1
|
Tsilafakis K, Mavroidis M. Are the Head and Tail Domains of Intermediate Filaments Really Unstructured Regions? Genes (Basel) 2024; 15:633. [PMID: 38790262 PMCID: PMC11121635 DOI: 10.3390/genes15050633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Intermediate filaments (IFs) are integral components of the cytoskeleton which provide cells with tissue-specific mechanical properties and are involved in a plethora of cellular processes. Unfortunately, due to their intricate architecture, the 3D structure of the complete molecule of IFs has remained unresolved. Even though most of the rod domain structure has been revealed by means of crystallographic analyses, the flanked head and tail domains are still mostly unknown. Only recently have studies shed light on head or tail domains of IFs, revealing certainsecondary structures and conformational changes during IF assembly. Thus, a deeper understanding of their structure could provide insights into their function.
Collapse
Affiliation(s)
- Konstantinos Tsilafakis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece;
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Manolis Mavroidis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece;
| |
Collapse
|
2
|
Cascarina SM, Ross ED. Identification of Low-Complexity Domains by Compositional Signatures Reveals Class-Specific Frequencies and Functions Across the Domains of Life. PLoS Comput Biol 2024; 20:e1011372. [PMID: 38748749 PMCID: PMC11132505 DOI: 10.1371/journal.pcbi.1011372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 05/28/2024] [Accepted: 05/04/2024] [Indexed: 05/29/2024] Open
Abstract
Low-complexity domains (LCDs) in proteins are typically enriched in one or two predominant amino acids. As a result, LCDs often exhibit unusual structural/biophysical tendencies and can occupy functional niches. However, for each organism, protein sequences must be compatible with intracellular biomolecules and physicochemical environment, both of which vary from organism to organism. This raises the possibility that LCDs may occupy sequence spaces in select organisms that are otherwise prohibited in most organisms. Here, we report a comprehensive survey and functional analysis of LCDs in all known reference proteomes (>21k organisms), with added focus on rare and unusual types of LCDs. LCDs were classified according to both the primary amino acid and secondary amino acid in each LCD sequence, facilitating detailed comparisons of LCD class frequencies across organisms. Examination of LCD classes at different depths (i.e., domain of life, organism, protein, and per-residue levels) reveals unique facets of LCD frequencies and functions. To our surprise, all 400 LCD classes occur in nature, although some are exceptionally rare. A number of rare classes can be defined for each domain of life, with many LCD classes appearing to be eukaryote-specific. Certain LCD classes were consistently associated with identical functions across many organisms, particularly in eukaryotes. Our analysis methods enable simultaneous, direct comparison of all LCD classes between individual organisms, resulting in a proteome-scale view of differences in LCD frequencies and functions. Together, these results highlight the remarkable diversity and functional specificity of LCDs across all known life forms.
Collapse
Affiliation(s)
- Sean M. Cascarina
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Eric D. Ross
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
3
|
Orlov YL, Orlova NG. Bioinformatics tools for the sequence complexity estimates. Biophys Rev 2023; 15:1367-1378. [PMID: 37974990 PMCID: PMC10643780 DOI: 10.1007/s12551-023-01140-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/01/2023] [Indexed: 11/19/2023] Open
Abstract
We review current methods and bioinformatics tools for the text complexity estimates (information and entropy measures). The search DNA regions with extreme statistical characteristics such as low complexity regions are important for biophysical models of chromosome function and gene transcription regulation in genome scale. We discuss the complexity profiling for segmentation and delineation of genome sequences, search for genome repeats and transposable elements, and applications to next-generation sequencing reads. We review the complexity methods and new applications fields: analysis of mutation hotspots loci, analysis of short sequencing reads with quality control, and alignment-free genome comparisons. The algorithms implementing various numerical measures of text complexity estimates including combinatorial and linguistic measures have been developed before genome sequencing era. The series of tools to estimate sequence complexity use compression approaches, mainly by modification of Lempel-Ziv compression. Most of the tools are available online providing large-scale service for whole genome analysis. Novel machine learning applications for classification of complete genome sequences also include sequence compression and complexity algorithms. We present comparison of the complexity methods on the different sequence sets, the applications for gene transcription regulatory regions analysis. Furthermore, we discuss approaches and application of sequence complexity for proteins. The complexity measures for amino acid sequences could be calculated by the same entropy and compression-based algorithms. But the functional and evolutionary roles of low complexity regions in protein have specific features differing from DNA. The tools for protein sequence complexity aimed for protein structural constraints. It was shown that low complexity regions in protein sequences are conservative in evolution and have important biological and structural functions. Finally, we summarize recent findings in large scale genome complexity comparison and applications for coronavirus genome analysis.
Collapse
Affiliation(s)
- Yuriy L. Orlov
- The Digital Health Institute, I.M. Sechenov First Moscow State Medical University of the Russian Ministry of Health (Sechenov University), Moscow, 119991 Russia
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Agrarian and Technological Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Nina G. Orlova
- Department of Mathematics, Financial University under the Government of the Russian Federation, Moscow, 125167 Russia
| |
Collapse
|
4
|
Galli M, Jacob S, Zheng Y, Ghezellou P, Gand M, Albuquerque W, Imani J, Allasia V, Coustau C, Spengler B, Keller H, Thines E, Kogel KH. MIF-like domain containing protein orchestrates cellular differentiation and virulence in the fungal pathogen Magnaporthe oryzae. iScience 2023; 26:107565. [PMID: 37664630 PMCID: PMC10474474 DOI: 10.1016/j.isci.2023.107565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 05/20/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic protein with chemotactic, pro-inflammatory, and growth-promoting activities first discovered in mammals. In parasites, MIF homologs are involved in immune evasion and pathogenesis. Here, we present the first comprehensive analysis of an MIF protein from the devastating plant pathogen Magnaporthe oryzae (Mo). The fungal genome encodes a single MIF protein (MoMIF1) that, unlike the human homolog, harbors multiple low-complexity regions (LCRs) and is unique to Ascomycota. Following infection, MoMIF1 is expressed in the biotrophic phase of the fungus, and is strongly down-regulated during subsequent necrotrophic growth in leaves and roots. We show that MoMIF1 is secreted during plant infection, affects the production of the mycotoxin tenuazonic acid and inhibits plant cell death. Our results suggest that MoMIF1 is a novel key regulator of fungal virulence that maintains the balance between biotrophy and necrotrophy during the different phases of fungal infection.
Collapse
Affiliation(s)
- Matteo Galli
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| | - Stefan Jacob
- Institute of Biotechnology and Drug Research GmbH, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
| | - Ying Zheng
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| | - Parviz Ghezellou
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Martin Gand
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Wendell Albuquerque
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Jafargholi Imani
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| | - Valérie Allasia
- Université Côte d'Azur, INRAE, CNRS, UMR1355-7254, ISA, 06903 Sophia Antipolis, France
| | - Christine Coustau
- Université Côte d'Azur, INRAE, CNRS, UMR1355-7254, ISA, 06903 Sophia Antipolis, France
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Harald Keller
- Université Côte d'Azur, INRAE, CNRS, UMR1355-7254, ISA, 06903 Sophia Antipolis, France
| | - Eckhard Thines
- Institute of Biotechnology and Drug Research GmbH, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
- Johannes Gutenberg-University Mainz, Microbiology and Biotechnology at the Institute of Molecular Physiology, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
| | - Karl-Heinz Kogel
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| |
Collapse
|
5
|
Persi E, Wolf YI, Karamycheva S, Makarova KS, Koonin EV. Compensatory relationship between low-complexity regions and gene paralogy in the evolution of prokaryotes. Proc Natl Acad Sci U S A 2023; 120:e2300154120. [PMID: 37036997 PMCID: PMC10120016 DOI: 10.1073/pnas.2300154120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/17/2023] [Indexed: 04/12/2023] Open
Abstract
The evolution of genomes in all life forms involves two distinct, dynamic types of genomic changes: gene duplication (and loss) that shape families of paralogous genes and extension (and contraction) of low-complexity regions (LCR), which occurs through dynamics of short repeats in protein-coding genes. Although the roles of each of these types of events in genome evolution have been studied, their co-evolutionary dynamics is not thoroughly understood. Here, by analyzing a wide range of genomes from diverse bacteria and archaea, we show that LCR and paralogy represent two distinct routes of evolution that are inversely correlated. The emergence of LCR is a prominent evolutionary mechanism in fast evolving, young protein families, whereas paralogy dominates the comparatively slow evolution of old protein families. The analysis of multiple prokaryotic genomes shows that the formation of LCR is likely a widespread, transient evolutionary mechanism that temporally and locally affects also ancestral functions, but apparently, fades away with time, under mutational and selective pressures, yielding to gene paralogy. We propose that compensatory relationships between short-term and longer-term evolutionary mechanisms are universal in the evolution of life.
Collapse
Affiliation(s)
- Erez Persi
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD20894
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD20894
| | - Svetlana Karamycheva
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD20894
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD20894
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD20894
| |
Collapse
|
6
|
Kouros CE, Makri V, Ouzounis CA, Chasapi A. Disease association and comparative genomics of compositional bias in human proteins. F1000Res 2023; 12:198. [PMID: 37082000 PMCID: PMC10111144 DOI: 10.12688/f1000research.129929.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/02/2023] [Indexed: 02/22/2023] Open
Abstract
Background: The evolutionary rate of disordered proteins varies greatly due to the lack of structural constraints. So far, few studies have investigated the presence/absence patterns of intrinsically disordered regions (IDRs) across phylogenies in conjunction with human disease. In this study, we report a genome-wide analysis of compositional bias association with disease in human proteins and their taxonomic distribution. Methods: The human genome protein set provided by the Ensembl database was annotated and analysed with respect to both disease associations and the detection of compositional bias. The Uniprot Reference Proteome dataset, containing 11297 proteomes was used as target dataset for the comparative genomics of a well-defined subset of the Human Genome, including 100 characteristic, compositionally biased proteins, some linked to disease. Results: Cross-evaluation of compositional bias and disease-association in the human genome reveals a significant bias towards low complexity regions in disease-associated genes, with charged, hydrophilic amino acids appearing as over-represented. The phylogenetic profiling of 17 disease-associated, low complexity proteins across 11297 proteomes captures characteristic taxonomic distribution patterns. Conclusions: This is the first time that a combined genome-wide analysis of low complexity, disease-association and taxonomic distribution of human proteins is reported, covering structural, functional, and evolutionary properties. The reported framework can form the basis for large-scale, follow-up projects, encompassing the entire human genome and all known gene-disease associations.
