1
|
Liu L, Liu E, Hu Y, Li S, Zhang S, Chao H, Hu Y, Zhu Y, Chen Y, Xie L, Shen Y, Wu L, Chen M. ncPlantDB: a plant ncRNA database with potential ncPEP information and cell type-specific interaction. Nucleic Acids Res 2024:gkae1017. [PMID: 39470718 DOI: 10.1093/nar/gkae1017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024] Open
Abstract
The field of plant non-coding RNAs (ncRNAs) has seen significant advancements in recent years, with many ncRNAs recognized as important regulators of gene expression during plant development and stress responses. Moreover, the coding potential of these ncRNAs, giving rise to ncRNA-encoded peptides (ncPEPs), has emerged as an essential area of study. However, existing plant ncRNA databases lack comprehensive information on ncRNA-encoded peptides (ncPEPs) and cell type-specific interactions. To address this gap, we present ncPlantDB (https://bis.zju.edu.cn/ncPlantDB), a comprehensive database integrating ncRNA and ncPEP data across 43 plant species. ncPlantDB encompasses 353 140 ncRNAs, 3799 ncPEPs and 4 647 071 interactions, sourced from established databases and literature mining. The database offers unique features including translational potential data, cell-specific interaction networks derived from single-cell RNA sequencing and Ribo-seq analyses, and interactive visualization tools. ncPlantDB provides a user-friendly interface for exploring ncRNA expression patterns at the single-cell level, facilitating the discovery of tissue-specific ncRNAs and potential ncPEPs. By integrating diverse data types and offering advanced analytical tools, ncPlantDB serves as a valuable resource for researchers investigating plant ncRNA functions, interactions, and their potential coding capacity. This database significantly enhances our understanding of plant ncRNA biology and opens new avenues for exploring the complex regulatory networks in plant genomics.
Collapse
Affiliation(s)
- Liya Liu
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Enyan Liu
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yueming Hu
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sida Li
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shilong Zhang
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haoyu Chao
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanshi Hu
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanyan Zhu
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yifan Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Luyao Xie
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi Shen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liangwei Wu
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Kim MS, Yang Z, Lee JS. In silico identification and characterization of microRNAs from rotifers, cladocerans, and copepods. MARINE POLLUTION BULLETIN 2024; 209:117098. [PMID: 39442355 DOI: 10.1016/j.marpolbul.2024.117098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024]
Abstract
MicroRNAs (miRNAs) are short non-coding RNA molecules that regulate post-transcription and influence various biological processes across species. Despite various studies of miRNAs in vertebrates, plants, and other organisms, miRNA data in aquatic invertebrates are insufficient. In this study, we identified miRNAs from four aquatic invertebrate species that are widely used in aquatic toxicology: the rotifer Brachionus koreanus, the water flea Daphnia magna, the cyclopoid copepod Paracyclopina nana, and the harpacticoid copepod Tigriopus japonicus, using next-generation sequencing and in silico analysis. We identified total 188, 41, 47, and 100 miRNAs from each species, and target genes were predicted based on 3'-untranslated region information. Target prediction and functional annotation results provided the biological processes of these miRNAs in various development-related mechanisms, signaling transduction, and metabolism-related pathways. Moreover, the network between the miRNAs and their targets concerning defense-related and antioxidant genes suggests the suitability of miRNAs as biomarkers in ecotoxicological studies.
Collapse
Affiliation(s)
- Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
3
|
Ullah MA, Ahmed MA, AlHusnain L, Zia MAB, AlKahtani MDF, Attia KA, Hawash M. Comprehensive identification of GASA genes in sunflower and expression profiling in response to drought. BMC Genomics 2024; 25:954. [PMID: 39402437 PMCID: PMC11472593 DOI: 10.1186/s12864-024-10860-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Drought stress poses a critical threat to global crop yields and sustainable agriculture. The GASA genes are recognized for their pivotal role in stress tolerance and plant growth, but little is known about how they function in sunflowers. The investigation aimed to identify and elucidate the role of HaGASA genes in conferring sunflowers with drought tolerance. Twenty-seven different HaGASA gene family members were found in this study that were inconsistently located across eleven sunflower chromosomes. Phylogeny analysis revealed that the sunflower HaGASA genes were divided into five subgroups by comparing GASA genes with those from Arabidopsis, peanut, and soybean, with members within each subgroup displaying similar conserved motifs and gene structures. In-silico evaluation of cis-regulatory elements indicated the existence of specific elements associated with stress-responsiveness being the most abundant, followed by hormone, light, and growth-responsive elements. Transcriptomic data from the NCBI database was utilized to assess the HaGASA genes expression profile in different sunflower varieties under drought conditions. The HaGASA genes expression across ten sunflower genotypes under drought stress, revealed 14 differentially expressed HaGASA genes, implying their active role in the plant's stress response. The expression in different organs revealed that HaGASA2, HaGASA11, HaGASA17, HaGASA19, HaGASA21 and HaGASA26 displayed maximum expression in the stem. Our findings implicate HaGASA genes in mediating sunflower growth maintenance and adaptation to abiotic stress, particularly drought. The findings, taken together, provided a basic understanding of the structure and potential functions of HaGASA genes, setting the framework for further functional investigations into their roles in drought stress mitigation and crop improvement strategies.
