1
|
Geng Y, Cai Q. Role of C9orf72 hexanucleotide repeat expansions in ALS/FTD pathogenesis. Front Mol Neurosci 2024; 17:1322720. [PMID: 38318532 PMCID: PMC10838790 DOI: 10.3389/fnmol.2024.1322720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are progressive neurological disorders that share neurodegenerative pathways and features. The most prevalent genetic causes of ALS/FTD is the GGGGCC hexanucleotide repeat expansions in the first intron region of the chromosome 9 open reading frame 72 (C9orf72) gene. In this review, we comprehensively summarize the accumulating evidences elucidating the pathogenic mechanism associated with hexanucleotide repeat expansions in ALS/FTD. These mechanisms encompass the structural polymorphism of DNA and transcribed RNA, the formation of RNA foci via phase separation, and the cytoplasmic accumulation and toxicities of dipeptide-repeat proteins. Additionally, the formation of G-quadruplex structures significantly impairs the expression and normal function of the C9orf72 protein. We also discuss the sequestration of specific RNA binding proteins by GGGGCC RNA, which further contributes to the toxicity of C9orf72 hexanucleotide repeat expansions. The deeper understanding of the pathogenic mechanism of hexanucleotide repeat expansions in ALS/FTD provides multiple potential drug targets for these devastating diseases.
Collapse
Affiliation(s)
- Yanyan Geng
- Clinical Research Institute of the First Affiliated Hospital of Xiamen University, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Qixu Cai
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
2
|
Víglaský V. Hidden Information Revealed Using the Orthogonal System of Nucleic Acids. Int J Mol Sci 2022; 23:ijms23031804. [PMID: 35163723 PMCID: PMC8836696 DOI: 10.3390/ijms23031804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 11/25/2022] Open
Abstract
In this study, the organization of genetic information in nucleic acids is defined using a novel orthogonal representation. Clearly defined base pairing in DNA allows the linear base chain and sequence to be mathematically transformed into an orthogonal representation where the G–C and A–T pairs are displayed in different planes that are perpendicular to each other. This form of base allocation enables the evaluation of any nucleic acid and predicts the likelihood of a particular region to form non-canonical motifs. The G4Hunter algorithm is currently a popular method of identifying G-quadruplex forming sequences in nucleic acids, and offers promising scores despite its lack of a substantial rational basis. The orthogonal representation described here is an effort to address this incongruity. In addition, the orthogonal display facilitates the search for other sequences that are capable of adopting non-canonical motifs, such as direct and palindromic repeats. The technique can also be used for various RNAs, including any aptamers. This powerful tool based on an orthogonal system offers considerable potential for a wide range of applications.
Collapse
Affiliation(s)
- Viktor Víglaský
- Department of Biochemistry, Institute of Chemistry, Faculty of Sciences, Pavol Jozef Šafárik University, 04001 Košice, Slovakia
| |
Collapse
|
3
|
Fu W, Jing H, Xu X, Xu S, Wang T, Hu W, Li H, Zhang N. Two coexisting pseudo-mirror heteromolecular telomeric G-quadruplexes in opposite loop progressions differentially recognized by a low equivalent of Thioflavin T. Nucleic Acids Res 2021; 49:10717-10734. [PMID: 34500466 PMCID: PMC8501994 DOI: 10.1093/nar/gkab755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/24/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
The final 3′-terminal residue of the telomeric DNA G-overhang is inherently less precise. Here, we describe how alteration of the last 3′-terminal base affects the mutual recognition between two different G-rich oligomers of human telomeric DNA in the formation of heteromolecular G-quadruplexes (hetero-GQs). Associations between three- and single-repeat fragments of human telomeric DNA, target d(GGGTTAGGGTTAGGG) and probe d(TAGGGT), in Na+ solution yield two coexisting forms of (3 + 1) hybrid hetero-GQs: the kinetically favourable LLP-form (left loop progression) and the thermodynamically controlled RLP-form (right loop progression). However, only the adoption of a single LLP-form has been previously reported between the same probe d(TAGGGT) and a target variant d(GGGTTAGGGTTAGGGT) having one extra 3′-end thymine. Moreover, the flanking base alterations of short G-rich probe variants also significantly affect the loop progressions of hetero-GQs. Although seemingly two pseudo-mirror counter partners, the RLP-form exhibits a preference over the LLP-form to be recognized by a low equivalent of fluorescence dye thioflavin T (ThT). To a greater extent, ThT preferentially binds to RLP hetero-GQ than with the corresponding telomeric DNA duplex context or several other representative unimolecular GQs.