Collapse
Affiliation(s)
- Christos E. Kouros
- BCCB-AIIA, School of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasiliki Makri
- BCCB-AIIA, School of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christos A. Ouzounis
- BCCB-AIIA, School of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
- BCPL, Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas (CERTH), Thessaloniki, Greece
| | - Anastasia Chasapi
- BCPL, Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas (CERTH), Thessaloniki, Greece
| |
Collapse
|
7
|
Kouros CE, Makri V, Ouzounis CA, Chasapi A. Disease association and comparative genomics of compositional bias in human proteins. F1000Res 2023; 12:198. [PMID: 37082000 PMCID: PMC10111144 DOI: 10.12688/f1000research.129929.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 04/25/2023] Open
Abstract
Background: The evolutionary rate of disordered protein regions varies greatly due to the lack of structural constraints. So far, few studies have investigated the presence/absence patterns of compositional bias, indicative of disorder, across phylogenies in conjunction with human disease. In this study, we report a genome-wide analysis of compositional bias association with disease in human proteins and their taxonomic distribution. Methods: The human genome protein set provided by the Ensembl database was annotated and analysed with respect to both disease associations and the detection of compositional bias. The Uniprot Reference Proteome dataset, containing 11297 proteomes was used as target dataset for the comparative genomics of a well-defined subset of the Human Genome, including 100 characteristic, compositionally biased proteins, some linked to disease. Results: Cross-evaluation of compositional bias and disease-association in the human genome reveals a significant bias towards biased regions in disease-associated genes, with charged, hydrophilic amino acids appearing as over-represented. The phylogenetic profiling of 17 disease-associated, proteins with compositional bias across 11297 proteomes captures characteristic taxonomic distribution patterns. Conclusions: This is the first time that a combined genome-wide analysis of compositional bias, disease-association and taxonomic distribution of human proteins is reported, covering structural, functional, and evolutionary properties. The reported framework can form the basis for large-scale, follow-up projects, encompassing the entire human genome and all known gene-disease associations.
Collapse
Affiliation(s)
- Christos E. Kouros
- BCCB-AIIA, School of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasiliki Makri
- BCCB-AIIA, School of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christos A. Ouzounis
- BCCB-AIIA, School of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
- BCPL, Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas (CERTH), Thessaloniki, Greece
| | - Anastasia Chasapi
- BCPL, Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas (CERTH), Thessaloniki, Greece
| |
Collapse
|
8
|
Kim SJ, Lee Y, Choi EJ, Lee JM, Kim KH, Oh JW. The development progress of multi-array colourimetric sensors based on the M13 bacteriophage. NANO CONVERGENCE 2023; 10:1. [PMID: 36595116 PMCID: PMC9808696 DOI: 10.1186/s40580-022-00351-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Techniques for detecting chemicals dispersed at low concentrations in air continue to evolve. These techniques can be applied not only to manage the quality of agricultural products using a post-ripening process but also to establish a safety prevention system by detecting harmful gases and diagnosing diseases. Recently, techniques for rapid response to various chemicals and detection in complex and noisy environments have been developed using M13 bacteriophage-based sensors. In this review, M13 bacteriophage-based multi-array colourimetric sensors for the development of an electronic nose is discussed. The self-templating process was adapted to fabricate a colour band structure consisting of an M13 bacteriophage. To detect diverse target chemicals, the colour band was utilised with wild and genetically engineered M13 bacteriophages to enhance their sensing abilities. Multi-array colourimetric sensors were optimised for application in complex and noisy environments based on simulation and deep learning analysis. The development of a multi-array colourimetric sensor platform based on the M13 bacteriophage is likely to result in significant advances in the detection of various harmful gases and the diagnosis of various diseases based on exhaled gas in the future.
Collapse
Affiliation(s)
- Sung-Jo Kim
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, Republic of Korea
| | - Yujin Lee
- Department of Nano Fusion Technology, Pusan National University, Busan, Republic of Korea
| | - Eun Jung Choi
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, Republic of Korea
- Korea Nanobiotechnology Center, Pusan National University, Busan, Republic of Korea
| | - Jong-Min Lee
- School of Nano Convergence Technology, Hallym University, Chuncheon, Republic of Korea
- Korea and Nano Convergence Technology Center, Hallym University, Chuncheon, Republic of Korea
| | - Kwang Ho Kim
- School of Materials Science and Engineering, Pusan National University, Busan, Republic of Korea
- Global Frontier Research and Development Center for Hybrid Interface Materials, Pusan National University, Busan, Republic of Korea
| | - Jin-Woo Oh
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, Republic of Korea
- Department of Nano Fusion Technology, Pusan National University, Busan, Republic of Korea
- Korea Nanobiotechnology Center, Pusan National University, Busan, Republic of Korea
- Department of Nanoenergy Engineering and Research Center for Energy Convergence Technology, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
9
|
Lee HY, Sim BC, Nga HT, Moon JS, Tian J, Linh NT, Ju SH, Choi DW, Setoyama D, Yi HS. Metabolite Changes during the Transition from Hyperthyroidism to Euthyroidism in Patients with Graves' Disease. Endocrinol Metab (Seoul) 2022; 37:891-900. [PMID: 36604959 PMCID: PMC9816501 DOI: 10.3803/enm.2022.1590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/28/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGRUOUND An excess of thyroid hormones in Graves' disease (GD) has profound effects on systemic energy metabolism that are currently partially understood. In this study, we aimed to provide a comprehensive understanding of the metabolite changes that occur when patients with GD transition from hyperthyroidism to euthyroidism with methimazole treatment. METHODS Eighteen patients (mean age, 38.6±14.7 years; 66.7% female) with newly diagnosed or relapsed GD attending the endocrinology outpatient clinics in a single institution were recruited between January 2019 and July 2020. All subjects were treated with methimazole to achieve euthyroidism. We explored metabolomics by performing liquid chromatography-mass spectrometry analysis of plasma samples of these patients and then performed multivariate statistical analysis of the metabolomics data. RESULTS Two hundred metabolites were measured before and after 12 weeks of methimazole treatment in patients with GD. The levels of 61 metabolites, including palmitic acid (C16:0) and oleic acid (C18:1), were elevated in methimazole-naïve patients with GD, and these levels were decreased by methimazole treatment. The levels of another 15 metabolites, including glycine and creatinine, were increased after recovery of euthyroidism upon methimazole treatment in patients with GD. Pathway analysis of metabolomics data showed that hyperthyroidism was closely related to aminoacyl-transfer ribonucleic acid biosynthesis and branched-chain amino acid biosynthesis pathways. CONCLUSION In this study, significant variations of plasma metabolomic patterns that occur during the transition from hyperthyroidism to euthyroidism were detected in patients with GD via untargeted metabolomics analysis.
Collapse
Affiliation(s)
- Ho Yeop Lee
- Laboratory of Endocrinology and Immune System, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Byeong Chang Sim
- Laboratory of Endocrinology and Immune System, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Ha Thi Nga
- Laboratory of Endocrinology and Immune System, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Ji Sun Moon
- Laboratory of Endocrinology and Immune System, Chungnam National University College of Medicine, Daejeon, Korea
| | - Jingwen Tian
- Laboratory of Endocrinology and Immune System, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Nguyen Thi Linh
- Laboratory of Endocrinology and Immune System, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Sang Hyeon Ju
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Dong Wook Choi
- Department of Biochemistry, Chungnam National University College of Natural Sciences, Daejeon, Korea
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, Fukuoka, Japan
- Corresponding authors: Hyon-Seung Yi. Laboratory of Endocrinology and Immune System, Chungnam National University College of Medicine, 282 Munhwa-ro, Jung-gu, Daejeon 35015, Korea Tel: +82-42-280-6994, Fax: +82-42-280-7995, E-mail:
| | - Hyon-Seung Yi
- Laboratory of Endocrinology and Immune System, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
- Daiki Setoyama. Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, 3-1-1 Maidashi, Fukuoka 812-8582, Japan Tel: +81-92-642-5752, Fax: +81-92-642-5752, E-mail:
| |
Collapse
|
10
|
Hennaux L, Kohchtali A, Bâlon H, Matroule JY, Michaux C, Perpète EA. Refolding and biophysical characterization of the Caulobacter crescentus copper resistance protein, PcoB: An outer membrane protein containing an intrinsically disordered domain. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184038. [PMID: 36057369 DOI: 10.1016/j.bbamem.2022.184038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Copper cations play fundamental roles in biological systems, such as protein folding and stabilization, or enzymatic reactions. Although copper is essential to the cell, it can become cytotoxic if present in too high concentration. Organisms have therefore developed specific regulation mechanisms towards copper. This is the case of the Pco system present in the bacterium Caulobacter crescentus, which is composed of two proteins: a soluble periplasmic protein PcoA and an outer membrane protein PcoB. PcoA oxidizes Cu+ to Cu2+, whereas PcoB is thought to be an efflux pump for Cu2+. While the PcoA protein has already been studied, very little is known about the structure and function of PcoB. In the present work, PcoB has been overexpressed in high yield in E. coli strains and successfully refolded by the SDS-cosolvent method. Binding to divalent cations has also been studied using several spectroscopic techniques. In addition, a three-dimensional structure model of PcoB, experimentally supported by circular dichroism, has been constructed, showing a β-barrel conformation with a N-terminal disordered chain. This peculiar intrinsic disorder property has also been confirmed by various bioinformatic tools.
