1
|
Lin Y, Lan X, Xin R, Ling X, Xiao M, Li F, Hu F, Li L, Lan Y. Molecular genetic characterization analysis of a novel HIV-1 circulating recombinant form (CRF156_0755) in Guangdong, China. Front Microbiol 2024; 15:1387720. [PMID: 38765676 PMCID: PMC11099239 DOI: 10.3389/fmicb.2024.1387720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/16/2024] [Indexed: 05/22/2024] Open
Abstract
Introduction The characteristic of human immunodeficiency virus type 1 (HIV-1) is its susceptibility to erroneous replication and recombination, which plays a crucial role in the diverse and dynamic variation of HIV-1. The spread of different subtypes in the same population often leads to the emergence of circulating recombination forms (CRFs). At present, the main recombinant subtypes of HIV-1 in China are CRF07_BC, CRF01_AE, CRF08_BC and B' subtypes, while CRF55_01B has become the fifth major epidemic strain in China after rapid growth in recent years since it was first reported in 2013. In this study, we obtained five nearly full-length genomes (NFLGs) and one half-length genome from five different cities in Guangdong. Here, we focused on analyzing their characteristics, parental origin and drug resistance. Methods Plasma samples were collected from six HIV-1 infected patients in Guangdong Province who had no epidemiological association with each other. The NFLGs of HIV-1 were amplified in two overlapping segments by the near-terminal dilution method. The positive products were sequenced directly to obtain genomic sequences. The recombinant patterns and breakpoints of the NFLGs were determined using the Simplot software and confirmed by the maximum likelihood trees for segments using the IQ-TREE and BEAST software. The genotypic resistance profiles of the protease reverse transcriptase and integrase were resolved by the Stanford HIV drug resistance database. Results The six genomes shared highly similar recombinant pattern, with the CRF55_01B backbone substituted by CRF07_BC segments, therefore assigned as CRF156_0755. The evolutionary analysis of the segments showed that CRF07_BC segments were not clustered with the Chinese MSM variants in the CRF07_BC lineage. All the five NFLGs were identified with the non-nucleoside reverse-transcription inhibitors (NNRTIs) resistance mutation V179E. Discussion With the accumulation and evolution of recombination between CRF55_01B and CRF 07_BC, the prevalence of more recombinant strains of CRF55_01B and CRF 07_BC may occur. Therefore, it is necessary to strengthen the identification and monitoring of the recombination of CRF55_01B and CRF 07_BC.
Collapse
Affiliation(s)
- Yaqing Lin
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xianglong Lan
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ruolei Xin
- Institute of AIDS/STD Prevention and Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Xuemei Ling
- Guangzhou Institute of Clinical Infectious Diseases, Infectious Disease Center, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
- Guangdong Center for Diagnosis and Treatment of AIDS, Guangzhou, China
| | - Mingfeng Xiao
- Institute of AIDS/STD Prevention and Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Feng Li
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fengyu Hu
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Linghua Li
- Guangzhou Institute of Clinical Infectious Diseases, Infectious Disease Center, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yun Lan
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Duchon A, Hu WS. HIV-1 RNA genome packaging: it's G-rated. mBio 2024; 15:e0086123. [PMID: 38411060 PMCID: PMC11005445 DOI: 10.1128/mbio.00861-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
A member of the Retroviridae, human immunodeficiency virus type 1 (HIV-1), uses the RNA genome packaged into nascent virions to transfer genetic information to its progeny. The genome packaging step is a highly regulated and extremely efficient process as a vast majority of virus particles contain two copies of full-length unspliced HIV-1 RNA that form a dimer. Thus, during virus assembly HIV-1 can identify and selectively encapsidate HIV-1 unspliced RNA from an abundant pool of cellular RNAs and various spliced HIV-1 RNAs. Several "G" features facilitate the packaging of a dimeric RNA genome. The viral polyprotein Gag orchestrates virus assembly and mediates RNA genome packaging. During this process, Gag preferentially binds unpaired guanosines within the highly structured 5' untranslated region (UTR) of HIV-1 RNA. In addition, the HIV-1 unspliced RNA provides a scaffold that promotes Gag:Gag interactions and virus assembly, thereby ensuring its packaging. Intriguingly, recent studies have shown that the use of different guanosines at the junction of U3 and R as transcription start sites results in HIV-1 unspliced RNA species with 99.9% identical sequences but dramatically distinct 5' UTR conformations. Consequently, one species of unspliced RNA is preferentially packaged over other nearly identical RNAs. These studies reveal how conformations affect the functions of HIV-1 RNA elements and the complex regulation of HIV-1 replication. In this review, we summarize cis- and trans-acting elements critical for HIV-1 RNA packaging, locations of Gag:RNA interactions that mediate genome encapsidation, and the effects of transcription start sites on the structure and packaging of HIV-1 RNA.
