1
|
Fleming A, Knatko EV, Li X, Zoch A, Heckhausen Z, Stransky S, Brenes AJ, Sidoli S, Hajkova P, O'Carroll D, Rasmussen KD. PROSER1 modulates DNA demethylation through dual mechanisms to prevent syndromic developmental malformations. Genes Dev 2024; 38:952-964. [PMID: 39562138 DOI: 10.1101/gad.352176.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/15/2024] [Indexed: 11/21/2024]
Abstract
The link between DNA methylation and neurodevelopmental disorders is well established. However, how DNA methylation is fine-tuned-ensuring precise gene expression and developmental fidelity-remains poorly understood. PROSER1, a known TET2 interactor, was recently linked to a severe neurodevelopmental disorder. Here, we demonstrate that PROSER1 interacts with all TET enzymes and stabilizes chromatin-bound TET-OGT-PROSER1-DBHS (TOPD) complexes, which regulate DNA demethylation and developmental gene expression. Surprisingly, we found that PROSER1 also sequesters TET enzymes, preventing widespread demethylation and transposable element derepression. Our findings identify PROSER1 as a key factor that both positively and negatively regulates DNA demethylation essential for mammalian neurodevelopment.
Collapse
Affiliation(s)
- Anna Fleming
- Division of Molecular, Cellular, and Developmental Biology, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Elena V Knatko
- Division of Molecular, Cellular, and Developmental Biology, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Xiang Li
- Division of Molecular, Cellular, and Developmental Biology, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Ansgar Zoch
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Zoe Heckhausen
- MRC Laboratory of Medical Sciences, London W12 0NN, United Kingdom
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Alejandro J Brenes
- Division of Cell Signalling and Immunology, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Petra Hajkova
- MRC Laboratory of Medical Sciences, London W12 0NN, United Kingdom
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Dónal O'Carroll
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Kasper D Rasmussen
- Division of Molecular, Cellular, and Developmental Biology, University of Dundee, Dundee DD1 5EH, United Kingdom;
| |
Collapse
|
2
|
Enkhmandakh B, Joshi P, Robson P, Vijaykumar A, Mina M, Shin DG, Bayarsaihan D. Single-cell Transcriptome Landscape of DNA Methylome Regulators Associated with Orofacial Clefts in the Mouse Dental Pulp. Cleft Palate Craniofac J 2024; 61:1480-1492. [PMID: 37161276 DOI: 10.1177/10556656231172296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
OBJECTIVE Significant evidence links epigenetic processes governing the dynamics of DNA methylation and demethylation to an increased risk of syndromic and nonsyndromic cleft lip and/or cleft palate (CL/P). Previously, we characterized mesenchymal stem/stromal cells (MSCs) at different stages of osteogenic differentiation in the mouse incisor dental pulp. The main objective of this research was to characterize the transcriptional landscape of regulatory genes associated with DNA methylation and demethylation at a single-cell resolution. DESIGN We used single-cell RNA sequencing (scRNA-seq) data to characterize transcriptome in individual subpopulations of MSCs in the mouse incisor dental pulp. SETTINGS The biomedical research institution. PATIENTS/PARTICIPANTS This study did not include patients. INTERVENTIONS This study collected and analyzed data on the single-cell RNA expssion in the mouse incisor dental pulp. MAIN OUTCOME MEASURE(S) Molecular regulators of DNA methylation/demethylation exhibit differential transcriptional landscape in different subpopulations of osteogenic progenitor cells. RESULTS scRNA-seq analysis revealed that genes encoding DNA methylation and demethylation enzymes (DNA methyltransferases and members of the ten-eleven translocation family of methylcytosine dioxygenases), methyl-DNA binding domain proteins, as well as transcription factors and chromatin remodeling proteins that cooperate with DNA methylation machinery are differentially expressed within distinct subpopulations of MSCs that undergo different stages of osteogenic differentiation. CONCLUSIONS These findings suggest some mechanistic insights into a potential link between epigenetic alterations and multifactorial causes of CL/P phenotypes.
Collapse
Affiliation(s)
- Badam Enkhmandakh
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Pujan Joshi
- Computer Science and Engineering Department, University of Connecticut, Storrs, CT, USA
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Single Cell Biology Laboratory, Farmington, CT, USA
| | - Anushree Vijaykumar
- Department of Craniofacial Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Mina Mina
- Department of Craniofacial Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Dong-Guk Shin
- Computer Science and Engineering Department, University of Connecticut, Storrs, CT, USA
| | - Dashzeveg Bayarsaihan
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT, USA
- Institute for System Genomics, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
3
|
Christensen LM, Akimova T, Wang L, Han R, Samanta A, Di Giorgio E, Hancock WW. T-regulatory cells require Sin3a for stable expression of Foxp3. Front Immunol 2024; 15:1444937. [PMID: 39156895 PMCID: PMC11327135 DOI: 10.3389/fimmu.2024.1444937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/08/2024] [Indexed: 08/20/2024] Open
Abstract
Histone deacetylases 1 and 2 play a major role in the transcriptional regulation of T-regulatory (Treg) cells via interactions with a myriad of coregulatory factors. Sin3a has been well established as a Hdac1/2 cofactor, while its role within Tregs has not been established. In this study, the effects of conditional deletion of Sin3a within Foxp3+ Tregs were evaluated. Developmental deletion of Sin3a from Foxp3+ Tregs resulted in the rapid onset of fatal autoimmunity. Treg numbers were greatly reduced, while residual Tregs had impaired suppressive function. Mice also showed effector T-cell activation, autoantibody production, and widespread tissue injury. Mechanistically, Sin3a deletion resulted in decreased transcription of Foxp3 with a complete lack of CNS2 CpG demethylation. In addition, Foxp3 protein stability was impaired with an increased ex-Treg population. Thus, Sin3a plays a critical role in the maintenance of Treg identity and function and is essential for the expression and stability of Foxp3.
Collapse
Affiliation(s)
- Lanette M. Christensen
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Tatiana Akimova
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Liqing Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Rongxiang Han
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Arabinda Samanta
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | | | - Wayne W. Hancock
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
4
|
Giovannetti M, Rodríguez-Palero MJ, Fabrizio P, Nicolle O, Bedet C, Michaux G, Witting M, Artal-Sanz M, Palladino F. SIN-3 transcriptional coregulator maintains mitochondrial homeostasis and polyamine flux. iScience 2024; 27:109789. [PMID: 38746662 PMCID: PMC11091686 DOI: 10.1016/j.isci.2024.109789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/30/2024] [Accepted: 04/16/2024] [Indexed: 06/05/2024] Open
Abstract
Mitochondrial function relies on the coordinated transcription of mitochondrial and nuclear genomes to assemble respiratory chain complexes. Across species, the SIN3 coregulator influences mitochondrial functions, but how its loss impacts mitochondrial homeostasis and metabolism in the context of a whole organism is unknown. Exploring this link is important because SIN3 haploinsufficiency causes intellectual disability/autism syndromes and SIN3 plays a role in tumor biology. Here we show that loss of C. elegans SIN-3 results in transcriptional deregulation of mitochondrial- and nuclear-encoded mitochondrial genes, potentially leading to mito-nuclear imbalance. Consistent with impaired mitochondrial function, sin-3 mutants show extensive mitochondrial fragmentation by transmission electron microscopy (TEM) and in vivo imaging, and altered oxygen consumption. Metabolomic analysis of sin-3 mutant animals revealed a mitochondria stress signature and deregulation of methionine flux, resulting in decreased S-adenosyl methionine (SAM) and increased polyamine levels. Our results identify SIN3 as a key regulator of mitochondrial dynamics and metabolic flux, with important implications for human pathologies.
Collapse
Affiliation(s)
- Marina Giovannetti
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - María-Jesús Rodríguez-Palero
- Andalusian Centre for Developmental Biology (CABD), Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide and Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Paola Fabrizio
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Ophélie Nicolle
- University Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, 35000 Rennes, France
| | - Cécile Bedet
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Grégoire Michaux
- University Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, 35000 Rennes, France
| | - Michael Witting
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof Forum 2, 85354 Freising, Weihenstephan, Germany
| | - Marta Artal-Sanz
- Andalusian Centre for Developmental Biology (CABD), Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide and Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Francesca Palladino
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| |
Collapse
|
5
|
Wang J, Liu L, Li Z, Wang H, Ren Y, Wang K, Liu Y, Tao X, Zheng L. JMJD3 regulate H3K27me3 modification via interacting directly with TET1 to affect spermatogonia self-renewal and proliferation. BMC Genomics 2024; 25:225. [PMID: 38424516 PMCID: PMC10905883 DOI: 10.1186/s12864-024-10120-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/13/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND In epigenetic modification, histone modification and DNA methylation coordinate the regulation of spermatogonium. Not only can methylcytosine dioxygenase 1 (TET1) function as a DNA demethylase, converting 5-methylcytosine to 5-hydroxymethylcytosine, it can also form complexes with other proteins to regulate gene expression. H3K27me3, one of the common histone modifications, is involved in the regulation of stem cell maintenance and tumorigenesis by inhibiting gene transcription. METHODS we examined JMJD3 at both mRNA and protein levels and performed Chip-seq sequencing of H3K27me3 in TET1 overexpressing cells to search for target genes and signaling pathways of its action. RESULTS This study has found that JMJD3 plays a leading role in spermatogonia self-renewal and proliferation: at one extreme, the expression of the self-renewal gene GFRA1 and the proliferation-promoting gene PCNA was upregulated following the overexpression of JMJD3 in spermatogonia; at the other end of the spectrum, the expression of differentiation-promoting gene DAZL was down-regulated. Furthermore, the fact that TET1 and JMJD3 can form a protein complex to interact with H3K27me3 has also been fully proven. Then, through analyzing the sequencing results of CHIP-Seq, we found that TET1 targeted Pramel3 when it interacted with H3K27me3. Besides, TET1 overexpression not only reduced H3K27me3 deposition at Pramel3, but promoted its transcriptional activation as well, and the up-regulation of Pramel3 expression was verified in JMJD3-overexpressing spermatogonia. CONCLUSION In summary, our study identified a novel link between TET1 and H3K27me3 and established a Tet1-JMJD3-H3K27me3-Pramel3 axis to regulate spermatogonia self-renewal and proliferation. Judging from the evidence offered above, we can safely conclude that this study provides new ideas for further research regarding the mechanism of spermatogenesis and spermatogenesis disorders on an apparent spectrum.
Collapse
Affiliation(s)
- Jin Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Lingling Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zebin Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Haoyu Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yuanyuan Ren
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Kaisheng Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yang Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xinjie Tao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Liming Zheng
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
6
|
Gabriel GC, Yagi H, Tan T, Bais AS, Glennon BJ, Stapleton MC, Huang L, Reynolds WT, Shaffer MG, Ganapathiraju M, Simon D, Panigrahy A, Wu YL, Lo CW. Mitotic Block and Epigenetic Repression Underlie Neurodevelopmental Defects and Neurobehavioral Deficits in Congenital Heart Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.05.565716. [PMID: 38464057 PMCID: PMC10925221 DOI: 10.1101/2023.11.05.565716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Poor neurodevelopment is often observed with congenital heart disease (CHD), especially with mutations in chromatin modifiers. Here analysis of mice with hypoplastic left heart syndrome (HLHS) arising from mutations in Sin3A associated chromatin modifier Sap130 , and adhesion protein Pcdha9, revealed neurodevelopmental and neurobehavioral deficits reminiscent of those in HLHS patients. Microcephaly was associated with impaired cortical neurogenesis, mitotic block, and increased apoptosis. Transcriptional profiling indicated dysregulated neurogenesis by REST, altered CREB signaling regulating memory and synaptic plasticity, and impaired neurovascular coupling modulating cerebral blood flow. Many neurodevelopmental/neurobehavioral disease pathways were recovered, including autism and cognitive impairment. These same pathways emerged from genome-wide DNA methylation and Sap130 chromatin immunoprecipitation sequencing analyses, suggesting epigenetic perturbation. Mice with Pcdha9 mutation or forebrain-specific Sap130 deletion without CHD showed learning/memory deficits and autism-like behavior. These novel findings provide mechanistic insights indicating the adverse neurodevelopment in HLHS may involve cell autonomous/nonautonomous defects and epigenetic dysregulation and suggest new avenues for therapy.
