1
|
Wang S, Li XY, Zhu M, Deng H, Wang J, Zhang JR. The SpxA1-TenA toxin-antitoxin system regulates epigenetic variations of Streptococcus pneumoniae by targeting protein synthesis. PLoS Pathog 2024; 20:e1012801. [PMID: 39724263 DOI: 10.1371/journal.ppat.1012801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Human pathogen Streptococcus pneumoniae forms multiple epigenetically and phenotypically distinct intra-populations by invertase PsrA-driven inversions of DNA methyltransferase hsdS genes in the colony opacity-determinant (cod) locus. As manifested by phase switch between opaque and transparent colonies, different genome methylation patterns or epigenomes confer pathogenesis-associated traits, but it is unknown how the pathogen controls the hsdS inversion orientations. Here, we report our finding of the SpxA1-TenA toxin-antitoxin (TA) system that regulates the orientations of hsdS inversions, and thereby bacterial epigenome and associated traits (e.g., colony opacity) by targeting pneumococcal protein synthesis. SpxA1 and TenA were found to constitute a highly conserved type II TA system in S. pneumoniae, primarily based on the observation that overexpressing toxin TenA led to growth arrest in E. coli and enhanced autolysis in S. pneumoniae, and the antitoxin SpxA1 repressed the transcription of the spxA1-tenA operon. When the transcription of tenA was de-repressed by a spontaneous AT di-nucleotide insertion/deletion in the promoter region of the spxA1-tenA operon, TenA bound to the ribosome maturation factor RimM, and thereby reduced the cellular level of alternative sigma factor ComX (known for the activation of natural transformation-associated genes). Attenuation of ComX expression in turn enhanced the transcription of the invertase gene psrA, which favored the formation of the transparent colony phase-associated hsdS allelic configurations in the cod locus. Phenotypically, moderate expression of TenA dramatically reshaped pneumococcal epigenome and colony opacity. Because spontaneous variations frequently occur during bacterial growth in the number of the AT di-nucleotides in the promoter region of the spxA1-tenA operon, this locus acts as a programmed genetic switch that generates pneumococcal subpopulations with epigenetic and phenotypic diversity.
Collapse
Affiliation(s)
- Shaomeng Wang
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Xiu-Yuan Li
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Mengran Zhu
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Juanjuan Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing-Ren Zhang
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Jin C, Jeon CH, Kim HW, Kang JM, Choi Y, Kang SM, Lee HH, Kim DH, Han BW, Lee BJ. Structural insight into the distinct regulatory mechanism of the HEPN-MNT toxin-antitoxin system in Legionella pneumophila. Nat Commun 2024; 15:10188. [PMID: 39582057 PMCID: PMC11586414 DOI: 10.1038/s41467-024-54551-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024] Open
Abstract
HEPN-MNT, a type VII TA module, comprises the HEPN toxin and the MNT antitoxin, which acts as a nucleotidyltransferase that transfers the NMP moiety to the corresponding HEPN toxin, thereby interfering with its toxicity. Here, we report crystal structures of the Legionella pneumophila HEPN-MNT module, including HEPN, AMPylated HEPN, MNT, and the HEPN-MNT complex. Our structural analysis and biochemical assays, suggest that HEPN is a metal-dependent RNase and identify its active site residues. We also elucidate the oligomeric state of HEPN in solution. Interestingly, L. pneumophila MNT, which lacks a long C-terminal α4 helix, controls the toxicity of HEPN toxin via a distinct binding mode with HEPN. Finally, we propose a comprehensive regulatory mechanism of the L. pneumophila HEPN-MNT module based on structural and functional studies. These results provide insight into the type VII HEPN-MNT TA system.
Collapse
Affiliation(s)
- Chenglong Jin
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- MasterMediTech, Seoul, Republic of Korea
| | - Cha-Hee Jeon
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Heung Wan Kim
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Jin Mo Kang
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Yuri Choi
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sung-Min Kang
- College of Pharmacy, Duksung Women's University, Seoul, Republic of Korea
| | - Hyung Ho Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Do-Hee Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea.
| | - Byung Woo Han
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
| | - Bong-Jin Lee
- MasterMediTech, Seoul, Republic of Korea.
- College of Pharmacy, Ajou University, Suwon, Republic of Korea.
| |
Collapse
|
3
|
Encina-Robles J, Pérez-Villalobos V, Bustamante P. The HicAB System: Characteristics and Biological Roles of an Underappreciated Toxin-Antitoxin System. Int J Mol Sci 2024; 25:12165. [PMID: 39596231 PMCID: PMC11594946 DOI: 10.3390/ijms252212165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Small genetic elements known as toxin-antitoxin (TA) systems are abundant in bacterial genomes and involved in stress response, phage inhibition, mobile genetic elements maintenance and biofilm formation. Type II TA systems are the most abundant and diverse, and they are organized as bicistronic operons that code for proteins (toxin and antitoxin) able to interact through a nontoxic complex. However, HicAB is one of the type II TA systems that remains understudied. Here, we review the current knowledge of HicAB systems in different bacteria, their main characteristics and the existing evidence to associate them with some biological roles, are described. The accumulative evidence reviewed here, though modest, underscores that HicAB systems are underexplored TA systems with significant potential for future research.
Collapse
Affiliation(s)
| | | | - Paula Bustamante
- Molecular and Cellular Microbiology Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile
| |
Collapse
|
4
|
Hou Y, Li Y, Tao N, Kong X, Li Y, Liu Y, Li H, Wang Z. Toxin-antitoxin system gene mutations driving Mycobacterium tuberculosis transmission revealed by whole genome sequencing. Front Microbiol 2024; 15:1398886. [PMID: 39144214 PMCID: PMC11322068 DOI: 10.3389/fmicb.2024.1398886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Background The toxin-antitoxin (TA) system plays a vital role in the virulence and pathogenicity of Mycobacterium tuberculosis (M. tuberculosis). However, the regulatory mechanisms and the impact of gene mutations on M. tuberculosis transmission remain poorly understood. Objective To investigate the influence of gene mutations in the toxin-antitoxin system on M. tuberculosis transmission dynamics. Method We performed whole-genome sequencing on the analyzed strains of M. tuberculosis. The genes associated with the toxin-antitoxin system were obtained from the National Center for Biotechnology Information (NCBI) Gene database. Mutations correlating with enhanced transmission within the genes were identified by using random forest, gradient boosting decision tree, and generalized linear mixed models. Results A total of 13,518 M. tuberculosis isolates were analyzed, with 42.29% (n = 5,717) found to be part of genomic clusters. Lineage 4 accounted for the majority of isolates (n = 6488, 48%), followed by lineage 2 (n = 5133, 37.97%). 23 single nucleotide polymorphisms (SNPs) showed a positive correlation with clustering, including vapB1 G34A, vapB24 A76C, vapB2 T171C, mazF2 C85T, mazE2 G104A, vapB31 T112C, relB T226A, vapB11 C54T, mazE5 T344C, vapB14 A29G, parE1 (C103T, C88T), and parD1 C134T. Six SNPs, including vapB6 A29C, vapB31 T112C, parD1 C134T, vapB37 G205C, Rv2653c A80C, and vapB22 C167T, were associated with transmission clades across different countries. Notably, our findings highlighted the positive association of vapB6 A29C, vapB31 T112C, parD1 C134T, vapB37 G205C, vapB19 C188T, and Rv2653c A80C with transmission clades across diverse regions. Furthermore, our analysis identified 32 SNPs that exhibited significant associations with clade size. Conclusion Our study presents potential associations between mutations in genes related to the toxin-antitoxin system and the transmission dynamics of M. tuberculosis. However, it is important to acknowledge the presence of confounding factors and limitations in our study. Further research is required to establish causation and assess the functional significance of these mutations. These findings provide a foundation for future investigations and the formulation of strategies aimed at controlling TB transmission.