Collapse
Affiliation(s)
- Muhammad Asad Ullah
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Muhammad Awais Ahmed
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Latifa AlHusnain
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Muhammad Abu Bakar Zia
- Department of Plant Breeding and Genetics, Faculty of Agriculture Sciences and Technology, University of Layyah, P.O BOX 31200, Layyah, Pakistan
| | - Muneera D F AlKahtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Kotb A Attia
- Center of Excellence in Biotechnology Research, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine.
| |
Collapse
|
4
|
Yang Y, Xu L, Hao C, Wan M, Tao Y, Zhuang Y, Su Y, Li L. The microRNA408-plantacyanin module balances plant growth and drought resistance by regulating reactive oxygen species homeostasis in guard cells. THE PLANT CELL 2024; 36:4338-4355. [PMID: 38723161 PMCID: PMC11448907 DOI: 10.1093/plcell/koae144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/20/2024] [Indexed: 10/05/2024]
Abstract
The conserved microRNA (miRNA) miR408 enhances photosynthesis and compromises stress tolerance in multiple plants, but the cellular mechanism underlying its function remains largely unclear. Here, we show that in Arabidopsis (Arabidopsis thaliana), the transcript encoding the blue copper protein PLANTACYANIN (PCY) is the primary target for miR408 in vegetative tissues. PCY is preferentially expressed in the guard cells, and PCY is associated with the endomembrane surrounding individual chloroplasts. We found that the MIR408 promoter is suppressed by multiple abscisic acid (ABA)-responsive transcription factors, thus allowing PCY to accumulate under stress conditions. Genetic analysis revealed that PCY elevates reactive oxygen species (ROS) levels in the guard cells, promotes stomatal closure, reduces photosynthetic gas exchange, and enhances drought resistance. Moreover, the miR408-PCY module is sufficient to rescue the growth and drought tolerance phenotypes caused by gain- and loss-of-function of MYB44, an established positive regulator of ABA responses, indicating that the miR408-PCY module relays ABA signaling for regulating ROS homeostasis and drought resistance. These results demonstrate that miR408 regulates stomatal movement to balance growth and drought resistance, providing a mechanistic understanding of why miR408 is selected during land plant evolution and insights into the long-pursued quest of breeding drought-tolerant and high-yielding crops.
Collapse
Affiliation(s)
- Yanzhi Yang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Shandong 261000, China
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Lei Xu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Chen Hao
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Miaomiao Wan
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Yihan Tao
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Yan Zhuang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Yanning Su
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Lei Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Shandong 261000, China
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Villalba-Bermell P, Marquez-Molins J, Gomez G. A multispecies study reveals the diversity and potential regulatory role of long noncoding RNAs in cucurbits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:799-817. [PMID: 39254680 DOI: 10.1111/tpj.17013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/31/2024] [Accepted: 08/23/2024] [Indexed: 09/11/2024]
Abstract
Plant long noncoding RNAs (lncRNAs) exhibit features such as tissue-specific expression, spatiotemporal regulation, and stress responsiveness. Although diverse studies support the regulatory role of lncRNAs in model plants, our knowledge about lncRNAs in crops is limited. We employ a custom pipeline on a dataset of over 1000 RNA-seq samples across nine representative species of the family Cucurbitaceae to predict 91 209 nonredundant lncRNAs. The lncRNAs were characterized according to three confidence levels and classified by their genomic context into intergenic, natural antisense, intronic, and sense-overlapping. Compared with protein-coding genes, lncRNAs were, on average, expressed at low levels and displayed significantly higher specificity when considering tissue, developmental stages, and stress responsiveness. The evolutionary analysis indicates higher positional conservation than sequence conservation, probably linked to the conserved modular motifs within syntenic lncRNAs. Moreover, a positive correlation between the expression of intergenic/natural antisense lncRNAs and their closest/parental gene was observed. For those intergenic, the correlation decreases with the distance to the neighboring gene, supporting that their potential cis-regulatory effect is within a short-range. Furthermore, the analysis of developmental studies showed that a conserved NAT-lncRNA family is differentially expressed in a coordinated way with their cognate sense protein-coding genes. These genes code for proteins associated with phloem development, thus providing insights about the potential involvement of some of the identified lncRNAs in a developmental process. We expect that this extensive inventory will constitute a valuable resource for further research lines focused on elucidating the regulatory mechanisms mediated by lncRNAs in cucurbits.
Collapse
Affiliation(s)
- Pascual Villalba-Bermell
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València (UV), Parc Científic, Cat. Agustín Escardino 9, 46980, Paterna, Spain
| | - Joan Marquez-Molins
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València (UV), Parc Científic, Cat. Agustín Escardino 9, 46980, Paterna, Spain
| | - Gustavo Gomez
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València (UV), Parc Científic, Cat. Agustín Escardino 9, 46980, Paterna, Spain
| |
Collapse
|
6
|
Guo Z, Luo S, Wang Q, Yang Y, Bai Y, Wei J, Wang D, Duan Y, Yang X, Yang Y. ANAgdb: a multi-omics and taxonomy database for ANA-grade. BMC PLANT BIOLOGY 2024; 24:882. [PMID: 39342076 PMCID: PMC11437788 DOI: 10.1186/s12870-024-05613-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND The ANA-grade, encompassing early-diverging angiosperm lineages, Amborellales, Nymphaeales, and Austrobaileyales, represents a fundamental phase in the evolutionary history of flowering plants. Since the completion of key assembly of the Amborella genome, the continuous influx of omics data from the lineage underscores the need for a specialized database. RESULTS Here, we introduce the ANA-grade Genome Database (ANAgdb, https://anagenome.cn/ ), which integrates multi-omics data including 11 genomes, 167 transcriptomes, and 10 miRNAomes, as well as extensive taxonomic details specific to the ANA-grade. Designed with an array of user-friendly tools, ANAgdb not only facilitates the effective storage, querying, and analysis of data but also enables the integration and dissemination of crucial genomic and taxonomic information. CONCLUSION By integrating the comprehensive resources and tools, ANAgdb aims to significantly advance research in phylogenomics and taxonomic studies, providing a robust platform for researchers to explore the genetic and morphological diversities of these ancient plant lineages.