Collapse
Affiliation(s)
- Wenqiang Fu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China.,University of Science and Technology of China, Hefei 230026, China
| | - Haitao Jing
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China.,University of Science and Technology of China, Hefei 230026, China
| | - Xiaojuan Xu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China.,University of Science and Technology of China, Hefei 230026, China
| | - Suping Xu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Tao Wang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Wenxuan Hu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China.,University of Science and Technology of China, Hefei 230026, China
| | - Huihui Li
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China.,University of Science and Technology of China, Hefei 230026, China
| | - Na Zhang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.,Key Laboratory of Anhui Province for High Field Magnetic Resonance Imaging, Hefei 230031, China.,High Magnetic Field Laboratory of Anhui Province, Hefei 230031, China
| |
Collapse
|
4
|
Mohr S, Jana J, Vianney YM, Weisz K. Expanding the Topological Landscape by a G-Column Flip of a Parallel G-Quadruplex. Chemistry 2021; 27:10437-10447. [PMID: 33955615 PMCID: PMC8361731 DOI: 10.1002/chem.202101181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Indexed: 01/14/2023]
Abstract
Canonical G‐quadruplexes can adopt a variety of different topologies depending on the arrangement of propeller, lateral, or diagonal loops connecting the four G‐columns. A novel intramolecular G‐quadruplex structure is derived through inversion of the last G‐tract of a three‐layered parallel fold, associated with the transition of a single propeller into a lateral loop. The resulting (3+1) hybrid fold features three syn⋅anti⋅anti⋅anti G‐tetrads with a 3’‐terminal all‐syn G‐column. Although the ability of forming a duplex stem‐loop between G‐tracts seems beneficial for a propeller‐to‐lateral loop rearrangement, unmodified G‐rich sequences resist folding into the new (3+1) topology. However, refolding can be driven by the incorporation of syn‐favoring guanosine analogues into positions of the fourth G‐stretch. The presented hybrid‐type G‐quadruplex structure as determined by NMR spectroscopy may provide for an additional scaffold in quadruplex‐based technologies.
Collapse
Affiliation(s)
- Swantje Mohr
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Jagannath Jana
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Yoanes Maria Vianney
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Klaus Weisz
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| |
Collapse
|
5
|
Geng Y, Liu C, Cai Q, Luo Z, Miao H, Shi X, Xu N, Fung CP, Choy TT, Yan B, Li N, Qian P, Zhou B, Zhu G. Crystal structure of parallel G-quadruplex formed by the two-repeat ALS- and FTD-related GGGGCC sequence. Nucleic Acids Res 2021; 49:5881-5890. [PMID: 34048588 PMCID: PMC8191786 DOI: 10.1093/nar/gkab302] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/23/2021] [Accepted: 05/26/2021] [Indexed: 01/05/2023] Open
Abstract
The hexanucleotide repeat expansion, GGGGCC (G4C2), within the first intron of the C9orf72 gene is known to be the most common genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The G4C2 repeat expansions, either DNA or RNA, are able to form G-quadruplexes which induce toxicity leading to ALS/FTD. Herein, we report a novel crystal structure of d(G4C2)2 that self-associates to form an eight-layer parallel tetrameric G-quadruplex. Two d(G4C2)2 associate together as a parallel dimeric G-quadruplex which folds into a tetramer via 5'-to-5' arrangements. Each dimer consists of four G-tetrads connected by two CC propeller loops. Especially, the 3'-end cytosines protrude out and form C·C+•C·C+/ C·C•C·C+ quadruple base pair or C•C·C+ triple base pair stacking on the dimeric block. Our work sheds light on the G-quadruplexes adopted by d(G4C2) and yields the invaluable structural details for the development of small molecules to tackle neurodegenerative diseases, ALS and FTD.