Collapse
|
7
|
Kelly RDW, Stengel KR, Chandru A, Johnson LC, Hiebert SW, Cowley SM. Histone deacetylases maintain expression of the pluripotent gene network via recruitment of RNA polymerase II to coding and noncoding loci. Genome Res 2024; 34:34-46. [PMID: 38290976 PMCID: PMC10903948 DOI: 10.1101/gr.278050.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 12/20/2023] [Indexed: 02/01/2024]
Abstract
Histone acetylation is a dynamic modification regulated by the opposing actions of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Deacetylation of histone tails results in chromatin tightening, and therefore, HDACs are generally regarded as transcriptional repressors. Counterintuitively, simultaneous deletion of Hdac1 and Hdac2 in embryonic stem cells (ESCs) reduces expression of the pluripotency-associated transcription factors Pou5f1, Sox2, and Nanog (PSN). By shaping global histone acetylation patterns, HDACs indirectly regulate the activity of acetyl-lysine readers, such as the transcriptional activator BRD4. Here, we use inhibitors of HDACs and BRD4 (LBH589 and JQ1, respectively) in combination with precision nuclear run-on and sequencing (PRO-seq) to examine their roles in defining the ESC transcriptome. Both LBH589 and JQ1 cause a marked reduction in the pluripotent gene network. However, although JQ1 treatment induces widespread transcriptional pausing, HDAC inhibition causes a reduction in both paused and elongating polymerase, suggesting an overall reduction in polymerase recruitment. Using enhancer RNA (eRNA) expression to measure enhancer activity, we find that LBH589-sensitive eRNAs are preferentially associated with superenhancers and PSN binding sites. These findings suggest that HDAC activity is required to maintain pluripotency by regulating the PSN enhancer network via the recruitment of RNA polymerase II.
Collapse
Affiliation(s)
- Richard D W Kelly
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Kristy R Stengel
- Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, Bronx, New York 10461, USA
| | - Aditya Chandru
- Cancer Research UK Beatson Institute, Bearsden, Glasgow G61 1BD, United Kingdom
| | - Lyndsey C Johnson
- Locate Bio Limited, MediCity, Beeston, Nottingham NG90 6BH, United Kingdom
| | - Scott W Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Shaun M Cowley
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester LE1 9HN, United Kingdom;
| |
Collapse
|
8
|
Yagi H, Xu X, Gabriel GC, Lo C. Molecular Pathways and Animal Models of Hypoplastic Left Heart Syndrome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:947-961. [PMID: 38884763 DOI: 10.1007/978-3-031-44087-8_61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Hypoplastic left heart syndrome (HLHS) is a severe congenital heart disease (CHD) with underdevelopment of left-sided heart structures. While previously uniformly fatal, surgical advances now provide highly effective palliation that allows most HLHS patients to survive their critical CHD. Nevertheless, there remains high morbidity and mortality with high risk of heart failure. As hemodynamic compromise from restricted aortic blood flow has been suggested to underlie the poor LV growth, this suggests the possibility of prenatal fetal intervention to recover LV growth. As such interventions have yielded ambiguous results, the optimization of therapy will require more mechanistic insights into the developmental etiology for HLHS. Clinical studies have shown high heritability for HLHS, with an oligogenic etiology indicated in conjunction with genetic heterogeneity. This is corroborated with the recent recovery of mutant mice with HLHS. With availability-induced pluripotent stem cell (iPSC)-derived cardiomyocytes from HLHS mice and patients, new insights have emerged into the cellular and molecular etiology for the LV hypoplasia in HLHS. Cell proliferation defects were observed in conjunction with metaphase arrest and the disturbance of Hippo-YAP signaling. The left-sided restriction of the ventricular hypoplasia may result from epigenetic perturbation of pathways regulating left-right patterning. These findings suggest new avenues for fetal interventions with therapies using existing drugs that target the Hippo-YAP pathway and/or modulate epigenetic regulation.
Collapse
Affiliation(s)
- Hisato Yagi
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xinxiu Xu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - George C Gabriel
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cecilia Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Chen R, Deng H, Zou L. Analysis of Bulk Transcriptome Sequencing Data and in vitro Experiments Reveal SIN3A as a Potential Target for Diabetic Foot Ulcer. Diabetes Metab Syndr Obes 2023; 16:4119-4132. [PMID: 38145255 PMCID: PMC10740743 DOI: 10.2147/dmso.s439924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/06/2023] [Indexed: 12/26/2023] Open
Abstract
Background Diabetic foot ulcers (DFUs) represent a severe complication of diabetes associated with reduced quality of life, lower limb amputations, hospitalizations, increased incidence, and mortality. Importantly, a significant number of pathogenic genes remain unexplored in DFUs. Methods A series of bioinformatics analyses were performed on publicly available bulk transcriptome sequencing datasets GSE134431 and GSE80178 to explore the transcriptomic changes in DFUs and select core genes for in vitro functional validation. In a focused examination, the differential expression analysis unveiled distinctions in gene expression patterns between DFUs and non-ulcerated diabetic skin tissues. Enriched functional annotations of differentially expressed genes were explored using the DAVID online tool. Protein-protein interaction analysis was conducted to investigate interactions among differentially expressed genes and select core genes. Knockdown or overexpression of core genes in HaCaT keratinocytes was performed to assess their impact on cell proliferation and migration. Results Ten core genes were identified. Cell Counting Kit-8 (CCK-8) and scratch assays demonstrated that downregulation of the core gene SIN3A significantly inhibited the migration and proliferation of HaCaT keratinocytes, while overexpression of SIN3A reversed the high-glucose-induced suppression of HaCaT cell viability and migration. Conclusion SIN3A expression is downregulated in DFUs. In vitro, SIN3A promotes the proliferation and migration of HaCaT keratinocytes, suggesting it may be a potential therapeutic target for DFUs.
Collapse
Affiliation(s)
- Ran Chen
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Haibo Deng
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Lijun Zou
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
10
|
Contreras-Jurado C, Montero-Pedrazuela A, Pérez RF, Alemany S, Fraga MF, Aranda A. The thyroid hormone enhances mouse embryonic fibroblasts reprogramming to pluripotent stem cells: role of the nuclear receptor corepressor 1. Front Endocrinol (Lausanne) 2023; 14:1235614. [PMID: 38107517 PMCID: PMC10722291 DOI: 10.3389/fendo.2023.1235614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/23/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction Pluripotent stem cells can be generated from somatic cells by the Yamanaka factors Oct4, Sox2, Klf4 and c-Myc. Methods Mouse embryonic fibroblasts (MEFs) were transduced with the Yamanaka factors and generation of induced pluripotent stem cells (iPSCs) was assessed by formation of alkaline phosphatase positive colonies, pluripotency gene expression and embryod bodies formation. Results The thyroid hormone triiodothyronine (T3) enhances MEFs reprogramming. T3-induced iPSCs resemble embryonic stem cells in terms of the expression profile and DNA methylation pattern of pluripotency genes, and of their potential for embryod body formation and differentiation into the three major germ layers. T3 induces reprogramming even though it increases expression of the cyclin kinase inhibitors p21 and p27, which are known to oppose acquisition of pluripotency. The actions of T3 on reprogramming are mainly mediated by the thyroid hormone receptor beta and T3 can enhance iPSC generation in the absence of c-Myc. The hormone cannot replace Oct4 on reprogramming, but in the presence of T3 is possible to obtain iPSCs, although with low efficiency, without exogenous Klf4. Furthermore, depletion of the corepressor NCoR (or Nuclear Receptor Corepressor 1) reduces MEFs reprogramming in the absence of the hormone and strongly decreases iPSC generation by T3 and also by 9cis-retinoic acid, a well-known inducer of reprogramming. NCoR depletion also markedly antagonizes induction of pluripotency gene expression by both ligands. Conclusions Inclusion of T3 on reprogramming strategies has a potential use in enhancing the generation of functional iPSCs for studies of cell plasticity, disease and regenerative medicine.
Collapse
Affiliation(s)
- Constanza Contreras-Jurado
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Departamento de Bioquímica, Facultad de Medicina, Universidad Alfonso X El Sabio, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Montero-Pedrazuela
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Raúl F. Pérez
- Cancer Epigenetics and Nanomedicine Laboratory, Centro de Investigación en Nanomateriales y Nanotecnología (CINN), CSIC-UNIOVI-Principado de Asturias, Oviedo, Spain
- Health Research Institute of Asturias (ISPA), Oviedo, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- Department of Organisms and Systems Biology (BOS), University of Oviedo, Oviedo, Spain
- CIBER of Rare Diseases (CIBERER), Oviedo, Spain
| | - Susana Alemany
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Mario F. Fraga
- Cancer Epigenetics and Nanomedicine Laboratory, Centro de Investigación en Nanomateriales y Nanotecnología (CINN), CSIC-UNIOVI-Principado de Asturias, Oviedo, Spain
- Health Research Institute of Asturias (ISPA), Oviedo, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- Department of Organisms and Systems Biology (BOS), University of Oviedo, Oviedo, Spain
- CIBER of Rare Diseases (CIBERER), Oviedo, Spain
| | - Ana Aranda
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
11
|
Liu H, Ma Y, Yu J, Chen X, Wang S, Jia Y, Ding N, Jin X, Zhang Y, Xu J, Li X. Insight into the regulatory mechanism of dynamic chromatin 3D interactions during cardiomyocyte differentiation in human. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:629-641. [PMID: 37650118 PMCID: PMC10462852 DOI: 10.1016/j.omtn.2023.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
Cardiogenesis is an extremely complicated process involved with DNA regulatory elements, and trans factors regulate gene expression pattern spatiotemporally. Enhancers, as the well-known DNA elements, activate target gene expression by transcription factors (TFs) occupied to organize dynamic three-dimensional (3D) interactions, which when affected or interrupted might cause heart defects or diseases. In this study, we integrated transcriptome, 3D genome, and regulatome to reorganize the global 3D genome in cardiomyogenesis, showing a gradually decreased trend of both chromatin interactions and topological associating domains (TADs) during cardiomyocyte differentiation. And almost all of the chromatin interactions occurred within the same or between adjacent TADs involved with enhancers, indicating that dynamical rewiring of enhancer-related chromatin interactions in the continuous expansive TADs is closely correlated to cardiogenesis. Moreover, we found stage-specific interactions activate stage-specific expression to be involved within corresponding biological functions, and the stage-specific combined regulations of enhancers and binding TFs form connected networks to control stage-specific expression and biological processes, which promote cardiomyocyte differentiation. Finally, we identified markers based on regulatory networks, which might drive cardiac development. This study demonstrates the power of enhancer interactome combined with active TFs to reveal insights into transcriptional regulatory networks during cardiomyogenesis.
Collapse
Affiliation(s)
- Hui Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yingying Ma
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Jiaxin Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Xiang Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Shuyuan Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yijie Jia
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Na Ding
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Xiaoyan Jin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| |
Collapse
|
12
|
Bao L, Kumar A, Zhu M, Peng Y, Xing C, Wang JE, Wang Y, Luo W. SAP30 promotes breast tumor progression by bridging the transcriptional corepressor SIN3 complex and MLL1. J Clin Invest 2023; 133:e168362. [PMID: 37655663 PMCID: PMC10471174 DOI: 10.1172/jci168362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 07/06/2023] [Indexed: 09/02/2023] Open
Abstract
SAP30 is a core subunit of the transcriptional corepressor SIN3 complex, but little is known about its role in gene regulation and human cancer. Here, we show that SAP30 was a nonmutational oncoprotein upregulated in more than 50% of human breast tumors and correlated with unfavorable outcomes in patients with breast cancer. In various breast cancer mouse models, we found that SAP30 promoted tumor growth and metastasis through its interaction with SIN3A/3B. Surprisingly, the canonical gene silencing role was not essential for SAP30's tumor-promoting actions. SAP30 enhanced chromatin accessibility and RNA polymerase II occupancy at promoters in breast cancer cells, acting as a coactivator for genes involved in cell motility, angiogenesis, and lymphangiogenesis, thereby driving tumor progression. Notably, SAP30 formed a homodimer with 1 subunit binding to SIN3A and another subunit recruiting MLL1 through specific Phe186/200 residues within its transactivation domain. MLL1 was required for SAP30-mediated transcriptional coactivation and breast tumor progression. Collectively, our findings reveal that SAP30 represents a transcriptional dependency in breast cancer.