Collapse
Affiliation(s)
- Alice Duchon
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
3
|
Wang Z, Wang D, Lin L, Qiu Y, Zhang C, Xie M, Lu X, Lian Q, Yan P, Chen L, Feng Y, Xing H, Wang W, Wu S. Epidemiological characteristics of HIV transmission in southeastern China from 2015 to 2020 based on HIV molecular network. Front Public Health 2023; 11:1225883. [PMID: 37942240 PMCID: PMC10629674 DOI: 10.3389/fpubh.2023.1225883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/04/2023] [Indexed: 11/10/2023] Open
Abstract
Objective HIV/AIDS remains a global public health problem, and understanding the structure of social networks of people living with HIV/AIDS is of great importance to unravel HIV transmission, propose precision control and reduce new infections. This study aimed to investigate the epidemiological characteristics of HIV transmission in Fujian province, southeastern China from 2015 to 2020 based on HIV molecular network. Methods Newly diagnosed, treatment-naive HIV/AIDS patients were randomly sampled from Fujian province in 2015 and 2020. Plasma was sampled for in-house genotyping resistance test, and HIV molecular network was created using the HIV-TRACE tool. Factors affecting the inclusion of variables in the HIV molecular network were identified using univariate and multivariate logistic regression analyses. Results A total of 1,714 eligible cases were finally recruited, including 806 cases in 2015 and 908 cases in 2020. The dominant HIV subtypes were CRF01_AE (41.7%) and CRF07_BC (38.3%) in 2015 and CRF07_BC (53. 3%) and CRF01_AE (29.1%) in 2020, and the prevalence of HIV drug resistance was 4.2% in 2015 and 5.3% in 2020. Sequences of CRF07_BC formed the largest HIV-1 transmission cluster at a genetic distance threshold of both 1.5 and 0.5%. Univariate and multivariate logistic regression analyses showed that ages of under 20 years and over 60 years, CRF07_BC subtype, Han ethnicity, sampling in 2015, absence of HIV drug resistance, married with spouse, sampling from three cities of Jinjiang, Nanping and Quanzhou resulted in higher proportions of sequences included in the HIV transmission molecular network at a genetic distance threshold of 1.5% (p < 0.05). Conclusion Our findings unravel the HIV molecular transmission network of newly diagnosed HIV/AIDS patients in Fujian province, southeastern China, which facilitates the understanding of HIV transmission patterns in the province.
Collapse
Affiliation(s)
- Zhenghua Wang
- Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China
| | - Dong Wang
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liying Lin
- Fuzhou Institute for Disease Control and Prevention of China Railway Nanchang Bureau Group Co., Ltd., Fuzhou, China
| | - Yuefeng Qiu
- Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China
| | - Chunyan Zhang
- Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China
| | - Meirong Xie
- Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China
| | - Xiaoli Lu
- Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China
| | - Qiaolin Lian
- Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China
| | - Pingping Yan
- Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China
| | - Liang Chen
- Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China
| | - Yi Feng
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hui Xing
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wei Wang
- National Health Commission Key Laboratory for Parasitic Disease Prevention and Control, Jiangsu Provincial Key Laboratory for Parasites and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Shouli Wu
- Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China
- School of Public Health, Fujian Medical University, Fuzhou, China
| |
Collapse
|
4
|
Romero EV, Feder AF. Elevated HIV viral load is associated with higher recombination rate in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539643. [PMID: 37873119 PMCID: PMC10592651 DOI: 10.1101/2023.05.05.539643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
HIV's exceptionally high recombination rate drives its intra-host diversification, enabling immune escape and multi-drug resistance within people living with HIV. While we know that HIV's recombination rate varies by genomic position, we have little understanding of how recombination varies throughout infection or between individuals as a function of the rate of cellular coinfection. We hypothesize that denser intra-host populations may have higher rates of coinfection and therefore recombination. To test this hypothesis, we develop a new approach (Recombination Analysis via Time Series Linkage Decay, or RATS-LD) to quantify recombination using autocorrelation of linkage between mutations across time points. We validate RATS-LD on simulated data under short read sequencing conditions and then apply it to longitudinal, high-throughput intra-host viral sequencing data, stratifying populations by viral load (a proxy for density). Among sampled viral populations with the lowest viral loads (< 26,800 copies/mL), we estimate a recombination rate of 1.5 × 10-5 events/bp/generation (95% CI: 7 × 10-6 - 2.9 × 10-5), similar to existing estimates. However, among samples with the highest viral loads (> 82,000 copies/mL), our median estimate is approximately 6 times higher. In addition to co-varying across individuals, we also find that recombination rate and viral load are associated within single individuals across different time points. Our findings suggest that rather than acting as a constant, uniform force, recombination can vary dynamically and drastically across intra-host viral populations and within them over time. More broadly, we hypothesize that this phenomenon may affect other facultatively asexual populations where spatial co-localization varies.
Collapse
Affiliation(s)
- Elena V. Romero
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Alison F. Feder
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
5
|
Chvatal-Medina M, Lopez-Guzman C, Diaz FJ, Gallego S, Rugeles MT, Taborda NA. Molecular mechanisms by which the HIV-1 latent reservoir is established and therapeutic strategies for its elimination. Arch Virol 2023; 168:218. [PMID: 37530901 DOI: 10.1007/s00705-023-05800-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/12/2023] [Indexed: 08/03/2023]
Abstract
The human immunodeficiency virus type 1 (HIV-1) reservoir, composed of cells harboring the latent, integrated virus, is not eliminated by antiretroviral therapy. It therefore represents a significant barrier to curing the infection. The biology of HIV-1 reservoirs, the mechanisms of their persistence, and effective strategies for their eradication are not entirely understood. Here, we review the molecular mechanisms by which HIV-1 reservoirs develop, the cells and compartments where the latent virus resides, and advancements in curative therapeutic strategies. We first introduce statistics and relevant data on HIV-1 infection, aspects of pathogenesis, the role of antiretroviral therapy, and the general features of the latent HIV reservoir. Then, the article is built on three main pillars: The molecular mechanisms related to latency, the different strategies for targeting the reservoir to obtain a cure, and the current progress in immunotherapy to counteract said reservoirs.
Collapse
Affiliation(s)
- Mateo Chvatal-Medina
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Carolina Lopez-Guzman
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Francisco J Diaz
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Salomon Gallego
- Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
| | - Maria T Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Natalia A Taborda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.
- Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia.