Collapse
Affiliation(s)
- Zhonglong Guo
- Co‑Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Shaoxuan Luo
- Co‑Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Qi Wang
- Co‑Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Yixiang Yang
- Co‑Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Yawen Bai
- Co‑Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Junrong Wei
- Co‑Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Dong Wang
- WeiRan Biotech, Beijing, 100085, China
| | - Yifan Duan
- Co‑Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China.
| | - Xiaozeng Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Yong Yang
- Co‑Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
7
|
Tsai WA, Brosnan CA, Mitter N, Dietzgen RG. Involvement of MicroRNAs in the Hypersensitive Response of Capsicum Plants to the Capsicum Chlorosis Virus at Elevated Temperatures. Pathogens 2024; 13:745. [PMID: 39338939 PMCID: PMC11434723 DOI: 10.3390/pathogens13090745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
The orthotospovirus capsicum chlorosis virus (CaCV) is an important pathogen affecting capsicum plants. Elevated temperatures may affect disease progression and pose a potential challenge to capsicum production. To date, CaCV-resistant capsicum breeding lines have been established; however, the impact of an elevated temperature of 35 °C on this genetic resistance remains unexplored. Thus, this study aimed to investigate how high temperature (HT) influences the response of CaCV-resistant capsicum to the virus. Phenotypic analysis revealed a compromised resistance in capsicum plants grown at HT, with systemic necrotic spots appearing in 8 out of 14 CaCV-infected plants. Molecular analysis through next-generation sequencing identified 105 known and 83 novel microRNAs (miRNAs) in CaCV-resistant capsicum plants. Gene ontology revealed that phenylpropanoid and lignin metabolic processes, regulated by Can-miR408a and Can- miR397, are likely involved in elevated-temperature-mediated resistance-breaking responses. Additionally, real-time PCR validated an upregulation of Can-miR408a and Can-miR397 by CaCV infection at HT; however, only the Laccase 4 transcript, targeted by Can-miR397, showed a tendency of negative correlation with this miRNA. Overall, this study provides the first molecular insights into how elevated temperature affects CaCV resistance in capsicum plants and reveals the potential role of miRNA in temperature-sensitive tospovirus resistance.
Collapse
Affiliation(s)
- Wei-An Tsai
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia
| | | | | | - Ralf G. Dietzgen
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
8
|
Kumar D, Venkadesan S, Prabha R, Begam S, Dutta B, Mishra DC, Chaturvedi KK, Jha GK, Solanke AU, Sevanthi AM. RiceMetaSys: Drought-miR, a one-stop solution for drought responsive miRNAs-mRNA module in rice. Database (Oxford) 2024; 2024:baae076. [PMID: 39167719 PMCID: PMC11338179 DOI: 10.1093/database/baae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/27/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
MicroRNAs are key players involved in stress responses in plants and reports are available on the role of miRNAs in drought stress response in rice. This work reports the development of a database, RiceMetaSys: Drought-miR, based on the meta-analysis of publicly available sRNA datasets. From 28 drought stress-specific sRNA datasets, we identified 216 drought-responsive miRNAs (DRMs). The major features of the database include genotype-, tissue- and miRNA ID-specific search options and comparison of genotypes to identify common miRNAs. Co-localization of the DRMs with the known quantitative trait loci (QTLs), i.e., meta-QTL regions governing drought tolerance in rice pertaining to different drought adaptive traits, narrowed down this to 37 promising DRMs. To identify the high confidence target genes of DRMs under drought stress, degradome datasets and web resource on drought-responsive genes (RiceMetaSys: DRG) were used. Out of the 216 unique DRMs, only 193 had targets with high stringent parameters. Out of the 1081 target genes identified by Degradome datasets, 730 showed differential expression under drought stress in at least one accession. To retrieve complete information on the target genes, the database has been linked with RiceMetaSys: DRG. Further, we updated the RiceMetaSys: DRGv1 developed earlier with the addition of DRGs identified from RNA-seq datasets from five rice genotypes. We also identified 759 putative novel miRNAs and their target genes employing stringent criteria. Novel miRNA search has all the search options of known miRNAs and additionally, it gives information on their in silico validation features. Simple sequence repeat markers for both the miRNAs and their target genes have also been designed and made available in the database. Network analysis of the target genes identified 60 hub genes which primarily act through abscisic acid pathway and jasmonic acid pathway. Co-localization of the hub genes with the meta-QTL regions governing drought tolerance narrowed down this to 16 most promising DRGs. Database URL: http://14.139.229.201/RiceMetaSys_miRNA Updated database of RiceMetaSys URL: http://14.139.229.201/RiceMetaSysA/Drought/.