Collapse
Affiliation(s)
| | - Ashwani Kumar
- Eugene McDermott Center for Human Growth and Development
| | | | | | - Chao Xing
- Eugene McDermott Center for Human Growth and Development
- Department of Bioinformatics
| | | | - Yingfei Wang
- Department of Pathology
- Department of Neurology
- Peter O’Donnell Jr. Brain Institute
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, and
| | - Weibo Luo
- Department of Pathology
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
13
|
DeMoya RA, Forman-Rubinsky RE, Fontaine D, Shin J, Watkins SC, Lo CW, Tsang M. Sin3a associated protein 130 kDa, sap130, plays an evolutionary conserved role in zebrafish heart development. Front Cell Dev Biol 2023; 11:1197109. [PMID: 37711853 PMCID: PMC10498550 DOI: 10.3389/fcell.2023.1197109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023] Open
Abstract
Hypoplastic left heart syndrome (HLHS) is a congenital heart disease where the left ventricle is reduced in size. A forward genetic screen in mice identified SIN3A associated protein 130 kDa (Sap130), part of the chromatin modifying SIN3A/HDAC complex, as a gene contributing to the etiology of HLHS. Here, we report the role of zebrafish sap130 genes in heart development. Loss of sap130a, one of two Sap130 orthologs, resulted in smaller ventricle size, a phenotype reminiscent to the hypoplastic left ventricle in mice. While cardiac progenitors were normal during somitogenesis, diminution of the ventricle size suggest the Second Heart Field (SHF) was the source of the defect. To explore the role of sap130a in gene regulation, transcriptome profiling was performed after the heart tube formation to identify candidate pathways and genes responsible for the small ventricle phenotype. Genes involved in cardiac differentiation and cardiac function were dysregulated in sap130a, but not in sap130b mutants. Confocal light sheet analysis measured deficits in cardiac output in MZsap130a supporting the notion that cardiomyocyte maturation was disrupted. Lineage tracing experiments revealed a significant reduction of SHF cells in the ventricle that resulted in increased outflow tract size. These data suggest that sap130a is involved in cardiogenesis via regulating the accretion of SHF cells to the growing ventricle and in their subsequent maturation for cardiac function. Further, genetic studies revealed an interaction between hdac1 and sap130a, in the incidence of small ventricles. These studies highlight the conserved role of Sap130a and Hdac1 in zebrafish cardiogenesis.
Collapse
Affiliation(s)
- Ricardo A. DeMoya
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Rachel E. Forman-Rubinsky
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Deon Fontaine
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Joseph Shin
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Simon C. Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Cecilia W. Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Michael Tsang
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
14
|
Zhang X, Zhang Y, Wang C, Wang X. TET (Ten-eleven translocation) family proteins: structure, biological functions and applications. Signal Transduct Target Ther 2023; 8:297. [PMID: 37563110 PMCID: PMC10415333 DOI: 10.1038/s41392-023-01537-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/24/2023] [Accepted: 06/05/2023] [Indexed: 08/12/2023] Open
Abstract
Ten-eleven translocation (TET) family proteins (TETs), specifically, TET1, TET2 and TET3, can modify DNA by oxidizing 5-methylcytosine (5mC) iteratively to yield 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxycytosine (5caC), and then two of these intermediates (5fC and 5caC) can be excised and return to unmethylated cytosines by thymine-DNA glycosylase (TDG)-mediated base excision repair. Because DNA methylation and demethylation play an important role in numerous biological processes, including zygote formation, embryogenesis, spatial learning and immune homeostasis, the regulation of TETs functions is complicated, and dysregulation of their functions is implicated in many diseases such as myeloid malignancies. In addition, recent studies have demonstrated that TET2 is able to catalyze the hydroxymethylation of RNA to perform post-transcriptional regulation. Notably, catalytic-independent functions of TETs in certain biological contexts have been identified, further highlighting their multifunctional roles. Interestingly, by reactivating the expression of selected target genes, accumulated evidences support the potential therapeutic use of TETs-based DNA methylation editing tools in disorders associated with epigenetic silencing. In this review, we summarize recent key findings in TETs functions, activity regulators at various levels, technological advances in the detection of 5hmC, the main TETs oxidative product, and TETs emerging applications in epigenetic editing. Furthermore, we discuss existing challenges and future directions in this field.
Collapse
Affiliation(s)
- Xinchao Zhang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yue Zhang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xu Wang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
15
|
Sun Y, Man Y, Cheng J, Li J, Liu Y. FAM60A promotes osteosarcoma development and progression. Cancer Med 2023; 12:17491-17503. [PMID: 37439040 PMCID: PMC10501228 DOI: 10.1002/cam4.6343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Osteosarcoma (OS) is a highly malignant primary bone tumor. Family of homology 60A (FAM60A) reportedly contributes to the malignant growth of some tumors. METHODS Herein we investigated the mRNA expression level of FAM60A by combining OS and non-cancer samples from public databases. Immunohistochemistry was performed to determine protein expression levels of FAM60A in patients with OS. Further, RT-qPCR and western blotting were conducted to evaluate FAM60A expression in various OS cell lines. CCK-8 assay, colony formation assay, and flow cytometry were applied to determine the function of FAM60A. Finally, functional enrichment analysis was performed based on FAM60A co-expressed genes. RESULTS FAM60A mRNA expression level was found to be significantly upregulated (standardized mean difference = 1.27, 95% CI [0.67-1.88]). Survival analyses suggested that higher expression of FAM60A was indicative of poor prognoses. Similarly, FAM60A protein expression level was also observed to be upregulated. Knocking down FAM60A expression inhibited OS cell proliferation, increased apoptosis, and blocked cells from entering the S phase. Besides, cell cycle was the most prominently enriched pathway, and BUB1, DTL, and EXO1 were identified as hub genes. CONCLUSIONS FAM60A expression was found to be markedly upregulated in OS; furthermore, FAM60A was observed to promote OS cell proliferation, inhibit apoptosis, and participate in cell cycle regulation. Besides, FAM60A may interact with hub genes to participate in the progress of OS.
Collapse
Affiliation(s)
- Yu Sun
- Division of Spinal SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxi Zhuang Autonomous RegionP.R. China
| | - Yu‐Nan Man
- Division of Spinal SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxi Zhuang Autonomous RegionP.R. China
| | - Jin‐hui Cheng
- Jiangxi Provincial People's HospitalThe First Affiliated Hospital of Nanchang Medical CollegeNanchangJiangxiChina
| | - Jing‐tang Li
- Jiangxi Provincial People's HospitalThe First Affiliated Hospital of Nanchang Medical CollegeNanchangJiangxiChina
| | - Ya‐yun Liu
- Jiangxi Provincial People's HospitalThe First Affiliated Hospital of Nanchang Medical CollegeNanchangJiangxiChina
| |
Collapse
|
16
|
Flores JC, Sidoli S, Dawlaty MM. Tet2 regulates Sin3a recruitment at active enhancers in embryonic stem cells. iScience 2023; 26:107170. [PMID: 37456851 PMCID: PMC10338317 DOI: 10.1016/j.isci.2023.107170] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/11/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Tet2 is a member of the Ten-eleven translocation (Tet1/2/3) family of enzymes and is expressed in embryonic stem cells (ESCs). It demethylates DNA (catalytic functions) and partners with chromatin modifiers (noncatalytic functions) to regulate genes. However, the significance of these functions in ESCs is less defined. Using Tet2 catalytic mutant (Tet2m/m) and knockout (Tet2-/-) ESCs, we identified Tet2 target genes regulated by its catalytic dependent versus independent roles. Tet2 was enriched at their active enhancers and promoters to demethylate them. We also identified the histone deacetylase component Sin3a as a Tet2 partner, co-localizing at promoters and active enhancers. Tet2 deficiency diminished Sin3a at these regions. Tet2 and Sin3a co-occupancy overlapped with Tet1. Combined loss of Tet1/2, but not of their catalytic activities, reduced Sin3a at active enhancers. These findings establish Tet2 catalytic and noncatalytic functions as regulators of DNA demethylation and Sin3a recruitment at active enhancers in ESCs.
Collapse
Affiliation(s)
- Julio C. Flores
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Meelad M. Dawlaty
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
17
|
Chen Y, Wu Y, Li J, Chen K, Wang W, Ye Z, Feng K, Yang Y, Xu Y, Kang J, Guo X. Cooperative regulation of Zhx1 and hnRNPA1 drives the cardiac progenitor-specific transcriptional activation during cardiomyocyte differentiation. Cell Death Discov 2023; 9:244. [PMID: 37452012 PMCID: PMC10349095 DOI: 10.1038/s41420-023-01548-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
The zinc finger proteins (ZNFs) mediated transcriptional regulation is critical for cell fate transition. However, it is still unclear how the ZNFs realize their specific regulatory roles in the stage-specific determination of cardiomyocyte differentiation. Here, we reported that the zinc fingers and homeoboxes 1 (Zhx1) protein, transiently expressed during the cell fate transition from mesoderm to cardiac progenitors, was indispensable for the proper cardiomyocyte differentiation of mouse and human embryonic stem cells. Moreover, Zhx1 majorly promoted the specification of cardiac progenitors via interacting with hnRNPA1 and co-activated the transcription of a wide range of genes. In-depth mechanistic studies showed that Zhx1 was bound with hnRNPA1 by the amino acid residues (Thr111-His120) of the second Znf domain, thus participating in the formation of cardiac progenitors. Together, our study highlights the unrevealed interaction of Zhx1/hnRNPA1 for activating gene transcription during cardiac progenitor specification and also provides new evidence for the specificity of cell fate determination in cardiomyocyte differentiation.
Collapse
Affiliation(s)
- Yang Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yukang Wu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jianguo Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Kai Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Wuchan Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Zihui Ye
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Ke Feng
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yiwei Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yanxin Xu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Xudong Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
- Institute for Advanced Study, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
18
|
RDW K, KR S, A C, LC4 J, SW H, SM C. Histone Deacetylases (HDACs) maintain expression of the pluripotent gene network via recruitment of RNA polymerase II to coding and non-coding loci. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535398. [PMID: 37066171 PMCID: PMC10104071 DOI: 10.1101/2023.04.06.535398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Histone acetylation is a dynamic modification regulated by the opposing actions of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Deacetylation of histone tails results in chromatin tightening and therefore HDACs are generally regarded as transcriptional repressors. Counterintuitively, simultaneous deletion of Hdac1 and Hdac2 in embryonic stem cells (ESC) reduced expression of pluripotent transcription factors, Oct4, Sox2 and Nanog (OSN). By shaping global histone acetylation patterns, HDACs indirectly regulate the activity of acetyl-lysine readers, such as the transcriptional activator, BRD4. We used inhibitors of HDACs and BRD4 (LBH589 and JQ1 respectively) in combination with precision nuclear run-on and sequencing (PRO-seq) to examine their roles in defining the ESC transcriptome. Both LBH589 and JQ1 caused a marked reduction in the pluripotent network. However, while JQ1 treatment induced widespread transcriptional pausing, HDAC inhibition caused a reduction in both paused and elongating polymerase, suggesting an overall reduction in polymerase recruitment. Using enhancer RNA (eRNA) expression to measure enhancer activity we found that LBH589-sensitive eRNAs were preferentially associated with super-enhancers and OSN binding sites. These findings suggest that HDAC activity is required to maintain pluripotency by regulating the OSN enhancer network via the recruitment of RNA polymerase II.
