
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong-Ping Wang
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
20
|
The Emergence of Senescent Surface Biomarkers as Senotherapeutic Targets. Cells 2021; 10:cells10071740. [PMID: 34359910 PMCID: PMC8305747 DOI: 10.3390/cells10071740] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 02/08/2023] Open
Abstract
Senescence is linked to a wide range of age-associated diseases and physiological declines. Thus, senotherapeutics are emerging to suppress the detrimental effects of senescence either by senomorphics or senolytics. Senomorphics suppress the traits associated with senescence phenotypes, while senolytics aim to clear senescent cells by suppressing their survival and enhancing the apoptotic pathways. The main goal of these approaches is to suppress the proinflammatory senescence-associated secretory phenotype (SASP) and to promote the immune recognition and elimination of senescent cells. One increasingly attractive approach is the targeting of molecules or proteins specifically present on the surface of senescent cells. These proteins may play roles in the maintenance and survival of senescent cells and hence can be targeted for senolysis. In this review, we summarize the recent knowledge regarding senolysis with a focus on novel surface biomarkers of cellular senescence and discuss their emergence as senotherapeutic targets.
Collapse
|
21
|
The long non-coding RNA MIR31HG regulates the senescence associated secretory phenotype. Nat Commun 2021; 12:2459. [PMID: 33911076 PMCID: PMC8080841 DOI: 10.1038/s41467-021-22746-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 03/29/2021] [Indexed: 12/17/2022] Open
Abstract
Oncogene-induced senescence provides a barrier against malignant transformation. However, it can also promote cancer through the secretion of a plethora of factors released by senescent cells, called the senescence associated secretory phenotype (SASP). We have previously shown that in proliferating cells, nuclear lncRNA MIR31HG inhibits p16/CDKN2A expression through interaction with polycomb repressor complexes and that during BRAF-induced senescence, MIR31HG is overexpressed and translocates to the cytoplasm. Here, we show that MIR31HG regulates the expression and secretion of a subset of SASP components during BRAF-induced senescence. The SASP secreted from senescent cells depleted for MIR31HG fails to induce paracrine invasion without affecting the growth inhibitory effect. Mechanistically, MIR31HG interacts with YBX1 facilitating its phosphorylation at serine 102 (p-YBX1S102) by the kinase RSK. p-YBX1S102 induces IL1A translation which activates the transcription of the other SASP mRNAs. Our results suggest a dual role for MIR31HG in senescence depending on its localization and points to the lncRNA as a potential therapeutic target in the treatment of senescence-related pathologies. Senescence-associated secretory phenotype (SASP) involves secretion of factors such as pro-inflammatory cytokines. Here the authors show that MIR31HG regulates the expression and secretion of a subset of SASP components that induce paracrine invasion, through interaction with YBX1 and induction of IL1A translation.
Collapse
|
22
|
Dias TR, Santos JMO, Gil da Costa RM, Medeiros R. Long non-coding RNAs regulate the hallmarks of cancer in HPV-induced malignancies. Crit Rev Oncol Hematol 2021; 161:103310. [PMID: 33781867 DOI: 10.1016/j.critrevonc.2021.103310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
High-risk human papillomavirus (HPV) is the most frequent sexually transmitted agent worldwide and is responsible for approximately 5% of human cancers. Identifying novel biomarkers and therapeutic targets for these malignancies requires a deeper understanding of the mechanisms involved in the progression of HPV-induced cancers. Long non-coding RNAs (lncRNAs) are crucial in the regulation of biological processes. Importantly, these molecules are key players in the progression of multiple malignancies and are able to regulate the development of the different hallmarks of cancer. This review highlights the action of lncRNAs in the regulation of cellular processes leading to the typical hallmarks of cancer. The regulation of lncRNAs by HPV oncogenes, their targets and also their mechanisms of action are also discussed, in the context of HPV-induced malignancies. Overall, accumulating data indicates that lncRNAs may have a significant potential to become useful tools for clinical practice as disease biomarkers or therapy targets.
Collapse
Affiliation(s)
- Tânia R Dias
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal; Research Department of the Portuguese League Against Cancer-Regional Nucleus of the North (Liga Portuguesa Contra o Cancro-Núcleo Regional do Norte), 4200-177, Porto, Portugal.
| | - Joana M O Santos
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal.
| | - Rui M Gil da Costa
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5001-911 Vila Real, Portugal; LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465, Porto, Portugal; Postgraduate Programme in Adult Health (PPGSAD), Tumour and DNA Biobank, Federal University of Maranhão (UFMA), 65080-805, São Luís, Brazil.