Collapse
Affiliation(s)
- Yawei Hou
- Institute of Chinese Medical Literature and Culture, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yifan Li
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Shandong First Medical University (Affiliated Hospital of Shandong Academy of Medical Sciences), Jinan, Shandong, China
| | - Ningning Tao
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xianglong Kong
- Artificial Intelligence Institute Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Yameng Li
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yao Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huaichen Li
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhenguo Wang
- Institute of Chinese Medical Literature and Culture, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
5
|
Jin C, Kang SM, Kim DH, Lee Y, Lee BJ. Discovery of Antimicrobial Agents Based on Structural and Functional Study of the Klebsiella pneumoniae MazEF Toxin-Antitoxin System. Antibiotics (Basel) 2024; 13:398. [PMID: 38786127 PMCID: PMC11117207 DOI: 10.3390/antibiotics13050398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Klebsiella pneumoniae causes severe human diseases, but its resistance to current antibiotics is increasing. Therefore, new antibiotics to eradicate K. pneumoniae are urgently needed. Bacterial toxin-antitoxin (TA) systems are strongly correlated with physiological processes in pathogenic bacteria, such as growth arrest, survival, and apoptosis. By using structural information, we could design the peptides and small-molecule compounds that can disrupt the binding between K. pneumoniae MazE and MazF, which release free MazF toxin. Because the MazEF system is closely implicated in programmed cell death, artificial activation of MazF can promote cell death of K. pneumoniae. The effectiveness of a discovered small-molecule compound in bacterial cell killing was confirmed through flow cytometry analysis. Our findings can contribute to understanding the bacterial MazEF TA system and developing antimicrobial agents for treating drug-resistant K. pneumoniae.
Collapse
Affiliation(s)
- Chenglong Jin
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea;
- Mastermeditech Ltd., Gangseo-gu, Seoul 16499, Republic of Korea
| | - Sung-Min Kang
- College of Pharmacy, Duksung Women’s University, Seoul 01369, Republic of Korea;
| | - Do-Hee Kim
- College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Republic of Korea;
| | - Yuno Lee
- Korea Research Institute of Chemical Technology, Korea Chemical Bank Daejeon, Daejeon 34114, Republic of Korea;
| | - Bong-Jin Lee
- Mastermeditech Ltd., Gangseo-gu, Seoul 16499, Republic of Korea
- College of Pharmacy, Ajou University, Yeongtong-gu, Suwon 16499, Republic of Korea
| |
Collapse
|
6
|
Gerdes K. Diverse genetic contexts of HicA toxin domains propose a role in anti-phage defense. mBio 2024; 15:e0329323. [PMID: 38236063 PMCID: PMC10865869 DOI: 10.1128/mbio.03293-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Toxin-antitoxin (TA) modules are prevalent in prokaryotic genomes, often in substantial numbers. For instance, the Mycobacterium tuberculosis genome alone harbors close to 100 TA modules, half of which belong to a singular type. Traditionally ascribed multiple biological roles, recent insights challenge these notions and instead indicate a predominant function in phage defense. TAs are often located within Defense Islands, genomic regions that encode various defense systems. The analysis of genes within Defense Islands has unveiled a wide array of systems, including TAs that serve in anti-phage defense. Prokaryotic cells are equipped with anti-phage Viperins that, analogous to their mammalian counterparts, inhibit viral RNA transcription. Additionally, bacterial Structural Maintenance of Chromosome (SMC) proteins combat plasmid intrusion by recognizing foreign DNA signatures. This study undertakes a comprehensive bioinformatics analysis of genetic elements encoding the HicA double-stranded RNA-binding domain, complemented by protein structure modeling. The HicA toxin domains are found in at least 14 distinct contexts and thus exhibit a remarkable genetic diversity. Traditional bicistronic TA operons represent eight of these contexts, while four are characterized by monocistronic operons encoding fused HicA domains. Two contexts involve hicA adjacent to genes that encode bacterial Viperins. Notably, genes encoding RelE toxins are also adjacent to Viperin genes in some instances. This configuration hints at a synergistic enhancement of Viperin-mediated anti-phage action by HicA and RelE toxins. The discovery of a HicA domain merged with an SMC domain is compelling, prompting further investigation into its potential roles.IMPORTANCEProkaryotic organisms harbor a multitude of toxin-antitoxin (TA) systems, which have long puzzled scientists as "genes in search for a function." Recent scientific advancements have shed light on the primary role of TAs as anti-phage defense mechanisms. To gain an overview of TAs it is important to analyze their genetic contexts that can give hints on function and guide future experimental inquiries. This article describes a thorough bioinformatics examination of genes encoding the HicA toxin domain, revealing its presence in no fewer than 14 unique genetic arrangements. Some configurations notably align with anti-phage activities, underscoring potential roles in microbial immunity. These insights robustly reinforce the hypothesis that HicA toxins are integral components of the prokaryotic anti-phage defense repertoire. The elucidation of these genetic contexts not only advances our understanding of TAs but also contributes to a paradigm shift in how we perceive their functionality within the microbial world.
Collapse
Affiliation(s)
- Kenn Gerdes
- Kenn Gerdes is an independent researcher with the residence, Voldmestergade, Copenhagen, Denmark
| |
Collapse
|
7
|
Chan WT, Garcillán-Barcia MP, Yeo CC, Espinosa M. Type II bacterial toxin-antitoxins: hypotheses, facts, and the newfound plethora of the PezAT system. FEMS Microbiol Rev 2023; 47:fuad052. [PMID: 37715317 PMCID: PMC10532202 DOI: 10.1093/femsre/fuad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/24/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023] Open
Abstract
Toxin-antitoxin (TA) systems are entities found in the prokaryotic genomes, with eight reported types. Type II, the best characterized, is comprised of two genes organized as an operon. Whereas toxins impair growth, the cognate antitoxin neutralizes its activity. TAs appeared to be involved in plasmid maintenance, persistence, virulence, and defence against bacteriophages. Most Type II toxins target the bacterial translational machinery. They seem to be antecessors of Higher Eukaryotes and Prokaryotes Nucleotide-binding (HEPN) RNases, minimal nucleotidyltransferase domains, or CRISPR-Cas systems. A total of four TAs encoded by Streptococcus pneumoniae, RelBE, YefMYoeB, Phd-Doc, and HicAB, belong to HEPN-RNases. The fifth is represented by PezAT/Epsilon-Zeta. PezT/Zeta toxins phosphorylate the peptidoglycan precursors, thereby blocking cell wall synthesis. We explore the body of knowledge (facts) and hypotheses procured for Type II TAs and analyse the data accumulated on the PezAT family. Bioinformatics analyses showed that homologues of PezT/Zeta toxin are abundantly distributed among 14 bacterial phyla mostly in Proteobacteria (48%), Firmicutes (27%), and Actinobacteria (18%), showing the widespread distribution of this TA. The pezAT locus was found to be mainly chromosomally encoded whereas its homologue, the tripartite omega-epsilon-zeta locus, was found mostly on plasmids. We found several orphan pezT/zeta toxins, unaccompanied by a cognate antitoxin.