Collapse
Affiliation(s)
- Deepesh Kumar
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
- The Graduate School, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India
| | | | - Ratna Prabha
- AKMU, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India
| | - Shbana Begam
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Bipratip Dutta
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
- The Graduate School, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India
| | - Dwijesh C Mishra
- ICAR-Indian Agricultural Statistics Research Institute, Pusa Campus, New Delhi 110012, India
| | - K K Chaturvedi
- ICAR-Indian Agricultural Statistics Research Institute, Pusa Campus, New Delhi 110012, India
| | - Girish Kumar Jha
- ICAR-Indian Agricultural Statistics Research Institute, Pusa Campus, New Delhi 110012, India
| | - Amolkumar U Solanke
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | | |
Collapse
|
9
|
Yang J, Liu Z, Liu Y, Fan X, Gao L, Li Y, Hu Y, Hu K, Huang Y. Genome-Wide Association Study Identifies Quantitative Trait Loci and Candidate Genes Involved in Deep-Sowing Tolerance in Maize ( Zea mays L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:1533. [PMID: 38891341 PMCID: PMC11175157 DOI: 10.3390/plants13111533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
Deep sowing is an efficient strategy for maize to ensure the seedling emergence rate under adverse conditions such as drought or low temperatures. However, the genetic basis of deep-sowing tolerance-related traits in maize remains largely unknown. In this study, we performed a genome-wide association study on traits related to deep-sowing tolerance, including mesocotyl length (ML), coleoptile length (CL), plumule length (PL), shoot length (SL), and primary root length (PRL), using 255 maize inbred lines grown in three different environments. We identified 23, 6, 4, and 4 quantitative trait loci (QTLs) associated with ML, CL, PL, and SL, respectively. By analyzing candidate genes within these QTLs, we found a γ-tubulin-containing complex protein, ZmGCP2, which was significantly associated with ML, PL, and SL. Loss of function of ZmGCP2 resulted in decreased PL, possibly by affecting the cell elongation, thus affecting SL. Additionally, we identified superior haplotypes and allelic variations of ZmGCP2 with a longer PL and SL, which may be useful for breeding varieties with deep-sowing tolerance to improve maize cultivation.
Collapse
Affiliation(s)
- Jin Yang
- State Key Laboratory of Crop Gene Resource Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.); (Z.L.); (Y.L.); (X.F.); (L.G.); (Y.L.); (Y.H.)
| | - Zhou Liu
- State Key Laboratory of Crop Gene Resource Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.); (Z.L.); (Y.L.); (X.F.); (L.G.); (Y.L.); (Y.H.)
| | - Yanbo Liu
- State Key Laboratory of Crop Gene Resource Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.); (Z.L.); (Y.L.); (X.F.); (L.G.); (Y.L.); (Y.H.)
| | - Xiujun Fan
- State Key Laboratory of Crop Gene Resource Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.); (Z.L.); (Y.L.); (X.F.); (L.G.); (Y.L.); (Y.H.)
| | - Lei Gao
- State Key Laboratory of Crop Gene Resource Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.); (Z.L.); (Y.L.); (X.F.); (L.G.); (Y.L.); (Y.H.)
| | - Yangping Li
- State Key Laboratory of Crop Gene Resource Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.); (Z.L.); (Y.L.); (X.F.); (L.G.); (Y.L.); (Y.H.)
| | - Yufeng Hu
- State Key Laboratory of Crop Gene Resource Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.); (Z.L.); (Y.L.); (X.F.); (L.G.); (Y.L.); (Y.H.)
| | - Kun Hu
- State Key Laboratory of Crop Gene Resource Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.); (Z.L.); (Y.L.); (X.F.); (L.G.); (Y.L.); (Y.H.)
- Sinograin Chengdu Storage Research Institute Co., Ltd., Chengdu 610091, China
| | - Yubi Huang
- State Key Laboratory of Crop Gene Resource Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.); (Z.L.); (Y.L.); (X.F.); (L.G.); (Y.L.); (Y.H.)
| |
Collapse
|
10
|
Guo Z, Xu Z, Li L, Xu KW. Species-Specific miRNAs Contribute to the Divergence between Deciduous and Evergreen Species in Ilex. PLANTS (BASEL, SWITZERLAND) 2024; 13:1429. [PMID: 38891238 PMCID: PMC11174832 DOI: 10.3390/plants13111429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/12/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
MicroRNAs (miRNAs) are pivotal regulators of gene expression, playing crucial roles in plant developmental processes and environmental responses. However, the function of miRNAs in influencing deciduous traits has been little explored. Here, we utilized sRNA-seq on two deciduous species, Ilex polyneura (Hand.-Mazz.) S. Y. Hu and Ilex asprella Champ. ex Benth., along with an evergreen species, Ilex latifolia Thunb., to identify and annotate miRNAs within these species. Our analysis revealed 162 species-specific miRNAs (termed SS-miRNAs) from 120 families, underscoring the fundamental roles and potential influence of SS-miRNAs on plant phenotypic diversity and adaptation. Notably, three SS-miRNAs in I. latifolia were found to target crucial genes within the abscission signaling pathway. Analysis of cis-regulatory elements suggested a novel regulatory relationship that may contribute to the evergreen phenotype of I. latifolia by modulating the abscission process in a light-independent manner. These findings propose a potential mechanism by which SS-miRNAs can influence the conserved abscission pathway, contributing to the phenotypic divergence between deciduous and evergreen species within the genus Ilex.
Collapse
Affiliation(s)
- Zhonglong Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Z.G.); (Z.X.)
| | - Zhenxiu Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Z.G.); (Z.X.)
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Ke-Wang Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Z.G.); (Z.X.)
| |
Collapse
|
11
|
Zhang W, Zhang P, Sun W, Xu J, Liao L, Cao Y, Han Y. Improving plant miRNA-target prediction with self-supervised k-mer embedding and spectral graph convolutional neural network. PeerJ 2024; 12:e17396. [PMID: 38799058 PMCID: PMC11122044 DOI: 10.7717/peerj.17396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Deciphering the targets of microRNAs (miRNAs) in plants is crucial for comprehending their function and the variation in phenotype that they cause. As the highly cell-specific nature of miRNA regulation, recent computational approaches usually utilize expression data to identify the most physiologically relevant targets. Although these methods are effective, they typically require a large sample size and high-depth sequencing to detect potential miRNA-target pairs, thereby limiting their applicability in improving plant breeding. In this study, we propose a novel miRNA-target prediction framework named kmerPMTF (k-mer-based prediction framework for plant miRNA-target). Our framework effectively extracts the latent semantic embeddings of sequences by utilizing k-mer splitting and a deep self-supervised neural network. We construct multiple similarity networks based on k-mer embeddings and employ graph convolutional networks to derive deep representations of miRNAs and targets and calculate the probabilities of potential associations. We evaluated the performance of kmerPMTF on four typical plant datasets: Arabidopsis thaliana, Oryza sativa, Solanum lycopersicum, and Prunus persica. The results demonstrate its ability to achieve AUPRC values of 84.9%, 91.0%, 80.1%, and 82.1% in 5-fold cross-validation, respectively. Compared with several state-of-the-art existing methods, our framework achieves better performance on threshold-independent evaluation metrics. Overall, our study provides an efficient and simplified methodology for identifying plant miRNA-target associations, which will contribute to a deeper comprehension of miRNA regulatory mechanisms in plants.