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal; Research Department of the Portuguese League Against Cancer-Regional Nucleus of the North (Liga Portuguesa Contra o Cancro-Núcleo Regional do Norte), 4200-177, Porto, Portugal; Virology Service, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072, Porto, Portugal; CEBIMED, Faculty of Health Sciences of the Fernando Pessoa University, 4249-004, Porto, Portugal.
| |
Collapse
|
23
|
Studies on the Regulatory Roles and Related Mechanisms of lncRNAs in the Nervous System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6657944. [PMID: 33791072 PMCID: PMC7984887 DOI: 10.1155/2021/6657944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/19/2020] [Accepted: 02/15/2021] [Indexed: 11/25/2022]
Abstract
Long noncoding RNAs (lncRNAs) have attracted extensive attention due to their regulatory role in various cellular processes. Emerging studies have indicated that lncRNAs are expressed to varying degrees after the growth and development of the nervous system as well as injury and degeneration, thus affecting various physiological processes of the nervous system. In this review, we have compiled various reported lncRNAs related to the growth and development of central and peripheral nerves and pathophysiology (including advanced nerve centers, spinal cord, and peripheral nervous system) and explained how these lncRNAs play regulatory roles through their interactions with target-coding genes. We believe that a full understanding of the regulatory function of lncRNAs in the nervous system will contribute to understand the molecular mechanism of changes after nerve injury and will contribute to discover new diagnostic markers and therapeutic targets for nerve injury diseases.
Collapse
|
24
|
Wang S, Ke S, Wu Y, Zhang D, Liu B, He YH, Liu W, Mu H, Song X. Functional Network of the Long Non-coding RNA Growth Arrest-Specific Transcript 5 and Its Interacting Proteins in Senescence. Front Genet 2021; 12:615340. [PMID: 33777096 PMCID: PMC7987947 DOI: 10.3389/fgene.2021.615340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/01/2021] [Indexed: 11/24/2022] Open
Abstract
Increasing studies show that long non-coding RNAs (lncRNAs) play essential roles in various fundamental biological processes. Long non-coding RNA growth arrest-specific transcript 5 (GAS5) showed differential expressions between young and old mouse brains in our previous RNA-Seq data, suggesting its potential role in senescence and brain aging. Examination using quantitative reverse transcription-polymerase chain reaction revealed that GAS5 had a significantly higher expression level in the old mouse brain hippocampus region than the young one. Cellular fractionation using hippocampus-derived HT22 cell line confirmed its nucleoplasm and cytoplasm subcellular localization. Overexpression or knockdown of GAS5 in HT22 cell line revealed that GAS5 inhibits cell cycle progression and promotes cell apoptosis. RNA-Seq analysis of GAS5-knockdown HT22 cells identified differentially expressed genes related to cell proliferation (e.g., DNA replication and nucleosome assembly biological processes). RNA pull-down assay using mouse brain hippocampus tissues showed that potential GAS5 interacting proteins could be enriched into several Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and some of them are involved in senescence-associated diseases such as Parkinson’s and Alzheimer’s diseases. These results contribute to understand better the underlying functional network of GAS5 and its interacting proteins in senescence at brain tissue and brain-derived cell line levels. Our study may also provide a reference for developing diagnostic and clinic biomarkers of GAS5 in senescence and brain aging.