Collapse
Affiliation(s)
- Wai Ting Chan
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Maria Pilar Garcillán-Barcia
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, C/Albert Einstein 22, PCTCAN, 39011 Santander, Spain
| | - Chew Chieng Yeo
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine
, Universiti Sultan Zainal Abidin, Jalan Sultan Mahumd, 20400 Kuala Terengganu, Malaysia
| | - Manuel Espinosa
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| |
Collapse
|
8
|
Chaudhary S, Yadav M, Mathpal S, Chandra S, Rathore JS. Genomic assortment and interactive insights of the chromosomal encoded control of cell death ( ccd) toxin-antitoxin (TA) module in Xenorhabdus nematophila. J Biomol Struct Dyn 2023; 41:7032-7044. [PMID: 36002267 DOI: 10.1080/07391102.2022.2114940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/14/2022] [Indexed: 10/15/2022]
Abstract
In the present circumstances, toxin-antitoxin (TA) modules have a great consideration due to their elusive role in bacterial physiology. TA modules consist of a toxic part and a counteracting antitoxin part and these are abundant genetic loci harbored on bacterial plasmids and chromosomes. The control of cell death (ccd) TA locus was the first identified TA module and its unitary function (such as plasmid maintenance) has been described, however, the function of its chromosomal counterparts is still ambiguous. Here, we are exploring the genomic assortment, structural and functional association of chromosomally encoded ccdAB TA homolog (ccdABXn1) in the genome of an entomopathogenic bacterium Xenorhabdus nematophila. This bacterium is a symbiotic model with the nematode Steinernema carpocapsae that infects and kills the host insect. By genomic assortment analysis, our observations suggested that CcdA antitoxin homologs are not more closely related than CcdB toxin homologs. Further results suggest that the ccdABXn1 TA homolog has sulphonamide (such as 4C6, for CcdA homolog) and peptide (such as gyrase, for CcdB homolog) ligand partners with a typical TA interaction network that may affect essential cellular metabolism of the X. nematophila. Collectively, our results improve the knowledge and conception of the metabolic interactive role of ccdAB TA homologs in X. nematophila physiology.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shobhi Chaudhary
- Gautam Buddha University, School of Biotechnology, Greater Noida, Uttar Pradesh, India
| | - Mohit Yadav
- Gautam Buddha University, School of Biotechnology, Greater Noida, Uttar Pradesh, India
| | - Shalini Mathpal
- Department of Biotechnology, Kumaun University Uttarakhand, Bhimtal, India
| | - Subhash Chandra
- Department of Botany, Computational Biology & Biotechnology Laboratory, Soban Singh Jeena University, Almora, Uttarakhand, India
| | | |
Collapse
|
9
|
Gruzdev N, Pitcovski J, Katz C, Ruimi N, Eliahu D, Noach C, Rosenzweig E, Finger A, Shahar E. Development of toxin-antitoxin self-destructive bacteria, aimed for salmonella vaccination. Vaccine 2023:S0264-410X(23)00777-6. [PMID: 37400285 DOI: 10.1016/j.vaccine.2023.06.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 07/05/2023]
Abstract
The most common source of foodborne Salmonella infection in humans is poultry eggs and meat, such that prevention of human infection is mostly achieved by vaccination of farm animals. While inactivated and attenuated vaccines are available, both present drawbacks. This study aimed to develop a novel vaccination strategy, which combines the effectiveness of live-attenuated and safety of inactivated vaccines by construction of inducible self-destructing bacteria utilizing toxin-antitoxin (TA) systems. Hok-Sok and CeaB-CeiB toxin-antitoxin systems were coupled with three induction systems aimed for activating cell killing upon lack of arabinose, anaerobic conditions or low concentration of metallic di-cations. The constructs were transformed into a pathogenic Salmonella enterica serovar Enteritidis strain and bacteria elimination was evaluated in vitro under specific activating conditions and in vivo following administration to chickens. Four constructs induced bacterial killing under the specified conditions, both in growth media and within macrophages. Cloacal swabs of all chicks orally administered transformed bacteria had no detectable levels of bacteria within 9 days of inoculation. By day ten, no bacteria were identified in the spleen and liver of most birds. Antibody immune response was raised toward TA carrying Salmonella which resembled response toward the wildtype bacteria. The constructs described in this study led to self-destruction of virulent Salmonella enteritidis both in vitro and in inoculated animals within a period which is sufficient for the induction of a protective immune response. This system may serve as a safe and effective live vaccine platform against Salmonella as well as other pathogenic bacteria.
Collapse
Affiliation(s)
- Nady Gruzdev
- MIGAL Research Institute in the Galilee, Kiryat Shmona, Israel
| | - Jacob Pitcovski
- MIGAL Research Institute in the Galilee, Kiryat Shmona, Israel; Tel-Hai Academic College, Upper Galilee, Israel
| | - Chen Katz
- MIGAL Research Institute in the Galilee, Kiryat Shmona, Israel
| | - Nili Ruimi
- MIGAL Research Institute in the Galilee, Kiryat Shmona, Israel
| | - Dalia Eliahu
- MIGAL Research Institute in the Galilee, Kiryat Shmona, Israel
| | | | | | | | - Ehud Shahar
- MIGAL Research Institute in the Galilee, Kiryat Shmona, Israel; Tel-Hai Academic College, Upper Galilee, Israel.
| |
Collapse
|
10
|
Lin J, Guo Y, Yao J, Tang K, Wang X. Applications of toxin-antitoxin systems in synthetic biology. ENGINEERING MICROBIOLOGY 2023; 3:100069. [PMID: 39629251 PMCID: PMC11610964 DOI: 10.1016/j.engmic.2023.100069] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 12/07/2024]
Abstract
Toxin-antitoxin (TA) systems are ubiquitous in bacteria and archaea. Most are composed of two neighboring genetic elements, a stable toxin capable of inhibiting crucial cellular processes, including replication, transcription, translation, cell division and membrane integrity, and an unstable antitoxin to counteract the toxicity of the toxin. Many new discoveries regarding the biochemical properties of the toxin and antitoxin components have been made since the first TA system was reported nearly four decades ago. The physiological functions of TA systems have been hotly debated in recent decades, and it is now increasingly clear that TA systems are important immune systems in prokaryotes. In addition to being involved in biofilm formation and persister cell formation, these modules are antiphage defense systems and provide host defenses against various phage infections via abortive infection. In this review, we explore the potential applications of TA systems based on the recent progress made in elucidating TA functions. We first describe the most recent classification of TA systems and then introduce the biochemical functions of toxins and antitoxins, respectively. Finally, we primarily focus on and devote considerable space to the application of TA complexes in synthetic biology.
Collapse
Affiliation(s)
- Jianzhong Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianyun Yao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Hou B, Wang CY, Li SW, Zhou LJ, Che YL, Chen QY. Effects of Toxin-Antitoxin System HicAB on Biofilm Formation by Extraintestinal Pathogenic E. coli. Curr Microbiol 2022; 80:50. [PMID: 36542185 DOI: 10.1007/s00284-022-03138-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
The type II toxin-antitoxin (T-A) HicAB system is abundant in several bacteria and archaea, such as Escherichia coli, Burkholderia Pseudomallei, Yersinia pestis, Pseudomonas aeruginosa, and Streptococcus pneumoniae. This system engages in stress response, virulence, and bacterial persistence. This study showed that the biofilm-forming ability of the hicAB deletion mutant was significantly decreased to moderate ability compared to the extra-intestinal pathogenic Escherichia coli (ExPEC) parent strain and the complemented strain, which are strong biofilm producers. Congo red assay showed that the hicAB mutant maintained the ability to form curli fimbriae. Using RNA-seq and comparative real-time quantitative RT-PCR, we observed the difference in gene expression between the hicAB mutant and the parent strain, which was associated with biofilm formation. Our data indicate that the HicAB type II T-A system has a key role in biofilm formation by ExPEC, which may be associated with outer membrane protein (OMP) gene expression. Collectively, our results indicate that the hicAB type II T-A system is involved in ExPEC biofilm formation.