Collapse
Affiliation(s)
- Yanyan Geng
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Changdong Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Qixu Cai
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Zhipu Luo
- Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Haitao Miao
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Xiao Shi
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Naining Xu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Chun Po Fung
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - To To Choy
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Bing Yan
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Ning Li
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Peiyuan Qian
- Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Bo Zhou
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Guang Zhu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
- Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| |
Collapse
|
6
|
Supramolecular Polymorphism of (G 4C 2) n Repeats Associated with ALS and FTD. Int J Mol Sci 2021; 22:ijms22094532. [PMID: 33926081 PMCID: PMC8123662 DOI: 10.3390/ijms22094532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/25/2022] Open
Abstract
Guanine-rich DNA sequences self-assemble into highly stable fourfold structures known as DNA-quadruplexes (or G-quadruplexes). G-quadruplexes have furthermore the tendency to associate into one-dimensional supramolecular aggregates termed G-wires. We studied the formation of G-wires in solutions of the sequences d(G4C2)n with n = 1, 2, and 4. The d(G4C2)n repeats, which are associated with some fatal neurological disorders, especially amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), represent a challenging research topic due to their extensive structural polymorphism. We used dynamic light scattering (DLS) to measure translational diffusion coefficients and consequently resolve the length of the larger aggregates formed in solution. We found that all three sequences assemble into longer structures than previously reported. The d(G4C2) formed extremely long G-wires with lengths beyond 80 nm. The d(G4C2)2 formed a relatively short stacked dimeric quadruplex, while d(G4C2)4 formed multimers corresponding to seven stacked intramolecular quadruplexes. Profound differences between the multimerization properties of the investigated sequences were also confirmed by the AFM imaging of surface films. We propose that π-π stacking of the basic G-quadruplex units plays a vital role in the multimerization mechanism, which might be relevant for transformation from the regular medium-length to disease-related long d(G4C2)n repeats.
Collapse
|
7
|
Bielskutė S, Plavec J, Podbevšek P. Oxidative lesions modulate G-quadruplex stability and structure in the human BCL2 promoter. Nucleic Acids Res 2021; 49:2346-2356. [PMID: 33638996 PMCID: PMC7913773 DOI: 10.1093/nar/gkab057] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/08/2021] [Accepted: 01/22/2021] [Indexed: 01/08/2023] Open
Abstract
Misregulation of BCL2 expression has been observed with many diseases and is associated with cellular exposure to reactive oxygen species. A region upstream of the P1 promoter in the human BCL2 gene plays a major role in regulating transcription. This G/C-rich region is highly polymorphic and capable of forming G-quadruplex structures. Herein we report that an oxidative event simulated with an 8-oxo-7,8-dihydroguanine (oxoG) substitution within a long G-tract results in a reduction of structural polymorphism. Surprisingly, oxoG within a 25-nt construct boosts thermal stability of the resulting G-quadruplex. This is achieved by distinct hydrogen bonding properties of oxoG, which facilitate formation of an antiparallel basket-type G-quadruplex with a three G-quartet core and a G·oxoG·C base triad. While oxoG has previously been considered detrimental for G-quadruplex formation, its stabilizing effect within a promoter described in this study suggests a potential novel regulatory role of oxidative stress in general and specifically in BCL2 gene transcription.
Collapse
Affiliation(s)
- Stasė Bielskutė
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia.,EN-FIST Center of Excellence, Trg OF 13, SI-1000 Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Peter Podbevšek
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
8
|
Lago S, Nadai M, Ruggiero E, Tassinari M, Marušič M, Tosoni B, Frasson I, Cernilogar FM, Pirota V, Doria F, Plavec J, Schotta G, Richter SN. The MDM2 inducible promoter folds into four-tetrad antiparallel G-quadruplexes targetable to fight malignant liposarcoma. Nucleic Acids Res 2021; 49:847-863. [PMID: 33410915 PMCID: PMC7826256 DOI: 10.1093/nar/gkaa1273] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Well-differentiated liposarcoma (WDLPS) is a malignant neoplasia hard to diagnose and treat. Its main molecular signature is amplification of the MDM2-containing genomic region. The MDM2 oncogene is the master regulator of p53: its overexpression enhances p53 degradation and inhibits apoptosis, leading to the tumoral phenotype. Here, we show that the MDM2 inducible promoter G-rich region folds into stable G-quadruplexes both in vitro and in vivo and it is specifically recognized by cellular helicases. Cell treatment with G-quadruplex-ligands reduces MDM2 expression and p53 degradation, thus stimulating cancer cell cycle arrest and apoptosis. Structural characterization of the MDM2 G-quadruplex revealed an extraordinarily stable, unique four-tetrad antiparallel dynamic conformation, amenable to selective targeting. These data indicate the feasibility of an out-of-the-box G-quadruplex-targeting approach to defeat WDLPS and all tumours where restoration of wild-type p53 is sought. They also point to G-quadruplex-dependent genomic instability as possible cause of MDM2 expansion and WDLPS tumorigenesis.