Collapse
Affiliation(s)
- Siqi Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Shengwei Ke
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yueming Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Duo Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, China
| | - Baowei Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yao-Hui He
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Wen Liu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Huawei Mu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xiaoyuan Song
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
25
|
Wang J, Rojas P, Mao J, Mustè Sadurnì M, Garnier O, Xiao S, Higgs MR, Garcia P, Saponaro M. Persistence of RNA transcription during DNA replication delays duplication of transcription start sites until G2/M. Cell Rep 2021; 34:108759. [PMID: 33596418 PMCID: PMC7900609 DOI: 10.1016/j.celrep.2021.108759] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 11/09/2020] [Accepted: 01/26/2021] [Indexed: 12/22/2022] Open
Abstract
As transcription and replication use DNA as substrate, conflicts between transcription and replication can occur, leading to genome instability with direct consequences for human health. To determine how the two processes are coordinated throughout S phase, we characterize both processes together at high resolution. We find that transcription occurs during DNA replication, with transcription start sites (TSSs) not fully replicated along with surrounding regions and remaining under-replicated until late in the cell cycle. TSSs undergo completion of DNA replication specifically when cells enter mitosis, when RNA polymerase II is removed. Intriguingly, G2/M DNA synthesis occurs at high frequency in unperturbed cell culture, but it is not associated with increased DNA damage and is fundamentally separated from mitotic DNA synthesis. TSSs duplicated in G2/M are characterized by a series of specific features, including high levels of antisense transcription, making them difficult to duplicate during S phase.
Collapse
Affiliation(s)
- Jianming Wang
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Patricia Rojas
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Jingwen Mao
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Martina Mustè Sadurnì
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Olivia Garnier
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Songshu Xiao
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Martin R Higgs
- Lysine Methylation and DNA Damage Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Paloma Garcia
- Stem Cells and Genome Stability Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Marco Saponaro
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
26
|
Liang W, Wu J, Qiu X. LINC01116 facilitates colorectal cancer cell proliferation and angiogenesis through targeting EZH2-regulated TPM1. J Transl Med 2021; 19:45. [PMID: 33499872 PMCID: PMC7836198 DOI: 10.1186/s12967-021-02707-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/15/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a common malignant tumor globally. Meanwhile, LINC01116 has been proposed as risk factor for various tumors, including CRC. But the regulation of LINC01116 in CRC required more validated data. This study aimed to elucidate the potential function of LINC01116 in regulating cell proliferation and angiogenesis of CRC. METHODS LINC01116 expression in 80 pairs of CRC tumor and adjacent non-tumor tissues was determined by qRT-PCR. After transfection of pcDNA3.1-LINC01116, sh-LINC01116, sh-TPM1, pcDNA3.1-EZH2 or sh-EZH2 in SW480 and HCT116 cells, the levels of LINC01116, TPM1 and EZH2 were measured by qRT-PCR or Western blot. The cell biological function of CRC cell lines was determined by CCK-8, colony formation assays, tube formation and scratch assays. RNA pull-down and RIP assays were applied to detect the binding of LINC01116 with EZH2 and H3K27me3. Binding of EZH2 to the TPM1 promoter was assessed by ChIP assay. Finally, xenograft models in nude mice were established to validate the results of in vitro experiments. RESULTS LINC01116 was overexpressed in CRC tissues and high expression of LINC01116 was negatively correlated with postoperative survival. In vitro study showed LINC01116 expression could significantly enhance CRC progression, including increasing cell proliferation, migration and angiogenesis. Besides, investigations into the mechanism disclosed that LINC01116 could regulate EZH2 to inactivate TPM1 promoter, thus promoting CRC cell proliferation and angiogenesis. Moreover, consistent results of in vivo experiments were conformed in vitro experiments. CONCLUSION LINC01116 promotes the proliferation and angiogenesis of CRC cells by recruiting EZH2 to potentiate methylation in the TPM1 promoter region to inhibit the transcription of TPM1.
Collapse
Affiliation(s)
- Weijie Liang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, P.R. China
| | - Jie Wu
- Department of Ultrasound Intervention Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, P.R. China
| | - Xinguang Qiu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Erqi District, Zhengzhou, Henan, 450000, P.R. China.