Collapse
Affiliation(s)
- Bo Hou
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Animal Disease Control Technology Development Center, Fujian Academy of Agricultural Sciences, No. 104 Xindian Town, Fuzhou, 350013, Fujian, China.
| | - Chen-Yan Wang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Animal Disease Control Technology Development Center, Fujian Academy of Agricultural Sciences, No. 104 Xindian Town, Fuzhou, 350013, Fujian, China
| | - Shao-Wen Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lun-Jiang Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Animal Disease Control Technology Development Center, Fujian Academy of Agricultural Sciences, No. 104 Xindian Town, Fuzhou, 350013, Fujian, China.
| | - Yong-Liang Che
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Animal Disease Control Technology Development Center, Fujian Academy of Agricultural Sciences, No. 104 Xindian Town, Fuzhou, 350013, Fujian, China
| | - Qiu-Yong Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Animal Disease Control Technology Development Center, Fujian Academy of Agricultural Sciences, No. 104 Xindian Town, Fuzhou, 350013, Fujian, China
| |
Collapse
|
12
|
Bajaj P, Manjunath K, Varadarajan R. Structural and functional determinants inferred from deep mutational scans. Protein Sci 2022; 31:e4357. [PMID: 35762712 PMCID: PMC9202547 DOI: 10.1002/pro.4357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/04/2022] [Accepted: 05/11/2022] [Indexed: 11/08/2022]
Abstract
Mutations that affect protein binding to a cognate partner primarily occur either at buried residues or at exposed residues directly involved in partner binding. Distinguishing between these two categories based solely on mutational phenotypes is challenging. The bacterial toxin CcdB kills cells by binding to DNA Gyrase. Cell death is prevented by binding to its cognate antitoxin CcdA, at an extended interface that partially overlaps with the GyrA binding site. Using the CcdAB toxin-antitoxin (TA) system as a model, a comprehensive site-saturation mutagenesis library of CcdB was generated in its native operonic context. The mutational sensitivity of each mutant was estimated by evaluating the relative abundance of each mutant in two strains, one resistant and the other sensitive to the toxic activity of the CcdB toxin, through deep sequencing. The ability to bind CcdA was inferred through a RelE reporter gene assay, since the CcdAB complex binds to its own promoter, repressing transcription. By analyzing mutant phenotypes in the CcdB-sensitive, CcdB-resistant, and RelE reporter strains, it was possible to assign residues to buried, CcdA interacting or GyrA interacting sites. A few mutants were individually constructed, expressed, and biophysically characterized to validate molecular mechanisms responsible for the observed phenotypes. Residues inferred to be important for antitoxin binding, are also likely to be important for rejuvenating CcdB from the CcdB-Gyrase complex. Therefore, even in the absence of structural information, when coupled to appropriate genetic screens, such high-throughput strategies can be deployed for predicting structural and functional determinants of proteins.
Collapse
Affiliation(s)
- Priyanka Bajaj
- Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| | - Kavyashree Manjunath
- Centre for Chemical Biology and TherapeuticsInstitute for Stem Cell Science and Regenerative MedicineBangaloreIndia
| | | |
Collapse
|
13
|
Insights into the Neutralization and DNA Binding of Toxin-Antitoxin System ParE SO-CopA SO by Structure-Function Studies. Microorganisms 2021; 9:microorganisms9122506. [PMID: 34946107 PMCID: PMC8706911 DOI: 10.3390/microorganisms9122506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 12/03/2022] Open
Abstract
ParESO-CopASO is a new type II toxin–antitoxin (TA) system in prophage CP4So that plays an essential role in circular CP4So maintenance after the excision in Shewanella oneidensis. The toxin ParESO severely inhibits cell growth, while CopASO functions as an antitoxin to neutralize ParESO toxicity through direct interactions. However, the molecular mechanism of the neutralization and autoregulation of the TA operon transcription remains elusive. In this study, we determined the crystal structure of a ParESO-CopASO complex that adopted an open V-shaped heterotetramer with the organization of ParESO-(CopASO)2-ParESO. The structure showed that upon ParESO binding, the intrinsically disordered C-terminal domain of CopASO was induced to fold into a partially ordered conformation that bound into a positively charged and hydrophobic groove of ParESO. Thermodynamics analysis showed the DNA-binding affinity of CopASO was remarkably higher than that of the purified TA complex, accompanied by the enthalpy change reversion from an exothermic reaction to an endothermic reaction. These results suggested ParESO acts as a de-repressor of the TA operon transcription at the toxin:antitoxin level of 1:1. Site-directed mutagenesis of ParESO identified His91 as the essential residue for its toxicity by cell toxicity assays. Our structure-function studies therefore elucidated the transcriptional regulation mechanism of the ParESO-CopASO pair, and may help to understand the regulation of CP4So maintenance in S. oneidensis.
Collapse
|
14
|
Singh G, Yadav M, Ghosh C, Rathore JS. Bacterial toxin-antitoxin modules: classification, functions, and association with persistence. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100047. [PMID: 34841338 PMCID: PMC8610362 DOI: 10.1016/j.crmicr.2021.100047] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 11/24/2022] Open
Abstract
Ubiquitously present bacterial Toxin-Antitoxin (TA) modules consist of stable toxin associated with labile antitoxin. Classification of TAs modules based on inhibition of toxin through antitoxin in 8 different classes. Variety of specific toxin targets and the abundance of TA modules in various deadly pathogens. Specific role of TAs modules in conservation of the resistant genes, emergence of persistence & biofilm formation. Proposed antibacterial strategies involving TA modules for elimination of multi-drug resistance.
Toxin-antitoxin (TA) modules are ubiquitous gene loci among bacteria and are comprised of a toxin part and its cognate antitoxin part. Under normal physiological conditions, antitoxin counteracts the toxicity of the toxin whereas, during stress conditions, TA modules play a crucial role in bacterial physiology through involvement in the post-segregational killing, abortive infection, biofilms, and persister cell formation. Most of the toxins are proteinaceous that affect translation or DNA replication, although some other intracellular molecular targets have also been described. While antitoxins may be a protein or RNA, that generally neutralizes its cognate toxin by direct interaction or with the help of other signaling elements and thus helps in the TA module regulation. In this review, we have discussed the current state of the multifaceted TA (type I–VIII) modules by highlighting their classification and specific targets. We have also discussed the presence of TA modules in the various pathogens and their role in antibiotic persistence development as well as biofilm formation, by influencing the different cellular processes. In the end, assembling knowledge about ubiquitous TA systems from pathogenic bacteria facilitated us to propose multiple novel antibacterial strategies involving artificial activation of TA modules.
Collapse
Affiliation(s)
- Garima Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, Yamuna Expressway, Uttar Pradesh, India
| | - Mohit Yadav
- School of Biotechnology, Gautam Buddha University, Greater Noida, Yamuna Expressway, Uttar Pradesh, India
| | - Chaitali Ghosh
- Department of Zoology Gargi College, University of Delhi, New Delhi, India
| | - Jitendra Singh Rathore
- School of Biotechnology, Gautam Buddha University, Greater Noida, Yamuna Expressway, Uttar Pradesh, India
| |
Collapse
|
15
|
De Bruyn P, Girardin Y, Loris R. Prokaryote toxin-antitoxin modules: Complex regulation of an unclear function. Protein Sci 2021; 30:1103-1113. [PMID: 33786944 PMCID: PMC8138530 DOI: 10.1002/pro.4071] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/29/2022]
Abstract
Toxin–antitoxin (TA) modules are small operons in bacteria and archaea that encode a metabolic inhibitor (toxin) and a matching regulatory protein (antitoxin). While their biochemical activities are often well defined, their biological functions remain unclear. In Type II TA modules, the most common class, both toxin and antitoxin are proteins, and the antitoxin inhibits the biochemical activity of the toxin via complex formation with the toxin. The different TA modules vary significantly regarding structure and biochemical activity. Both regulation of protein activity by the antitoxin and regulation of transcription can be highly complex and sometimes show striking parallels between otherwise unrelated TA modules. Interplay between the multiple levels of regulation in the broader context of the cell as a whole is most likely required for optimum fine‐tuning of these systems. Thus, TA modules can go through great lengths to prevent activation and to reverse accidental activation, in agreement with recent in vivo data. These complex mechanisms seem at odds with the lack of a clear biological function.