Collapse
Affiliation(s)
- Sara Lago
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
| | - Matteo Nadai
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
| | - Emanuela Ruggiero
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
| | - Martina Tassinari
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
| | - Maja Marušič
- Slovenian NMR center, National Institute of Chemistry, Hajdrihova, 19, Ljubljana SI-1000, Slovenia
| | - Beatrice Tosoni
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
| | - Ilaria Frasson
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
| | - Filippo M Cernilogar
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, LMU Munich, Germany
| | - Valentina Pirota
- Department of Chemistry, University of Pavia, V. le Taramelli 10, 27100, Pavia, Italy
| | - Filippo Doria
- Department of Chemistry, University of Pavia, V. le Taramelli 10, 27100, Pavia, Italy
| | - Janez Plavec
- Slovenian NMR center, National Institute of Chemistry, Hajdrihova, 19, Ljubljana SI-1000, Slovenia
| | - Gunnar Schotta
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, LMU Munich, Germany
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
| |
Collapse
|
9
|
Ghasemi M, Keyhanian K, Douthwright C. Glial Cell Dysfunction in C9orf72-Related Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Cells 2021; 10:cells10020249. [PMID: 33525344 PMCID: PMC7912327 DOI: 10.3390/cells10020249] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 12/17/2022] Open
Abstract
Since the discovery of the chromosome 9 open reading frame 72 (C9orf72) repeat expansion mutation in 2011 as the most common genetic abnormality in amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig's disease) and frontotemporal dementia (FTD), progress in understanding the signaling pathways related to this mutation can only be described as intriguing. Two major theories have been suggested-(i) loss of function or haploinsufficiency and (ii) toxic gain of function from either C9orf72 repeat RNA or dipeptide repeat proteins (DPRs) generated from repeat-associated non-ATG (RAN) translation. Each theory has provided various signaling pathways that potentially participate in the disease progression. Dysregulation of the immune system, particularly glial cell dysfunction (mainly microglia and astrocytes), is demonstrated to play a pivotal role in both loss and gain of function theories of C9orf72 pathogenesis. In this review, we discuss the pathogenic roles of glial cells in C9orf72 ALS/FTD as evidenced by pre-clinical and clinical studies showing the presence of gliosis in C9orf72 ALS/FTD, pathologic hallmarks in glial cells, including TAR DNA-binding protein 43 (TDP-43) and p62 aggregates, and toxicity of C9orf72 glial cells. A better understanding of these pathways can provide new insights into the development of therapies targeting glial cell abnormalities in C9orf72 ALS/FTD.
Collapse
Affiliation(s)
- Mehdi Ghasemi
- Correspondence: ; Tel.: +1-774-441-7726; Fax: +1-508-856-4485
| | | | | |
Collapse
|
10
|
Haase L, Weisz K. Locked nucleic acid building blocks as versatile tools for advanced G-quadruplex design. Nucleic Acids Res 2020; 48:10555-10566. [PMID: 32890406 PMCID: PMC7544228 DOI: 10.1093/nar/gkaa720] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/24/2020] [Accepted: 08/20/2020] [Indexed: 01/21/2023] Open
Abstract
A hybrid-type G-quadruplex is modified with LNA (locked nucleic acid) and 2′-F-riboguanosine in various combinations at the two syn positions of its third antiparallel G-tract. LNA substitution in the central tetrad causes a complete rearrangement to either a V-loop or antiparallel structure, depending on further modifications at the 5′-neighboring site. In the two distinct structural contexts, LNA-induced stabilization is most effective compared to modifications with other G surrogates, highlighting a potential use of LNA residues for designing not only parallel but various more complex G4 structures. For instance, the conventional V-loop is a structural element strongly favored by an LNA modification at the V-loop 3′-end in contrast with an alternative V-loop, clearly distinguishable by altered conformational properties and base-backbone interactions as shown in a detailed analysis of V-loop structures.