| |
Collapse
|
27
|
Roupakia E, Markopoulos GS, Kolettas E. Genes and pathways involved in senescence bypass identified by functional genetic screens. Mech Ageing Dev 2021; 194:111432. [PMID: 33422562 DOI: 10.1016/j.mad.2021.111432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 12/30/2020] [Accepted: 01/01/2021] [Indexed: 10/22/2022]
Abstract
Cellular senescence is a state of stable and irreversible cell cycle arrest with active metabolism, that normal cells undergo after a finite number of divisions (Hayflick limit). Senescence can be triggered by intrinsic and/or extrinsic stimuli including telomere shortening at the end of a cell's lifespan (telomere-initiated senescence) and in response to oxidative, genotoxic or oncogenic stresses (stress-induced premature senescence). Several effector mechanisms have been proposed to explain senescence programmes in diploid cells, including the induction of DNA damage responses, a senescence-associated secretory phenotype and epigenetic changes. Senescent cells display senescence-associated-β-galactosidase activity and undergo chromatin remodeling resulting in heterochromatinisation. Senescence is established by the pRb and p53 tumour suppressor networks. Senescence has been detected in in vitro cellular settings and in premalignant, but not malignant lesions in mice and humans expressing mutant oncogenes. Despite oncogene-induced senescence, which is believed to be a cancer initiating barrier and other tumour suppressive mechanisms, benign cancers may still develop into malignancies by bypassing senescence. Here, we summarise the functional genetic screens that have identified genes, uncovered pathways and characterised mechanisms involved in senescence evasion. These include cell cycle regulators and tumour suppressor pathways, DNA damage response pathways, epigenetic regulators, SASP components and noncoding RNAs.
Collapse
Affiliation(s)
- Eugenia Roupakia
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, University of Ioannina, Ioannina, 45100, Greece; Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Ioannina, 45110, Greece
| | - Georgios S Markopoulos
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, University of Ioannina, Ioannina, 45100, Greece; Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Ioannina, 45110, Greece
| | - Evangelos Kolettas
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, University of Ioannina, Ioannina, 45100, Greece; Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Ioannina, 45110, Greece.
| |
Collapse
|
28
|
Functional Screening Techniques to Identify Long Non-Coding RNAs as Therapeutic Targets in Cancer. Cancers (Basel) 2020; 12:cancers12123695. [PMID: 33317042 PMCID: PMC7763270 DOI: 10.3390/cancers12123695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Long non-coding RNAs (lncRNAs) are a recently discovered class of molecules in the cell, with potential to be utilized as therapeutic targets in cancer. A number of lncRNAs have been described to play important roles in tumor progression and drive molecular processes involved in cell proliferation, apoptosis or invasion. However, the vast majority of lncRNAs have not been studied in the context of cancer thus far. With the advent of CRISPR/Cas genome editing, high-throughput functional screening approaches to identify lncRNAs that impact cancer growth are becoming more accessible. Here, we review currently available methods to study hundreds to thousands of lncRNAs in parallel to elucidate their role in tumorigenesis and cancer progression. Abstract Recent technological advancements such as CRISPR/Cas-based systems enable multiplexed, high-throughput screening for new therapeutic targets in cancer. While numerous functional screens have been performed on protein-coding genes to date, long non-coding RNAs (lncRNAs) represent an emerging class of potential oncogenes and tumor suppressors, with only a handful of large-scale screens performed thus far. Here, we review in detail currently available screening approaches to identify new lncRNA drivers of tumorigenesis and tumor progression. We discuss the various approaches of genomic and transcriptional targeting using CRISPR/Cas9, as well as methods to post-transcriptionally target lncRNAs via RNA interference (RNAi), antisense oligonucleotides (ASOs) and CRISPR/Cas13. We discuss potential advantages, caveats and future applications of each method to provide an overview and guide on investigating lncRNAs as new therapeutic targets in cancer.
Collapse
|
29
|
Olivero CE, Dimitrova N. Identification and characterization of functional long noncoding RNAs in cancer. FASEB J 2020; 34:15630-15646. [PMID: 33058262 PMCID: PMC7756267 DOI: 10.1096/fj.202001951r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Long noncoding RNAs (lncRNAs) have emerged as key regulators in a variety of cellular processes that influence disease states. In particular, many lncRNAs are genetically or epigenetically deregulated in cancer. However, whether lncRNA alterations are passengers acquired during cancer progression or can act as tumorigenic drivers is a topic of ongoing investigation. In this review, we examine the current methodologies underlying the identification of cancer-associated lncRNAs and highlight important considerations for evaluating their biological significance as cancer drivers.