Collapse
Affiliation(s)
- Laurelenn Hennaux
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium; Namur Institute of Structured Matter (NISM), University of Namur, Namur, Belgium; Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium.
| | - Amira Kohchtali
- Research Unit in Microorganisms Biology (URBM), Department of Biology, Namur, Belgium; Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Hugo Bâlon
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Jean-Yves Matroule
- Research Unit in Microorganisms Biology (URBM), Department of Biology, Namur, Belgium; Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Catherine Michaux
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium; Namur Institute of Structured Matter (NISM), University of Namur, Namur, Belgium; Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Eric A Perpète
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium; Namur Institute of Structured Matter (NISM), University of Namur, Namur, Belgium; Institute of Life-Earth-Environment (ILEE), University of Namur, Namur, Belgium
| |
Collapse
|
11
|
Cascarina SM, Ross ED. The LCD-Composer webserver: high-specificity identification and functional analysis of low-complexity domains in proteins. Bioinformatics 2022; 38:5446-5448. [PMID: 36282522 PMCID: PMC9750097 DOI: 10.1093/bioinformatics/btac699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 12/25/2022] Open
Abstract
SUMMARY Low-complexity domains (LCDs) in proteins are regions enriched in a small subset of amino acids. LCDs exist in all domains of life, often have unusual biophysical behavior, and function in both normal and pathological processes. We recently developed an algorithm to identify LCDs based predominantly on amino acid composition thresholds. Here, we have integrated this algorithm with a webserver and augmented it with additional analysis options. Specifically, users can (i) search for LCDs in whole proteomes by setting minimum composition thresholds for individual or grouped amino acids, (ii) submit a known LCD sequence to search for similar LCDs, (iii) search for and plot LCDs within a single protein, (iv) statistically test for enrichment of LCDs within a user-provided protein set and (v) specifically identify proteins with multiple types of LCDs. AVAILABILITY AND IMPLEMENTATION The LCD-Composer server can be accessed at http://lcd-composer.bmb.colostate.edu. The corresponding command-line scripts can be accessed at https://github.com/RossLabCSU/LCD-Composer/tree/master/WebserverScripts.
Collapse
Affiliation(s)
| | - Eric D Ross
- To whom correspondence should be addressed. or
| |
Collapse
|
12
|
Jarnot P, Ziemska-Legiecka J, Grynberg M, Gruca A. Insights from analyses of low complexity regions with canonical methods for protein sequence comparison. Brief Bioinform 2022; 23:bbac299. [PMID: 35914952 PMCID: PMC9487646 DOI: 10.1093/bib/bbac299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/28/2022] Open
Abstract
Low complexity regions are fragments of protein sequences composed of only a few types of amino acids. These regions frequently occur in proteins and can play an important role in their functions. However, scientists are mainly focused on regions characterized by high diversity of amino acid composition. Similarity between regions of protein sequences frequently reflect functional similarity between them. In this article, we discuss strengths and weaknesses of the similarity analysis of low complexity regions using BLAST, HHblits and CD-HIT. These methods are considered to be the gold standard in protein similarity analysis and were designed for comparison of high complexity regions. However, we lack specialized methods that could be used to compare the similarity of low complexity regions. Therefore, we investigated the existing methods in order to understand how they can be applied to compare such regions. Our results are supported by exploratory study, discussion of amino acid composition and biological roles of selected examples. We show that existing methods need improvements to efficiently search for similar low complexity regions. We suggest features that have to be re-designed specifically for comparing low complexity regions: scoring matrix, multiple sequence alignment, e-value, local alignment and clustering based on a set of representative sequences. Results of this analysis can either be used to improve existing methods or to create new methods for the similarity analysis of low complexity regions.
Collapse
Affiliation(s)
- Patryk Jarnot
- Department of Computer Networks and Systems, Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland
| | - Joanna Ziemska-Legiecka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Marcin Grynberg
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Aleksandra Gruca
- Department of Computer Networks and Systems, Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland
| |
Collapse
|
13
|
Mier P, Andrade-Navarro MA. Regions with two amino acids in protein sequences: a step forward from homorepeats into the low complexity landscape. Comput Struct Biotechnol J 2022; 20:5516-5523. [PMID: 36249567 PMCID: PMC9550522 DOI: 10.1016/j.csbj.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Low complexity regions (LCRs) differ in amino acid composition from the background provided by the corresponding proteomes. The simplest LCRs are homorepeats (or polyX), regions composed of mostly-one amino acid type. Extensive research has been done to characterize homorepeats, and their taxonomic, functional and structural features depend on the amino acid type and sequence context. From them, the next step towards the study of LCRs are the regions composed of two types of amino acids, which we call polyXY. We classify polyXY in three categories based on the arrangement of the two amino acid types ‘X’ and ‘Y’: direpeats (e.g. ‘XYXYXY’), joined (e.g. ‘XXXYYY’) and shuffled (e.g. ‘XYYXXY’). We developed a script to search for polyXY, and located them in a comprehensive set of 20,340 reference proteomes. These results are available in a dedicated web server called XYs, in which the user can also submit their own protein datasets to detect polyXY. We studied the distribution of polyXY types by amino acid pair XY and category, and show that polyXY in Eukaryota are mainly located within intrinsically disordered regions. Our study provides a first step towards the characterization of polyXY as protein motifs.
Collapse
Affiliation(s)
- Pablo Mier
- Corresponding author at: Hanns-Dieter-Hüsch-Weg 15 55118 Mainz (Germany).
| | | |
Collapse
|
14
|
Fischer F, Vorontsov E, Turlin E, Malosse C, Garcia C, Tabb DL, Chamot-Rooke J, Percudani R, Vinella D, De Reuse H. Expansion of nickel binding- and histidine-rich proteins during gastric adaptation of Helicobacter species. METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2022; 14:6674772. [PMID: 36002005 DOI: 10.1093/mtomcs/mfac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/17/2022] [Indexed: 11/14/2022]
Abstract
Acquisition and homeostasis of essential metals during host colonization by bacterial pathogens rely on metal uptake, trafficking and storage proteins. How these factors have evolved within bacterial pathogens is poorly defined. Urease, a nickel enzyme, is essential for Helicobacter pylori to colonize the acidic stomach. Our previous data suggest that acquisition of nickel transporters and a Histidine-rich protein (HRP) involved in nickel storage in H. pylori and gastric Helicobacter spp. have been essential evolutionary events for gastric colonization. Using bioinformatics, proteomics and phylogenetics, we extended this analysis to determine how evolution has framed the repertoire of HRPs among 39 Epsilonproteobacteria; 18 gastric and 11 non-gastric enterohepatic (EH) Helicobacter spp., as well as 10 other Epsilonproteobacteria. We identified a total of 213 HRPs distributed in 22 protein families named orthologous groups (OG) with His-rich domains, including 15 newly described OGs. Gastric Helicobacter spp. are enriched in HRPs (7.7 ± 1.9 HRPs/strain) as compared to EH Helicobacter spp. (1.9 ± 1.0 HRPs/strain) with a particular prevalence of HRPs with C-terminal Histidine-rich domains in gastric species. The expression and nickel-binding capacity of several HRPs was validated in five gastric Helicobacter spp. We established the evolutionary history of new HRP families, such as the periplasmic HP0721-like proteins and the HugZ-type heme-oxygenases. The expansion of Histidine-rich extensions in gastric Helicobacter spp. proteins is intriguing but can tentatively be associated with the presence of the urease nickel-enzyme. We conclude that this HRP expansion is associated with unique properties of organisms that rely on large intracellular nickel amounts for their survival.