Collapse
Affiliation(s)
- Linn Haase
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Str. 4, D-17489 Greifswald, Germany
| | - Klaus Weisz
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Str. 4, D-17489 Greifswald, Germany
| |
Collapse
|
11
|
Guo P, Lam SL. Minidumbbell structures formed by ATTCT pentanucleotide repeats in spinocerebellar ataxia type 10. Nucleic Acids Res 2020; 48:7557-7568. [PMID: 32520333 PMCID: PMC7367182 DOI: 10.1093/nar/gkaa495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/26/2020] [Accepted: 05/30/2020] [Indexed: 01/02/2023] Open
Abstract
Spinocerebellar ataxia type 10 (SCA10) is a progressive genetic disorder caused by ATTCT pentanucleotide repeat expansions in intron 9 of the ATXN10 gene. ATTCT repeats have been reported to form unwound secondary structures which are likely linked to large-scale repeat expansions. In this study, we performed high-resolution nuclear magnetic resonance spectroscopic investigations on DNA sequences containing two to five ATTCT repeats. Strikingly, we found the first two repeats of all these sequences well folded into highly compact minidumbbell (MDB) structures. The 3D solution structure of the sequence containing two ATTCT repeats was successfully determined, revealing the MDB comprises a regular TTCTA and a quasi TTCT/A pentaloops with extensive stabilizing loop-loop interactions. We further carried out in vitro primer extension assays to examine if the MDB formed in the primer could escape from the proofreading function of DNA polymerase. Results showed that when the MDB was formed at 5-bp or farther away from the priming site, it was able to escape from the proofreading by Klenow fragment of DNA polymerase I and thus retained in the primer. The intriguing structural findings bring about new insights into the origin of genetic instability in SCA10.
Collapse
Affiliation(s)
- Pei Guo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Sik Lok Lam
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
12
|
Design of a small molecule that stimulates vascular endothelial growth factor A enabled by screening RNA fold-small molecule interactions. Nat Chem 2020; 12:952-961. [PMID: 32839603 PMCID: PMC7571259 DOI: 10.1038/s41557-020-0514-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/24/2020] [Indexed: 12/20/2022]
Abstract
Vascular endothelial growth factor A (VEGFA) stimulates angiogenesis in human endothelial cells, and increasing its expression is a potential treatment for heart failure. Here, we report the design of a small molecule (TGP-377) that specifically and potently enhances VEGFA expression by the targeting of a non-coding microRNA that regulates its expression. A selection-based screen, named two-dimensional combinatorial screening, revealed preferences in small-molecule chemotypes that bind RNA and preferences in the RNA motifs that bind small molecules. The screening program increased the dataset of known RNA motif–small molecule binding partners by 20-fold. Analysis of this dataset against the RNA-mediated pathways that regulate VEGFA defined that the microRNA-377 precursor, which represses Vegfa messenger RNA translation, is druggable in a selective manner. We designed TGP-377 to potently and specifically upregulate VEGFA in human umbilical vein endothelial cells. These studies illustrate the power of two-dimensional combinatorial screening to define molecular recognition events between ‘undruggable’ biomolecules and small molecules, and the ability of sequence-based design to deliver efficacious structure-specific compounds.
Collapse
|
13
|
Oh KI, Kim J, Park CJ, Lee JH. Dynamics Studies of DNA with Non-canonical Structure Using NMR Spectroscopy. Int J Mol Sci 2020; 21:E2673. [PMID: 32290457 PMCID: PMC7216225 DOI: 10.3390/ijms21082673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
The non-canonical structures of nucleic acids are essential for their diverse functions during various biological processes. These non-canonical structures can undergo conformational exchange among multiple structural states. Data on their dynamics can illustrate conformational transitions that play important roles in folding, stability, and biological function. Here, we discuss several examples of the non-canonical structures of DNA focusing on their dynamic characterization by NMR spectroscopy: (1) G-quadruplex structures and their complexes with target proteins; (2) i-motif structures and their complexes with proteins; (3) triplex structures; (4) left-handed Z-DNAs and their complexes with various Z-DNA binding proteins. This review provides insight into how the dynamic features of non-canonical DNA structures contribute to essential biological processes.