Collapse
Affiliation(s)
- Christiane E. Olivero
- Department of Molecular, Cellular and Developmental BiologyYale UniversityNew HavenCTUSA
| | - Nadya Dimitrova
- Department of Molecular, Cellular and Developmental BiologyYale UniversityNew HavenCTUSA
| |
Collapse
|
30
|
Affiliation(s)
- Lucy Ginn
- Transcriptional Networks in Lung Cancer Group Cancer Research UK Manchester Institute University of Manchester Manchester UK
- Cancer Research UK Lung Cancer Centre of Excellence At Manchester and University College London England UK
| | - Manuela La Montagna
- Transcriptional Networks in Lung Cancer Group Cancer Research UK Manchester Institute University of Manchester Manchester UK
- Cancer Research UK Lung Cancer Centre of Excellence At Manchester and University College London England UK
| | - Qinghua Wu
- College of Life Science Yangtze University Jingzhou Hubei China
- Department of Chemistry Faculty of Science University of Hradec Kralove Hradec Kralove East Bohemia Czech Republic
| | - Lei Shi
- Transcriptional Networks in Lung Cancer Group Cancer Research UK Manchester Institute University of Manchester Manchester UK
- Cancer Research UK Lung Cancer Centre of Excellence At Manchester and University College London England UK
| |
Collapse
|
31
|
Tao Y, Yue P, Miao Y, Gao S, Wang B, Leng SX, Meng X, Zhang H. The lncRNA MEG3/miR-16-5p/VGLL4 regulatory axis is involved in etoposide-induced senescence of tumor cells. J Gene Med 2020; 23:e3291. [PMID: 33141998 DOI: 10.1002/jgm.3291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/09/2020] [Accepted: 10/23/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The senescence of tumor cells is an important tumor suppressor mechanism. The present study aimed to investigate the role of long non-coding RNA (lncRNA) MEG3 (maternally expressed gene 3) in the senescence process of tumor cells and its potential molecular mechanism by competitively binding with microRNA miR-16-5p to regulate the expression of VGLL4 (encoding vestigial like family member 4). METHODS We used etoposide to construct senescence models of tumor cells. The degree of cellular senescence was detected by senescence-associated β-galactosidase, cell cycle and senescence-associated secretory phenotype. The expression of lncRNA MEG3, miR-16-5p and VGLL4 in senescent or non-senescent cells was evaluated using a quantitative real-time reverse transcriptase-PCR (qRT-PCR) or western blotting. Dual luciferase reporter assays were used to detect the binding of miR-16-5p to lncRNA MEG3 and VGLL4. The mRNA and protein expression levels of senescence-related markers (p53, p21 and p16) were detected using qRT-PCR or western blotting. RESULTS Compared to the control group, the expression of lncRNA MEG3 and VGLL4 was significantly up-regulated in senescent cells. Knockdown of lncRNA MEG3 and VGLL4 reduced the degree of senescence and the expression of p21 and p16. lncRNA MEG3 interfered with the expression of miR-16-5p in senescent A549 and MCF-7 cells. The expression of VGLL4 was regulated by miR-16-5p in senescent A549 and MCF-7 cells. lncRNA MEG3 participated in the senescent progress of tumor cells induced by etoposide via the miR-16-5p/VGLL4 axis. CONCLUSIONS The present study has confirmed the regulatory role of the lncRNA MEG3/miR-16-5p/VGLL4 axis in the low-dose etoposide-induced tumor cell senescence model, which has potential clinical application with respect to treating malignant tumors.
Collapse
Affiliation(s)
- Ye Tao
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Peipei Yue
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning Province, China
| | - Yongnan Miao
- Department of Urology, The Shengjing Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Shuting Gao
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning Province, China
| | - Biao Wang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning Province, China
| | - Sean X Leng
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xin Meng
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning Province, China
| | - Haiyan Zhang
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
32
|
Song P, Zhao Q, Zou MH. Targeting senescent cells to attenuate cardiovascular disease progression. Ageing Res Rev 2020; 60:101072. [PMID: 32298812 DOI: 10.1016/j.arr.2020.101072] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/19/2022]
Abstract
Cardiovascular disease (CVD) is the most common disease to increase as life expectancy increases. Most high-profile pharmacological treatments for age-related CVD have led to inefficacious results, implying that novel approaches to treating these pathologies are needed. Emerging data have demonstrated that senescent cardiovascular cells, which are characterized by irreversible cell cycle arrest and a distinct senescence-associated secretory phenotype, accumulate in aged or diseased cardiovascular systems, suggesting that they may impair cardiovascular function. This review discusses the evidence implicating senescent cells in cardiovascular ageing, the onset and progression of CVD, and the molecular mechanisms underlying cardiovascular cell senescence. We also review eradication of senescent cardiovascular cells by small-molecule-drug-mediated apoptosis and immune cell-mediated efferocytosis and toxicity as promising and precisely targeted therapeutics for CVD prevention and treatment.