Collapse
Affiliation(s)
- Weihan Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, Hubei Province, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Ping Zhang
- College of Informatics, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Weicheng Sun
- College of Informatics, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Jinsheng Xu
- College of Informatics, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Liao Liao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, Hubei Province, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Yunpeng Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, Hubei Province, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, Hubei Province, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| |
Collapse
|
12
|
Edelbroek B, Kjellin J, Biryukova I, Liao Z, Lundberg T, Noegel A, Eichinger L, Friedländer M, Söderbom F. Evolution of microRNAs in Amoebozoa and implications for the origin of multicellularity. Nucleic Acids Res 2024; 52:3121-3136. [PMID: 38375870 PMCID: PMC11014262 DOI: 10.1093/nar/gkae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/21/2024] Open
Abstract
MicroRNAs (miRNAs) are important and ubiquitous regulators of gene expression in both plants and animals. They are thought to have evolved convergently in these lineages and hypothesized to have played a role in the evolution of multicellularity. In line with this hypothesis, miRNAs have so far only been described in few unicellular eukaryotes. Here, we investigate the presence and evolution of miRNAs in Amoebozoa, focusing on species belonging to Acanthamoeba, Physarum and dictyostelid taxonomic groups, representing a range of unicellular and multicellular lifestyles. miRNAs that adhere to both the stringent plant and animal miRNA criteria were identified in all examined amoebae, expanding the total number of protists harbouring miRNAs from 7 to 15. We found conserved miRNAs between closely related species, but the majority of species feature only unique miRNAs. This shows rapid gain and/or loss of miRNAs in Amoebozoa, further illustrated by a detailed comparison between two evolutionary closely related dictyostelids. Additionally, loss of miRNAs in the Dictyostelium discoideum drnB mutant did not seem to affect multicellular development and, hence, demonstrates that the presence of miRNAs does not appear to be a strict requirement for the transition from uni- to multicellular life.
Collapse
Affiliation(s)
- Bart Edelbroek
- Department of Cell and Molecular Biology, Uppsala Biomedical Centre, Uppsala University, 75124 Uppsala, Sweden
| | - Jonas Kjellin
- Department of Cell and Molecular Biology, Uppsala Biomedical Centre, Uppsala University, 75124 Uppsala, Sweden
| | - Inna Biryukova
- Science for Life Laboratory, The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Zhen Liao
- Department of Cell and Molecular Biology, Uppsala Biomedical Centre, Uppsala University, 75124 Uppsala, Sweden
| | - Torgny Lundberg
- Department of Cell and Molecular Biology, Uppsala Biomedical Centre, Uppsala University, 75124 Uppsala, Sweden
| | - Angelika A Noegel
- Centre for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Ludwig Eichinger
- Centre for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Marc R Friedländer
- Science for Life Laboratory, The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Fredrik Söderbom
- Department of Cell and Molecular Biology, Uppsala Biomedical Centre, Uppsala University, 75124 Uppsala, Sweden
| |
Collapse
|
13
|
Wang Y, Tang X, Lu J. Convergent and divergent evolution of microRNA-mediated regulation in metazoans. Biol Rev Camb Philos Soc 2024; 99:525-545. [PMID: 37987240 DOI: 10.1111/brv.13033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
The evolution of microRNAs (miRNAs) has been studied extensively to understand their roles in gene regulation and evolutionary processes. This review focuses on how miRNA-mediated regulation has evolved in bilaterian animals, highlighting both convergent and divergent evolution. Since animals and plants display significant differences in miRNA biogenesis and target recognition, the 'independent origin' hypothesis proposes that miRNA pathways in these groups independently evolved from the RNA interference (RNAi) pathway, leading to modern miRNA repertoires through convergent evolution. However, recent evidence raises the alternative possibility that the miRNA pathway might have already existed in the last common ancestor of eukaryotes, and that the differences in miRNA pathway and miRNA repertoires among animal and plant lineages arise from lineage-specific innovations and losses of miRNA pathways, miRNA acquisition, and loss of miRNAs after eukaryotic divergence. The repertoire of miRNAs has considerably expanded during bilaterian evolution, primarily through de novo creation and duplication processes, generating new miRNAs. Although ancient functionally established miRNAs are rarely lost, many newly emerged miRNAs are transient and lineage specific, following a birth-death evolutionary pattern aligning with the 'out-of-the-testis' and 'transcriptional control' hypotheses. Our focus then shifts to the convergent molecular evolution of miRNAs. We summarize how miRNA clustering and seed mimicry contribute to this phenomenon, and we review how miRNAs from different sources converge to degrade maternal messenger RNAs (mRNAs) during animal development. Additionally, we describe how miRNAs evolve across species due to changes in sequence, seed shifting, arm switching, and spatiotemporal expression patterns, which can result in variations in target sites among orthologous miRNAs across distant strains or species. We also provide a summary of the current understanding regarding how the target sites of orthologous miRNAs can vary across strains or distantly related species. Although many paralogous miRNAs retain their seed or mature sequences after duplication, alterations can occur in the seed or mature sequences or expression patterns of paralogous miRNAs, leading to functional diversification. We discuss our current understanding of the functional divergence between duplicated miRNAs, and illustrate how the functional diversification of duplicated miRNAs impacts target site evolution. By investigating these topics, we aim to enhance our current understanding of the functions and evolutionary dynamics of miRNAs. Additionally, we shed light on the existing challenges in miRNA evolutionary studies, particularly the complexity of deciphering the role of miRNA-mediated regulatory network evolution in shaping gene expression divergence and phenotypic differences among species.