Collapse
Affiliation(s)
- Pieter De Bruyn
- VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel and Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - Yana Girardin
- VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel and Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - Remy Loris
- VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel and Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| |
Collapse
|
16
|
Kahan R, Worm DJ, de Castro GV, Ng S, Barnard A. Modulators of protein-protein interactions as antimicrobial agents. RSC Chem Biol 2021; 2:387-409. [PMID: 34458791 PMCID: PMC8341153 DOI: 10.1039/d0cb00205d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Protein-Protein interactions (PPIs) are involved in a myriad of cellular processes in all living organisms and the modulation of PPIs is already under investigation for the development of new drugs targeting cancers, autoimmune diseases and viruses. PPIs are also involved in the regulation of vital functions in bacteria and, therefore, targeting bacterial PPIs offers an attractive strategy for the development of antibiotics with novel modes of action. The latter are urgently needed to tackle multidrug-resistant and multidrug-tolerant bacteria. In this review, we describe recent developments in the modulation of PPIs in pathogenic bacteria for antibiotic development, including advanced small molecule and peptide inhibitors acting on bacterial PPIs involved in division, replication and transcription, outer membrane protein biogenesis, with an additional focus on toxin-antitoxin systems as upcoming drug targets.
Collapse
Affiliation(s)
- Rashi Kahan
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| | - Dennis J Worm
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| | - Guilherme V de Castro
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| | - Simon Ng
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| | - Anna Barnard
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| |
Collapse
|
17
|
Kang SM, Moon H, Han SW, Kim BW, Kim DH, Kim BM, Lee BJ. Toxin-Activating Stapled Peptides Discovered by Structural Analysis Were Identified as New Therapeutic Candidates That Trigger Antibacterial Activity against Mycobacterium tuberculosis in the Mycobacterium smegmatis Model. Microorganisms 2021; 9:microorganisms9030568. [PMID: 33801872 PMCID: PMC8000039 DOI: 10.3390/microorganisms9030568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 11/17/2022] Open
Abstract
The structure-function relationships of toxin-antitoxin (TA) systems from Mycobacterium tuberculosis have prompted the development of novel and effective antimicrobial agents that selectively target this organism. The artificial activation of toxins by peptide inhibitors can lead to the growth arrest and eventual death of bacterial cells. Optimizing candidate peptides by hydrocarbon α-helix stapling based on structural information from the VapBC TA system and in vitro systematic validation led to V26-SP-8, a VapC26 activator of M. tuberculosis. This compound exhibited highly enhanced activity and cell permeability owing to the stabilizing helical propensity of the peptide. These characteristics will increase its efficacy against multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Similar approaches utilizing structural and biochemical information for new antibiotic targets opens a new era for developing TB therapies.
Collapse
Affiliation(s)
- Sung-Min Kang
- College of Pharmacy, Duksung Women’s University, Seoul 01369, Korea;
| | - Heejo Moon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Korea; (H.M.); (B.W.K.)
| | - Sang-Woo Han
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea;
| | - Byeong Wook Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Korea; (H.M.); (B.W.K.)
| | - Do-Hee Kim
- College of Pharmacy, Jeju National University, Jeju 63243, Korea;
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Korea
| | - Byeong Moon Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Korea; (H.M.); (B.W.K.)
- Correspondence: (B.M.K.); (B.-J.L.); Tel.: +82-2-880-6634 (B.M.K.); +82-2-880-7868 (B.-J.L.)
| | - Bong-Jin Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea;
- Correspondence: (B.M.K.); (B.-J.L.); Tel.: +82-2-880-6634 (B.M.K.); +82-2-880-7868 (B.-J.L.)
| |
Collapse
|
18
|
Kang S, Jin C, Kim D, Park SJ, Han S, Lee B. Structure-based design of peptides that trigger Streptococcus pneumoniae cell death. FEBS J 2021; 288:1546-1564. [PMID: 32770723 PMCID: PMC7984235 DOI: 10.1111/febs.15514] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/30/2020] [Accepted: 08/06/2020] [Indexed: 01/08/2023]
Abstract
Toxin-antitoxin (TA) systems regulate key cellular functions in bacteria. Here, we report a unique structure of the Streptococcus pneumoniae HigBA system and a novel antimicrobial agent that activates HigB toxin, which results in mRNA degradation as an antibacterial strategy. In this study, protein structure-based peptides were designed and successfully penetrated the S. pneumoniae cell membrane and exerted bactericidal activity. This result represents the time during which inhibitors triggered S. pneumoniae cell death via the TA system. This discovery is a remarkable milestone in the treatment of antibiotic-resistant S. pneumoniae, and the mechanism of bactericidal activity is completely different from those of current antibiotics. Furthermore, we found that the HigBA complex shows a crossed-scissor interface with two intermolecular β-sheets at both the N and C termini of the HigA antitoxin. Our biochemical and structural studies provided valuable information regarding the transcriptional regulation mechanisms associated with the structural variability of HigAs. Our in vivo study also revealed the potential catalytic residues of HigB and their functional relationships. An inhibition study with peptides additionally proved that peptide binding may allosterically inhibit HigB activity. Overall, our results provide insights into the molecular basis of HigBA TA systems in S. pneumoniae, which can be applied for the development of new antibacterial strategies. DATABASES: Structural data are available in the PDB database under the accession number 6AF4.
Collapse
Affiliation(s)
- Sung‐Min Kang
- Research Institute of Pharmaceutical Sciences, College of PharmacySeoul National UniversityGwanak‐guSeoulKorea
| | - Chenglong Jin
- Research Institute of Pharmaceutical Sciences, College of PharmacySeoul National UniversityGwanak‐guSeoulKorea
| | - Do‐Hee Kim
- College of PharmacyJeju National UniversityJejuKorea
- Interdisciplinary Graduate Program in Advanced Convergence Technology & ScienceJeju National UniversityJejuKorea
| | - Sung Jean Park
- Gachon Institute of Pharmaceutical Sciences, College of PharmacyGachon UniversityIncheonKorea
| | - Sang‐Woo Han
- Research Institute of Pharmaceutical Sciences, College of PharmacySeoul National UniversityGwanak‐guSeoulKorea
| | - Bong‐Jin Lee
- Research Institute of Pharmaceutical Sciences, College of PharmacySeoul National UniversityGwanak‐guSeoulKorea
| |
Collapse
|
19
|
Srivastava A, Pati S, Kaushik H, Singh S, Garg LC. Toxin-antitoxin systems and their medical applications: current status and future perspective. Appl Microbiol Biotechnol 2021; 105:1803-1821. [PMID: 33582835 DOI: 10.1007/s00253-021-11134-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Almost all bacteria synthesize two types of toxins-one for its survival by regulating different cellular processes and another as a strategy to interact with host cells for pathogenesis. Usually, "bacterial toxins" are contemplated as virulence factors that harm the host organism. However, toxins produced by bacteria, as a survival strategy against the host, also hamper its cellular processes. To overcome this, the bacteria have evolved with the production of a molecule, referred to as antitoxin, to negate the deleterious effect of the toxin against itself. The toxin and antitoxins are encoded by a two-component toxin-antitoxin (TA) system. The antitoxin, a protein or RNA, sequesters the toxins of the TA system for neutralization within the bacterial cell. In this review, we have described different TA systems of bacteria and their potential medical and biotechnological applications. It is of interest to note that while bacterial toxin-antitoxin systems have been well studied, the TA system in unicellular eukaryotes, though predicted by the investigators, have never been paid the desired attention. In the present review, we have also touched upon the TA system of eukaryotes identified to date. KEY POINTS: Bacterial toxins harm the host and also affect the bacterial cellular processes. The antitoxin produced by bacteria protect it from the toxin's harmful effects. The toxin-antitoxin systems can be targeted for various medical applications.