Collapse
Affiliation(s)
- Frédéric Fischer
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, UMR CNRS 6047, 28 rue du Dr Roux 75724 PARIS Cedex 15 FRANCE.,Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, Université de Strasbourg, Institut de Physiologie et Chimie Biologiques, 4 allée Konrad Roentgen, 67084 Strasbourg, FRANCE
| | - Egor Vorontsov
- Institut Pasteur, Department of Structural Biology and Chemistry, Université Paris Cité, CNRS UAR 2024, Mass Spectrometry for Biology Unit, 28 rue du Dr Roux 75724 PARIS Cedex 15 FRANCE.,Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Box 413, 40530 Gothenburg, SWEDEN
| | - Evelyne Turlin
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, UMR CNRS 6047, 28 rue du Dr Roux 75724 PARIS Cedex 15 FRANCE
| | - Christian Malosse
- Institut Pasteur, Department of Structural Biology and Chemistry, Université Paris Cité, CNRS UAR 2024, Mass Spectrometry for Biology Unit, 28 rue du Dr Roux 75724 PARIS Cedex 15 FRANCE
| | - Camille Garcia
- Institut Pasteur, Department of Structural Biology and Chemistry, Université Paris Cité, CNRS UAR 2024, Mass Spectrometry for Biology Unit, 28 rue du Dr Roux 75724 PARIS Cedex 15 FRANCE
| | - David L Tabb
- Institut Pasteur, Department of Structural Biology and Chemistry, Université Paris Cité, CNRS UAR 2024, Mass Spectrometry for Biology Unit, 28 rue du Dr Roux 75724 PARIS Cedex 15 FRANCE
| | - Julia Chamot-Rooke
- Institut Pasteur, Department of Structural Biology and Chemistry, Université Paris Cité, CNRS UAR 2024, Mass Spectrometry for Biology Unit, 28 rue du Dr Roux 75724 PARIS Cedex 15 FRANCE
| | - Riccardo Percudani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, ITALY
| | - Daniel Vinella
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, UMR CNRS 6047, 28 rue du Dr Roux 75724 PARIS Cedex 15 FRANCE
| | - Hilde De Reuse
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, UMR CNRS 6047, 28 rue du Dr Roux 75724 PARIS Cedex 15 FRANCE
| |
Collapse
|
15
|
Tetreau G, Sawaya MR, De Zitter E, Andreeva EA, Banneville AS, Schibrowsky NA, Coquelle N, Brewster AS, Grünbein ML, Kovacs GN, Hunter MS, Kloos M, Sierra RG, Schiro G, Qiao P, Stricker M, Bideshi D, Young ID, Zala N, Engilberge S, Gorel A, Signor L, Teulon JM, Hilpert M, Foucar L, Bielecki J, Bean R, de Wijn R, Sato T, Kirkwood H, Letrun R, Batyuk A, Snigireva I, Fenel D, Schubert R, Canfield EJ, Alba MM, Laporte F, Després L, Bacia M, Roux A, Chapelle C, Riobé F, Maury O, Ling WL, Boutet S, Mancuso A, Gutsche I, Girard E, Barends TRM, Pellequer JL, Park HW, Laganowsky AD, Rodriguez J, Burghammer M, Shoeman RL, Doak RB, Weik M, Sauter NK, Federici B, Cascio D, Schlichting I, Colletier JP. De novo determination of mosquitocidal Cry11Aa and Cry11Ba structures from naturally-occurring nanocrystals. Nat Commun 2022; 13:4376. [PMID: 35902572 PMCID: PMC9334358 DOI: 10.1038/s41467-022-31746-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/30/2022] [Indexed: 11/08/2022] Open
Abstract
Cry11Aa and Cry11Ba are the two most potent toxins produced by mosquitocidal Bacillus thuringiensis subsp. israelensis and jegathesan, respectively. The toxins naturally crystallize within the host; however, the crystals are too small for structure determination at synchrotron sources. Therefore, we applied serial femtosecond crystallography at X-ray free electron lasers to in vivo-grown nanocrystals of these toxins. The structure of Cry11Aa was determined de novo using the single-wavelength anomalous dispersion method, which in turn enabled the determination of the Cry11Ba structure by molecular replacement. The two structures reveal a new pattern for in vivo crystallization of Cry toxins, whereby each of their three domains packs with a symmetrically identical domain, and a cleavable crystal packing motif is located within the protoxin rather than at the termini. The diversity of in vivo crystallization patterns suggests explanations for their varied levels of toxicity and rational approaches to improve these toxins for mosquito control.
Collapse
Affiliation(s)
- Guillaume Tetreau
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Michael R Sawaya
- UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California, Los Angeles, CA, 90095-1570, USA
| | - Elke De Zitter
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Elena A Andreeva
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Anne-Sophie Banneville
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Natalie A Schibrowsky
- UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California, Los Angeles, CA, 90095-1570, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Nicolas Coquelle
- Large-Scale Structures Group, Institut Laue-Langevin, F-38000, Grenoble, France
| | - Aaron S Brewster
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Marie Luise Grünbein
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Gabriela Nass Kovacs
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Mark S Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Marco Kloos
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Raymond G Sierra
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Giorgio Schiro
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Pei Qiao
- Department of Chemistry, Texas A&M University, College Station, TX, 77845, USA
| | - Myriam Stricker
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Dennis Bideshi
- Department of Entomology and Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
- Department of Biological Sciences, California Baptist University, Riverside, CA, 92504, USA
| | - Iris D Young
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ninon Zala
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Sylvain Engilberge
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Alexander Gorel
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Luca Signor
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Jean-Marie Teulon
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Mario Hilpert
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Lutz Foucar
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Johan Bielecki
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Richard Bean
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Raphael de Wijn
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Tokushi Sato
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Henry Kirkwood
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Romain Letrun
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Alexander Batyuk
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Irina Snigireva
- European Synchrotron Radiation Facility (ESRF), BP 220, 38043, Grenoble, France
| | - Daphna Fenel
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Robin Schubert
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Ethan J Canfield
- Mass Spectrometry Core Facility, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Mario M Alba
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | | | | | - Maria Bacia
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Amandine Roux
- Univ. Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F-69342, Lyon, France
| | | | - François Riobé
- Univ. Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F-69342, Lyon, France
| | - Olivier Maury
- Univ. Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F-69342, Lyon, France
| | - Wai Li Ling
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Sébastien Boutet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Adrian Mancuso
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Irina Gutsche
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Eric Girard
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Thomas R M Barends
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Jean-Luc Pellequer
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Hyun-Woo Park
- Department of Entomology and Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
- Department of Biological Sciences, California Baptist University, Riverside, CA, 92504, USA
| | - Arthur D Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX, 77845, USA
| | - Jose Rodriguez
- UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California, Los Angeles, CA, 90095-1570, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Manfred Burghammer
- European Synchrotron Radiation Facility (ESRF), BP 220, 38043, Grenoble, France
| | - Robert L Shoeman
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - R Bruce Doak
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Martin Weik
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Nicholas K Sauter
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Brian Federici
- Department of Entomology and Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Duilio Cascio
- UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California, Los Angeles, CA, 90095-1570, USA
| | - Ilme Schlichting
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Jacques-Philippe Colletier
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France.
| |
Collapse
|
16
|
Aledo JC. A Census of Human Methionine-Rich Prion-like Domain-Containing Proteins. Antioxidants (Basel) 2022; 11:antiox11071289. [PMID: 35883780 PMCID: PMC9312190 DOI: 10.3390/antiox11071289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Methionine-rich prion-like proteins can regulate liquid–liquid phase separation processes in response to stresses. To date, however, very few proteins have been identified as methionine-rich prion-like. Herein, we have performed a computational survey of the human proteome to search for methionine-rich prion-like domains. We present a census of 51 manually curated methionine-rich prion-like proteins. Our results show that these proteins tend to be modular in nature, with molecular sizes significantly greater than those we would expect due to random sampling effects. These proteins also exhibit a remarkably high degree of spatial compaction when compared to average human proteins, even when protein size is accounted for. Computational evidence suggests that such a high degree of compactness might be due to the aggregation of methionine residues, pointing to a potential redox regulation of compactness. Gene ontology and network analyses, performed to shed light on the biological processes in which these proteins might participate, indicate that methionine-rich and non-methionine-rich prion-like proteins share gene ontology terms related to the regulation of transcription and translation but, more interestingly, these analyses also reveal that proteins from the methionine-rich group tend to share more gene ontology terms among them than they do with their non-methionine-rich prion-like counterparts.
Collapse
Affiliation(s)
- Juan Carlos Aledo
- Department of Molecular Biology and Biochemistry, University of Malaga, 29071 Malaga, Spain
| |
Collapse
|
17
|
Pseudomonas aeruginosa C-Terminal Processing Protease CtpA Assembles into a Hexameric Structure That Requires Activation by a Spiral-Shaped Lipoprotein-Binding Partner. mBio 2022; 13:e0368021. [PMID: 35038915 PMCID: PMC8764530 DOI: 10.1128/mbio.03680-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Pseudomonas aeruginosa CtpA is a carboxyl-terminal processing protease that partners with the outer membrane lipoprotein LbcA to degrade at least five cell wall-associated proteins, four of which are cell wall hydrolases. This activity plays an important role in supporting P. aeruginosa virulence in a mouse model of acute pneumonia. However, almost nothing is known about the molecular mechanisms underlying CtpA and LbcA function. Here, we used structural analysis to show that CtpA alone assembles into an inactive hexamer comprising a trimer of dimers, which limits its substrate access and prevents nonspecific degradation. The adaptor protein LbcA is a right-handed open spiral with 11 tetratricopeptide repeats, which might wrap around a substrate to deliver it to CtpA for degradation. By structure-guided mutagenesis and functional assays, we also showed that the interfaces of the CtpA trimer of dimers and an N-terminal helix of LbcA are important for LbcA-mediated substrate degradation by CtpA both in vitro and in vivo. This work improves our understanding of the molecular mechanism of the LbcA-CtpA proteolytic system and reveals some striking differences from the arrangements found in some other bacterial CTPs. IMPORTANCE Carboxyl-terminal processing proteases (CTPs) are found in all three domains of life. In bacteria, some CTPs have been associated with virulence, raising the possibility that they could be therapeutic targets. However, relatively little is known about their molecular mechanisms of action. In Pseudomonas aeruginosa, CtpA supports virulence by working in complex with the outer membrane lipoprotein LbcA to degrade cell wall hydrolases. Here, we report structure-function analyses of CtpA and LbcA, which reveals that CtpA assembles into an inactive hexamer comprising a trimer of dimers. LbcA is monomeric, with the first N-terminal helix important for binding to and activating CtpA, followed by a spiral structure composed of 11 tetratricopeptide repeats, which could wrap around a substrate for delivery to CtpA. This work reveals a unique mutimeric arrangement for a CTP and insight into how the important LbcA-CtpA proteolytic system functions.