Collapse
Affiliation(s)
- Kwang-Im Oh
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam 52828, Korea;
| | - Jinwoo Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea;
| | - Chin-Ju Park
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea;
| | - Joon-Hwa Lee
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam 52828, Korea;
| |
Collapse
|
14
|
Wang ZF, Li MH, Chu IT, Winnerdy FR, Phan AT, Chang TC. Cytosine epigenetic modification modulates the formation of an unprecedented G4 structure in the WNT1 promoter. Nucleic Acids Res 2020; 48:1120-1130. [PMID: 31912153 PMCID: PMC7026657 DOI: 10.1093/nar/gkz1207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/09/2019] [Accepted: 12/18/2019] [Indexed: 12/16/2022] Open
Abstract
Time-resolved imino proton nuclear magnetic resonance spectra of the WT22m sequence d(GGGCCACCGGGCAGTGGGCGGG), derived from the WNT1 promoter region, revealed an intermediate G-quadruplex G4(I) structure during K+-induced conformational transition from an initial hairpin structure to the final G4(II) structure. Moreover, a single-base C-to-T mutation at either position C4 or C7 of WT22m could lock the intermediate G4(I) structure without further conformational change to the final G4(II) structure. Surprisingly, we found that the intermediate G4(I) structure is an atypical G4 structure, which differs from a typical hybrid G4 structure of the final G4(II) structure. Further studies of modified cytosine analogues associated with epigenetic regulation indicated that slight modification on a cytosine could modulate G4 structure. A simplified four-state transition model was introduced to describe such conformational transition and disclose the possible mechanism for G4 structural selection caused by cytosine modification.
Collapse
Affiliation(s)
- Zi-Fu Wang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan, R.O.C
| | - Ming-Hao Li
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan, R.O.C
| | - I-Te Chu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan, R.O.C.,Department of Chemistry, National Taiwan University, Taipei 106, Taiwan, R.O.C
| | - Fernaldo R Winnerdy
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Anh T Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| | - Ta-Chau Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan, R.O.C.,Department of Chemistry, National Taiwan University, Taipei 106, Taiwan, R.O.C
| |
Collapse
|
15
|
Haase L, Dickerhoff J, Weisz K. Sugar Puckering Drives G-Quadruplex Refolding: Implications for V-Shaped Loops. Chemistry 2020; 26:524-533. [PMID: 31609483 PMCID: PMC6973071 DOI: 10.1002/chem.201904044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/10/2019] [Indexed: 01/04/2023]
Abstract
A DNA G-quadruplex adopting a (3+1) hybrid structure was modified in two adjacent syn positions of the antiparallel strand with anti-favoring 2'-deoxy-2'-fluoro-riboguanosine (F rG) analogues. The two substitutions promoted a structural rearrangement to a topology with the 5'-terminal G residue located in the central tetrad and the two modified residues linked by a V-shaped zero-nucleotide loop. Strikingly, whereas a sugar pucker in the preferred north domain is found for both modified nucleotides, the F rG analogue preceding the V-loop is forced to adopt the unfavored syn conformation in the new quadruplex fold. Apparently, a preferred C3'-endo sugar pucker within the V-loop architecture outweighs the propensity of the F rG analogue to adopt an anti glycosidic conformation. Refolding into a V-loop topology is likewise observed for a sequence modified at corresponding positions with two riboguanosine substitutions. In contrast, 2'-F-arabinoguanosine analogues with their favored south-east sugar conformation do not support formation of the V-loop topology. Examination of known G-quadruplexes with a V-shaped loop highlights the critical role of the sugar conformation for this distinct structural motif.