Collapse
|
33
|
Dipeptidyl peptidase-4 inhibition improves endothelial senescence by activating AMPK/SIRT1/Nrf2 signaling pathway. Biochem Pharmacol 2020; 177:113951. [PMID: 32251672 DOI: 10.1016/j.bcp.2020.113951] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023]
Abstract
Dipeptidyl peptidase-4 (DPP4) is elevated in numerous cardiovascular pathological processes and DPP4 inhibition is associated with reduced inflammation and oxidative stress. The aim of this study was to examine the role of DPP4 in endothelial senescence. Sprague-Dawley rats (24 months) were orally administrated saxagliptin (10 mg·kg-1·d-1), a DPP4 inhibitor, for 12 weeks in drinking water. Body weight, heart rate, blood glucose, and blood pressure were measured and vascular histological experiments were performed. In vitro studies were performed using H2O2-induced senescent human umbilical vein endothelial cells. Both in vivo and in vitro studies confirmed the elevation of DPP4 in senescent vascular endothelium, and inhibition or knockdown of DPP4 ameliorated endothelial senescence. In addition, DPP4 inhibition or silencing reduced endothelial oxidative stress levels in aging vasculature and senescent endothelial cells. Moreover, DPP4 inhibition or knockdown normalized the expression and phosphorylation of AMP-activated protein kinase-α (AMPKα) and sirtuin 1 (SIRT1) expression. Furthermore, the beneficial effects of DPP4 inhibition or knockdown on endothelial cell senescence were at least partly dependent on SIRT1 and Nrf2 activation. In conclusion, our study demonstrated that DPP4 inhibition or silencing ameliorated endothelial senescence both in vivo and in vitro by regulating AMPK/SIRT1/Nrf2. DPP4 may be a new therapeutic target to combat endothelial senescence.
Collapse
|
34
|
LncRNAs Regulatory Networks in Cellular Senescence. Int J Mol Sci 2019; 20:ijms20112615. [PMID: 31141943 PMCID: PMC6600251 DOI: 10.3390/ijms20112615] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/19/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are a class of transcripts longer than 200 nucleotides with no open reading frame. They play a key role in the regulation of cellular processes such as genome integrity, chromatin organization, gene expression, translation regulation, and signal transduction. Recent studies indicated that lncRNAs are not only dysregulated in different types of diseases but also function as direct effectors or mediators for many pathological symptoms. This review focuses on the current findings of the lncRNAs and their dysregulated signaling pathways in senescence. Different functional mechanisms of lncRNAs and their downstream signaling pathways are integrated to provide a bird’s-eye view of lncRNA networks in senescence. This review not only highlights the role of lncRNAs in cell fate decision but also discusses how several feedback loops are interconnected to execute persistent senescence response. Finally, the significance of lncRNAs in senescence-associated diseases and their therapeutic and diagnostic potentials are highlighted.
Collapse
|
35
|
Lujambio A, Banito A. Functional screening to identify senescence regulators in cancer. Curr Opin Genet Dev 2019; 54:17-24. [PMID: 30877988 DOI: 10.1016/j.gde.2019.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/01/2019] [Indexed: 12/12/2022]
Abstract
Cellular senescence is implicated in numerous biological processes, and can play pleiotropic, sometimes opposing, roles in cancer. Several triggers, cell types, contexts, and senescence-associated phenotypes introduce a multitude of possibilities when studying this process and its biological consequences. Recent studies continue to characterize cellular senescence at different levels, using a combination of functional screens, in silico analysis, omics characterizations and more targeted studies. However, a comprehensive analysis of its context-dependent effects and multiple phenotypes is required. Application of state-of-the-art and emerging technologies will increase our understanding of this complex process and better guide future strategies to harness senescence to our advantage, or to target it when detrimental.