Collapse
|
18
|
Becerra A, Muñoz-Velasco I, Aguilar-Cámara A, Cottom-Salas W, Cruz-González A, Vázquez-Salazar A, Hernández-Morales R, Jácome R, Campillo-Balderas JA, Lazcano A. Two short low complexity regions (LCRs) are hallmark sequences of the Delta SARS-CoV-2 variant spike protein. Sci Rep 2022; 12:936. [PMID: 35042962 PMCID: PMC8766472 DOI: 10.1038/s41598-022-04976-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/04/2022] [Indexed: 11/24/2022] Open
Abstract
Low complexity regions (LCRs) are protein sequences formed by a set of compositionally biased residues. LCRs are extremely abundant in cellular proteins and have also been reported in viruses, where they may partake in evasion of the host immune system. Analyses of 28,231 SARS-CoV-2 whole proteomes and of 261,051 spike protein sequences revealed the presence of four extremely conserved LCRs in the spike protein of several SARS-CoV-2 variants. With the exception of Iota, where it is absent, the Spike LCR-1 is present in the signal peptide of 80.57% of the Delta variant sequences, and in other variants of concern and interest. The Spike LCR-2 is highly prevalent (79.87%) in Iota. Two distinctive LCRs are present in the Delta spike protein. The Delta Spike LCR-3 is present in 99.19% of the analyzed sequences, and the Delta Spike LCR-4 in 98.3% of the same set of proteins. These two LCRs are located in the furin cleavage site and HR1 domain, respectively, and may be considered hallmark traits of the Delta variant. The presence of the medically-important point mutations P681R and D950N in these LCRs, combined with the ubiquity of these regions in the highly contagious Delta variant opens the possibility that they may play a role in its rapid spread.
Collapse
Affiliation(s)
- Arturo Becerra
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Israel Muñoz-Velasco
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | | | - Wolfgang Cottom-Salas
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
- Escuela Nacional Preparatoria, Plantel 8 Miguel E. Schulz, Universidad Nacional Autónoma de México, 01600, Mexico City, Mexico
| | - Adrián Cruz-González
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Alberto Vázquez-Salazar
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA
| | | | - Rodrigo Jácome
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | | | - Antonio Lazcano
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
- El Colegio Nacional, 06470, Mexico City, Mexico.
| |
Collapse
|
19
|
Amoutzias GD, Nikolaidis M, Tryfonopoulou E, Chlichlia K, Markoulatos P, Oliver SG. The Remarkable Evolutionary Plasticity of Coronaviruses by Mutation and Recombination: Insights for the COVID-19 Pandemic and the Future Evolutionary Paths of SARS-CoV-2. Viruses 2022; 14:78. [PMID: 35062282 PMCID: PMC8778387 DOI: 10.3390/v14010078] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/22/2021] [Accepted: 12/31/2021] [Indexed: 12/13/2022] Open
Abstract
Coronaviruses (CoVs) constitute a large and diverse subfamily of positive-sense single-stranded RNA viruses. They are found in many mammals and birds and have great importance for the health of humans and farm animals. The current SARS-CoV-2 pandemic, as well as many previous epidemics in humans that were of zoonotic origin, highlights the importance of studying the evolution of the entire CoV subfamily in order to understand how novel strains emerge and which molecular processes affect their adaptation, transmissibility, host/tissue tropism, and patho non-homologous genicity. In this review, we focus on studies over the last two years that reveal the impact of point mutations, insertions/deletions, and intratypic/intertypic homologous and non-homologous recombination events on the evolution of CoVs. We discuss whether the next generations of CoV vaccines should be directed against other CoV proteins in addition to or instead of spike. Based on the observed patterns of molecular evolution for the entire subfamily, we discuss five scenarios for the future evolutionary path of SARS-CoV-2 and the COVID-19 pandemic. Finally, within this evolutionary context, we discuss the recently emerged Omicron (B.1.1.529) VoC.
Collapse
Affiliation(s)
- Grigorios D. Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece;
| | - Marios Nikolaidis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece;
| | - Eleni Tryfonopoulou
- Laboratory of Molecular Immunology, Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus-Dragana, 68100 Alexandroupolis, Greece; (E.T.); (K.C.)
| | - Katerina Chlichlia
- Laboratory of Molecular Immunology, Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus-Dragana, 68100 Alexandroupolis, Greece; (E.T.); (K.C.)
| | - Panayotis Markoulatos
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece;
| | - Stephen G. Oliver
- Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
20
|
Yan Y, Gan J, Tao Y, Okita TW, Tian L. RNA-Binding Proteins: The Key Modulator in Stress Granule Formation and Abiotic Stress Response. FRONTIERS IN PLANT SCIENCE 2022; 13:882596. [PMID: 35783947 PMCID: PMC9240754 DOI: 10.3389/fpls.2022.882596] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/04/2022] [Indexed: 05/08/2023]
Abstract
To cope with abiotic environmental stress, plants rapidly change their gene expression transcriptionally and post-transcriptionally, the latter by translational suppression of selected proteins and the assembly of cytoplasmic stress granules (SGs) that sequester mRNA transcripts. RNA-binding proteins (RBPs) are the major players in these post-transcriptional processes, which control RNA processing in the nucleus, their export from the nucleus, and overall RNA metabolism in the cytoplasm. Because of their diverse modular domain structures, various RBP types dynamically co-assemble with their targeted RNAs and interacting proteins to form SGs, a process that finely regulates stress-responsive gene expression. This review summarizes recent findings on the involvement of RBPs in adapting plants to various abiotic stresses via modulation of specific gene expression events and SG formation. The relationship of these processes with the stress hormone abscisic acid (ABA) is discussed.
Collapse
Affiliation(s)
- Yanyan Yan
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable (Ministry of Agriculture and Rural Affairs), Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Jianghuang Gan
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable (Ministry of Agriculture and Rural Affairs), Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Yilin Tao
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable (Ministry of Agriculture and Rural Affairs), Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Thomas W. Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
- *Correspondence: Thomas W. Okita,
| | - Li Tian
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable (Ministry of Agriculture and Rural Affairs), Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
- Li Tian,
| |
Collapse
|
21
|
Harrison PM. fLPS 2.0: rapid annotation of compositionally-biased regions in biological sequences. PeerJ 2021; 9:e12363. [PMID: 34760378 PMCID: PMC8557692 DOI: 10.7717/peerj.12363] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022] Open
Abstract
Compositionally-biased (CB) regions in biological sequences are enriched for a subset of sequence residue types. These can be shorter regions with a concentrated bias (i.e., those termed ‘low-complexity’), or longer regions that have a compositional skew. These regions comprise a prominent class of the uncharacterized ‘dark matter’ of the protein universe. Here, I report the latest version of the fLPS package for the annotation of CB regions, which includes added consideration of DNA sequences, to label the eight possible biased regions of DNA. In this version, the user is now able to restrict analysis to a specified subset of residue types, and also to filter for previously annotated domains to enable detection of discontinuous CB regions. A ‘thorough’ option has been added which enables the labelling of subtler biases, typically made from a skew for several residue types. In the output, protein CB regions are now labelled with bias classes reflecting the physico-chemical character of the biasing residues. The fLPS 2.0 package is available from: https://github.com/pmharrison/flps2 or in a Supplemental File of this paper.
Collapse
Affiliation(s)
- Paul M Harrison
- Department of Biology, McGill University, Montreal, QC, Canada
| |
Collapse
|
22
|
Tamburrini KC, Terrapon N, Lombard V, Bissaro B, Longhi S, Berrin JG. Bioinformatic Analysis of Lytic Polysaccharide Monooxygenases Reveals the Pan-Families Occurrence of Intrinsically Disordered C-Terminal Extensions. Biomolecules 2021; 11:1632. [PMID: 34827630 PMCID: PMC8615602 DOI: 10.3390/biom11111632] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 01/17/2023] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are monocopper enzymes secreted by many organisms and viruses. LPMOs catalyze the oxidative cleavage of different types of polysaccharides and are today divided into eight families (AA9-11, AA13-17) within the Auxiliary Activity enzyme class of the CAZy database. LPMOs minimal architecture encompasses a catalytic domain, to which can be appended a carbohydrate-binding module. Intriguingly, we observed that some LPMO sequences also display a C-terminal extension of varying length not associated with any known function or fold. Here, we analyzed 27,060 sequences from different LPMO families and show that 60% have a C-terminal extension predicted to be intrinsically disordered. Our analysis shows that these disordered C-terminal regions (dCTRs) are widespread in all LPMO families (except AA13) and differ in terms of sequence length and amino-acid composition. Noteworthily, these dCTRs have so far only been observed in LPMOs. LPMO-dCTRs share a common polyampholytic nature and an enrichment in serine and threonine residues, suggesting that they undergo post-translational modifications. Interestingly, dCTRs from AA11 and AA15 are enriched in redox-sensitive, conditionally disordered regions. The widespread occurrence of dCTRs in LPMOs from evolutionarily very divergent organisms, hints at a possible functional role and opens new prospects in the field of LPMOs.
Collapse
Affiliation(s)
- Ketty C. Tamburrini
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université (AMU), UMR 7257, 13288 Marseille, France; (K.C.T.); (N.T.); (V.L.)
- Biodiversité et Biotechnologie Fongiques (BBF), French National Institute for Agriculture, Food, and Environment (INRAE), Aix-Marseille Université (AMU), UMR 1163, 13288 Marseille, France;
| | - Nicolas Terrapon
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université (AMU), UMR 7257, 13288 Marseille, France; (K.C.T.); (N.T.); (V.L.)
- Architecture et Fonction des Macromolécules Biologiques (AFMB), French National Institute for Agriculture, Food, and Environment (INRAE), USC 1408, 13288 Marseille, France
| | - Vincent Lombard
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université (AMU), UMR 7257, 13288 Marseille, France; (K.C.T.); (N.T.); (V.L.)