Collapse
Affiliation(s)
- Akriti Srivastava
- Department of Life Sciences, Shiv Nadar University, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh, 201314, India
| | - Soumya Pati
- Department of Life Sciences, Shiv Nadar University, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh, 201314, India
| | - Himani Kaushik
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Lalit C Garg
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India.
| |
Collapse
|
20
|
Xia K, Han C, Xu J, Liang X. Toxin-antitoxin HicAB regulates the formation of persister cells responsible for the acid stress resistance in Acetobacter pasteurianus. Appl Microbiol Biotechnol 2021; 105:725-739. [PMID: 33386897 DOI: 10.1007/s00253-020-11078-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/02/2020] [Accepted: 12/27/2020] [Indexed: 12/13/2022]
Abstract
Elucidation of the acetic acid resistance (AAR) mechanisms is of great significance to the development of industrial microbial species, specifically to the acetic acid bacteria (AAB) in vinegar industry. Currently, the role of population heterogeneity in the AAR of AAB is still unclear. In this study, we investigated the persister formation in AAB and the physiological role of HicAB in Acetobacter pasteurianus Ab3. We found that AAB were able to produce a high level of persister cells (10-2 to 100 in frequency) in the exponential-phase cultures. Initial addition of acetic acid and ethanol reduced the ratio of persister cells in A. pasteurianus by promoting the intracellular ATP level. Further, we demonstrated that HicAB was an important regulator of AAR in A. pasteurianus Ab3. Strains lacking hicAB showed a decreased survival under acetic acid exposure. Deletion of hicAB significantly diminished the acetic acid production, acetification rate, and persister formation in A. pasteurianus Ab3, underscoring the correlation between hicAB, persister formation, and acid stress resistance. By transcriptomic analysis (RNA-seq), we revealed that HicAB contributed to the survival of A. pasteurianus Ab3 under high acid stress by upregulating the expression of genes involved in the acetic acid over-oxidation and transport, 2-methylcitrate cycle, and oxidative phosphorylation. Collectively, the results of this study refresh our current understanding of the AAR mechanisms in A. pasteurianus, which may facilitate the development of novel ways for improving its industrial performance and direct the scaled-up vinegar production. KEY POINTS: • AAB strains form persister cells with different frequencies. • A. pasteurianus are able to form acid-tolerant persister cells. • HicAB contributes to the AAR and persister formation in A. pasteurianus Ab3.
Collapse
Affiliation(s)
- Kai Xia
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Chengcheng Han
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.,Institute of Food Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Jun Xu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.,Institute of Food Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Xinle Liang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China. .,Institute of Food Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
21
|
Kang SM, Jin C, Kim DH, Lee Y, Lee BJ. Structural and Functional Study of the Klebsiella pneumoniae VapBC Toxin-Antitoxin System, Including the Development of an Inhibitor That Activates VapC. J Med Chem 2020; 63:13669-13679. [PMID: 33146528 DOI: 10.1021/acs.jmedchem.0c01118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Klebsiella pneumoniae is one of the most critical opportunistic pathogens. TA systems are promising drug targets because they are related to the survival of bacterial pathogens. However, structural information on TA systems in K. pneumoniae remains lacking; therefore, it is necessary to explore this information for the development of antibacterial agents. Here, we present the first crystal structure of the VapBC complex from K. pneumoniae at a resolution of 2.00 Å. We determined the toxin inhibitory mechanism of the VapB antitoxin through an Mg2+ switch, in which Mg2+ is displaced by R79 of VapB. This inhibitory mechanism of the active site is a novel finding and the first to be identified in a bacterial TA system. Furthermore, inhibitors, including peptides and small molecules, that activate the VapC toxin were discovered and investigated. These inhibitors can act as antimicrobial agents by disrupting the VapBC complex and activating VapC. Our comprehensive investigation of the K. pneumoniae VapBC system will help elucidate an unsolved conundrum in VapBC systems and develop potential antimicrobial agents.
Collapse
Affiliation(s)
- Sung-Min Kang
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Chenglong Jin
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Do-Hee Kim
- College of Pharmacy, Jeju National University, Jeju 63243, Korea.,Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Korea
| | - Yuno Lee
- Korea Chemical Bank, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Bong-Jin Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
22
|
Kang SM, Koo JS, Kim CM, Kim DH, Lee BJ. mRNA Interferase Bacillus cereus BC0266 Shows MazF-Like Characteristics Through Structural and Functional Study. Toxins (Basel) 2020; 12:toxins12060380. [PMID: 32521689 PMCID: PMC7354611 DOI: 10.3390/toxins12060380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 11/16/2022] Open
Abstract
Toxin–antitoxin (TA) systems are prevalent in bacteria and are known to regulate cellular growth in response to stress. As various functions related to TA systems have been revealed, the importance of TA systems are rapidly emerging. Here, we present the crystal structure of putative mRNA interferase BC0266 and report it as a type II toxin MazF. The MazF toxin is a ribonuclease activated upon and during stressful conditions, in which it cleaves mRNA in a sequence-specific, ribosome-independent manner. Its prolonged activity causes toxic consequences to the bacteria which, in turn, may lead to bacterial death. In this study, we conducted structural and functional investigations of Bacillus cereus MazF and present the first toxin structure in the TA system of B. cereus. Specifically, B. cereus MazF adopts a PemK-like fold and also has an RNA substrate-recognizing loop, which is clearly observed in the high-resolution structure. Key residues of B. cereus MazF involved in the catalytic activity are also proposed, and in vitro assay together with mutational studies affirm the ribonucleic activity and the active sites essential for its cellular toxicity.
Collapse
Affiliation(s)
- Sung-Min Kang
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanakgu, Seoul 08826, Korea; (S.-M.K.); (J.S.K.); (C.-M.K.)
| | - Ji Sung Koo
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanakgu, Seoul 08826, Korea; (S.-M.K.); (J.S.K.); (C.-M.K.)
| | - Chang-Min Kim
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanakgu, Seoul 08826, Korea; (S.-M.K.); (J.S.K.); (C.-M.K.)
| | - Do-Hee Kim
- College of Pharmacy, Jeju National University, Jeju 63243, Korea;
| | - Bong-Jin Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanakgu, Seoul 08826, Korea; (S.-M.K.); (J.S.K.); (C.-M.K.)
- Correspondence: ; Tel.: +82-2-880-7869
| |
Collapse
|
23
|
Jurėnas D, Van Melderen L. The Variety in the Common Theme of Translation Inhibition by Type II Toxin-Antitoxin Systems. Front Genet 2020; 11:262. [PMID: 32362907 PMCID: PMC7180214 DOI: 10.3389/fgene.2020.00262] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Type II Toxin-antitoxin (TA) modules are bacterial operons that encode a toxic protein and its antidote, which form a self-regulating genetic system. Antitoxins put a halter on toxins in many ways that distinguish different types of TA modules. In type II TA modules, toxin and antitoxin are proteins that form a complex which physically sequesters the toxin, thereby preventing its toxic activity. Type II toxins inhibit various cellular processes, however, the translation process appears to be their favorite target and nearly every step of this complex process is inhibited by type II toxins. The structural features, enzymatic activities and target specificities of the different toxin families are discussed. Finally, this review emphasizes that the structural folds presented by these toxins are not restricted to type II TA toxins or to one particular cellular target, and discusses why so many of them evolved to target translation as well as the recent developments regarding the role(s) of these systems in bacterial physiology and evolution.