Collapse
Affiliation(s)
- Kelly RDW
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, LE1 9HN, UK
| | - Stengel KR
- Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue Chanin Building, Bronx, NY 10461
| | - Chandru A
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD
| | - Johnson LC4
- Locate Bio Limited, MediCity, Thane Road, Beeston, Nottingham, NG90 6BH
| | - Hiebert SW
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cowley SM
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, LE1 9HN, UK
| |
Collapse
|
19
|
Yang Q, Dang H, Liu J, Wang X, Wang J, Lan X, Ji M, Xing M, Hou P. Hypoxia switches TET1 from being tumor-suppressive to oncogenic. Oncogene 2023; 42:1634-1648. [PMID: 37020036 PMCID: PMC10181935 DOI: 10.1038/s41388-023-02659-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 04/07/2023]
Abstract
The classical oxidizing enzymatic activity of Ten Eleven Translocation 1 (TET1) and its tumor suppressor role are well known. Here, we find that high TET1 expression is associated with poor patient survival in solid cancers often having hypoxia, which is inconsistent with its tumor suppressor role. Through a series of in vitro and in vivo studies, using thyroid cancer as a model, we demonstrate that TET1 plays a tumor suppressor function in normoxia and, surprisingly, an oncogenic function in hypoxia. Mechanistically, TET1 mediates HIF1α-p300 interaction by acting as a co-activator of HIF1α to promote CK2B transcription under hypoxia, which is independent of its enzymatic activity; CK2 activates the AKT/GSK3β signaling pathway to promote oncogenesis. Activated AKT/GSK3β signaling in turn maintains HIF1α at elevated levels by preventing its K48-linked ubiquitination and degradation, creating a feedback loop to enhance the oncogenicity of TET1 in hypoxia. Thus, this study uncovers a novel oncogenic mechanism in which TET1 promotes oncogenesis and cancer progression through a non-enzymatic interaction between TET1 and HIF1α in hypoxia, providing novel therapeutic targeting implications for cancer.
Collapse
Affiliation(s)
- Qi Yang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
| | - Hui Dang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Jiaxin Liu
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Xingye Wang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
- Department of Structural Heart Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Jingyuan Wang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Xinhui Lan
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Meiju Ji
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
| | - Mingzhao Xing
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, PR China.
| | - Peng Hou
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
| |
Collapse
|
20
|
Zhao X, Fang K, Liu X, Yao R, Wang M, Li F, Hao S, He J, Wang Y, Fan M, Huang W, Li Y, Gao C, Lin C, Luo Z. QSER1 preserves the suppressive status of the pro-apoptotic genes to prevent apoptosis. Cell Death Differ 2023; 30:779-793. [PMID: 36371602 PMCID: PMC9984391 DOI: 10.1038/s41418-022-01085-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
Activation of the pro-apoptotic genes by the p53 family is a critical step in induction of apoptosis. However, the molecular signaling underlying their suppression remains largely unknown. Here, we report a general role of QSER1 in preventing apoptosis. QSER1 is widely up-regulated in multiple cancers, and its up-regulation correlates with poor clinic outcomes. QSER1 knockdown significantly promotes apoptosis in both p53 wild type and mutant cancer cells. Interestingly, we show that QSER1 and p53 occupy distinct cis-regulatory regions in a common subset of the pro-apoptotic genes, and function antagonistically to maintain their proper expression. Furthermore, we identify a key regulatory DNA element named QSER1 binding site in PUMA (QBP). Deletion of QBP de-represses PUMA and induces apoptosis. Mechanistically, QSER1 functions together with SIN3A to suppress PUMA in a p53-dependent and -independent manner, suggesting that QSER1 inhibition might be a potential therapeutic strategy to induce apoptosis in cancers.
Collapse
Affiliation(s)
- Xiru Zhao
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Ke Fang
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Xiaoxu Liu
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Ruihuan Yao
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Min Wang
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Fanfan Li
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Shaohua Hao
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Jingjing He
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Yan Wang
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Menghan Fan
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Wei Huang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yiping Li
- Department of Pathology, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Chun Gao
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Chengqi Lin
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China.
- Shenzhen Research Institute, Southeast University, 19 Gaoxin South 4th Road, Nanshan District, Shenzhen, 518063, China.
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Life Science and Technology, Southeast University, Nanjing, 210096, China.
| | - Zhuojuan Luo
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China.
- Shenzhen Research Institute, Southeast University, 19 Gaoxin South 4th Road, Nanshan District, Shenzhen, 518063, China.
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Life Science and Technology, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
21
|
Yagi H, Lo CW. Left-Sided Heart Defects and Laterality Disturbance in Hypoplastic Left Heart Syndrome. J Cardiovasc Dev Dis 2023; 10:jcdd10030099. [PMID: 36975863 PMCID: PMC10054755 DOI: 10.3390/jcdd10030099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/29/2023] Open
Abstract
Hypoplastic left heart syndrome (HLHS) is a complex congenital heart disease characterized by hypoplasia of left-sided heart structures. The developmental basis for restriction of defects to the left side of the heart in HLHS remains unexplained. The observed clinical co-occurrence of rare organ situs defects such as biliary atresia, gut malrotation, or heterotaxy with HLHS would suggest possible laterality disturbance. Consistent with this, pathogenic variants in genes regulating left-right patterning have been observed in HLHS patients. Additionally, Ohia HLHS mutant mice show splenic defects, a phenotype associated with heterotaxy, and HLHS in Ohia mice arises in part from mutation in Sap130, a component of the Sin3A chromatin complex known to regulate Lefty1 and Snai1, genes essential for left-right patterning. Together, these findings point to laterality disturbance mediating the left-sided heart defects associated with HLHS. As laterality disturbance is also observed for other CHD, this suggests that heart development integration with left-right patterning may help to establish the left-right asymmetry of the cardiovascular system essential for efficient blood oxygenation.
Collapse
Affiliation(s)
- Hisato Yagi
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15201, USA
| | - Cecilia W Lo
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15201, USA
| |
Collapse
|
22
|
Chen G, Yin S, Zeng H, Li H, Wan X. Regulation of Embryonic Stem Cell Self-Renewal. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081151. [PMID: 36013330 PMCID: PMC9410528 DOI: 10.3390/life12081151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022]
Abstract
Embryonic stem cells (ESCs) are a type of cells capable of self-renewal and multi-directional differentiation. The self-renewal of ESCs is regulated by factors including signaling pathway proteins, transcription factors, epigenetic regulators, cytokines, and small molecular compounds. Similarly, non-coding RNAs, small RNAs, and microRNAs (miRNAs) also play an important role in the process. Functionally, the core transcription factors interact with helper transcription factors to activate the expression of genes that contribute to maintaining pluripotency, while suppressing the expression of differentiation-related genes. Additionally, cytokines such as leukemia suppressor factor (LIF) stimulate downstream signaling pathways and promote self-renewal of ESCs. Particularly, LIF binds to its receptor (LIFR/gp130) to trigger the downstream Jak-Stat3 signaling pathway. BMP4 activates the downstream pathway and acts in combination with Jak-Stat3 to promote pluripotency of ESCs in the absence of serum. In addition, activation of the Wnt-FDZ signaling pathway has been observed to facilitate the self-renewal of ESCs. Small molecule modulator proteins of the pathway mentioned above are widely used in in vitro culture of stem cells. Multiple epigenetic regulators are involved in the maintenance of ESCs self-renewal, making the epigenetic status of ESCs a crucial factor in this process. Similarly, non-coding RNAs and cellular energetics have been described to promote the maintenance of the ESC's self-renewal. These factors regulate the self-renewal and differentiation of ESCs by forming signaling networks. This review focused on the role of major transcription factors, signaling pathways, small molecular compounds, epigenetic regulators, non-coding RNAs, and cellular energetics in ESC's self-renewal.
Collapse
Affiliation(s)
- Guofang Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China;
- Correspondence: (G.C.); (H.L.); (X.W.); Tel./Fax: +86-021-20261000 (ext. 1379) (G.C.)
| | - Shasha Yin
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China;
| | - Hongliang Zeng
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha 410013, China;
| | - Haisen Li
- School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Correspondence: (G.C.); (H.L.); (X.W.); Tel./Fax: +86-021-20261000 (ext. 1379) (G.C.)
| | - Xiaoping Wan
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China;
- Correspondence: (G.C.); (H.L.); (X.W.); Tel./Fax: +86-021-20261000 (ext. 1379) (G.C.)
| |
Collapse
|
23
|
Stolz P, Mantero AS, Tvardovskiy A, Ugur E, Wange LE, Mulholland CB, Cheng Y, Wierer M, Enard W, Schneider R, Bartke T, Leonhardt H, Elsässer SJ, Bultmann S. TET1 regulates gene expression and repression of endogenous retroviruses independent of DNA demethylation. Nucleic Acids Res 2022; 50:8491-8511. [PMID: 35904814 PMCID: PMC9410877 DOI: 10.1093/nar/gkac642] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/25/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
DNA methylation (5-methylcytosine (5mC)) is critical for genome stability and transcriptional regulation in mammals. The discovery that ten-eleven translocation (TET) proteins catalyze the oxidation of 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) revolutionized our perspective on the complexity and regulation of DNA modifications. However, to what extent the regulatory functions of TET1 can be attributed to its catalytic activity remains unclear. Here, we use genome engineering and quantitative multi-omics approaches to dissect the precise catalytic vs. non-catalytic functions of TET1 in murine embryonic stem cells (mESCs). Our study identifies TET1 as an essential interaction hub for multiple chromatin modifying complexes and a global regulator of histone modifications. Strikingly, we find that the majority of transcriptional regulation depends on non-catalytic functions of TET1. In particular, we show that TET1 is critical for the establishment of H3K9me3 and H4K20me3 at endogenous retroviral elements (ERVs) and their silencing that is independent of its canonical role in DNA demethylation. Furthermore, we provide evidence that this repression of ERVs depends on the interaction between TET1 and SIN3A. In summary, we demonstrate that the non-catalytic functions of TET1 are critical for regulation of gene expression and the silencing of endogenous retroviruses in mESCs.
Collapse
Affiliation(s)
- Paul Stolz
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Angelo Salazar Mantero
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet 17165 Stockholm, Sweden, Ming Wai Lau Centre for Reparative Medicine, Stockholm Node, Karolinska Institutet 17177 Stockholm, Sweden
| | - Andrey Tvardovskiy
- Institute of Functional Epigenetics (IFE), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Enes Ugur
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich 81377, Germany.,Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Lucas E Wange
- Faculty of Biology, Anthropology and Human Genomics, Ludwig-Maximilians-Universität München 82152, Planegg-Martinsried, Germany
| | - Christopher B Mulholland
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Yuying Cheng
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet 17165 Stockholm, Sweden, Ming Wai Lau Centre for Reparative Medicine, Stockholm Node, Karolinska Institutet 17177 Stockholm, Sweden
| | - Michael Wierer
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Wolfgang Enard
- Faculty of Biology, Anthropology and Human Genomics, Ludwig-Maximilians-Universität München 82152, Planegg-Martinsried, Germany
| | - Robert Schneider
- Institute of Functional Epigenetics (IFE), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Till Bartke
- Institute of Functional Epigenetics (IFE), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Heinrich Leonhardt
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Simon J Elsässer
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet 17165 Stockholm, Sweden, Ming Wai Lau Centre for Reparative Medicine, Stockholm Node, Karolinska Institutet 17177 Stockholm, Sweden
| | - Sebastian Bultmann
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| |
Collapse
|
24
|
Joshi K, Liu S, Breslin S J P, Zhang J. Mechanisms that regulate the activities of TET proteins. Cell Mol Life Sci 2022; 79:363. [PMID: 35705880 DOI: 10.1007/s00018-022-04396-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 02/08/2023]
Abstract
The ten-eleven translocation (TET) family of dioxygenases consists of three members, TET1, TET2, and TET3. All three TET enzymes have Fe+2 and α-ketoglutarate (α-KG)-dependent dioxygenase activities, catalyzing the 1st step of DNA demethylation by converting 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), and further oxidize 5hmC to 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Gene knockout studies demonstrated that all three TET proteins are involved in the regulation of fetal organ generation during embryonic development and normal tissue generation postnatally. TET proteins play such roles by regulating the expression of key differentiation and fate-determining genes via (1) enzymatic activity-dependent DNA methylation of the promoters and enhancers of target genes; and (2) enzymatic activity-independent regulation of histone modification. Interacting partner proteins and post-translational regulatory mechanisms regulate the activities of TET proteins. Mutations and dysregulation of TET proteins are involved in the pathogenesis of human diseases, specifically cancers. Here, we summarize the research on the interaction partners and post-translational modifications of TET proteins. We also discuss the molecular mechanisms by which these partner proteins and modifications regulate TET functioning and target gene expression. Such information will help in the design of medications useful for targeted therapy of TET-mutant-related diseases.