- Universidad Cooperativa de Colombia, Campus Medellin, Envigado, Colombia.
| |
Collapse
|
6
|
Rong SY, Guo T, Smith JT, Wang X. The role of cell-to-cell transmission in HIV infection: insights from a mathematical modeling approach. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:12093-12117. [PMID: 37501434 DOI: 10.3934/mbe.2023538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
HIV infection remains a serious global public health problem. Although current drug treatment is effective and can reduce plasma viral loads below the level of detection, it cannot eradicate the virus. The reasons for the low virus persistence despite long-term therapy have not been fully elucidated. In addition, multiple HIV infection, i.e., infection of a cell by multiple viruses, is common and can facilitate viral recombination and mutations, evading the immune system and conferring resistance to drug treatment. The mechanisms for multiple HIV infection formation and their respective contributions remain unclear. To answer these questions, we developed a mathematical modeling framework that encompasses cell-free viral infection and cell-to-cell spread. We fit sub-models that only have one transmission route and the full model containing both to the multi-infection data from HIV-infected patients, and show that the multi-infection data can only be reproduced if these two transmission routes are both considered. Computer simulations with the best-fitting parameter values indicate that cell-to-cell spread leads to the majority of multiple infection and also accounts for the majority of overall infection. Sensitivity analysis shows that cell-to-cell spread has reduced susceptibility to treatment and may explain low HIV persistence. Taken together, this work indicates that cell-to-cell spread plays a crucial role in the development of HIV multi-infection and low HIV persistence despite long-term therapy, and therefore has important implications for understanding HIV pathogenesis and developing more effective treatment strategies to control or even eliminate the disease.
Collapse
Affiliation(s)
| | - Ting Guo
- Aliyun School of Big Data, Changzhou University, Changzhou 213164, China
- Department of Mathematics, University of Florida, Gainesville, FL 32611, USA
| | - J Tyler Smith
- Department of Mathematics, University of Florida, Gainesville, FL 32611, USA
| | - Xia Wang
- School of Mathematics and Statistics, Xinyang Normal University, Xinyang 464000, China
- Department of Mathematics, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
7
|
Yang X, Liu Y, Cui W, Liu M, Wang W. Distinct Gag interaction properties of HIV-1 RNA 5' leader conformers reveal a mechanism for dimeric genome selection. RNA (NEW YORK, N.Y.) 2023; 29:217-227. [PMID: 36384962 PMCID: PMC9891258 DOI: 10.1261/rna.079347.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
During HIV-1 assembly, two copies of viral genomic RNAs (gRNAs) are selectively packaged into new viral particles. This process is mediated by specific interactions between HIV-1 Gag and the packaging signals at the 5' leader (5'L) of viral gRNA. 5'L is able to adopt different conformations, which promotes either gRNA dimerization and packaging or Gag translation. Dimerization and packaging are coupled. Whether the selective packaging of the gRNA dimer is due to favorable interactions between Gag and 5'L in the packaging conformation is not known. Here, using RNAs mimicking the two 5'L conformers, we show that the 5'L conformation dramatically affects Gag-RNA interactions. Compared to the RNA in the translation conformation (5'LT), the RNA in the packaging conformation (5'LP) can bind more Gag molecules. Gag associates with 5'LP faster than it binds to 5'LT, whereas Gag dissociates from 5'LP more slowly. The Gag-5'LP complex is more stable at high salt concentrations. The NC-SP2-p6 region of Gag likely accounts for the faster association and slower dissociation kinetics for the Gag-5'LP interaction and for the higher stability. In summary, our data suggest that conformational changes play an important role in the selection of dimeric genomes, probably by affecting the binding kinetics and stability of the Gag-5'L complex.
Collapse
Affiliation(s)
- Xin Yang
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Yong Liu
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Wen Cui
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Mengmeng Liu
- Office of Research Administration, Chongqing Medical University, Chongqing 400016, China
| | - Wei Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
8
|
Adaptation of HIV-1/HIV-2 Chimeras with Defects in Genome Packaging and Viral Replication. mBio 2022; 13:e0222022. [PMID: 36036631 PMCID: PMC9600866 DOI: 10.1128/mbio.02220-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Frequent recombination is a hallmark of retrovirus replication. In rare cases, recombination occurs between distantly related retroviruses, generating novel viruses that may significantly impact viral evolution and public health. These recombinants may initially have substantial replication defects due to impaired interactions between proteins and/or nucleic acids from the two parental viruses. However, given the high mutation rates of retroviruses, these recombinants may be able to evolve improved compatibility of these viral elements. To test this hypothesis, we examined the adaptation of chimeras between two distantly related human pathogens: HIV-1 and HIV-2. We constructed HIV-1-based chimeras containing the HIV-2 nucleocapsid (NC) domain of Gag or the two zinc fingers of HIV-2 NC, which are critical for specific recognition of viral RNA. These chimeras exhibited significant defects in RNA genome packaging and replication kinetics in T cells. However, in some experiments, the chimeric viruses replicated with faster kinetics when repassaged, indicating that viral adaptation had occurred. Sequence analysis revealed the acquisition of a single amino acid substitution, S18L, in the first zinc finger of HIV-2 NC. This substitution, which represents a switch from a conserved HIV-2 residue to a conserved HIV-1 residue at this position, partially rescued RNA packaging and replication kinetics. Further analysis revealed that the combination of two substitutions in HIV-2 NC, W10F and S18L, almost completely restored RNA packaging and replication kinetics. Our study demonstrates that chimeras of distantly related retroviruses can adapt and significantly enhance their replication by acquiring a single substitution. IMPORTANCE Novel retroviruses can emerge from recombination between distantly related retroviruses. Most notably, HIV-1 originated from zoonotic transmission of a novel recombinant (SIVcpz) into humans. Newly generated recombinants may initially have significant replication defects due to impaired interactions between viral proteins and/or nucleic acids, such as between cis- and trans-acting elements from the two parental viruses. However, provided that the recombinants retain some ability to replicate, they may be able to adapt and repair the defective interactions. Here, we used HIV-1 and HIV-2 Gag chimeras as a model system for studying the adaptation of recombinant viruses. We found that only two substitutions in the HIV-2 NC domain, W10F and S18L, were required to almost fully restore RNA genome packaging and replication kinetics. These results illustrate the extremely flexible nature of retroviruses and highlight the possible emergence of novel recombinants in the future that could pose a significant threat to public health.