- Architecture et Fonction des Macromolécules Biologiques (AFMB), French National Institute for Agriculture, Food, and Environment (INRAE), USC 1408, 13288 Marseille, France
| | - Bastien Bissaro
- Biodiversité et Biotechnologie Fongiques (BBF), French National Institute for Agriculture, Food, and Environment (INRAE), Aix-Marseille Université (AMU), UMR 1163, 13288 Marseille, France;
| | - Sonia Longhi
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université (AMU), UMR 7257, 13288 Marseille, France; (K.C.T.); (N.T.); (V.L.)
| | - Jean-Guy Berrin
- Biodiversité et Biotechnologie Fongiques (BBF), French National Institute for Agriculture, Food, and Environment (INRAE), Aix-Marseille Université (AMU), UMR 1163, 13288 Marseille, France;
| |
Collapse
|
23
|
Bacteroidetocins Target the Essential Outer Membrane Protein BamA of Bacteroidales Symbionts and Pathogens. mBio 2021; 12:e0228521. [PMID: 34517753 PMCID: PMC8546649 DOI: 10.1128/mbio.02285-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Bacteroidetocins are a family of antibacterial peptide toxins that are produced by and target members of the phylum Bacteroidetes. To date, 19 bacteroidetocins have been identified, and four have been tested and shown to kill diverse Bacteroidales species (M. J. Coyne, N. Béchon, L. M. Matano, V. L. McEneany, et al., Nat Commun 10:3460, 2019, https://doi.org/10.1038/s41467-019-11494-1). Here, we identify the target and likely mechanism of action of the bacteroidetocins. We selected seven spontaneous mutants of four different genera, all resistant to bacteroidetocin A (Bd-A) and found that all contained mutations in a single gene, bamA. Construction of three of these bamA mutants in the wild-type (WT) strains confirmed they confer resistance to Bd-A as well as to other bacteroidetocins. We identified an aspartate residue of BamA at the beginning of exterior loop 3 (eL3) that, when altered, renders strains resistant to Bd-A. Analysis of a panel of diverse Bacteroidales strains showed a correlation between the presence of this aspartate residue and Bd-A sensitivity. Fluorescence microscopy and transmission electron microscopy (TEM) analysis of Bd-A-treated cells showed cellular morphological changes consistent with a BamA defect. Transcriptomic analysis of Bd-A-treated cells revealed gene expression changes indicative of cell envelope stress. Studies in mice revealed that bacteroidetocin-resistant mutants are outcompeted by their WT strain in vivo. Analyses of longitudinal human gut isolates showed that bamA mutations leading to bacteroidetocin resistance do not become fixed in the human gut, even in bacteroidetocin-producing strains and nonproducing coresident strains. Together, these data lend further support to the applicability of the bacteroidetocins as therapeutic peptides in the treatment of maladies involving Bacteroidales species.
Collapse
|
24
|
Delpero M, Arends D, Sprechert M, Krause F, Kluth O, Schürmann A, Brockmann GA, Hesse D. Identification of four novel QTL linked to the metabolic syndrome in the Berlin Fat Mouse. Int J Obes (Lond) 2021; 46:307-315. [PMID: 34689180 PMCID: PMC8794782 DOI: 10.1038/s41366-021-00991-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 12/30/2022]
Abstract
Background The Berlin Fat Mouse Inbred line (BFMI) is a model for obesity and the metabolic syndrome. This study aimed to identify genetic variants associated with impaired glucose metabolism using the obese lines BFMI861-S1 and BFMI861-S2, which are genetically closely related, but differ in several traits. BFMI861-S1 is insulin resistant and stores ectopic fat in the liver, whereas BFMI861-S2 is insulin sensitive. Methods In generation 10, 397 males of an advanced intercross line (AIL) BFMI861-S1 × BFMI861-S2 were challenged with a high-fat, high-carbohydrate diet and phenotyped over 25 weeks. QTL-analysis was performed after selective genotyping of 200 mice using the GigaMUGA Genotyping Array. Additional 197 males were genotyped for 7 top SNPs in QTL regions. For the prioritization of positional candidate genes whole genome sequencing and gene expression data of the parental lines were used. Results Overlapping QTL for gonadal adipose tissue weight and blood glucose concentration were detected on chromosome (Chr) 3 (95.8–100.1 Mb), and for gonadal adipose tissue weight, liver weight, and blood glucose concentration on Chr 17 (9.5–26.1 Mb). Causal modeling suggested for Chr 3-QTL direct effects on adipose tissue weight, but indirect effects on blood glucose concentration. Direct effects on adipose tissue weight, liver weight, and blood glucose concentration were suggested for Chr 17-QTL. Prioritized positional candidate genes for the identified QTL were Notch2 and Fmo5 (Chr 3) and Plg and Acat2 (Chr 17). Two additional QTL were detected for gonadal adipose tissue weight on Chr 15 (67.9–74.6 Mb) and for body weight on Chr 16 (3.9–21.4 Mb). Conclusions QTL mapping together with a detailed prioritization approach allowed us to identify candidate genes associated with traits of the metabolic syndrome. In addition, we provided evidence for direct and indirect genetic effects on blood glucose concentration in the insulin-resistant mouse line BFMI861-S1.
Collapse
Affiliation(s)
- Manuel Delpero
- Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Danny Arends
- Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maximilian Sprechert
- Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Florian Krause
- Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Oliver Kluth
- Department für Experimentelle Diabetologie, Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke (DIfE), Nuthetal, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Annette Schürmann
- Department für Experimentelle Diabetologie, Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke (DIfE), Nuthetal, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,University of Potsdam, Institute of Nutritional Science, Potsdam, Germany
| | - Gudrun A Brockmann
- Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Deike Hesse
- Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
25
|
Chlamydia pecorum Ovine Abortion: Associations between Maternal Infection and Perinatal Mortality. Pathogens 2021; 10:pathogens10111367. [PMID: 34832523 PMCID: PMC8618313 DOI: 10.3390/pathogens10111367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/29/2022] Open
Abstract
Chlamydia pecorum is a common gastrointestinal inhabitant of livestock but infections can manifest in a broad array of clinical presentations and in a range of host species. While C. pecorum is a known cause of ovine abortion, clinical cases have only recently been described in detail. Here, the prevalence and sequence types (STs) of C. pecorum in ewes from a property experiencing high levels of perinatal mortality (PNM) in New South Wales (NSW), Australia, were investigated using serological and molecular methods. Ewes that were PNM+ were statistically more likely to test seropositive compared to PNM− ewes and displayed higher antibody titres; however, an increase in chlamydial shedding from either the rectum, vagina or conjunctiva of PNM+ ewes was not observed. Multilocus sequence typing (MLST) indicated that C. pecorum ST23 was the major ST shed by ewes in the flock, was the only ST identified from the vaginal site, and was the same ST detected within aborted foetal tissues. Whole genome sequencing of C. pecorum isolated from one abortion case revealed that the C. pecorum plasmid (pCpec) contained a unique deletion in coding sequence 1 (CDS1) that was also present in C. pecorum ST23 shed from the ewes. A further unique deletion was noted in a polymorphic membrane protein gene (pmpG) of the C. pecorum chromosome, which warrants further investigation given the role of PmpG in host cell adherence and tissue tropism.This study describes novel infection parameters in a sheep flock experiencing C. pecorum-associated perinatal mortality, provides the first genomic data from an abortigenic C. pecorum strain, and raises questions about possible links between unique genetic features of this strain and C. pecorum abortion.
Collapse
|
26
|
Variables Influencing Differences in Sequence Conservation in the Fission Yeast Schizosaccharomyces pombe. J Mol Evol 2021; 89:601-610. [PMID: 34436628 PMCID: PMC8599406 DOI: 10.1007/s00239-021-10028-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 08/17/2021] [Indexed: 11/17/2022]
Abstract
Which variables determine the constraints on gene sequence evolution is one of the most central questions in molecular evolution. In the fission yeast Schizosaccharomyces pombe, an important model organism, the variables influencing the rate of sequence evolution have yet to be determined. Previous studies in other single celled organisms have generally found gene expression levels to be most significant, with numerous other variables such as gene length and functional importance identified as having a smaller impact. Using publicly available data, we used partial least squares regression, principal components regression, and partial correlations to determine the variables most strongly associated with sequence evolution constraints. We identify centrality in the protein–protein interactions network, amino acid composition, and cellular location as the most important determinants of sequence conservation. However, each factor only explains a small amount of variance, and there are numerous variables having a significant or heterogeneous influence. Our models explain more than half of the variance in dN, raising the possibility that future refined models could quantify the role of stochastics in evolutionary rate variation.
Collapse
|
27
|
Entropy and Fractal Dimension Study of the TDP-43 Protein Low Complexity Domain Sequence in ALS Disease Severity and SARS-CoV-2 Gene Sequences in Virulence Variability. ENTROPY 2021; 23:e23081038. [PMID: 34441178 PMCID: PMC8393862 DOI: 10.3390/e23081038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/03/2022]
Abstract
The low complexity domain (LCD) sequence has been defined in terms of entropy using a 12 amino acid sliding window along a protein sequence in the study of disease-related genes. The amyotrophic lateral sclerosis (ALS)-related TDP-43 protein sequence with intra-LCD structural information based on cryo-EM data was published recently. An application of entropy and Higuchi fractal dimension calculations was described using the Znf521 and HAR1 sequences. A computational analysis of the intra-LCD sequence entropy and Higuchi fractal dimension values at the amino acid level and at the ATCG nucleotide level were conducted without the sliding window requirement. The computational results were consistent in predicting the intermediate entropy/fractal dimension value produced when two subsequences at two different entropy/fractal dimension values were combined. The computational method without the application of a sliding-window was extended to an analysis of the recently reported virulent genes—Orf6, Nsp6, and Orf7a—in SARS-CoV-2. The relationship between the virulence functionality and entropy values was found to have correlation coefficients between 0.84 and 0.99, using a 5% uncertainty on the cell viability data. The analysis found that the most virulent Orf6 gene sequence had the lowest nucleotide entropy and the highest protein fractal dimension, in line with extreme value theory. The Orf6 codon usage bias in relation to vaccine design was discussed.