Collapse
Affiliation(s)
- Kanak Joshi
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Shanhui Liu
- School of Life Sciences, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Peter Breslin S J
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.,Departments of Molecular/Cellular Physiology and Biology, Loyola University Medical Center and Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA. .,Departments of Pathology and Radiation Oncology, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
25
|
Huang X, Bashkenova N, Hong Y, Lyu C, Guallar D, Hu Z, Malik V, Li D, Wang H, Shen X, Zhou H, Wang J. A TET1-PSPC1-Neat1 molecular axis modulates PRC2 functions in controlling stem cell bivalency. Cell Rep 2022; 39:110928. [PMID: 35675764 PMCID: PMC9214724 DOI: 10.1016/j.celrep.2022.110928] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 03/29/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
TET1 maintains hypomethylation at bivalent promoters through its catalytic activity in embryonic stem cells (ESCs). However, TET1 catalytic activity-independent function in regulating bivalent genes is not well understood. Using a proteomics approach, we map the TET1 interactome in ESCs and identify PSPC1 as a TET1 partner. Genome-wide location analysis reveals that PSPC1 functionally associates with TET1 and Polycomb repressive complex-2 (PRC2). We establish that PSPC1 and TET1 repress, and the lncRNA Neat1 activates, bivalent gene expression. In ESCs, Neat1 is preferentially bound to PSPC1 alongside its PRC2 association at bivalent promoters. During the ESC-to-epiblast-like stem cell (EpiLC) transition, PSPC1 and TET1 maintain PRC2 chromatin occupancy at bivalent gene promoters, while Neat1 facilitates the activation of certain bivalent genes by promoting PRC2 binding to their mRNAs. Our study demonstrates a TET1-PSPC1-Neat1 molecular axis that modulates PRC2-binding affinity to chromatin and bivalent gene transcripts in controlling stem cell bivalency.
Collapse
Affiliation(s)
- Xin Huang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nazym Bashkenova
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yantao Hong
- Tsinghua Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Cong Lyu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Diana Guallar
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Zhe Hu
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Vikas Malik
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Dan Li
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hailin Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaohua Shen
- Tsinghua Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hongwei Zhou
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
26
|
Transcriptome Analysis of Schwann Cells at Various Stages of Myelination Implicates Chromatin Regulator Sin3A in Control of Myelination Identity. Neurosci Bull 2022; 38:720-740. [DOI: 10.1007/s12264-022-00850-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/13/2021] [Indexed: 10/18/2022] Open
|
27
|
Chrysanthou S, Tang Q, Lee J, Taylor SJ, Zhao Y, Steidl U, Zheng D, Dawlaty M. The DNA dioxygenase Tet1 regulates H3K27 modification and embryonic stem cell biology independent of its catalytic activity. Nucleic Acids Res 2022; 50:3169-3189. [PMID: 35150568 PMCID: PMC8989540 DOI: 10.1093/nar/gkac089] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 11/23/2022] Open
Abstract
Tet enzymes (Tet1/2/3) oxidize 5-methylcytosine to promote DNA demethylation and partner with chromatin modifiers to regulate gene expression. Tet1 is highly expressed in embryonic stem cells (ESCs), but its enzymatic and non-enzymatic roles in gene regulation are not dissected. We have generated Tet1 catalytically inactive (Tet1m/m) and knockout (Tet1-/-) ESCs and mice to study these functions. Loss of Tet1, but not loss of its catalytic activity, caused aberrant upregulation of bivalent (H3K4me3+; H3K27me3+) developmental genes, leading to defects in differentiation. Wild-type and catalytic-mutant Tet1 occupied similar genomic loci which overlapped with H3K27 tri-methyltransferase PRC2 and the deacetylase complex Sin3a at promoters of bivalent genes and with the helicase Chd4 at active genes. Loss of Tet1, but not loss of its catalytic activity, impaired enrichment of PRC2 and Sin3a at bivalent promoters leading to reduced H3K27 trimethylation and deacetylation, respectively, in absence of any changes in DNA methylation. Tet1-/-, but not Tet1m/m, embryos expressed higher levels of Gata6 and were developmentally delayed. Thus, the critical functions of Tet1 in ESCs and early development are mediated through its non-catalytic roles in regulating H3K27 modifications to silence developmental genes, and are more important than its catalytic functions in DNA demethylation.
Collapse
Affiliation(s)
- Stephanie Chrysanthou
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Qin Tang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Joun Lee
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Samuel J Taylor
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, 10461, USA
| | - Yilin Zhao
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
| | - Ulrich Steidl
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, 10461, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Meelad M Dawlaty
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| |
Collapse
|
28
|
Feng J, Zhu F, Ye D, Zhang Q, Guo X, Du C, Kang J. Sin3a drives mesenchymal-to-epithelial transition through cooperating with Tet1 in somatic cell reprogramming. Stem Cell Res Ther 2022; 13:29. [PMID: 35073971 PMCID: PMC8785580 DOI: 10.1186/s13287-022-02707-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/28/2021] [Indexed: 12/16/2022] Open
Abstract
Background Identifying novel regulatory factors and uncovered mechanisms of somatic cell reprogramming will be helpful for basic research and clinical application of induced pluripotent stem cells (iPSCs). Sin3a, a multifunctional transcription regulator, has been proven to be involved in the maintenance of pluripotency in embryonic stem cells (ESCs), but the role of Sin3a in somatic cell reprogramming remains unclear. Methods RNA interference of Sin3a during somatic cell reprogramming was realized by short hairpin RNAs. Reprogramming efficiency was evaluated by the number of alkaline phosphatase (AP)-positive colonies and Oct4-GFP-positive colonies. RNA sequencing was performed to identify the influenced biological processes after Sin3a knockdown and further confirmed by quantitative RT-PCR (qRT-PCR), western blotting and flow cytometry. The interaction between Sin3a and Tet1 was detected by coimmunoprecipitation. The enrichment of Sin3a and Tet1 at the epithelial gene promoters was measured by chromatin immunoprecipitation. Furthermore, DNA methylation patterns at the gene loci were investigated by hydroxymethylated DNA immunoprecipitation. Finally, Sin3a mutants that disrupt the interaction of Sin3a and Tet1 were also introduced to assess the importance of the Sin3a–Tet1 interaction during the mesenchymal-to-epithelial transition (MET) process. Results We found that Sin3a was gradually increased during OSKM-induced reprogramming and that knockdown of Sin3a significantly impaired MET at the early stage of reprogramming and iPSC generation. Mechanistic studies showed that Sin3a recruited Tet1 to facilitate the hydroxymethylation of epithelial gene promoters. Moreover, disrupting the interaction of Sin3a and Tet1 significantly blocked MET and iPSC generation. Conclusions Our studies revealed that Sin3a was a novel mediator of MET during early reprogramming, where Sin3a functioned as an epigenetic coactivator, cooperating with Tet1 to activate the epithelial program and promote the initiation of somatic cell reprogramming. These findings highlight the importance of Sin3a in the MET process and deepen our understanding of the epigenetic regulatory network of early reprogramming. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02707-4.
Collapse
Affiliation(s)
- Jiabao Feng
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Fugui Zhu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Dan Ye
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Qingquan Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Xudong Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China. .,Institute for Advanced Study, Tongji University, Shanghai, 200092, People's Republic of China.
| | - Changsheng Du
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China.
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
29
|
Zhang C, Zhong T, Li Y, Li X, Yuan X, Liu L, Wu W, Wu J, Wu Y, Liang R, Xie X, Kang C, Liu Y, Lai Z, Xiao J, Tang Z, Jin R, Wang Y, Xiao Y, Zhang J, Li J, Liu Q, Sun Z, Zhong J. The hepatic AMPK-TET1-SIRT1 axis regulates glucose homeostasis. eLife 2021; 10:70672. [PMID: 34738906 PMCID: PMC8592569 DOI: 10.7554/elife.70672] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Ten-eleven translocation methylcytosine dioxygenase 1 (TET1) is involved in multiple biological functions in cell development, differentiation, and transcriptional regulation. Tet1 deficient mice display the defects of murine glucose metabolism. However, the role of TET1 in metabolic homeostasis keeps unknown. Here, our finding demonstrates that hepatic TET1 physically interacts with silent information regulator T1 (SIRT1) via its C-terminal and activates its deacetylase activity, further regulating the acetylation-dependent cellular translocalization of transcriptional factors PGC-1α and FOXO1, resulting in the activation of hepatic gluconeogenic gene expression that includes PPARGC1A, G6PC, and SLC2A4. Importantly, the hepatic gluconeogenic gene activation program induced by fasting is inhibited in Tet1 heterozygous mice livers. The adenosine 5'-monophosphate-activated protein kinase (AMPK) activators metformin or AICAR-two compounds that mimic fasting-elevate hepatic gluconeogenic gene expression dependent on in turn activation of the AMPK-TET1-SIRT1 axis. Collectively, our study identifies TET1 as a SIRT1 coactivator and demonstrates that the AMPK-TET1-SIRT1 axis represents a potential mechanism or therapeutic target for glucose metabolism or metabolic diseases.
Collapse
Affiliation(s)
- Chunbo Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China.,School of Pharmacy, Nanchang University, Nanchang, China
| | - Tianyu Zhong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Yuanyuan Li
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Xianfeng Li
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Xiaopeng Yuan
- School of Pharmacy, Nanchang University, Nanchang, China
| | - Linlin Liu
- Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Weilin Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Jing Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Ye Wu
- School of Pharmacy, Nanchang University, Nanchang, China
| | - Rui Liang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xinhua Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Chuanchuan Kang
- Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yuwen Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Zhonghong Lai
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Jianbo Xiao
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Zhixian Tang
- Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Riqun Jin
- Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yan Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Yongwei Xiao
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Jin Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Jian Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Qian Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Zhongsheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Jianing Zhong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| |
Collapse
|
30
|
Zhang W, Xue X, Zheng X, Fan Z. NMFLRR: Clustering scRNA-seq data by integrating non-negative matrix factorization with low rank representation. IEEE J Biomed Health Inform 2021; 26:1394-1405. [PMID: 34310328 DOI: 10.1109/jbhi.2021.3099127] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Fast-developing single-cell technologies create unprecedented opportunities to reveal cell heterogeneity and diversity. Accurate classification of single cells is a critical prerequisite for recovering the mechanisms of heterogeneity. However, the scRNA-seq profiles we obtained at present have high dimensionality, sparsity, and noise, which pose challenges for existing clustering methods in grouping cells that belong to the same subpopulation based on transcriptomic profiles. Although many computational methods have been proposed developing novel and effective computational methods to accurately identify cell types remains a considerable challenge. We present a new computational framework to identify cell types by integrating low-rank representation (LRR) and nonnegative matrix factorization (NMF); this framework is named NMFLRR. The LRR captures the global properties of original data by using nuclear norms, and a locality constrained graph regularization term is introduced to characterize the data's local geometric information. The similarity matrix and low-dimensional features of data can be simultaneously obtained by applying the alternating direction method of multipliers (ADMM) algorithm to handle each variable alternatively in an iterative way. We finally obtained the predicted cell types by using a spectral algorithm based on the optimized similarity matrix. Nine real scRNA-seq datasets were used to test the performance of NMFLRR and fifteen other competitive methods, and the accuracy and robustness of the simulation results suggest the NMFLRR is a promising algorithm for the classification of single cells. The simulation code is freely available at: https://github.com/wzhangwhu/NMFLRR_code.