Collapse
Affiliation(s)
- Linn Haase
- Institute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417487GreifswaldGermany
| | - Jonathan Dickerhoff
- Institute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417487GreifswaldGermany
- Present address: Department of Medicinal Chemistry and Molecular PharmacologyCollege of PharmacyPurdue UniversityWest LafayetteIN47907USA
| | - Klaus Weisz
- Institute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417487GreifswaldGermany
| |
Collapse
|
16
|
Mulholland K, Sullivan HJ, Garner J, Cai J, Chen B, Wu C. Three-Dimensional Structure of RNA Monomeric G-Quadruplex Containing ALS and FTD Related G4C2 Repeat and Its Binding with TMPyP4 Probed by Homology Modeling based on Experimental Constraints and Molecular Dynamics Simulations. ACS Chem Neurosci 2020; 11:57-75. [PMID: 31800202 DOI: 10.1021/acschemneuro.9b00572] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The G-quadruplex-forming hexanucleotide repeat expansion (HRE), d(G4C2)n, within the human C9orf72 gene is the root cause for familial amyotrophic lateral sclerosis-frontotemporal dementia (ALS-FTD). A recent study has shown that TMPyP4 has good potential to work as a RNA G-quadruplex binder in treating ALS and FTD. Although the high-resolution structure of the monomeric DNA antiparallel G-quadruplex form of the monomeric hexanucleotide repeat was recently solved, the RNA parallel G-quadruplex structure and its complex with TMPyP4 are not available yet. In this study, we first constructed the homology model for the parallel monomeric RNA G-quadruplex of r(G4C2)3G4 based on experimental constraints and the parallel monomeric G-quadruplex DNA crystal structure. Although the G-tetra core of the homology model was stable observed in 15 μs molecular dynamics (MD) simulations, we observed that the loops adopt additional conformations besides the initial crystal conformation, where TMPyP4 binding was found to reduce the loop fluctuation of the RNA monomeric G-quadruplex. Next, we probed the elusive binding behavior of TMPyP4 to the RNA monomeric G-quadruplex. Encouragingly, the binding modes observed are similar to the modes observed in two experimental complexes of a parallel DNA G-quadruplex with TMPyP4. We also constructed a Markov state model to provide insights into the binding pathways. Together, the findings from our study may assist future development of G-quadruplex-specific ligands in the treatment of neurodegenerative diseases like ALS and FTD.
Collapse
Affiliation(s)
- Kelly Mulholland
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Holli-Joi Sullivan
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Joseph Garner
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Jun Cai
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Brian Chen
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Chun Wu
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
17
|
Geng Y, Liu C, Zhou B, Cai Q, Miao H, Shi X, Xu N, You Y, Fung CP, Din RU, Zhu G. The crystal structure of an antiparallel chair-type G-quadruplex formed by Bromo-substituted human telomeric DNA. Nucleic Acids Res 2019; 47:5395-5404. [PMID: 30957851 PMCID: PMC6547763 DOI: 10.1093/nar/gkz221] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/18/2019] [Accepted: 04/04/2019] [Indexed: 12/28/2022] Open
Abstract
Human telomeric guanine-rich DNA, which could adopt different G-quadruplex structures, plays important roles in protecting the cell from recombination and degradation. Although many of these structures were determined, the chair-type G-quadruplex structure remains elusive. Here, we present a crystal structure of the G-quadruplex composed of the human telomeric sequence d[GGGTTAGG8GTTAGGGTTAGG20G] with two dG to 8Br-dG substitutions at positions 8 and 20 with syn conformation in the K+ solution. It forms a novel three-layer chair-type G-quadruplex with two linking trinucleotide loops. Particularly, T5 and T17 are coplanar with two water molecules stacking on the G-tetrad layer in a sandwich-like mode through a coordinating K+ ion and an A6•A18 base pair. While a twisted Hoogsteen A12•T10 base pair caps on the top of G-tetrad core. The three linking TTA loops are edgewise and each DNA strand has two antiparallel adjacent strands. Our findings contribute to a deeper understanding and highlight the unique roles of loop and water molecule in the folding of the G-quadruplex.
Collapse
Affiliation(s)
- Yanyan Geng
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Changdong Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Bo Zhou
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.,Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Qixu Cai
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Haitao Miao
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Xiao Shi
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Naining Xu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yingying You
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Chun Po Fung
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Rahman Ud Din
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Guang Zhu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
18
|
Basavalingappa V, Bera S, Xue B, Azuri I, Tang Y, Tao K, Shimon LJW, Sawaya MR, Kolusheva S, Eisenberg DS, Kronik L, Cao Y, Wei G, Gazit E. Mechanically rigid supramolecular assemblies formed from an Fmoc-guanine conjugated peptide nucleic acid. Nat Commun 2019; 10:5256. [PMID: 31748568 PMCID: PMC6868146 DOI: 10.1038/s41467-019-13250-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 10/23/2019] [Indexed: 01/25/2023] Open
Abstract
The variety and complexity of DNA-based structures make them attractive candidates for nanotechnology, yet insufficient stability and mechanical rigidity, compared to polyamide-based molecules, limit their application. Here, we combine the advantages of polyamide materials and the structural patterns inspired by nucleic-acids to generate a mechanically rigid fluorenylmethyloxycarbonyl (Fmoc)-guanine peptide nucleic acid (PNA) conjugate with diverse morphology and photoluminescent properties. The assembly possesses a unique atomic structure, with each guanine head of one molecule hydrogen bonded to the Fmoc carbonyl tail of another molecule, generating a non-planar cyclic quartet arrangement. This structure exhibits an average stiffness of 69.6 ± 6.8 N m-1 and Young's modulus of 17.8 ± 2.5 GPa, higher than any previously reported nucleic acid derived structure. This data suggests that the unique cation-free "basket" formed by the Fmoc-G-PNA conjugate can serve as an attractive component for the design of new materials based on PNA self-assembly for nanotechnology applications.