Collapse
|
28
|
Chien HM, Lee CC, Huang JJT. The Different Faces of the TDP-43 Low-Complexity Domain: The Formation of Liquid Droplets and Amyloid Fibrils. Int J Mol Sci 2021; 22:ijms22158213. [PMID: 34360978 PMCID: PMC8348237 DOI: 10.3390/ijms22158213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
Transactive response DNA-binding protein 43 (TDP-43) is a nucleic acid-binding protein that is involved in transcription and translation regulation, non-coding RNA processing, and stress granule assembly. Aside from its multiple functions, it is also known as the signature protein in the hallmark inclusions of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) patients. TDP-43 is built of four domains, but its low-complexity domain (LCD) has become an intense research focus that brings to light its possible role in TDP-43 functions and involvement in the pathogenesis of these neurodegenerative diseases. Recent endeavors have further uncovered the distinct biophysical properties of TDP-43 under various circumstances. In this review, we summarize the multiple structural and biochemical properties of LCD in either promoting the liquid droplets or inducing fibrillar aggregates. We also revisit the roles of the LCD in paraspeckles, stress granules, and cytoplasmic inclusions to date.
Collapse
Affiliation(s)
- Hung-Ming Chien
- Institute of Chemistry, Academia Sinica, Nangang, Taipei City 115, Taiwan; (H.-M.C.); (C.-C.L.)
- Department of Chemistry, National Taiwan University, Taipei City 115, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan University, Taipei City 115, Taiwan
| | - Chi-Chang Lee
- Institute of Chemistry, Academia Sinica, Nangang, Taipei City 115, Taiwan; (H.-M.C.); (C.-C.L.)
| | - Joseph Jen-Tse Huang
- Institute of Chemistry, Academia Sinica, Nangang, Taipei City 115, Taiwan; (H.-M.C.); (C.-C.L.)
- Department of Applied Chemistry, National Chiayi University, Chiayi City 600, Taiwan
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei City 115, Taiwan
- Correspondence: ; Tel.: +886-2-5572-8652
| |
Collapse
|
29
|
Cascarina SM, King DC, Osborne Nishimura E, Ross ED. LCD-Composer: an intuitive, composition-centric method enabling the identification and detailed functional mapping of low-complexity domains. NAR Genom Bioinform 2021; 3:lqab048. [PMID: 34056598 PMCID: PMC8153834 DOI: 10.1093/nargab/lqab048] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/13/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
Low complexity domains (LCDs) in proteins are regions predominantly composed of a small subset of the possible amino acids. LCDs are involved in a variety of normal and pathological processes across all domains of life. Existing methods define LCDs using information-theoretical complexity thresholds, sequence alignment with repetitive regions, or statistical overrepresentation of amino acids relative to whole-proteome frequencies. While these methods have proven valuable, they are all indirectly quantifying amino acid composition, which is the fundamental and biologically-relevant feature related to protein sequence complexity. Here, we present a new computational tool, LCD-Composer, that directly identifies LCDs based on amino acid composition and linear amino acid dispersion. Using LCD-Composer's default parameters, we identified simple LCDs across all organisms available through UniProt and provide the resulting data in an accessible form as a resource. Furthermore, we describe large-scale differences between organisms from different domains of life and explore organisms with extreme LCD content for different LCD classes. Finally, we illustrate the versatility and specificity achievable with LCD-Composer by identifying diverse classes of LCDs using both simple and multifaceted composition criteria. We demonstrate that the ability to dissect LCDs based on these multifaceted criteria enhances the functional mapping and classification of LCDs.
Collapse
Affiliation(s)
- Sean M Cascarina
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - David C King
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Erin Osborne Nishimura
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Eric D Ross
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
30
|
Agrobacterium tumefaciens Growth Pole Ring Protein: C Terminus and Internal Apolipoprotein Homologous Domains Are Essential for Function and Subcellular Localization. mBio 2021; 12:mBio.00764-21. [PMID: 34006657 PMCID: PMC8262873 DOI: 10.1128/mbio.00764-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The Agrobacterium growth pole ring (GPR) protein forms a hexameric ring at the growth pole (GP) that is essential for polar growth. GPR is large (2,115 amino acids) and contains 1,700 amino acids of continuous α-helices. To dissect potential GPR functional domains, we created deletions of regions with similarity to human apolipoprotein A-IV (396 amino acids), itself composed of α-helical domains. We also tested deletions of the GPR C terminus. Deletions were inducibly expressed as green fluorescent protein (GFP) fusion proteins and tested for merodiploid interference with wild-type (WT) GPR function, for partial function in cells lacking GPR, and for formation of paired fluorescent foci (indicative of hexameric rings) at the GP. Deletion of domains similar to human apolipoprotein A-IV in GPR caused defects in cell morphology when expressed in trans to WT GPR and provided only partial complementation to cells lacking GPR. Agrobacterium-specific domains A-IV-1 and A-IV-4 contain predicted coiled coil (CC) regions of 21 amino acids; deletion of CC regions produced severe defects in cell morphology in the interference assay. Mutants that produced the most severe effects on cell shape also failed to form paired polar foci. Modeling of A-IV-1 and A-IV-4 reveals significant similarity to the solved structure of human apolipoprotein A-IV. GPR C-terminal deletions profoundly blocked complementation. Finally, peptidoglycan (PG) synthesis is abnormally localized circumferentially in cells lacking GPR. The results support the hypothesis that GPR plays essential roles as an organizing center for membrane and PG synthesis during polar growth.IMPORTANCE Bacterial growth and division are extensively studied in model systems (Escherichia coli, Bacillus subtilis, and Caulobacter crescentus) that grow by dispersed insertion of new cell wall material along the length of the cell. An alternative growth mode-polar growth-is used by some Actinomycetales and Proteobacteria species. The latter phylum includes the family Rhizobiaceae, in which many species, including Agrobacterium tumefaciens, exhibit polar growth. Current research aims to identify growth pole (GP) factors. The Agrobacterium growth pole ring (GPR) protein is essential for polar growth and forms a striking hexameric ring structure at the GP. GPR is long (2,115 amino acids), and little is known about regions essential for structure or function. Genetic analyses demonstrate that the C terminus of GPR, and two internal regions with homology to human apolipoproteins (that sequester lipids), are essential for GPR function and localization to the GP. We hypothesize that GPR is an organizing center for membrane and cell wall synthesis during polar growth.
Collapse
|
31
|
The Conservation of Low Complexity Regions in Bacterial Proteins Depends on the Pathogenicity of the Strain and Subcellular Location of the Protein. Genes (Basel) 2021; 12:genes12030451. [PMID: 33809982 PMCID: PMC8004648 DOI: 10.3390/genes12030451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 12/23/2022] Open
Abstract
Low complexity regions (LCRs) in proteins are characterized by amino acid frequencies that differ from the average. These regions evolve faster and tend to be less conserved between homologs than globular domains. They are not common in bacteria, as compared to their prevalence in eukaryotes. Studying their conservation could help provide hypotheses about their function. To obtain the appropriate evolutionary focus for this rapidly evolving feature, here we study the conservation of LCRs in bacterial strains and compare their high variability to the closeness of the strains. For this, we selected 20 taxonomically diverse bacterial species and obtained the completely sequenced proteomes of two strains per species. We calculated all orthologous pairs for each of the 20 strain pairs. Per orthologous pair, we computed the conservation of two types of LCRs: compositionally biased regions (CBRs) and homorepeats (polyX). Our results show that, in bacteria, Q-rich CBRs are the most conserved, while A-rich CBRs and polyA are the most variable. LCRs have generally higher conservation when comparing pathogenic strains. However, this result depends on protein subcellular location: LCRs accumulate in extracellular and outer membrane proteins, with conservation increased in the extracellular proteins of pathogens, and decreased for polyX in the outer membrane proteins of pathogens. We conclude that these dependencies support the functional importance of LCRs in host–pathogen interactions.
Collapse
|
32
|
Mier P, Andrade-Navarro MA. Assessing the low complexity of protein sequences via the low complexity triangle. PLoS One 2020; 15:e0239154. [PMID: 33378336 PMCID: PMC7773278 DOI: 10.1371/journal.pone.0239154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/31/2020] [Indexed: 11/24/2022] Open
Abstract
Background Proteins with low complexity regions (LCRs) have atypical sequence and structural features. Their amino acid composition varies from the expected, determined proteome-wise, and they do not follow the rules of structural folding that prevail in globular regions. One way to characterize these regions is by assessing the repeatability of a sequence, that is, calculating the local propensity of a region to be part of a repeat. Results We combine two local measures of low complexity, repeatability (using the RES algorithm) and fraction of the most frequent amino acid, to evaluate different proteomes, datasets of protein regions with specific features, and individual cases of proteins with extreme compositions. We apply a representation called ‘low complexity triangle’ as a proof-of-concept to represent the low complexity measured values. Results show that proteomes have distinct signatures in the low complexity triangle, and that these signatures are associated to complexity features of the sequences. We developed a web tool called LCT (http://cbdm-01.zdv.uni-mainz.de/~munoz/lct/) to allow users to calculate the low complexity triangle of a given protein or region of interest. Conclusions The low complexity triangle proves to be a suitable procedure to represent the general low complexity of a sequence or protein dataset. Homorepeats, direpeats, compositionally biased regions and globular regions occupy characteristic positions in the triangle. The described pipeline can be used to characterize LCRs and may help in quantifying the content of degenerated tandem repeats in proteins and proteomes.