Collapse
Affiliation(s)
- Yirong Wang
- Bioinformatics Center, College of Biology, Hunan University, Changsha, 410082, China
| | - Xiaolu Tang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
14
|
Akter N, Islam MSU, Rahman MS, Zohra FT, Rahman SM, Manirujjaman M, Sarkar MAR. Genome-wide identification and characterization of protein phosphatase 2C (PP2C) gene family in sunflower (Helianthus annuus L.) and their expression profiles in response to multiple abiotic stresses. PLoS One 2024; 19:e0298543. [PMID: 38507444 PMCID: PMC10954154 DOI: 10.1371/journal.pone.0298543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/25/2024] [Indexed: 03/22/2024] Open
Abstract
Plant protein phosphatase 2C (PP2C) plays vital roles in responding to various stresses, stimulating growth factors, phytohormones, and metabolic activities in many important plant species. However, the PP2C gene family has not been investigated in the economically valuable plant species sunflower (Helianthus annuus L.). This study used comprehensive bioinformatics tools to identify and characterize the PP2C gene family members in the sunflower genome (H. annuus r1.2). Additionally, we analyzed the expression profiles of these genes using RNA-seq data under four different stress conditions in both leaf and root tissues. A total of 121 PP2C genes were identified in the sunflower genome distributed unevenly across the 17 chromosomes, all containing the Type-2C phosphatase domain. HanPP2C genes are divided into 15 subgroups (A-L) based on phylogenetic tree analysis. Analyses of conserved domains, gene structures, and motifs revealed higher structural and functional similarities within various subgroups. Gene duplication and collinearity analysis showed that among the 53 HanPP2C gene pairs, 48 demonstrated segmental duplications under strong purifying selection pressure, with only five gene pairs showing tandem duplications. The abundant segmental duplication was observed compared to tandem duplication, which was the major factor underlying the dispersion of the PP2C gene family in sunflowers. Most HanPP2C proteins were localized in the nucleus, cytoplasm, and chloroplast. Among the 121 HanPP2C genes, we identified 71 miRNAs targeting 86 HanPP2C genes involved in plant developmental processes and response to abiotic stresses. By analyzing cis-elements, we identified 63 cis-regulatory elements in the promoter regions of HanPP2C genes associated with light responsiveness, tissue-specificity, phytohormone, and stress responses. Based on RNA-seq data from two sunflower tissues (leaf and root), 47 HanPP2C genes exhibited varying expression levels in leaf tissue, while 49 HanPP2C genes showed differential expression patterns in root tissue across all stress conditions. Transcriptome profiling revealed that nine HanPP2C genes (HanPP2C12, HanPP2C36, HanPP2C38, HanPP2C47, HanPP2C48, HanPP2C53, HanPP2C54, HanPP2C59, and HanPP2C73) exhibited higher expression in leaf tissue, and five HanPP2C genes (HanPP2C13, HanPP2C47, HanPP2C48, HanPP2C54, and HanPP2C95) showed enhanced expression in root tissue in response to the four stress treatments, compared to the control conditions. These results suggest that these HanPP2C genes may be potential candidates for conferring tolerance to multiple stresses and further detailed characterization to elucidate their functions. From these candidates, 3D structures were predicted for six HanPP2C proteins (HanPP2C47, HanPP2C48, HanPP2C53, HanPP2C54, HanPP2C59, and HanPP2C73), which provided satisfactory models. Our findings provide valuable insights into the PP2C gene family in the sunflower genome, which could play a crucial role in responding to various stresses. This information can be exploited in sunflower breeding programs to develop improved cultivars with increased abiotic stress tolerance.
Collapse
Affiliation(s)
- Nasrin Akter
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md Shohel Ul Islam
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Fatema Tuz Zohra
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Shaikh Mizanur Rahman
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - M. Manirujjaman
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana, LA, United States of America
| | - Md. Abdur Rauf Sarkar
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
15
|
Hussain M, Javed MM, Sami A, Shafiq M, Ali Q, Mazhar HSUD, Tabassum J, Javed MA, Haider MZ, Hussain M, Sabir IA, Ali D. Genome-wide analysis of plant specific YABBY transcription factor gene family in carrot (Dacus carota) and its comparison with Arabidopsis. BMC Genom Data 2024; 25:26. [PMID: 38443818 PMCID: PMC10916311 DOI: 10.1186/s12863-024-01210-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/19/2024] [Indexed: 03/07/2024] Open
Abstract
YABBY gene family is a plant-specific transcription factor with DNA binding domain involved in various functions i.e. regulation of style, length of flowers, and polarity development of lateral organs in flowering plants. Computational methods were utilized to identify members of the YABBY gene family, with Carrot (Daucus carota) 's genome as a foundational reference. The structure of genes, location of the chromosomes, protein motifs and phylogenetic investigation, syntony and transcriptomic analysis, and miRNA targets were analyzed to unmask the hidden structural and functional characteristics YABBY gene family in Carrots. In the following research, it has been concluded that 11 specific YABBY genes irregularly dispersed on all 9 chromosomes and proteins assembled into five subgroups i.e. AtINO, AtCRC, AtYAB5, AtAFO, and AtYAB2, which were created on the well-known classification of Arabidopsis. The wide ranges of YABBY genes in carrots were dispersed due to segmental duplication, which was detected as prevalent when equated to tandem duplication. Transcriptomic analysis showed that one of the DcYABBY genes was highly expressed during anthocyanin pigmentation in carrot taproots. The cis-regulatory elements (CREs) analysis unveiled elements that particularly respond to light, cell cycle regulation, drought induce ability, ABA hormone, seed, and meristem expression. Furthermore, a relative study among Carrot and Arabidopsis genes of the YABBY family indicated 5 sub-families sharing common characteristics. The comprehensive evaluation of YABBY genes in the genome provides a direction for the cloning and understanding of their functional properties in carrots. Our investigations revealed genome-wide distribution and role of YABBY genes in the carrots with best-fit comparison to Arabidopsis thaliana.