Collapse
|
31
|
Bisserier M, Mathiyalagan P, Zhang S, Elmastour F, Dorfmüller P, Humbert M, David G, Tarzami S, Weber T, Perros F, Sassi Y, Sahoo S, Hadri L. Regulation of the Methylation and Expression Levels of the BMPR2 Gene by SIN3a as a Novel Therapeutic Mechanism in Pulmonary Arterial Hypertension. Circulation 2021; 144:52-73. [PMID: 34078089 PMCID: PMC8293289 DOI: 10.1161/circulationaha.120.047978] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 03/17/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Epigenetic mechanisms are critical in the pathogenesis of pulmonary arterial hypertension (PAH). Previous studies have suggested that hypermethylation of the BMPR2 (bone morphogenetic protein receptor type 2) promoter is associated with BMPR2 downregulation and progression of PAH. Here, we investigated for the first time the role of SIN3a (switch-independent 3a), a transcriptional regulator, in the epigenetic mechanisms underlying hypermethylation of BMPR2 in the pathogenesis of PAH. METHODS We used lung samples from PAH patients and non-PAH controls, preclinical mouse and rat PAH models, and human pulmonary arterial smooth muscle cells. Expression of SIN3a was modulated using a lentiviral vector or a siRNA in vitro and a specific adeno-associated virus serotype 1 or a lentivirus encoding for human SIN3a in vivo. RESULTS SIN3a is a known transcriptional regulator; however, its role in cardiovascular diseases, especially PAH, is unknown. It is interesting that we detected a dysregulation of SIN3 expression in patients and in rodent models, which is strongly associated with decreased BMPR2 expression. SIN3a is known to regulate epigenetic changes. Therefore, we tested its role in the regulation of BMPR2 and found that BMPR2 is regulated by SIN3a. It is interesting that SIN3a overexpression inhibited human pulmonary arterial smooth muscle cells proliferation and upregulated BMPR2 expression by preventing the methylation of the BMPR2 promoter region. RNA-sequencing analysis suggested that SIN3a downregulated the expression of DNA and histone methyltransferases such as DNMT1 (DNA methyltransferase 1) and EZH2 (enhancer of zeste 2 polycomb repressive complex 2) while promoting the expression of the DNA demethylase TET1 (ten-eleven translocation methylcytosine dioxygenase 1). Mechanistically, SIN3a promoted BMPR2 expression by decreasing CTCF (CCCTC-binding factor) binding to the BMPR2 promoter. Last, we identified intratracheal delivery of adeno-associated virus serotype human SIN3a to be a beneficial therapeutic approach in PAH by attenuating pulmonary vascular and right ventricle remodeling, decreasing right ventricle systolic pressure and mean pulmonary arterial pressure, and restoring BMPR2 expression in rodent models of PAH. CONCLUSIONS All together, our study unveiled the protective and beneficial role of SIN3a in pulmonary hypertension. We also identified a novel and distinct molecular mechanism by which SIN3a regulates BMPR2 in human pulmonary arterial smooth muscle cells. Our study also identified lung-targeted SIN3a gene therapy using adeno-associated virus serotype 1 as a new promising therapeutic strategy for treating patients with PAH.
Collapse
Affiliation(s)
- Malik Bisserier
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Prabhu Mathiyalagan
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shihong Zhang
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Firas Elmastour
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter Dorfmüller
- Hôpital Marie Lannelongue, Department of Pathology, Le Plessis Robinson, France
| | - Marc Humbert
- Université Paris-Sud, and Université Paris-Saclay, Hôpital Bicêtre, Le Kremlin-Bicêtre, Paris, France
- Service de Pneumologie et Soins Intensifs Respiratoires and INSERM U999, Hôpital Bicêtre, AP-HP, Le Kremlin-Bicêtre, Paris, France
| | - Gregory David
- New York University School of Medicine, New York, NY, USA
| | - Sima Tarzami
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington DC, USA
| | - Thomas Weber
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Yassine Sassi
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Susmita Sahoo
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lahouaria Hadri
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
32
|
Tan Y, Cao H, Li Q, Sun J. The role of transcription factor Ap1 in the activation of the Nrf2/ARE pathway through TET1 in diabetic nephropathy. Cell Biol Int 2021; 45:1654-1665. [PMID: 33760331 DOI: 10.1002/cbin.11599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/01/2021] [Accepted: 03/21/2021] [Indexed: 02/06/2023]
Abstract
TET1 mediates demethylation in tumors, but its role in diabetic nephropathy (DN), a prevalent diabetic complication, is unclear. We attempted to probe the possible mechanism of TET1 in DN. A DN rat model was established and verified by marker detection and histopathological observation. The in vitro model was established on human mesangial cells (HMCs) induced by high glucose (HG), and verified by evaluation of fibrosis and inflammation. The differentially expressed mRNA was screened out by microarray analysis. The most differentially expressed mRNA (TET1) was reduced in DN rats and HG-HMCs. The upstream and downstream factors of TET1 were verified, and their roles in DN were analyzed by gain- and loss-function assays. TET1 was decreased in DN rats and HG-HMCs. High expression of TET1 decreased biochemical indexes and renal injury of DN rats and hampered the activity, fibrosis, and inflammation of HG-HMCs. Ap1 lowered TET1 expression, and enhanced inflammation in HG-HMCs, and accentuated renal injury in DN rats. TET1 overexpression inhibited the effect of Ap1 on DN. TET1 promoted the transcription of Nrf2. The Ap1/TET1 axis mediated the Nrf2/ARE pathway activity. Overall, TET1 overexpression weakened the inhibitory effect of Ap1 on the Nrf2/ARE pathway, thus alleviating inflammation and renal injury in DN.
Collapse
Affiliation(s)
- Yongshun Tan
- Department of Nephrology, Jinan City People's Hospital, Jinan, Shandong, China
| | - Huaimin Cao
- Department of Endocrinology, Gaotang County People's Hospital, Liaocheng, Shandong, China
| | - Qingfei Li
- Department of Endocrinology, Linyi People's Hospital, Dezhou, Shandong, China
| | - Jianjun Sun
- Department 1 of Nephrology, Zibo Central Hospital, Zibo, Shandong, China
| |
Collapse
|
33
|
Terzi Cizmecioglu N, Huang J, Keskin EG, Wang X, Esen I, Chen F, Orkin SH. ARID4B is critical for mouse embryonic stem cell differentiation towards mesoderm and endoderm, linking epigenetics to pluripotency exit. J Biol Chem 2021; 295:17738-17751. [PMID: 33454011 DOI: 10.1074/jbc.ra120.015534] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/13/2020] [Indexed: 11/06/2022] Open
Abstract
Distinct cell types emerge from embryonic stem cells through a precise and coordinated execution of gene expression programs during lineage commitment. This is established by the action of lineage specific transcription factors along with chromatin complexes. Numerous studies have focused on epigenetic factors that affect embryonic stem cells (ESC) self-renewal and pluripotency. However, the contribution of chromatin to lineage decisions at the exit from pluripotency has not been as extensively studied. Using a pooled epigenetic shRNA screen strategy, we identified chromatin-related factors critical for differentiation toward mesodermal and endodermal lineages. Here we reveal a critical role for the chromatin protein, ARID4B. Arid4b-deficient mESCs are similar to WT mESCs in the expression of pluripotency factors and their self-renewal. However, ARID4B loss results in defects in up-regulation of the meso/endodermal gene expression program. It was previously shown that Arid4b resides in a complex with SIN3A and HDACS 1 and 2. We identified a physical and functional interaction of ARID4B with HDAC1 rather than HDAC2, suggesting functionally distinct Sin3a subcomplexes might regulate cell fate decisions Finally, we observed that ARID4B deficiency leads to increased H3K27me3 and a reduced H3K27Ac level in key developmental gene loci, whereas a subset of genomic regions gain H3K27Ac marks. Our results demonstrate that epigenetic control through ARID4B plays a key role in the execution of lineage-specific gene expression programs at pluripotency exit.
Collapse
Affiliation(s)
- Nihal Terzi Cizmecioglu
- Department of Biological Sciences, Faculty of Arts and Sciences, Middle East Technical University, Ankara, Turkey.
| | - Jialiang Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian China
| | - Ezgi G Keskin
- Department of Biological Sciences, Faculty of Arts and Sciences, Middle East Technical University, Ankara, Turkey
| | - Xiaofeng Wang
- Geisel School of Medicine, Dartmouth University, Hanover, New Hampshire USA
| | - Idil Esen
- Howard Hughes Medical Institute, Dana Farber/Boston Children's Cancer and Blood Disorders Center, Dept. of Pediatrics, Harvard Medical School, Boston, Massachusetts USA
| | - Fei Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian China
| | - Stuart H Orkin
- Howard Hughes Medical Institute, Dana Farber/Boston Children's Cancer and Blood Disorders Center, Dept. of Pediatrics, Harvard Medical School, Boston, Massachusetts USA.
| |
Collapse
|
34
|
Ji Z, Li Y, Liu SX, Sharrocks AD. The forkhead transcription factor FOXK2 premarks lineage-specific genes in human embryonic stem cells for activation during differentiation. Nucleic Acids Res 2021; 49:1345-1363. [PMID: 33434264 PMCID: PMC7897486 DOI: 10.1093/nar/gkaa1281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
Enhancers play important roles in controlling gene expression in a choreographed spatial and temporal manner during development. However, it is unclear how these regulatory regions are established during differentiation. Here we investigated the genome-wide binding profile of the forkhead transcription factor FOXK2 in human embryonic stem cells (ESCs) and downstream cell types. This transcription factor is bound to thousands of regulatory regions in human ESCs, and binding at many sites is maintained as cells differentiate to mesendodermal and neural precursor cell (NPC) types, alongside the emergence of new binding regions. FOXK2 binding is generally associated with active histone marks in any given cell type. Furthermore newly acquired, or retained FOXK2 binding regions show elevated levels of activating histone marks following differentiation to NPCs. In keeping with this association with activating marks, we demonstrate a role for FOXK transcription factors in gene activation during NPC differentiation. FOXK2 occupancy in ESCs is therefore an early mark for delineating the regulatory regions, which become activated in later lineages.
Collapse
Affiliation(s)
- Zongling Ji
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Yaoyong Li
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Sean X Liu
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Andrew D Sharrocks
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
35
|
Yang Y, Wang C, Wei N, Hong T, Sun Z, Xiao J, Yao J, Li Z, Liu T. Identification of prognostic chromatin-remodeling genes in clear cell renal cell carcinoma. Aging (Albany NY) 2020; 12:25614-25642. [PMID: 33232269 PMCID: PMC7803503 DOI: 10.18632/aging.104170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022]
Abstract
The aim of this study was to investigate the effects of chromatin-remodeling genes on the prognosis of patients with clear cell renal cell carcinoma (ccRCC). In TCGA-KIRC patients, two subgroups based on 86 chromatin-remodeling genes were established. The random forest algorithm was used for feature selection to identify BPTF, SIN3A and CNOT1 as characterized chromatin remodelers in ccRCC with good prognostic value. YY1 was indicated to be a transcription factor of genes highly related to BPTF, SIN3A and CNOT1. Functional annotations indicated that BPTF, SIN3A, CNOT1 and YY1 are all involved in the ubiquitin-mediated proteolysis process and that high expression of any of the five associated E3 ubiquitin ligases found in the pathway suggests a good prognosis. Protein network analysis indicated that BPTF has a targeted regulatory effect on YY1. Another independent dataset from International Cancer Genome Consortium (ICGC) showed a strong consistency with results in TCGA. In conclusion, we demonstrate that BPTF, SIN3A and CNOT1 are novel prognostic factors that predict good survival in ccRCC. We predicted that the good prognostic value of chromatin-remodeling genes BPTF and SIN3A is related to the regulation of YY1 and that YY1 regulates E3 ubiquitin ligases for further degradation of oncoproteins in ccRCC.