Collapse
Affiliation(s)
- Dukas Jurėnas
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, CNRS, Aix-Marseille Université, Marseille, France
| | - Laurence Van Melderen
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles, Gosselies, Belgium
| |
Collapse
|
24
|
Yadav M, Rathore JS. The hipBA Xn operon from Xenorhabdus nematophila functions as a bonafide toxin-antitoxin module. Appl Microbiol Biotechnol 2020; 104:3081-3095. [PMID: 32043192 DOI: 10.1007/s00253-020-10441-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 10/25/2022]
Abstract
Here, for the first time, we have investigated the hipBAXn toxin-antitoxin (TA) module from entomopathogenic bacterium Xenorhabdus nematophila. It is a type II TA module that consists of HipAXn toxin and HipBXn antitoxin protein and located in the complementary strand of chromosome under XNC1_operon 0810 locus tag. For functional analysis, hipAXn toxin, hipBXn antitoxin, and an operon having both genes were cloned in pBAD/His C vector and transformed in Escherichia coli cells. The expression profiles and endogenous toxicity assay were performed in these cells. To determine the active amino acid residues responsible for the toxicity of HipAXn toxin, site-directed mutagenesis (SDM) was performed. SDM results showed that amino acid residues S149, D306, and D329 in HipAXn toxin protein were significantly essential for its toxicity. For transcriptional analysis, the 157 bp upstream region of the hipBAXn TA module was identified as a promoter with bioinformatics tools. Further, the LacZ reporter construct with promoter region was prepared and LacZ assays as well as reverse transcriptase-polymerase chain reaction (RT-PCR) analysis was performed under different stress conditions. Electrophoretic mobility shift assay (EMSA) was also performed with recombinant HipAXn toxin, HipBXn antitoxin protein, and 157 bp promoter region. Results showed that the hipBAXn TA module is a well-regulated system in which the upregulation of gene expression was also found compulsive in different SOS conditions. KEY POINTS: •Functional characterization of hipBA Xn TA module from Xenorhabdus nematophila. •hipBA Xn TA module is a functional type II TA module. •Transcriptional characterization of hipBA Xn TA module. •hipBA Xn TA module is a well regulated TA module. Graphical abstract.
Collapse
Affiliation(s)
- Mohit Yadav
- School of Biotechnology, Gautam Buddha University, Yamuna Expressway, Greater Noida, Uttar Pradesh, India
| | - Jitendra Singh Rathore
- School of Biotechnology, Gautam Buddha University, Yamuna Expressway, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
25
|
Manav MC, Turnbull KJ, Jurėnas D, Garcia-Pino A, Gerdes K, Brodersen DE. The E. coli HicB Antitoxin Contains a Structurally Stable Helix-Turn-Helix DNA Binding Domain. Structure 2019; 27:1675-1685.e3. [DOI: 10.1016/j.str.2019.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/28/2019] [Accepted: 08/16/2019] [Indexed: 11/30/2022]
|
26
|
Identification of Virulence-Associated Properties by Comparative Genome Analysis of Streptococcus pneumoniae, S. pseudopneumoniae, S. mitis, Three S. oralis Subspecies, and S. infantis. mBio 2019; 10:mBio.01985-19. [PMID: 31481387 PMCID: PMC6722419 DOI: 10.1128/mbio.01985-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Streptococcus pneumoniae is one of the most important human pathogens but is closely related to Streptococcus mitis, with which humans live in harmony. The fact that the two species evolved from a common ancestor provides a unique basis for studies of both infection-associated properties and properties important for harmonious coexistence with the host. By detailed comparisons of genomes of the two species and other related streptococci, we identified 224 genes associated with virulence and 25 genes unique to the mutualistic species. The exclusive presence of the virulence factors in S. pneumoniae enhances their potential as vaccine components, as a direct impact on beneficial members of the commensal microbiota can be excluded. Successful adaptation of S. mitis and other commensal streptococci to a harmonious relationship with the host relied on genetic stability and properties facilitating life in biofilms. From a common ancestor, Streptococcus pneumoniae and Streptococcus mitis evolved in parallel into one of the most important pathogens and a mutualistic colonizer of humans, respectively. This evolutionary scenario provides a unique basis for studies of both infection-associated properties and properties important for harmonious coexistence with the host. We performed detailed comparisons of 60 genomes of S. pneumoniae, S. mitis, Streptococcus pseudopneumoniae, the three Streptococcus oralis subspecies oralis, tigurinus, and dentisani, and Streptococcus infantis. Nonfunctional remnants of ancestral genes in both S. pneumoniae and in S. mitis support the evolutionary model and the concept that evolutionary changes on both sides were required to reach their present relationship to the host. Confirmed by screening of >7,500 genomes, we identified 224 genes associated with virulence. The striking difference to commensal streptococci was the diversity of regulatory mechanisms, including regulation of capsule production, a significantly larger arsenal of enzymes involved in carbohydrate hydrolysis, and proteins known to interfere with innate immune factors. The exclusive presence of the virulence factors in S. pneumoniae enhances their potential as vaccine components, as a direct impact on beneficial members of the commensal microbiota can be excluded. In addition to loss of these virulence-associated genes, adaptation of S. mitis to a mutualistic relationship with the host apparently required preservation or acquisition of 25 genes lost or absent from S. pneumoniae. Successful adaptation of S. mitis and other commensal streptococci to a harmonious relationship with the host relied on genetic stability and properties facilitating life in biofilms.
Collapse
|
27
|
Kang SM, Kim DH, Jin C, Ahn HC, Lee BJ. The crystal structure of AcrR from Mycobacterium tuberculosis reveals a one-component transcriptional regulation mechanism. FEBS Open Bio 2019; 9:1713-1725. [PMID: 31369208 PMCID: PMC6768106 DOI: 10.1002/2211-5463.12710] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 12/15/2022] Open
Abstract
Transcriptional regulator proteins are closely involved in essential survival strategies in bacteria. AcrR is a one-component allosteric repressor of the genes associated with lipid transport and antibiotic resistance. When fatty acid ligands bind to the C-terminal ligand-binding cavity of AcrR, a conformational change in the N-terminal operator-binding region of AcrR is triggered, which releases the repressed DNA and initiates transcription. This paper focuses on the structural transition mechanism of AcrR of Mycobacterium tuberculosis upon DNA and ligand binding. AcrR loses its structural integrity upon ligand-mediated structural alteration and bends toward the promoter DNA in a more compact form, initiating a rotational motion. Our functional characterization of AcrR and description of the ligand- and DNA-recognition mechanism may facilitate the discovery of new therapies for tuberculosis.
Collapse
Affiliation(s)
- Sung-Min Kang
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Do-Hee Kim
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Chenglong Jin
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Hee-Chul Ahn
- Department of Pharmacy, Dongguk University-Seoul, Ilsandong-gu, Goyang, Korea
| | - Bong-Jin Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| |
Collapse
|
28
|
Thomet M, Trautwetter A, Ermel G, Blanco C. Characterization of HicAB toxin-antitoxin module of Sinorhizobium meliloti. BMC Microbiol 2019; 19:10. [PMID: 30630415 PMCID: PMC6327479 DOI: 10.1186/s12866-018-1382-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 12/26/2018] [Indexed: 02/06/2023] Open
Abstract
Background Toxin-antitoxin (TA) systems are little genetic units generally composed of two genes encoding antitoxin and toxin. These systems are known to be involved in many functions that can lead to growth arrest and cell death. Among the different types of TA systems, the type II gathers together systems where the antitoxin directly binds and inhibits the toxin. Among these type II TA systems, the HicAB module is widely distributed in free-living Bacteria and Archaea and the toxin HicA functions via RNA binding and cleavage. The genome of the symbiotic Sinorhizobium meliloti encodes numerous TA systems and only a few of them are functional. Among the predicted TA systems, there is one homologous to HicAB modules. Results In this study, we characterize the HicAB toxin-antitoxin module of S. meliloti. The production of the HicA of S. meliloti in Escherichia coli cells abolishes growth and decreases cell viability. We show that expression of the HicB of S. meliloti counteracts HicA toxicity. The results of double hybrid assays and co-purification experiments allow demonstrating the interaction of HicB with the toxin HicA. Purified HicA, but not HicAB complex, is able to degrade ribosomal RNA in vitro. The analysis of separated domains of HicB protein permits us to define the antitoxin activity and the operator-binding domain. Conclusions This study points out the first characterization of the HicAB system of the symbiotic S. meliloti whereas HicA is a toxin with ribonuclease activity and HicB has two domains: the COOH-terminal one that binds the operator and the NH2-terminal one that inhibits the toxin. Electronic supplementary material The online version of this article (10.1186/s12866-018-1382-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manon Thomet
- Ribosome, bacteria and stress Team, Univ. Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, F35000, Rennes, France
| | - Annie Trautwetter
- Ribosome, bacteria and stress Team, Univ. Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, F35000, Rennes, France
| | - Gwennola Ermel
- Ribosome, bacteria and stress Team, Univ. Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, F35000, Rennes, France.