Collapse
Affiliation(s)
- Pablo Mier
- Faculty of Biology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
- * E-mail:
| | - Miguel A. Andrade-Navarro
- Faculty of Biology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
33
|
Jarnot P, Ziemska-Legiecka J, Dobson L, Merski M, Mier P, Andrade-Navarro MA, Hancock JM, Dosztányi Z, Paladin L, Necci M, Piovesan D, Tosatto SCE, Promponas VJ, Grynberg M, Gruca A. PlaToLoCo: the first web meta-server for visualization and annotation of low complexity regions in proteins. Nucleic Acids Res 2020; 48:W77-W84. [PMID: 32421769 PMCID: PMC7319588 DOI: 10.1093/nar/gkaa339] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/08/2020] [Accepted: 05/01/2020] [Indexed: 12/25/2022] Open
Abstract
Low complexity regions (LCRs) in protein sequences are characterized by a less diverse amino acid composition compared to typically observed sequence diversity. Recent studies have shown that LCRs may co-occur with intrinsically disordered regions, are highly conserved in many organisms, and often play important roles in protein functions and in diseases. In previous decades, several methods have been developed to identify regions with LCRs or amino acid bias, but most of them as stand-alone applications and currently there is no web-based tool which allows users to explore LCRs in protein sequences with additional functional annotations. We aim to fill this gap by providing PlaToLoCo - PLAtform of TOols for LOw COmplexity-a meta-server that integrates and collects the output of five different state-of-the-art tools for discovering LCRs and provides functional annotations such as domain detection, transmembrane segment prediction, and calculation of amino acid frequencies. In addition, the union or intersection of the results of the search on a query sequence can be obtained. By developing the PlaToLoCo meta-server, we provide the community with a fast and easily accessible tool for the analysis of LCRs with additional information included to aid the interpretation of the results. The PlaToLoCo platform is available at: http://platoloco.aei.polsl.pl/.
Collapse
Affiliation(s)
- Patryk Jarnot
- Department of Computer Networks and Systems, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | | | - Laszlo Dobson
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50/A, 1083 Budapest, Hungary.,Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary
| | - Matthew Merski
- Structural Biology Group, Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Pablo Mier
- Faculty of Biology, Johannes Gutenberg University Mainz, Hans-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Miguel A Andrade-Navarro
- Faculty of Biology, Johannes Gutenberg University Mainz, Hans-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - John M Hancock
- ELIXIR, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Zsuzsanna Dosztányi
- Department of Biochemistry, ELTE Eötvös LorándUniversity, Budapest, Pázmány Péter stny 1/c 1117, Budapest, Hungary
| | - Lisanna Paladin
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Marco Necci
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Damiano Piovesan
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Silvio C E Tosatto
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Vasilis J Promponas
- Bioinformatics Research Laboratory, Department of Biological Sciences, University of Cyprus, P.O. Box 20537, Nicosia, CY 1678, Cyprus
| | - Marcin Grynberg
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Aleksandra Gruca
- Department of Computer Networks and Systems, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| |
Collapse
|
34
|
Schmitt E, Coureux PD, Kazan R, Bourgeois G, Lazennec-Schurdevin C, Mechulam Y. Recent Advances in Archaeal Translation Initiation. Front Microbiol 2020; 11:584152. [PMID: 33072057 PMCID: PMC7531240 DOI: 10.3389/fmicb.2020.584152] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Translation initiation (TI) allows accurate selection of the initiation codon on a messenger RNA (mRNA) and defines the reading frame. In all domains of life, translation initiation generally occurs within a macromolecular complex made up of the small ribosomal subunit, the mRNA, a specialized methionylated initiator tRNA, and translation initiation factors (IFs). Once the start codon is selected at the P site of the ribosome and the large subunit is associated, the IFs are released and a ribosome competent for elongation is formed. However, even if the general principles are the same in the three domains of life, the molecular mechanisms are different in bacteria, eukaryotes, and archaea and may also vary depending on the mRNA. Because TI mechanisms have evolved lately, their studies bring important information about the evolutionary relationships between extant organisms. In this context, recent structural data on ribosomal complexes and genome-wide studies are particularly valuable. This review focuses on archaeal translation initiation highlighting its relationships with either the eukaryotic or the bacterial world. Eukaryotic features of the archaeal small ribosomal subunit are presented. Ribosome evolution and TI mechanisms diversity in archaeal branches are discussed. Next, the use of leaderless mRNAs and that of leadered mRNAs having Shine-Dalgarno sequences is analyzed. Finally, the current knowledge on TI mechanisms of SD-leadered and leaderless mRNAs is detailed.
Collapse
Affiliation(s)
- Emmanuelle Schmitt
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole Polytechnique, CNRS-UMR7654, Institut Polytechnique de Paris, Palaiseau, France
| | - Pierre-Damien Coureux
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole Polytechnique, CNRS-UMR7654, Institut Polytechnique de Paris, Palaiseau, France
| | - Ramy Kazan
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole Polytechnique, CNRS-UMR7654, Institut Polytechnique de Paris, Palaiseau, France
| | - Gabrielle Bourgeois
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole Polytechnique, CNRS-UMR7654, Institut Polytechnique de Paris, Palaiseau, France
| | - Christine Lazennec-Schurdevin
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole Polytechnique, CNRS-UMR7654, Institut Polytechnique de Paris, Palaiseau, France
| | - Yves Mechulam
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole Polytechnique, CNRS-UMR7654, Institut Polytechnique de Paris, Palaiseau, France
| |
Collapse
|
35
|
Aseev LV, Koledinskaya LS, Boni IV. Autogenous regulation in vivo of the rpmE gene encoding ribosomal protein L31 (bL31), a key component of the protein-protein intersubunit bridge B1b. RNA (NEW YORK, N.Y.) 2020; 26:814-826. [PMID: 32209634 PMCID: PMC7297116 DOI: 10.1261/rna.074237.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/22/2020] [Indexed: 06/10/2023]
Abstract
Bacterial ribosomal proteins (r-proteins) encoded by nonessential genes often carry out very important tasks in translation. In particular, this is the case of a small basic bacteria-specific r-protein L31 (bL31). Recent studies revealed a crucial role of bL31 in formation of the protein-protein intersubunit bridge B1b and hence its contribution to ribosome dynamics. Our goal was to study in vivo regulation of the rpmE operon encoding bL31. We used a previously developed approach based on chromosomally integrated fusions with the lacZ reporter. E. coli rpmE is transcribed from two promoter regions, and translation of both mRNA transcripts was shown to be feedback regulated by bL31, indicating that the autogenous operator is located within the shorter transcript. The bL31-mediated control of rpmE is gene-specific, as no regulation was found for rpmE-unrelated reporters. Thus, bL31, as many other r-proteins, possesses dual activity in living cells, acting both as an integral ribosome component and an autogenous repressor. Phylogenetic studies revealed the presence of a highly conserved stem-loop structure in the rpmE 5'UTR, a presumable translational operator targeted by bL31, which was further confirmed by site-directed mutagenesis. This stable operator stem-loop separates an AU-rich translational enhancer from a Shine-Dalgarno element, which is a rare case of a noncontiguous translation initiation region. Sequence/structure computational approaches classify bL31 as an RNA-binding protein, consistent with its repressor function discovered here. Mutational analysis of bL31 showed that its unstructured amino-terminal part enriched in lysine is necessary for the repressor activity.
Collapse
Affiliation(s)
- Leonid V Aseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | | | - Irina V Boni
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| |
Collapse
|
36
|
Pentekhina I, Hattori T, Tran DM, Shima M, Watanabe T, Sugimoto H, Suzuki K. Chitinase system of Aeromonas salmonicida, and characterization of enzymes involved in chitin degradation. Biosci Biotechnol Biochem 2020; 84:1936-1947. [PMID: 32471324 DOI: 10.1080/09168451.2020.1771539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The genes encoding chitin-degrading enzymes in Aeromonas salmonicida SWSY-1.411 were identified and cloned in Escherichia coli. The strain contained two glycoside hydrolase (GH) families 18 chitinases: AsChiA and AsChiB, two GH19 chitinases: AsChiC and AsChiD, and an auxiliary activities family 10 protein, lytic polysaccharide monooxygenase: AsLPMO10A. These enzymes were successfully expressed in E. coli and purified. AsChiB had the highest hydrolytic activity against insoluble chitin. AsChiD had the highest activity against water-soluble chitin. The peroxygenase activity of AsLPMO10A was lower compared to SmLPMO10A from Serratia marcescens. Synergism on powdered chitin degradation was observed when AsChiA and AsLPMO10A were combined with other chitinases of this strain. More than twice the increase of the synergistic effect was observed when powdered chitin was treated by a combination of AsLPMO10A with all chitinases. GH19 chitinases suppressed the hyphal growth of Trichoderma reesei.
Collapse
Affiliation(s)
- Iuliia Pentekhina
- Graduate School of Science and Technology, Niigata University , Niigata, Japan.,School of Economics and Management, Far Eastern Federal University , Vladivostok, Russia
| | - Tatsuyuki Hattori
- Graduate School of Science and Technology, Niigata University , Niigata, Japan
| | - Dinh Minh Tran
- Institute of Biotechnology and Environment, Tay Nguyen University , Buon Ma Thuot, Vietnam
| | - Mizuki Shima
- Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University , Niigata, Japan
| | - Takeshi Watanabe
- Graduate School of Science and Technology, Niigata University , Niigata, Japan.,Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University , Niigata, Japan
| | - Hayuki Sugimoto
- Graduate School of Science and Technology, Niigata University , Niigata, Japan.,Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University , Niigata, Japan
| | - Kazushi Suzuki
- Graduate School of Science and Technology, Niigata University , Niigata, Japan.,Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University , Niigata, Japan.,Sakeology Center, Niigata University , Niigata, Japan
| |
Collapse
|