Collapse
Affiliation(s)
- Mujahid Hussain
- Department of Horticulture, Faculty of Agriculture Sciences, University of the Punjab, Lahore P. O BOX, Lahore, 54590, Pakistan
| | - Muhammad Mubashar Javed
- Department of Plant Breeding & Genetics, Faculty of Agriculture Sciences, University of the Punjab, P.O BOX, Lahore, 54590, Pakistan
| | - Adnan Sami
- Department of Plant Breeding & Genetics, Faculty of Agriculture Sciences, University of the Punjab, P.O BOX, Lahore, 54590, Pakistan
| | - Muhammad Shafiq
- Department of Horticulture, Faculty of Agriculture Sciences, University of the Punjab, Lahore P. O BOX, Lahore, 54590, Pakistan
| | - Qurban Ali
- Department of Plant Breeding & Genetics, Faculty of Agriculture Sciences, University of the Punjab, P.O BOX, Lahore, 54590, Pakistan.
| | - Hafiz Sabah-Ud-Din Mazhar
- Department of Plant Breeding & Genetics, Faculty of Agriculture Sciences, University of the Punjab, P.O BOX, Lahore, 54590, Pakistan
| | - Javaria Tabassum
- Department of Plant Breeding & Genetics, Faculty of Agriculture Sciences, University of the Punjab, P.O BOX, Lahore, 54590, Pakistan
| | - Muhammad Arshad Javed
- Department of Plant Breeding & Genetics, Faculty of Agriculture Sciences, University of the Punjab, P.O BOX, Lahore, 54590, Pakistan
| | - Muhammad Zeeshan Haider
- Department of Plant Breeding & Genetics, Faculty of Agriculture Sciences, University of the Punjab, P.O BOX, Lahore, 54590, Pakistan
| | - Muhammad Hussain
- Department of Horticulture, Faculty of Agriculture Sciences, University of the Punjab, Lahore P. O BOX, Lahore, 54590, Pakistan
| | - Irfan Ali Sabir
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
16
|
Mishra A, Yadav P, Singh K. Host Response of Arabidopsis thaliana Interaction with Fungal Endophytes Involves microRNAs. Mol Biotechnol 2024:10.1007/s12033-024-01051-7. [PMID: 38367181 DOI: 10.1007/s12033-024-01051-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/29/2023] [Indexed: 02/19/2024]
Abstract
Plant and fungus interaction is a complex process involving many molecular factors determining the nature of relationship. The enigmatic methodology by which fungal endophytes are able to colonise a plant harmoniously is still inexplicable. Small RNAs have been identified as major regulatory elements under various biotic interactions. However, their role in endophytic plant-fungal interactions remain to be elucidated. Therefore, transcript expression data available on Gene Expression Omnibus for Arabidopsis thaliana was utilised for miRNAs identification under endophytism. The analysis predicted 15 miRNAs with differential expression of which the ath-miRNA398b modulation was significant. Application of psRNAtarget, C-mii, pmiREN, and TarDB provided a pool of 357 target genes for these miRNAs. Protein-protein interaction analysis identified major hub proteins, including BTB/POZ domain-containing protein, beta-Xylosidase-2 (AtBXL2), and Copper/Zinc Superoxide Dismutase-2 (AtSOD2). The quantitative real-time PCR validated the computational prediction and expression for selected target genes AtSOD2, AtBXL2, and AtRCA along with ath-miRNA398b under endophytism. Overall, results indicate that miRNAs have a significant role in regulating Arabidopsis thaliana-endophytic fungal interaction.
Collapse
Affiliation(s)
- Anand Mishra
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur, 176061, India
| | - Pooja Yadav
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kunal Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur, 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
17
|
Gupta P, Dholaniya PS, Princy K, Madhavan AS, Sreelakshmi Y, Sharma R. Augmenting tomato functional genomics with a genome-wide induced genetic variation resource. FRONTIERS IN PLANT SCIENCE 2024; 14:1290937. [PMID: 38328621 PMCID: PMC10848261 DOI: 10.3389/fpls.2023.1290937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/22/2023] [Indexed: 02/09/2024]
Abstract
Induced mutations accelerate crop improvement by providing novel disease resistance and yield alleles. However, the alleles with no perceptible phenotype but have an altered function remain hidden in mutagenized plants. The whole-genome sequencing (WGS) of mutagenized individuals uncovers the complete spectrum of mutations in the genome. Genome-wide induced mutation resources can improve the targeted breeding of tomatoes and facilitate functional genomics. In this study, we sequenced 132 doubly ethyl methanesulfonate (EMS)-mutagenized lines of tomato and detected approximately 41 million novel mutations and 5.5 million short InDels not present in the parental cultivar. Approximately 97% of the genome had mutations, including the genes, promoters, UTRs, and introns. More than one-third of genes in the mutagenized population had one or more deleterious mutations predicted by Sorting Intolerant From Tolerant (SIFT). Nearly one-fourth of deleterious genes mapped on tomato metabolic pathways modulate multiple pathway steps. In addition to the reported GC>AT transition bias for EMS, our population also had a substantial number of AT>GC transitions. Comparing mutation frequency among synonymous codons revealed that the most preferred codon is the least mutagenic toward EMS. The validation of a potato leaf-like mutation, reduction in carotenoids in ζ-carotene isomerase mutant fruits, and chloroplast relocation loss in phototropin1 mutant validated the mutation discovery pipeline. Our database makes a large repertoire of mutations accessible to functional genomics studies and breeding of tomatoes.