Collapse
Affiliation(s)
- Yujing Yang
- Department of Medical Oncology, The First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Chengyuan Wang
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Ningde Wei
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Ting Hong
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Zuyu Sun
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Jiawen Xiao
- Department of Medical Oncology, Shenyang Fifth People Hospital, Tiexi District, Shenyang 110001, P.R. China
| | - Jiaxi Yao
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Zhi Li
- Department of Medical Oncology, The First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Tao Liu
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| |
Collapse
|
36
|
TET1 Interacts Directly with NANOG via Independent Domains Containing Hydrophobic and Aromatic Residues. J Mol Biol 2020; 432:6075-6091. [PMID: 33058869 PMCID: PMC7763487 DOI: 10.1016/j.jmb.2020.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/27/2020] [Accepted: 10/07/2020] [Indexed: 11/29/2022]
Abstract
TET1 and NANOG interact via multiple independent binding regions. TET1 and NANOG interactions are mediated by aromatic and hydrophobic residues. TET1 residues that bind NANOG are highly conserved in mammals. Co-localisation of TET1 and NANOG on chromatin is enriched at NANOG target genes. NANOG and TET1 have regulatory roles in maintaining and reprogramming pluripotency.
The DNA demethylase TET1 is highly expressed in embryonic stem cells and is important both for lineage commitment, and reprogramming to naïve pluripotency. TET1 interacts with the pluripotency transcription factor NANOG which may contribute to its biological activity in pluripotent cells. However, how TET1 interacts with other proteins is largely unknown. Here, we characterise the physical interaction between TET1 and NANOG using embryonic stem cells and bacterial expression systems. TET1 and NANOG interact through multiple binding sites that act independently. Critically, mutating conserved hydrophobic and aromatic residues within TET1 and NANOG abolishes the interaction. On chromatin, NANOG is predominantly localised at ESC enhancers. While TET1 binds to CpG dinucleotides in promoters using its CXXC domain, TET1 also binds to enhancers, though the mechanism involved is unknown. Comparative ChIP-seq analysis identifies genomic loci bound by both TET1 and NANOG, that correspond predominantly to pluripotency enhancers. Importantly, around half of NANOG transcriptional target genes are associated with TET1-NANOG co-bound sites. These results indicate a mechanism by which TET1 protein may be targeted to specific sites of action at enhancers by direct interaction with a transcription factor.
Collapse
|
37
|
Li W, Karwacki-Neisius V, Ma C, Tan L, Shi Y, Wu F, Shi YG. Nono deficiency compromises TET1 chromatin association and impedes neuronal differentiation of mouse embryonic stem cells. Nucleic Acids Res 2020; 48:4827-4838. [PMID: 32286661 PMCID: PMC7229820 DOI: 10.1093/nar/gkaa213] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 03/19/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022] Open
Abstract
NONO is a DNA/RNA-binding protein, which plays a critical regulatory role during cell stage transitions of mouse embryonic stem cells (mESCs). However, its function in neuronal lineage commitment and the molecular mechanisms of its action in such processes are largely unknown. Here we report that NONO plays a key role during neuronal differentiation of mESCs. Nono deletion impedes neuronal lineage commitment largely due to a failure of up-regulation of specific genes critical for neuronal differentiation. Many of the NONO regulated genes are also DNA demethylase TET1 targeted genes. Importantly, re-introducing wild type NONO to the Nono KO cells, not only restores the normal expression of the majority of NONO/TET1 coregulated genes but also rescues the defective neuronal differentiation of Nono-deficient mESCs. Mechanistically, our data shows that NONO directly interacts with TET1 via its DNA binding domain and recruits TET1 to genomic loci to regulate 5-hydroxymethylcytosine levels. Nono deletion leads to a significant dissociation of TET1 from chromatin and dysregulation of DNA hydroxymethylation of neuronal genes. Taken together, our findings reveal a key role and an epigenetic mechanism of action of NONO in regulation of TET1-targeted neuronal genes, offering new functional and mechanistic understanding of NONO in stem cell functions, lineage commitment and specification.
Collapse
Affiliation(s)
- Wenjing Li
- Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China, and Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, 201102, China.,Endocrinology Division, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA
| | - Violetta Karwacki-Neisius
- Division of Newborn Medicine and Program in Epigenetics, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Chun Ma
- Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China, and Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Li Tan
- Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China, and Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Yang Shi
- Division of Newborn Medicine and Program in Epigenetics, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Feizhen Wu
- Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China, and Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Yujiang Geno Shi
- Endocrinology Division, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
38
|
Yang X, Graff SM, Heiser CN, Ho KH, Chen B, Simmons AJ, Southard-Smith AN, David G, Jacobson DA, Kaverina I, Wright CVE, Lau KS, Gu G. Coregulator Sin3a Promotes Postnatal Murine β-Cell Fitness by Regulating Genes in Ca 2+ Homeostasis, Cell Survival, Vesicle Biosynthesis, Glucose Metabolism, and Stress Response. Diabetes 2020; 69:1219-1231. [PMID: 32245798 PMCID: PMC7243292 DOI: 10.2337/db19-0721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 03/26/2020] [Indexed: 02/06/2023]
Abstract
Swi-independent 3a and 3b (Sin3a and Sin3b) are paralogous transcriptional coregulators that direct cellular differentiation, survival, and function. Here, we report that mouse Sin3a and Sin3b are coproduced in most pancreatic cells during embryogenesis but become much more enriched in endocrine cells in adults, implying continued essential roles in mature endocrine cell function. Mice with loss of Sin3a in endocrine progenitors were normal during early postnatal stages but gradually developed diabetes before weaning. These physiological defects were preceded by the compromised survival, insulin-vesicle packaging, insulin secretion, and nutrient-induced Ca2+ influx of Sin3a-deficient β-cells. RNA sequencing coupled with candidate chromatin immunoprecipitation assays revealed several genes that could be directly regulated by Sin3a in β-cells, which modulate Ca2+/ion transport, cell survival, vesicle/membrane trafficking, glucose metabolism, and stress responses. Finally, mice with loss of both Sin3a and Sin3b in multipotent embryonic pancreatic progenitors had significantly reduced islet cell mass at birth, caused by decreased endocrine progenitor production and increased β-cell death. These findings highlight the stage-specific requirements for the presumed "general" coregulators Sin3a and Sin3b in islet β-cells, with Sin3a being dispensable for differentiation but required for postnatal function and survival.
Collapse
Affiliation(s)
- Xiaodun Yang
- Vanderbilt Program in Developmental Biology, Vanderbilt Center for Stem Cell Biology, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Sarah M Graff
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Cody N Heiser
- Vanderbilt Program in Developmental Biology, Vanderbilt Center for Stem Cell Biology, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
- Epithelial Biology Center, Vanderbilt Medical Center, Nashville, TN
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Kung-Hsien Ho
- Vanderbilt Program in Developmental Biology, Vanderbilt Center for Stem Cell Biology, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Bob Chen
- Vanderbilt Program in Developmental Biology, Vanderbilt Center for Stem Cell Biology, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
- Epithelial Biology Center, Vanderbilt Medical Center, Nashville, TN
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Alan J Simmons
- Vanderbilt Program in Developmental Biology, Vanderbilt Center for Stem Cell Biology, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
- Epithelial Biology Center, Vanderbilt Medical Center, Nashville, TN
| | - Austin N Southard-Smith
- Vanderbilt Program in Developmental Biology, Vanderbilt Center for Stem Cell Biology, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
- Epithelial Biology Center, Vanderbilt Medical Center, Nashville, TN
| | - Gregory David
- Department of Biochemistry and Molecular Pharmacology, New York University, New York, NY
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Irina Kaverina
- Vanderbilt Program in Developmental Biology, Vanderbilt Center for Stem Cell Biology, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Christopher V E Wright
- Vanderbilt Program in Developmental Biology, Vanderbilt Center for Stem Cell Biology, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Ken S Lau
- Vanderbilt Program in Developmental Biology, Vanderbilt Center for Stem Cell Biology, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
- Epithelial Biology Center, Vanderbilt Medical Center, Nashville, TN
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Guoqiang Gu
- Vanderbilt Program in Developmental Biology, Vanderbilt Center for Stem Cell Biology, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
39
|
Wang F, Liu Y. Identification of key genes, regulatory factors, and drug target genes of recurrent implantation failure (RIF). Gynecol Endocrinol 2020; 36:448-455. [PMID: 31646911 DOI: 10.1080/09513590.2019.1680622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Objective: Recurrent implantation failure (RIF) exacerbates the physical trauma of infertile women that undergone in vitro fertilization-embryo transfer (IVF-ET). We aimed to identify the key genes, regulatory factors, and drug target genes involved in the RIF.Methods: The dataset GSE58144 that obtained from the Gene Expression Omnibus mainly contained 43 RIF and 72 control endometrial samples. Differently expressed genes (DEGs) between RIF and control groups were firstly analyzed, followed by the pathway and Gene Ontology (GO) enrichment analysis. Then, protein-protein interaction (PPI) network and miRNA-transcript factor (TF)-DEGs network were established. Finally, a drug-target interaction network was constructed.Results: A total of 399 DEGs were identified between the RIF and controls. In the PPI and key module network, UBE2I, PLK4, XPO1, AURKB, and NUP107 were identified as the hub genes, which mainly enriched in RNA transport and cell division cycle-related pathways and GO items. In the miRNA-TF-DEGs network, E2F4, SIN3A, miRNA489, miRNA199A, miRNA369-3P, miRNA422, and miRNA522 were considered as the key regulatory factors during RIF. In addition, HTR1A, NR3C1, and GABRA3 were the main targets of the drugs annotated in DrugBank.Conclusion: The effects of PLK4, XPO1, AURKB, and NUP107 on the RIF may be via affecting the proliferation and differentiation of endometrial stromal cells. Besides, SIN3A and miRNA199A may be crucial for embryo implantation. In addition, NR3C1 may be used as a possible target for the clinical therapy of RIF.
Collapse
Affiliation(s)
- Fang Wang
- Department of Gynaecology and Obstetrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yaofang Liu
- Department of Gynaecology and Obstetrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
40
|
Selective targeting of TET catalytic domain promotes somatic cell reprogramming. Proc Natl Acad Sci U S A 2020; 117:3621-3626. [PMID: 32024762 DOI: 10.1073/pnas.1910702117] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ten-eleven translocation (TET) family enzymes (TET1, TET2, and TET3) oxidize 5-methylcytosine (5mC) and generate 5-hydroxymethylcytosine (5hmC) marks on the genome. Each TET protein also interacts with specific binding partners and partly plays their role independent of catalytic activity. Although the basic role of TET enzymes is well established now, the molecular mechanism and specific contribution of their catalytic and noncatalytic domains remain elusive. Here, by combining in silico and biochemical screening strategy, we have identified a small molecule compound, C35, as a first-in-class TET inhibitor that specifically blocks their catalytic activities. Using this inhibitor, we explored the enzymatic function of TET proteins during somatic cell reprogramming. Interestingly, we found that C35-mediated TET inactivation increased the efficiency of somatic cell programming without affecting TET complexes. Using high-throughput mRNA sequencing, we found that by targeting 5hmC repressive marks in the promoter regions, C35-mediated TET inhibition activates the transcription of the BMP-SMAD-ID signaling pathway, which may be responsible for promoting somatic cell reprogramming. These results suggest that C35 is an important tool for inducing somatic cell reprogramming, as well as for dissecting the other biological functions of TET enzymatic activities without affecting their other nonenzymatic roles.
Collapse
|
41
|
Yang J, Bashkenova N, Zang R, Huang X, Wang J. The roles of TET family proteins in development and stem cells. Development 2020; 147:147/2/dev183129. [PMID: 31941705 DOI: 10.1242/dev.183129] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ten-eleven translocation (TET) methylcytosine dioxygenases are enzymes that catalyze the demethylation of 5-methylcytosine on DNA. Through global and site-specific demethylation, they regulate cell fate decisions during development and in embryonic stem cells by maintaining pluripotency or by regulating differentiation. In this Primer, we provide an updated overview of TET functions in development and stem cells. We discuss the catalytic and non-catalytic activities of TETs, and their roles as epigenetic regulators of both DNA and RNA hydroxymethylation, highlighting how TET proteins function in regulating gene expression at both the transcriptional and post-transcriptional levels.