Collapse
Affiliation(s)
- Vasantha Basavalingappa
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Santu Bera
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, 210093, Nanjing, People's Republic of China
| | - Ido Azuri
- Department of Materials and Interfaces, Weizmann Institute of Science, 76100, Rehovoth, Israel
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), Fudan University, 200433, Shanghai, People's Republic of China
| | - Kai Tao
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Linda J W Shimon
- Department of Chemical Research Support, Weizmann Institute of Science, 76100, Rehovoth, Israel
| | - Michael R Sawaya
- Howard Hughes Medical Institute, UCLA-DOE Institute, Departments of Biological Chemistry and Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Sofiya Kolusheva
- Ilse Katz Institute for Nanotechnology, Ben Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - David S Eisenberg
- Howard Hughes Medical Institute, UCLA-DOE Institute, Departments of Biological Chemistry and Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Leeor Kronik
- Department of Materials and Interfaces, Weizmann Institute of Science, 76100, Rehovoth, Israel
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, 210093, Nanjing, People's Republic of China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), Fudan University, 200433, Shanghai, People's Republic of China
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel.
| |
Collapse
|
19
|
Benabou S, Mazzini S, Aviñó A, Eritja R, Gargallo R. A pH-dependent bolt involving cytosine bases located in the lateral loops of antiparallel G-quadruplex structures within the SMARCA4 gene promotor. Sci Rep 2019; 9:15807. [PMID: 31676783 PMCID: PMC6825181 DOI: 10.1038/s41598-019-52311-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/15/2019] [Indexed: 01/01/2023] Open
Abstract
Some lung and ovarian tumors are connected to the loss of expression of SMARCA4 gene. In its promoter region, a 44-nucleotides long guanine sequence prone to form G-quadruplex structures has been studied by means of spectroscopic techniques (circular dichroism, molecular absorption and nuclear magnetic resonance), size exclusion chromatography and multivariate analysis. The results have shown that the central 21-nucleotides long sequence comprising four guanine tracts of disparate length is able to fold into a pH-dependent ensemble of G-quadruplex structures. Based on acid-base titrations and melting experiments of wild and mutated sequences, the formation of a C·C+ base pair between cytosine bases present at the two lateral loops is shown to promote a reduction in conformational heterogeneity, as well as an increase in thermal stability. The formation of this base pair is characterized by a pKa value of 7.1 ± 0.2 at 20 °C and 150 mM KCl. This value, higher than those usually found in i-motif structures, is related to the additional stability provided by guanine tetrads in the G-quadruplex. To our knowledge, this is the first thermodynamic description of this base pair in loops of antiparallel G-quadruplex structures.
Collapse
Affiliation(s)
- Sanae Benabou
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Barcelona, Spain
| | - Stefania Mazzini
- Department of Food, Environmental and Nutritional Sciences (DEFENS), University of Milan, Milan, Italy
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Raimundo Gargallo
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
20
|
Liu C, Geng Y, Miao H, Shi X, You Y, Xu N, Zhou B, Zhu G. G-quadruplex structures formed by human telomeric DNA and C9orf72 hexanucleotide repeats. Biophys Rev 2019; 11:389-393. [PMID: 31127470 DOI: 10.1007/s12551-019-00545-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/30/2019] [Indexed: 02/04/2023] Open
Affiliation(s)
- Changdong Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR, China
| | - Yanyan Geng
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR, China
| | - Haitao Miao
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR, China
| | - Xiao Shi
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR, China
| | - Yingying You
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR, China
| | - Naining Xu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR, China
| | - Bo Zhou
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR, China
| | - Guang Zhu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR, China.
| |
Collapse
|