Collapse
Affiliation(s)
- Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, USA; Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, USA; Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, USA
| | - Ana Banito
- Hopp Children's Cancer Center (KiTZ) and Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
36
|
Lorenzi L, Avila Cobos F, Decock A, Everaert C, Helsmoortel H, Lefever S, Verboom K, Volders PJ, Speleman F, Vandesompele J, Mestdagh P. Long noncoding RNA expression profiling in cancer: Challenges and opportunities. Genes Chromosomes Cancer 2019; 58:191-199. [PMID: 30461116 DOI: 10.1002/gcc.22709] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/06/2018] [Accepted: 11/18/2018] [Indexed: 12/11/2022] Open
Abstract
In recent years, technological advances in transcriptome profiling revealed that the repertoire of human RNA molecules is more diverse and extended than originally thought. This diversity and complexity mainly derive from a large ensemble of noncoding RNAs. Because of their key roles in cellular processes important for normal development and physiology, disruption of noncoding RNA expression is intrinsically linked to human disease, including cancer. Therefore, studying the noncoding portion of the transcriptome offers the prospect of identifying novel therapeutic and diagnostic targets. Although evidence of the relevance of noncoding RNAs in cancer is accumulating, we still face many challenges when it comes to accurately profiling their expression levels. Some of these challenges are inherent to the technologies employed, whereas others are associated with characteristics of the noncoding RNAs themselves. In this review, we discuss the challenges related to long noncoding RNA expression profiling, highlight how cancer long noncoding RNAs provide new opportunities for cancer diagnosis and treatment, and reflect on future developments.
Collapse
Affiliation(s)
- Lucía Lorenzi
- Center for Medical Genetics Ghent (CMGG), Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Francisco Avila Cobos
- Center for Medical Genetics Ghent (CMGG), Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Anneleen Decock
- Center for Medical Genetics Ghent (CMGG), Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Celine Everaert
- Center for Medical Genetics Ghent (CMGG), Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Hetty Helsmoortel
- Center for Medical Genetics Ghent (CMGG), Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Steve Lefever
- Center for Medical Genetics Ghent (CMGG), Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Karen Verboom
- Center for Medical Genetics Ghent (CMGG), Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Pieter-Jan Volders
- Center for Medical Genetics Ghent (CMGG), Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Frank Speleman
- Center for Medical Genetics Ghent (CMGG), Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Jo Vandesompele
- Center for Medical Genetics Ghent (CMGG), Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Pieter Mestdagh
- Center for Medical Genetics Ghent (CMGG), Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| |
Collapse
|
37
|
Zhou D, Wu F, Cui Y, Wei F, Meng Q, Lv Q. Long non-coding RNA-OIS1 inhibits HPV-positive, but not HPV-negative cervical squamous cell carcinoma by upregulating MTK-1. Oncol Lett 2019; 17:2923-2930. [PMID: 30854069 DOI: 10.3892/ol.2019.9891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/27/2018] [Indexed: 11/05/2022] Open
Abstract
Long non-coding RNA-oncogene-induced senescence 1 (lncRNA-OIS1) is a novel lncRNA that is involved in oncogene-induced senescence, while its functionality in cervical squamous cell carcinoma is unknown. In the present study, 68 human papillomavirus (HPV)-positive and 22 HPV-negative patients with cervical squamous cell carcinoma were recruited. Additionally, 40 healthy females were employed as healthy controls. Tumor tissues and adjacent healthy tissues were collected from all patients with cervical squamous cell carcinoma, and blood samples were obtained. Expression of OIS1 was detected by reverse transcription-quantitative polymerase chain reaction. Receiver operating characteristic curve analysis was used to evaluate the diagnostic value of OIS1 for cervical squamous cell carcinoma. HPV-positive and HPV-negative cervical squamous cell carcinoma and normal cervical cell lines were used, and the effects of OIS1 or mitogen-activated protein kinase kinase kinase 4, (MTK-1) expression vector transfection on the proliferation of cell lines and MTK-1 expression were detected by CCK-8 assay and western blotting, respectively. It was established that a reduction in OIS1 expression level in tumor tissues was apparent only in HPV-positive patients. Serum levels of OIS1 were lower in HPV-positive patients compared with that in HPV-negative patients and healthy controls, and no significant differences were observed between HPV-negative patients and healthy controls. Serum levels of OIS1 were significantly associated with tumor size, but not distant tumor metastasis. OIS1 expression level was lower in HPV-positive cancer cell lines compared with that in HPV-negative cancer cell lines, while no significant differences were observed between HPV-positive and HPV-negative normal cell lines. OIS1 overexpression inhibited and MTK-1 overexpression promoted the proliferation of HPV-positive, but not HPV-negative cancer or normal cell lines. OIS1 transfection also decreased the expression of MTK-1 in HPV-positive cancer cell lines, but not in any of the other cell lines. Therefore, it was concluded that OIS1 inhibited HPV-positive, but not HPV-negative cervical squamous cell carcinoma by upregulating MTK-1.