| | - Carlos Blanco
- Ribosome, bacteria and stress Team, Univ. Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, F35000, Rennes, France
| |
Collapse
|
29
|
A Systematic Overview of Type II and III Toxin-Antitoxin Systems with a Focus on Druggability. Toxins (Basel) 2018; 10:toxins10120515. [PMID: 30518070 PMCID: PMC6315513 DOI: 10.3390/toxins10120515] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023] Open
Abstract
Toxin-antitoxin (TA) systems are known to play various roles in physiological processes, such as gene regulation, growth arrest and survival, in bacteria exposed to environmental stress. Type II TA systems comprise natural complexes consisting of protein toxins and antitoxins. Each toxin and antitoxin participates in distinct regulatory mechanisms depending on the type of TA system. Recently, peptides designed by mimicking the interfaces between TA complexes showed its potential to activate the activity of toxin by competing its binding counterparts. Type II TA systems occur more often in pathogenic bacteria than in their nonpathogenic kin. Therefore, they can be possible drug targets, because of their high abundance in some pathogenic bacteria, such as Mycobacterium tuberculosis. In addition, recent bioinformatic analyses have shown that type III TA systems are highly abundant in the intestinal microbiota, and recent clinical studies have shown that the intestinal microbiota is linked to inflammatory diseases, obesity and even several types of cancer. We therefore focused on exploring the putative relationship between intestinal microbiota-related human diseases and type III TA systems. In this paper, we review and discuss the development of possible druggable materials based on the mechanism of type II and type III TA system.
Collapse
|
30
|
Równicki M, Pieńko T, Czarnecki J, Kolanowska M, Bartosik D, Trylska J. Artificial Activation of Escherichia coli mazEF and hipBA Toxin-Antitoxin Systems by Antisense Peptide Nucleic Acids as an Antibacterial Strategy. Front Microbiol 2018; 9:2870. [PMID: 30534121 PMCID: PMC6275173 DOI: 10.3389/fmicb.2018.02870] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/08/2018] [Indexed: 12/14/2022] Open
Abstract
The search for new, non-standard targets is currently a high priority in the design of new antibacterial compounds. Bacterial toxin-antitoxin systems (TAs) are genetic modules that encode a toxin protein that causes growth arrest by interfering with essential cellular processes, and a cognate antitoxin, which neutralizes the toxin activity. TAs have no human analogs, are highly abundant in bacterial genomes, and therefore represent attractive alternative targets for antimicrobial drugs. This study demonstrates how artificial activation of Escherichia coli mazEF and hipBA toxin-antitoxin systems using sequence-specific antisense peptide nucleic acid oligomers is an innovative antibacterial strategy. The growth arrest observed in E. coli resulted from the inhibition of translation of the antitoxins by the antisense oligomers. Furthermore, two other targets, related to the activities of mazEF and hipBA, were identified as promising sites of action for antibacterials. These results show that TAs are susceptible to sequence-specific antisense agents and provide a proof-of-concept for their further exploitation in antimicrobial strategies.
Collapse
Affiliation(s)
- Marcin Równicki
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw, Poland
| | - Tomasz Pieńko
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Department of Drug Chemistry, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Warsaw, Poland
| | - Jakub Czarnecki
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Unit of Bacterial Genome Plasticity, Department of Genomes and Genetics, Pasteur Institute, Paris, France
| | - Monika Kolanowska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Genomic Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Dariusz Bartosik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
31
|
Xu J, Zhang N, Cao M, Ren S, Zeng T, Qin M, Zhao X, Yuan F, Chen H, Bei W. Identification of Three Type II Toxin-Antitoxin Systems in Streptococcus suis Serotype 2. Toxins (Basel) 2018; 10:toxins10110467. [PMID: 30428568 PMCID: PMC6266264 DOI: 10.3390/toxins10110467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 01/15/2023] Open
Abstract
Type II toxin-antitoxin (TA) systems are highly prevalent in bacterial genomes and have been extensively studied. These modules involve in the formation of persistence cells, the biofilm formation, and stress resistance, which might play key roles in pathogen virulence. SezAT and yefM-yoeB TA modules in Streptococcus suis serotype 2 (S. suis 2) have been studied, although the other TA systems have not been identified. In this study, we investigated nine putative type II TA systems in the genome of S. suis 2 strain SC84 by bioinformatics analysis and identified three of them (two relBE loci and one parDE locus) that function as typical type II TA systems. Interestingly, we found that the introduction of the two RelBE TA systems into Escherichia coli or the induction of the ParE toxin led to cell filamentation. Promoter activity assays indicated that RelB1, RelB2, ParD, and ParDE negatively autoregulated the transcriptions of their respective TA operons, while RelBE2 positively autoregulated its TA operon transcription. Collectively, we identified three TA systems in S. suis 2, and our findings have laid an important foundation for further functional studies on these TA systems.
Collapse
Affiliation(s)
- Jiali Xu
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Nian Zhang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Manman Cao
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Sujing Ren
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ting Zeng
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Minglu Qin
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xigong Zhao
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
32
|
Winter AJ, Williams C, Isupov MN, Crocker H, Gromova M, Marsh P, Wilkinson OJ, Dillingham MS, Harmer NJ, Titball RW, Crump MP. The molecular basis of protein toxin HicA-dependent binding of the protein antitoxin HicB to DNA. J Biol Chem 2018; 293:19429-19440. [PMID: 30337369 DOI: 10.1074/jbc.ra118.005173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/16/2018] [Indexed: 12/15/2022] Open
Abstract
Toxin-antitoxin (TA) systems are present in many bacteria and play important roles in bacterial growth, physiology, and pathogenicity. Those that are best studied are the type II TA systems, in which both toxins and antitoxins are proteins. The HicAB system is one of the prototypic TA systems, found in many bacterial species. Complex interactions between the protein toxin (HicA), the protein antitoxin (HicB), and the DNA upstream of the encoding genes regulate the activity of this system, but few structural details are available about how HicA destabilizes the HicB-DNA complex. Here, we determined the X-ray structures of HicB and the HicAB complex to 1.8 and 2.5 Å resolution, respectively, and characterized their DNA interactions. This revealed that HicB forms a tetramer and HicA and HicB form a heterooctameric complex that involves structural reorganization of the C-terminal (DNA-binding) region of HicB. Our observations indicated that HicA has a profound impact on binding of HicB to DNA sequences upstream of hicAB in a stoichiometric-dependent way. At low ratios of HicA:HicB, there was no effect on DNA binding, but at higher ratios, the affinity for DNA declined cooperatively, driving dissociation of the HicA:HicB:DNA complex. These results reveal the structural mechanisms by which HicA de-represses the HicB-DNA complex.
Collapse
Affiliation(s)
- Ashley J Winter
- From the School of Chemistry, University of Bristol Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Christopher Williams
- From the School of Chemistry, University of Bristol Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Michail N Isupov
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Hannah Crocker
- From the School of Chemistry, University of Bristol Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Mariya Gromova
- From the School of Chemistry, University of Bristol Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Philip Marsh
- From the School of Chemistry, University of Bristol Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Oliver J Wilkinson
- the School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD United Kingdom
| | - Mark S Dillingham
- the School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD United Kingdom
| | - Nicholas J Harmer
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Richard W Titball
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom,
| | - Matthew P Crump
- From the School of Chemistry, University of Bristol Cantock's Close, Bristol BS8 1TS, United Kingdom,
| |
Collapse
|