Collapse
Affiliation(s)
- Jihong Yang
- Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nazym Bashkenova
- Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ruge Zang
- Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA.,Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xin Huang
- Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
42
|
Reimer M, Pulakanti K, Shi L, Abel A, Liang M, Malarkannan S, Rao S. Deletion of Tet proteins results in quantitative disparities during ESC differentiation partially attributable to alterations in gene expression. BMC DEVELOPMENTAL BIOLOGY 2019; 19:16. [PMID: 31286885 PMCID: PMC6615237 DOI: 10.1186/s12861-019-0196-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/30/2019] [Indexed: 12/12/2022]
Abstract
Background The Tet protein family (Tet1, Tet2, and Tet3) regulate DNA methylation through conversion of 5-methylcytosine to 5-hydroxymethylcytosine which can ultimately result in DNA demethylation and play a critical role during early mammalian development and pluripotency. While multiple groups have generated knockouts combining loss of different Tet proteins in murine embryonic stem cells (ESCs), differences in genetic background and approaches has made it difficult to directly compare results and discern the direct mechanism by which Tet proteins regulate the transcriptome. To address this concern, we utilized genomic editing in an isogenic pluripotent background which permitted a quantitative, flow-cytometry based measurement of pluripotency in combination with genome-wide assessment of gene expression and DNA methylation changes. Our ultimate goal was to generate a resource of large-scale datasets to permit hypothesis-generating experiments. Results We demonstrate a quantitative disparity in the differentiation ability among Tet protein deletions, with Tet2 single knockout exhibiting the most severe defect, while loss of Tet1 alone or combinations of Tet genes showed a quantitatively intermediate phenotype. Using a combination of transcriptomic and epigenomic approaches we demonstrate an increase in DNA hypermethylation and a divergence of transcriptional profiles in pluripotency among Tet deletions, with loss of Tet2 having the most profound effect in undifferentiated ESCs. Conclusions We conclude that loss of Tet2 has the most dramatic effect both on the phenotype of ESCs and the transcriptome compared to other genotypes. While loss of Tet proteins increased DNA hypermethylation, especially in gene promoters, these changes in DNA methylation did not correlate with gene expression changes. Thus, while loss of different Tet proteins alters DNA methylation, this change does not appear to be directly responsible for transcriptome changes. Thus, loss of Tet proteins likely regulates the transcriptome epigenetically both through altering 5mC but also through additional mechanisms. Nonetheless, the transcriptome changes in pluripotent Tet2−/− ESCs compared to wild-type implies that the disparities in differentiation can be partially attributed to baseline alterations in gene expression. Electronic supplementary material The online version of this article (10.1186/s12861-019-0196-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael Reimer
- Blood Research Institute, Versiti, 8733 West Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Kirthi Pulakanti
- Blood Research Institute, Versiti, 8733 West Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Linzheng Shi
- Blood Research Institute, Versiti, 8733 West Watertown Plank Road, Milwaukee, WI, 53226, USA.,Vanderbilt University, Nashville, TN, 37240, USA
| | - Alex Abel
- Blood Research Institute, Versiti, 8733 West Watertown Plank Road, Milwaukee, WI, 53226, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Mingyu Liang
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Subramaniam Malarkannan
- Blood Research Institute, Versiti, 8733 West Watertown Plank Road, Milwaukee, WI, 53226, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Sridhar Rao
- Blood Research Institute, Versiti, 8733 West Watertown Plank Road, Milwaukee, WI, 53226, USA. .,Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA. .,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
43
|
TET enzymes, DNA demethylation and pluripotency. Biochem Soc Trans 2019; 47:875-885. [DOI: 10.1042/bst20180606] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 12/16/2022]
Abstract
Abstract
Ten-eleven translocation (TET) methylcytosine dioxygenases (TET1, TET2, TET3) actively cause demethylation of 5-methylcytosine (5mC) and produce and safeguard hypomethylation at key regulatory regions across the genome. This 5mC erasure is particularly important in pluripotent embryonic stem cells (ESCs) as they need to maintain self-renewal capabilities while retaining the potential to generate different cell types with diverse 5mC patterns. In this review, we discuss the multiple roles of TET proteins in mouse ESCs, and other vertebrate model systems, with a particular focus on TET functions in pluripotency, differentiation, and developmental DNA methylome reprogramming. Furthermore, we elaborate on the recently described non-catalytic roles of TET proteins in diverse biological contexts. Overall, TET proteins are multifunctional regulators that through both their catalytic and non-catalytic roles carry out myriad functions linked to early developmental processes.
Collapse
|
44
|
Lamadema N, Burr S, Brewer AC. Dynamic regulation of epigenetic demethylation by oxygen availability and cellular redox. Free Radic Biol Med 2019; 131:282-298. [PMID: 30572012 DOI: 10.1016/j.freeradbiomed.2018.12.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 02/07/2023]
Abstract
The chromatin structure of the mammalian genome must facilitate both precisely-controlled DNA replication together with tightly-regulated gene transcription. This necessarily involves complex mechanisms and processes which remain poorly understood. It has long been recognised that the epigenetic landscape becomes established during embryonic development and acts to specify and determine cell fate. In addition, the chromatin structure is highly dynamic and allows for both cellular reprogramming and homeostatic modulation of cell function. In this respect, the functions of epigenetic "erasers", which act to remove covalently-linked epigenetic modifications from DNA and histones are critical. The enzymatic activities of the TET and JmjC protein families have been identified as demethylases which act to remove methyl groups from DNA and histones, respectively. Further, they are characterised as members of the Fe(II)- and 2-oxoglutarate-dependent dioxygenase superfamily. This provides the intriguing possibility that their enzymatic activities may be modulated by cellular metabolism, oxygen availability and redox-based mechanisms, all of which are likely to display dynamic cell- and tissue-specific patterns of flux. Here we discuss the current evidence for such [O2]- and redox-dependent regulation of the TET and Jmjc demethylases and the potential physiological and pathophysiological functional consequences of such regulation.
Collapse
Affiliation(s)
- Nermina Lamadema
- School of Cardiovascular Medicine & Sciences, King's College London BHF Centre of Research Excellence, United Kingdom
| | - Simon Burr
- School of Cardiovascular Medicine & Sciences, King's College London BHF Centre of Research Excellence, United Kingdom
| | - Alison C Brewer
- School of Cardiovascular Medicine & Sciences, King's College London BHF Centre of Research Excellence, United Kingdom.
| |
Collapse
|
45
|
Co-repressor, co-activator and general transcription factor: the many faces of the Sin3 histone deacetylase (HDAC) complex. Biochem J 2018; 475:3921-3932. [PMID: 30552170 PMCID: PMC6295471 DOI: 10.1042/bcj20170314] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 12/21/2022]
Abstract
At face value, the Sin3 histone deacetylase (HDAC) complex appears to be a prototypical co-repressor complex, that is, a multi-protein complex recruited to chromatin by DNA bound repressor proteins to facilitate local histone deacetylation and transcriptional repression. While this is almost certainly part of its role, Sin3 stubbornly refuses to be pigeon-holed in quite this way. Genome-wide mapping studies have found that Sin3 localises predominantly to the promoters of actively transcribed genes. While Sin3 knockout studies in various species result in a combination of both up- and down-regulated genes. Furthermore, genes such as the stem cell factor, Nanog, are dependent on the direct association of Sin3 for active transcription to occur. Sin3 appears to have properties of a co-repressor, co-activator and general transcription factor, and has thus been termed a co-regulator complex. Through a series of unique domains, Sin3 is able to assemble HDAC1/2, chromatin adaptors and transcription factors in a series of functionally and compositionally distinct complexes to modify chromatin at both gene-specific and global levels. Unsurprisingly, therefore, Sin3/HDAC1 have been implicated in the regulation of numerous cellular processes, including mammalian development, maintenance of pluripotency, cell cycle regulation and diseases such as cancer.
Collapse
|
46
|
Wu C, Li A, Hu J, Kang J. Histone deacetylase 2 is essential for LPS-induced inflammatory responses in macrophages. Immunol Cell Biol 2018; 97:72-84. [PMID: 30207412 PMCID: PMC7379312 DOI: 10.1111/imcb.12203] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 12/28/2022]
Abstract
The role of specific histone deacetylase (HDAC) proteins in regulating the lipopolysaccharide (LPS)‐induced inflammatory response and its underlying mechanisms are unclear. Here, HDAC2, a class I HDAC family protein, is essential for the LPS‐triggered inflammatory response in macrophages. LPS stimulation increases HDAC2 expression in macrophages. Knockdown of HDAC2 decreases the expression of proinflammatory genes, such as IL‐12, TNF‐α and iNOS following stimulation with LPS. The adoptive transfer of HDAC2 knockdown macrophages attenuates the LPS‐triggered innate inflammatory response in vivo, and these mice are less sensitive to endotoxin shock and Escherichia coli‐induced sepsis. Mechanistically, the c‐Jun protein is the main target of HDAC2‐mediated LPS‐induced production of proinflammatory cytokines. Moreover, HDAC2 knockdown increases the expression of c‐Jun, which directly binds the promoters of proinflammatory genes and forms nuclear receptor corepressor complexes to inhibit the transcription of proinflammatory genes in macrophages. These effects are rescued by c‐Jun expression. According to the chromatin immunoprecipitation analysis, HDAC2 also selectively suppresses c‐Jun expression by directly binding to its promoter and modifying histone acetylation after LPS stimulation. Our findings define a new function and mechanism of the HDAC2/c‐Jun signaling network that regulates the LPS‐induced immune response in macrophages.
Collapse
Affiliation(s)
- Chenming Wu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, 200092, China.,Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Ang Li
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Jian Hu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| |
Collapse
|
47
|
Chandru A, Bate N, Vuister GW, Cowley SM. Sin3A recruits Tet1 to the PAH1 domain via a highly conserved Sin3-Interaction Domain. Sci Rep 2018; 8:14689. [PMID: 30279502 PMCID: PMC6168491 DOI: 10.1038/s41598-018-32942-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 09/17/2018] [Indexed: 12/31/2022] Open
Abstract
The Sin3A complex acts as a transcriptional hub, integrating the function of diverse transcription factors with histone modifying enzymes, notably, histone deacetylases (HDAC) 1 and 2. The Sin3A protein sits at the centre of the complex, mediating multiple simultaneous protein-protein interactions via its four paired-amphipathic helix (PAH) domains (PAH1-4). The PAH domains contain a conserved four helical bundle, generating a hydrophobic cleft into which the single-helix of a Sin3-interaction domain (SID) is able to insert and bind with high affinity. Although they share a similar mode of interaction, the SIDs of different repressor proteins bind to only one of four potential PAH domains, due to the specific combination of hydrophobic residues at the interface. Here we report the identification of a highly conserved SID in the 5-methylcytosine dioxygenase, Tet1 (Tet1-SID), which interacts directly with the PAH1 domain of Sin3A. Using a combination of NMR spectroscopy and homology modelling we present a model of the PAH1/Tet1-SID complex, which binds in a Type-II orientation similar to Sap25. Mutagenesis of key residues show that the 11-amino acid Tet1-SID is necessary and sufficient for the interaction with Sin3A and is absolutely required for Tet1 to repress transcription in cells.
Collapse
Affiliation(s)
- Aditya Chandru
- Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester, LE1 7RH, United Kingdom
| | - Neil Bate
- Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester, LE1 7RH, United Kingdom.,Leicester Institute of Structural and Chemical Biology, Leicester, United Kingdom
| | - Geerten W Vuister
- Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester, LE1 7RH, United Kingdom.,Leicester Institute of Structural and Chemical Biology, Leicester, United Kingdom
| | - Shaun M Cowley
- Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester, LE1 7RH, United Kingdom.
| |
Collapse
|