Collapse
|
9
|
Viral and Host Factors Regulating HIV-1 Envelope Protein Trafficking and Particle Incorporation. Viruses 2022; 14:v14081729. [PMID: 36016351 PMCID: PMC9415270 DOI: 10.3390/v14081729] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
The HIV-1 envelope glycoprotein (Env) is an essential structural component of the virus, serving as the receptor-binding protein and principal neutralizing determinant. Env trimers are incorporated into developing particles at the plasma membrane of infected cells. Incorporation of HIV-1 Env into particles in T cells and macrophages is regulated by the long Env cytoplasmic tail (CT) and the matrix region of Gag. The CT incorporates motifs that interact with cellular factors involved in endosomal trafficking. Env follows an unusual pathway to arrive at the site of particle assembly, first traversing the secretory pathway to the plasma membrane (PM), then undergoing endocytosis, followed by directed sorting to the site of particle assembly on the PM. Many aspects of Env trafficking remain to be defined, including the sequential events that occur following endocytosis, leading to productive recycling and particle incorporation. This review focuses on the host factors and pathways involved in Env trafficking, and discusses leading models of Env incorporation into particles.
Collapse
|
10
|
Meissner ME, Talledge N, Mansky LM. Molecular Biology and Diversification of Human Retroviruses. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2022; 2:872599. [PMID: 35783361 PMCID: PMC9242851 DOI: 10.3389/fviro.2022.872599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Studies of retroviruses have led to many extraordinary discoveries that have advanced our understanding of not only human diseases, but also molecular biology as a whole. The most recognizable human retrovirus, human immunodeficiency virus type 1 (HIV-1), is the causative agent of the global AIDS epidemic and has been extensively studied. Other human retroviruses, such as human immunodeficiency virus type 2 (HIV-2) and human T-cell leukemia virus type 1 (HTLV-1), have received less attention, and many of the assumptions about the replication and biology of these viruses are based on knowledge of HIV-1. Existing comparative studies on human retroviruses, however, have revealed that key differences between these viruses exist that affect evolution, diversification, and potentially pathogenicity. In this review, we examine current insights on disparities in the replication of pathogenic human retroviruses, with a particular focus on the determinants of structural and genetic diversity amongst HIVs and HTLV.
Collapse
Affiliation(s)
- Morgan E. Meissner
- Institute for Molecular Virology, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
| | - Nathaniel Talledge
- Institute for Molecular Virology, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Division of Basic Sciences, School of Dentistry, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Masonic Cancer Center, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
| | - Louis M. Mansky
- Institute for Molecular Virology, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Division of Basic Sciences, School of Dentistry, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Masonic Cancer Center, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
| |
Collapse
|
11
|
Lerner G, Weaver N, Anokhin B, Spearman P. Advances in HIV-1 Assembly. Viruses 2022; 14:v14030478. [PMID: 35336885 PMCID: PMC8952333 DOI: 10.3390/v14030478] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/10/2022] Open
Abstract
The assembly of HIV-1 particles is a concerted and dynamic process that takes place on the plasma membrane of infected cells. An abundance of recent discoveries has advanced our understanding of the complex sequence of events leading to HIV-1 particle assembly, budding, and release. Structural studies have illuminated key features of assembly and maturation, including the dramatic structural transition that occurs between the immature Gag lattice and the formation of the mature viral capsid core. The critical role of inositol hexakisphosphate (IP6) in the assembly of both the immature and mature Gag lattice has been elucidated. The structural basis for selective packaging of genomic RNA into virions has been revealed. This review will provide an overview of the HIV-1 assembly process, with a focus on recent advances in the field, and will point out areas where questions remain that can benefit from future investigation.
Collapse
|
12
|
Lau CY, Adan MA, Maldarelli F. Why the HIV Reservoir Never Runs Dry: Clonal Expansion and the Characteristics of HIV-Infected Cells Challenge Strategies to Cure and Control HIV Infection. Viruses 2021; 13:2512. [PMID: 34960781 PMCID: PMC8708047 DOI: 10.3390/v13122512] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 12/13/2022] Open
Abstract
Antiretroviral therapy (ART) effectively reduces cycles of viral replication but does not target proviral populations in cells that persist for prolonged periods and that can undergo clonal expansion. Consequently, chronic human immunodeficiency virus (HIV) infection is sustained during ART by a reservoir of long-lived latently infected cells and their progeny. This proviral landscape undergoes change over time on ART. One of the forces driving change in the landscape is the clonal expansion of infected CD4 T cells, which presents a key obstacle to HIV eradication. Potential mechanisms of clonal expansion include general immune activation, antigenic stimulation, homeostatic proliferation, and provirus-driven clonal expansion, each of which likely contributes in varying, and largely unmeasured, amounts to maintaining the reservoir. The role of clinical events, such as infections or neoplasms, in driving these mechanisms remains uncertain, but characterizing these forces may shed light on approaches to effectively eradicate HIV. A limited number of individuals have been cured of HIV infection in the setting of bone marrow transplant; information from these and other studies may identify the means to eradicate or control the virus without ART. In this review, we describe the mechanisms of HIV-1 persistence and clonal expansion, along with the attempts to modify these factors as part of reservoir reduction and cure strategies.
Collapse
Affiliation(s)
- Chuen-Yen Lau
- HIV Dynamics and Replication Program, NCI, NIH, Bethesda, MD 20892, USA; (C.-Y.L.); (M.A.A.)
| | - Matthew A. Adan
- HIV Dynamics and Replication Program, NCI, NIH, Bethesda, MD 20892, USA; (C.-Y.L.); (M.A.A.)
- Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Frank Maldarelli
- HIV Dynamics and Replication Program, NCI, NIH, Bethesda, MD 20892, USA; (C.-Y.L.); (M.A.A.)
| |
Collapse
|
13
|
Murashko MM, Stasevich EM, Schwartz AM, Kuprash DV, Uvarova AN, Demin DE. The Role of RNA in DNA Breaks, Repair and Chromosomal Rearrangements. Biomolecules 2021; 11:biom11040550. [PMID: 33918762 PMCID: PMC8069526 DOI: 10.3390/biom11040550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 12/28/2022] Open
Abstract
Incorrect reparation of DNA double-strand breaks (DSB) leading to chromosomal rearrangements is one of oncogenesis's primary causes. Recently published data elucidate the key role of various types of RNA in DSB formation, recognition and repair. With growing interest in RNA biology, increasing RNAs are classified as crucial at the different stages of the main pathways of DSB repair in eukaryotic cells: nonhomologous end joining (NHEJ) and homology-directed repair (HDR). Gene mutations or variation in expression levels of such RNAs can lead to local DNA repair defects, increasing the chromosome aberration frequency. Moreover, it was demonstrated that some RNAs could stimulate long-range chromosomal rearrangements. In this review, we discuss recent evidence demonstrating the role of various RNAs in DSB formation and repair. We also consider how RNA may mediate certain chromosomal rearrangements in a sequence-specific manner.
Collapse
Affiliation(s)
- Matvey Mikhailovich Murashko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.M.M.); (E.M.S.); (A.M.S.); (D.V.K.); (A.N.U.)
| | - Ekaterina Mikhailovna Stasevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.M.M.); (E.M.S.); (A.M.S.); (D.V.K.); (A.N.U.)
| | - Anton Markovich Schwartz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.M.M.); (E.M.S.); (A.M.S.); (D.V.K.); (A.N.U.)
- Moscow Institute of Physics and Technology, Department of Molecular and Biological Physics, 141701 Moscow, Russia
| | - Dmitriy Vladimirovich Kuprash
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.M.M.); (E.M.S.); (A.M.S.); (D.V.K.); (A.N.U.)
| | - Aksinya Nicolaevna Uvarova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.M.M.); (E.M.S.); (A.M.S.); (D.V.K.); (A.N.U.)
| | - Denis Eriksonovich Demin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.M.M.); (E.M.S.); (A.M.S.); (D.V.K.); (A.N.U.)
- Correspondence:
| |
Collapse
|
14
|
The Role of APOBECs in Viral Replication. Microorganisms 2020; 8:microorganisms8121899. [PMID: 33266042 PMCID: PMC7760323 DOI: 10.3390/microorganisms8121899] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC) proteins are a diverse and evolutionarily conserved family of cytidine deaminases that provide a variety of functions from tissue-specific gene expression and immunoglobulin diversity to control of viruses and retrotransposons. APOBEC family expansion has been documented among mammalian species, suggesting a powerful selection for their activity. Enzymes with a duplicated zinc-binding domain often have catalytically active and inactive domains, yet both have antiviral function. Although APOBEC antiviral function was discovered through hypermutation of HIV-1 genomes lacking an active Vif protein, much evidence indicates that APOBECs also inhibit virus replication through mechanisms other than mutagenesis. Multiple steps of the viral replication cycle may be affected, although nucleic acid replication is a primary target. Packaging of APOBECs into virions was first noted with HIV-1, yet is not a prerequisite for viral inhibition. APOBEC antagonism may occur in viral producer and recipient cells. Signatures of APOBEC activity include G-to-A and C-to-T mutations in a particular sequence context. The importance of APOBEC activity for viral inhibition is reflected in the identification of numerous viral factors, including HIV-1 Vif, which are dedicated to antagonism of these deaminases. Such viral antagonists often are only partially successful, leading to APOBEC selection for viral variants that enhance replication or avoid immune elimination.
Collapse
|
15
|
Christensen DE, Ganser-Pornillos BK, Johnson JS, Pornillos O, Sundquist WI. Reconstitution and visualization of HIV-1 capsid-dependent replication and integration in vitro. Science 2020; 370:eabc8420. [PMID: 33033190 PMCID: PMC8022914 DOI: 10.1126/science.abc8420] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022]
Abstract
During the first half of the viral life cycle, HIV-1 reverse transcribes its RNA genome and integrates the double-stranded DNA copy into a host cell chromosome. Despite progress in characterizing and inhibiting these processes, in situ mechanistic and structural studies remain challenging. This is because these operations are executed by individual viral preintegration complexes deep within cells. We therefore reconstituted and imaged the early stages of HIV-1 replication in a cell-free system. HIV-1 cores released from permeabilized virions supported efficient, capsid-dependent endogenous reverse transcription to produce double-stranded DNA genomes, which sometimes looped out from ruptured capsid walls. Concerted integration of both viral DNA ends into a target plasmid then proceeded in a cell extract-dependent reaction. This reconstituted system uncovers the role of the capsid in templating replication.
Collapse
Affiliation(s)
- Devin E Christensen
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Barbie K Ganser-Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA
| | - Jarrod S Johnson
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Owen Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA.
| | - Wesley I Sundquist
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
16
|
Choi SH, Reeves RE, Romano Ibarra GS, Lynch TJ, Shahin WS, Feng Z, Gasser GN, Winter MC, Evans TIA, Liu X, Luo M, Zhang Y, Stoltz DA, Devor EJ, Yan Z, Engelhardt JF. Detargeting Lentiviral-Mediated CFTR Expression in Airway Basal Cells Using miR-106b. Genes (Basel) 2020; 11:E1169. [PMID: 33036232 PMCID: PMC7601932 DOI: 10.3390/genes11101169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
Lentiviral-mediated integration of a CFTR transgene cassette into airway basal cells is a strategy being considered for cystic fibrosis (CF) cell-based therapies. However, CFTR expression is highly regulated in differentiated airway cell types and a subset of intermediate basal cells destined to differentiate. Since basal stem cells typically do not express CFTR, suppressing the CFTR expression from the lentiviral vector in airway basal cells may be beneficial for maintaining their proliferative capacity and multipotency. We identified miR-106b as highly expressed in proliferating airway basal cells and extinguished in differentiated columnar cells. Herein, we developed lentiviral vectors with the miR-106b-target sequence (miRT) to both study miR-106b regulation during basal cell differentiation and detarget CFTR expression in basal cells. Given that miR-106b is expressed in the 293T cells used for viral production, obstacles of viral genome integrity and titers were overcome by creating a 293T-B2 cell line that inducibly expresses the RNAi suppressor B2 protein from flock house virus. While miR-106b vectors effectively detargeted reporter gene expression in proliferating basal cells and following differentiation in the air-liquid interface and organoid cultures, the CFTR-miRT vector produced significantly less CFTR-mediated current than the non-miR-targeted CFTR vector following transduction and differentiation of CF basal cells. These findings suggest that miR-106b is expressed in certain airway cell types that contribute to the majority of CFTR anion transport in airway epithelium.