Collapse
Affiliation(s)
- Dan Zhou
- Department of Obstetrics and Gynecology, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Fengli Wu
- Department of Obstetrics and Gynecology, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Ying Cui
- Department of Obstetrics and Gynecology, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Fenghua Wei
- Department of Obstetrics and Gynecology, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Qingwei Meng
- Department of Obstetrics and Gynecology, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Qiubo Lv
- Department of Obstetrics and Gynecology, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| |
Collapse
|
38
|
Russo JW, Gao C, Bhasin SS, Voznesensky OS, Calagua C, Arai S, Nelson PS, Montgomery B, Mostaghel EA, Corey E, Taplin ME, Ye H, Bhasin M, Balk SP. Downregulation of Dipeptidyl Peptidase 4 Accelerates Progression to Castration-Resistant Prostate Cancer. Cancer Res 2018; 78:6354-6362. [PMID: 30242112 DOI: 10.1158/0008-5472.can-18-0687] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 08/14/2018] [Accepted: 09/18/2018] [Indexed: 12/26/2022]
Abstract
The standard treatment for metastatic prostate cancer, androgen deprivation therapy (ADT), is designed to suppress androgen receptor (AR) activity. However, men invariably progress to castration-resistant prostate cancer (CRPC), and AR reactivation contributes to progression in most cases. To identify mechanisms that may drive CRPC, we examined a VCaP prostate cancer xenograft model as tumors progressed from initial androgen sensitivity prior to castration to castration resistance and then on to relapse after combined therapy with further AR-targeted drugs (abiraterone plus enzalutamide). AR activity persisted in castration-resistant and abiraterone/enzalutamide-resistant xenografts and was associated with increased expression of the AR gene and the AR-V7 splice variant. We then assessed expression of individual AR-regulated genes to identify those that persisted, thereby contributing to tumor growth, versus those that decreased and may therefore exhibit tumor suppressor activities. The most significantly decreased AR target gene was dipeptidyl peptidase 4 (DPP4), which encodes a membrane-anchored protein that cleaves dipeptides from multiple growth factors, resulting in their increased degradation. DPP4 mRNA and protein were also decreased in clinical CRPC cases, and inhibition of DPP4 with sitagliptin enhanced the growth of prostate cancer xenografts following castration. Significantly, DPP4 inhibitors are frequently used to treat type 2 diabetes as they increase insulin secretion. Together, these results implicate DPP4 as an AR-regulated tumor suppressor gene whose loss enhances growth factor activity and suggest that treatment with DPP4 inhibitors may accelerate emergence of resistance to ADT.Significance: These findings identify DPP4 as an AR-stimulated tumor suppressor gene that is downregulated during progression to castration-resistant prostate cancer, warning that treatment with DPP4 inhibitors, commonly used to treat type 2 diabetes, may accelerate prostate cancer progression following androgen deprivation therapy. Cancer Res; 78(22); 6354-62. ©2018 AACR.
Collapse
Affiliation(s)
- Joshua W Russo
- Department of Medicine and Cancer Center, Hematology-Oncology Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| | - Ce Gao
- Department of Medicine, Bioinformatic and Systems Biology Unit, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Swati S Bhasin
- Department of Medicine, Bioinformatic and Systems Biology Unit, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Olga S Voznesensky
- Department of Medicine and Cancer Center, Hematology-Oncology Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Carla Calagua
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Seiji Arai
- Department of Medicine and Cancer Center, Hematology-Oncology Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Department of Urology, Gunma University Hospital, Maebashi, Gunma, Japan
| | - Peter S Nelson
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Bruce Montgomery
- University of Washington School of Medicine, Seattle, Washington
| | | | - Eva Corey
- University of Washington School of Medicine, Seattle, Washington
| | - Mary-Ellen Taplin
- Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Huihui Ye
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Manoj Bhasin
- Department of Medicine, Bioinformatic and Systems Biology Unit, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Steven P Balk
- Department of Medicine and Cancer Center, Hematology-Oncology Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|