Collapse
Affiliation(s)
- Soon H. Choi
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (S.H.C.); (R.E.R.); (T.J.L.); (W.S.S.); (Z.F.); (G.N.G.); (M.C.W.); (T.I.A.E.); (X.L.); (M.L.); (Y.Z.); (Z.Y.)
| | - Rosie E. Reeves
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (S.H.C.); (R.E.R.); (T.J.L.); (W.S.S.); (Z.F.); (G.N.G.); (M.C.W.); (T.I.A.E.); (X.L.); (M.L.); (Y.Z.); (Z.Y.)
| | | | - Thomas J. Lynch
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (S.H.C.); (R.E.R.); (T.J.L.); (W.S.S.); (Z.F.); (G.N.G.); (M.C.W.); (T.I.A.E.); (X.L.); (M.L.); (Y.Z.); (Z.Y.)
| | - Weam S. Shahin
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (S.H.C.); (R.E.R.); (T.J.L.); (W.S.S.); (Z.F.); (G.N.G.); (M.C.W.); (T.I.A.E.); (X.L.); (M.L.); (Y.Z.); (Z.Y.)
| | - Zehua Feng
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (S.H.C.); (R.E.R.); (T.J.L.); (W.S.S.); (Z.F.); (G.N.G.); (M.C.W.); (T.I.A.E.); (X.L.); (M.L.); (Y.Z.); (Z.Y.)
| | - Grace N. Gasser
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (S.H.C.); (R.E.R.); (T.J.L.); (W.S.S.); (Z.F.); (G.N.G.); (M.C.W.); (T.I.A.E.); (X.L.); (M.L.); (Y.Z.); (Z.Y.)
| | - Michael C. Winter
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (S.H.C.); (R.E.R.); (T.J.L.); (W.S.S.); (Z.F.); (G.N.G.); (M.C.W.); (T.I.A.E.); (X.L.); (M.L.); (Y.Z.); (Z.Y.)
| | - T. Idil Apak Evans
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (S.H.C.); (R.E.R.); (T.J.L.); (W.S.S.); (Z.F.); (G.N.G.); (M.C.W.); (T.I.A.E.); (X.L.); (M.L.); (Y.Z.); (Z.Y.)
| | - Xiaoming Liu
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (S.H.C.); (R.E.R.); (T.J.L.); (W.S.S.); (Z.F.); (G.N.G.); (M.C.W.); (T.I.A.E.); (X.L.); (M.L.); (Y.Z.); (Z.Y.)
| | - Meihui Luo
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (S.H.C.); (R.E.R.); (T.J.L.); (W.S.S.); (Z.F.); (G.N.G.); (M.C.W.); (T.I.A.E.); (X.L.); (M.L.); (Y.Z.); (Z.Y.)
| | - Yulong Zhang
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (S.H.C.); (R.E.R.); (T.J.L.); (W.S.S.); (Z.F.); (G.N.G.); (M.C.W.); (T.I.A.E.); (X.L.); (M.L.); (Y.Z.); (Z.Y.)
| | - David A. Stoltz
- Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA;
| | - Eric J. Devor
- Department of Obstetrics and Gynecology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA;
| | - Ziying Yan
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (S.H.C.); (R.E.R.); (T.J.L.); (W.S.S.); (Z.F.); (G.N.G.); (M.C.W.); (T.I.A.E.); (X.L.); (M.L.); (Y.Z.); (Z.Y.)
| | - John F. Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (S.H.C.); (R.E.R.); (T.J.L.); (W.S.S.); (Z.F.); (G.N.G.); (M.C.W.); (T.I.A.E.); (X.L.); (M.L.); (Y.Z.); (Z.Y.)
| |
Collapse
|
17
|
Abstract
Genetic variation is a necessity of all biological systems. Viruses use all known mechanisms of variation; mutation, several forms of recombination, and segment reassortment in the case of viruses with a segmented genome. These processes are intimately connected with the replicative machineries of viruses, as well as with fundamental physical-chemical properties of nucleotides when acting as template or substrate residues. Recombination has been viewed as a means to rescue viable genomes from unfit parents or to produce large modifications for the exploration of phenotypic novelty. All types of genetic variation can act conjointly as blind processes to provide the raw materials for adaptation to the changing environments in which viruses must replicate. A distinction is made between mechanistically unavoidable and evolutionarily relevant mutation and recombination.
Collapse
|
18
|
RNA-Dependent RNA Polymerase Speed and Fidelity are not the Only Determinants of the Mechanism or Efficiency of Recombination. Genes (Basel) 2019; 10:genes10120968. [PMID: 31775299 PMCID: PMC6947342 DOI: 10.3390/genes10120968] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/14/2019] [Accepted: 11/21/2019] [Indexed: 01/05/2023] Open
Abstract
Using the RNA-dependent RNA polymerase (RdRp) from poliovirus (PV) as our model system, we have shown that Lys-359 in motif-D functions as a general acid in the mechanism of nucleotidyl transfer. A K359H (KH) RdRp derivative is slow and faithful relative to wild-type enzyme. In the context of the KH virus, RdRp-coding sequence evolves, selecting for the following substitutions: I331F (IF, motif-C) and P356S (PS, motif-D). We have evaluated IF-KH, PS-KH, and IF-PS-KH viruses and enzymes. The speed and fidelity of each double mutant are equivalent. Each exhibits a unique recombination phenotype, with IF-KH being competent for copy-choice recombination and PS-KH being competent for forced-copy-choice recombination. Although the IF-PS-KH RdRp exhibits biochemical properties within twofold of wild type, the virus is impaired substantially for recombination in cells. We conclude that there are biochemical properties of the RdRp in addition to speed and fidelity that determine the mechanism and efficiency of recombination. The interwoven nature of speed, fidelity, the undefined property suggested here, and recombination makes it impossible to attribute a single property of the RdRp to fitness. However, the derivatives described here may permit elucidation of the importance of recombination on the fitness of the viral population in a background of constant polymerase speed and fidelity.
Collapse
|
19
|
Muslin C, Mac Kain A, Bessaud M, Blondel B, Delpeyroux F. Recombination in Enteroviruses, a Multi-Step Modular Evolutionary Process. Viruses 2019; 11:E859. [PMID: 31540135 PMCID: PMC6784155 DOI: 10.3390/v11090859] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 01/15/2023] Open
Abstract
RNA recombination is a major driving force in the evolution and genetic architecture shaping of enteroviruses. In particular, intertypic recombination is implicated in the emergence of most pathogenic circulating vaccine-derived polioviruses, which have caused numerous outbreaks of paralytic poliomyelitis worldwide. Recent experimental studies that relied on recombination cellular systems mimicking natural genetic exchanges between enteroviruses provided new insights into the molecular mechanisms of enterovirus recombination and enabled to define a new model of genetic plasticity for enteroviruses. Homologous intertypic recombinant enteroviruses that were observed in nature would be the final products of a multi-step process, during which precursor nonhomologous recombinant genomes are generated through an initial inter-genomic RNA recombination event and can then evolve into a diversity of fitter homologous recombinant genomes over subsequent intra-genomic rearrangements. Moreover, these experimental studies demonstrated that the enterovirus genome could be defined as a combination of genomic modules that can be preferentially exchanged through recombination, and enabled defining the boundaries of these recombination modules. These results provided the first experimental evidence supporting the theoretical model of enterovirus modular evolution previously elaborated from phylogenetic studies of circulating enterovirus strains. This review summarizes our current knowledge regarding the mechanisms of recombination in enteroviruses and presents a new evolutionary process that may apply to other RNA viruses.
Collapse
Affiliation(s)
- Claire Muslin
- One Health Research Group, Faculty of Health Sciences, Universidad de las Américas, Quito EC170125, Pichincha, Ecuador.
| | - Alice Mac Kain
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, 75015 Paris, France.
| | - Maël Bessaud
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, 75015 Paris, France.
| | - Bruno Blondel
- Institut Pasteur, Biology of Enteric Viruses Unit, 75015 Paris, France.
- INSERM U994, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France.
| | - Francis Delpeyroux
- Institut Pasteur, Biology of Enteric Viruses Unit, 75015 Paris, France.
- INSERM U994, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France.
| |
Collapse
|
20
|
Li C, Wang H, Shi J, Yang D, Zhou G, Chang J, Cameron CE, Woodman A, Yu L. Senecavirus-Specific Recombination Assays Reveal the Intimate Link between Polymerase Fidelity and RNA Recombination. J Virol 2019; 93:e00576-19. [PMID: 30996084 PMCID: PMC6580943 DOI: 10.1128/jvi.00576-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 04/05/2019] [Indexed: 12/15/2022] Open
Abstract
Senecavirus A (SVA) is a reemerging virus, and recent evidence has emphasized the importance of SVA recombination in vivo on virus evolution. In this study, we report the development of an infectious cDNA clone for the SVA/HLJ/CHA/2016 strain. We used this strain to develop a reporter virus expressing enhanced green fluorescent protein (eGFP), which we then used to screen for a recombination-deficient SVA by an eGFP retention assay. Sequencing of the virus that retained the eGFP following passage allowed us to identify the nonsynonymous mutations (S460L alone and I212V-S460L in combination) in the RNA-dependent RNA polymerase (RdRp) region of the genome. We developed a Senecavirus-specific cell culture-based recombination assay, which we used to elucidate the role of RdRp in SVA recombination. Our results demonstrate that these two polymerase variants (S460L and I212/S460L) have reduced recombination capacity. These results indicate that the RdRp plays a central role in SVA replicative recombination. Notably, our results showed that the two recombination-deficient variants have higher replication fidelity than the wild type (WT) and display decreased ribavirin sensitivity compared to the WT. In addition, these two mutants exhibited significantly increased fitness in vitro compared to the WT. These results demonstrate that recombination and mutation rates are intimately linked. Our results have important implications for understanding the crucial role of the RdRp in virus recombination and fitness, especially in the molecular mechanisms of SVA evolution and pathogenicity.IMPORTANCE Recent evidence has emphasized the importance of SVA recombination on virus evolution in vivo We describe the first assays to study Senecavirus A recombination. The results show that the RNA-dependent RNA polymerase plays a crucial role in recombination and that recombination can impact the fitness of SVA in cell culture. Further, SVA polymerase fidelity is closely related to recombination efficiency. The results provide key insights into the role of recombination in positive-strand RNA viruses.
Collapse
Affiliation(s)
- Chen Li
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Haiwei Wang
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Jiabao Shi
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Decheng Yang
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Guohui Zhou
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Jitao Chang
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Craig E Cameron
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Andrew Woodman
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Li Yu
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| |
Collapse
|
21
|
Cho YK, Kim JE, Woo JH. Korean Red Ginseng increases defective pol gene in peripheral blood mononuclear cells of HIV-1-infected patients; inhibition of its detection during ginseng-based combination therapy. J Ginseng Res 2019; 43:684-691. [PMID: 31695572 PMCID: PMC6823744 DOI: 10.1016/j.jgr.2019.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/27/2019] [Indexed: 11/27/2022] Open
Abstract
Background We have reported that defective nef and gag genes are induced in HIV-1–infected patients treated with Korean Red Ginseng (KRG). Methods To investigate whether KRG treatment and highly active antiretroviral therapy (HAART) affect genetic defects in the pol gene, we amplified and sequenced a partial pol gene (p-pol) containing the integrase portion (1.2 kb) by nested PCR with sequential peripheral blood mononuclear cells over 20 years and compared it with those patients at baseline, in control patients, those taking ginseng-based combination therapy (GCT; KRG plus combinational antiretroviral therapy) and HAART alone. We also compared our findings to look for the full-length pol gene (pol) (3.0-kb) Results Twenty-patients infected with subtype B were treated with KRG for 116 ± 58 months in the absence of HAART. Internal deletion in the pol gene (Δpol) was significantly higher in the KRG group (11.9%) than in the control group and at baseline; its detection was significantly inhibited during GCT as much as during HAART. In addition, the Δpol in p-pol significantly depended on the duration of KRG treatment. In pol, the proportion of Δpol was significantly higher in the KRG group (38.7%) than in the control group, and it was significantly inhibited during GCT and HAART. In contrast, the proportion of stop codon appeared not to be affected by KRG treatment. The PCR success rate was significantly decreased with longer GCT. Conclusion The proportion of Δpol depends on template size as well as KRG treatment. HAART decreases the detection of Δpol.
Collapse
Affiliation(s)
- Young Keol Cho
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jung-Eun Kim
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jun-Hee Woo
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
22
|
Lai A, Simonetti FR, Brindicci G, Bergna A, Di Giambenedetto S, Sterrantino G, Mussini C, Menzo S, Bagnarelli P, Zazzi M, Angarano G, Galli M, Monno L, Balotta C. Local Epidemics Gone Viral: Evolution and Diffusion of the Italian HIV-1 Recombinant Form CRF60_BC. Front Microbiol 2019; 10:769. [PMID: 31031735 PMCID: PMC6474184 DOI: 10.3389/fmicb.2019.00769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/26/2019] [Indexed: 12/15/2022] Open
Abstract
The molecular epidemiology of HIV-1 in Italy is becoming increasingly complex, mainly due to the spread of non-B subtypes and the emergence of new recombinant forms. We previously characterized the outbreak of the first Italian circulating recombinant form (CRF60_BC), occurring among young MSM living in Apulia between the years 2009 and 2011. Here we show a 5-year follow-up surveillance to trace the evolution of CRF60_BC and to investigate its further spread in Italy. We collected additional sequences and clinical data from patients harboring CRF60_BC, enrolled at the Infectious Diseases Clinic of the University of Bari. In addition to the 24 previously identified sequences, we retrieved 27 CRF60_BC sequences from patients residing in Apulia, whose epidemiological and clinical features did not differ from those of the initial outbreak, i.e., the Italian origin, young age at HIV diagnosis (median: 24 years; range: 18–37), MSM risk factor (23/25, 92%) and recent infection (from 2008 to 2017). Sequence analysis revealed a growing overall nucleotide diversity, with few nucleotide changes that were fixed over time. Twenty-seven additional sequences were detected across Italy, spanning multiple distant regions. Using a BLAST search, we also identified a CRF60_BC sequence isolated in United Kingdom in 2013. Three patients harbored a unique second generation recombinant form in which CRF60_BC was one of the parental strains. Our data show that CRF60_BC gained epidemic importance, spreading among young MSM in multiple Italian regions and increasing its population size in few years, as the number of sequences identified so far has triplicated since our first report. The observed further divergence of CRF60_BC is likely due to evolutionary bottlenecks and host adaptation during transmission chains. Of note, we detected three second-generation recombinants, further supporting a widespread circulation of CRF60_BC and the increasing complexity of the HIV-1 epidemic in Italy.
Collapse
Affiliation(s)
- Alessia Lai
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | | | - Gaetano Brindicci
- Clinic of Infectious Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Annalisa Bergna
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | | | - Gaetana Sterrantino
- Division of Tropical and Infectious Diseases, Careggi Hospital, Florence, Italy
| | - Cristina Mussini
- Clinic of Infectious Diseases, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefano Menzo
- Unit of Virology, Azienda Ospedaliero-Universitaria 'Ospedali Riuniti', Torrette, Italy
| | - Patrizia Bagnarelli
- Unit of Virology, Azienda Ospedaliero-Universitaria 'Ospedali Riuniti', Torrette, Italy
| | - Maurizio Zazzi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | | - Massimo Galli
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - Laura Monno
- Clinic of Infectious Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Claudia Balotta
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| |
Collapse
|
23
|
Majer C, Schüssler JM, König R. Intertwined: SAMHD1 cellular functions, restriction, and viral evasion strategies. Med Microbiol Immunol 2019; 208:513-529. [PMID: 30879196 DOI: 10.1007/s00430-019-00593-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 03/08/2019] [Indexed: 01/01/2023]
Abstract
SAMHD1 was initially described for its ability to efficiently restrict HIV-1 replication in myeloid cells and resting CD4+ T cells. However, a growing body of evidence suggests that SAMHD1-mediated restriction is by far not limited to lentiviruses, but seems to be a general concept that applies to most retroviruses and at least a number of DNA viruses. SAMHD1 anti-viral activity was long believed to be solely due to its ability to deplete cellular dNTPs by enzymatic degradation. However, since its discovery, several new functions have been attributed to SAMHD1. It has been demonstrated to bind nucleic acids, to modulate innate immunity, as well as to participate in the DNA damage response and resolution of stalled replication forks. Consequently, it is likely that SAMHD1-mediated anti-viral activity is not or not exclusively mediated through its dNTPase activity. Therefore, in this review, we summarize current knowledge on SAMHD1 cellular functions and systematically discuss how these functions could contribute to the restriction of a broad range of viruses besides retroviruses: herpesviruses, poxviruses and hepatitis B virus. Furthermore, we aim to highlight different ways how viruses counteract SAMHD1-mediated restriction to bypass the SAMHD1-mediated block to viral infection.
Collapse
Affiliation(s)
- Catharina Majer
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225, Langen, Germany
| | | | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225, Langen, Germany. .,Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA. .,German Center for Infection Research (DZIF), 63225, Langen, Germany. .,Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225, Langen, Germany.
| |
Collapse
|