Collapse
Affiliation(s)
- Prateek Gupta
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
- Department of Biological Sciences, SRM University-AP, Amaravati, Andhra Pradesh, India
| | - Pankaj Singh Dholaniya
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
| | - Kunnappady Princy
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Athira Sethu Madhavan
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Yellamaraju Sreelakshmi
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Rameshwar Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
18
|
Tabassum N, Shafiq M, Fatima S, Tahir S, Tabassum B, Ali Q, Javed MA. Genome-wide in-silico analysis of ethylene biosynthesis gene family in Musa acuminata L. and their response under nutrient stress. Sci Rep 2024; 14:558. [PMID: 38177217 PMCID: PMC10767074 DOI: 10.1038/s41598-023-51075-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 12/30/2023] [Indexed: 01/06/2024] Open
Abstract
Ethylene is a gaseous phytohormone involved in plants' growth and developmental processes, including seed germination, root initiation, fruit ripening, flower and leaf senescence, abscission, and stress responses. Ethylene biosynthesis (EB) gene analysis in response to nitrogen (N) and potassium (K) stress has not yet been conducted in Musa acuminata (banana) roots. The genome mining of banana (Musa acuminata L.) revealed 14 putative 1-aminocyclopropane-1-carboxylate synthase (ACS), 10 1-aminocyclopropane-1-carboxylate oxidase (ACO), and 3 Ethylene overproducer 1 (ETO1) genes. ACS, ACO, and ETO1 proteins possessed amino acid residues ranging from 422-684, 636-2670, and 893-969, respectively, with molecular weight (Mw) ranging from 4.93-7.55 kD, 10.1-8.3 kD and 10.1-10.78 kD. The number of introns present in ACS, ACO, and ETO1 gene sequences ranges from 0-14, 1-6, and 0-6, respectively. The cis-regulatory element analysis revealed the presence of light-responsive, abscisic acid, seed regulation, auxin-responsive, gibberellin element, endosperm-specific, anoxic inducibility, low-temperature responsiveness, salicylic acid responsiveness, meristem-specific and stress-responsive elements. Comprehensive phylogenetic analyses ACS, ACO, and ETO1 genes of Banana with Arabidopsis thaliana revealed several orthologs and paralogs assisting in understanding the putative functions of these genes. The expression profile of Musa acuminata genes in root under normal and low levels of nitrogen and potassium shows that MaACS14 and MaACO6 expressed highly at normal nitrogen supply. MaACS1 expression was significantly upregulated at low potassium levels, whereas, MaACO6 gene expression was significantly downregulated. The functional divergence and site-specific selective pressures on specific gene sequences of banana have been investigated. The bioinformatics-based genome-wide assessment of the family of banana attempted in the present study could be a significant step for deciphering novel ACS, ACO, and ETO1 genes based on genome-wide expression profiling.
Collapse
Affiliation(s)
- Nosheen Tabassum
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab New Campus, Lahore, Pakistan
| | - Muhammad Shafiq
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab New Campus, Lahore, Pakistan.
| | - Sameen Fatima
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab New Campus, Lahore, Pakistan
| | - Sana Tahir
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab New Campus, Lahore, Pakistan
| | - Bushra Tabassum
- School of Biological Sciences, University of the Punjab New Campus, Lahore, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab New Campus, Lahore, Pakistan.
| | - Muhammad Arshad Javed
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab New Campus, Lahore, Pakistan
| |
Collapse
|
19
|
Kalwan G, Priyadarshini P, Kumar K, Yadava YK, Yadav S, Kohli D, Gill SS, Gaikwad K, Hegde V, Jain PK. Genome wide identification and characterization of the amino acid transporter (AAT) genes regulating seed protein content in chickpea (Cicer arietinum L.). Int J Biol Macromol 2023; 252:126324. [PMID: 37591427 DOI: 10.1016/j.ijbiomac.2023.126324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/29/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
Amino acid transporters (AATs), besides, being a crucial component for nutrient partitioning system are also vital for growth and development of the plants and stress resilience. In order to understand the role of AAT genes in seed quality proteins, a comprehensive analysis of AAT gene family was carried out in chickpea leading to identification of 109 AAT genes, representing 10 subfamilies with random distribution across the chickpea genome. Several important stress responsive cis-regulatory elements like Myb, ABRE, ERE were detected in the promoter region of these CaAAT genes. Most of the genes belonging to the same sub-families shared the intron-exon distribution pattern owing to their conserved nature. Random distribution of these CaAAT genes was observed on plasma membrane, vacuolar membrane, Endoplasmic reticulum and Golgi membranes, which may be associated to distinct biochemical pathways. In total 92 out 109 CaAAT genes arise as result of duplication, among which segmental duplication was more prominent over tandem duplication. As expected, the phylogenetic tree was divided into 2 major clades, and further sub-divided into different sub-families. Among the 109 CaAAT genes, 25 were found to be interacting with 25 miRNAs, many miRNAs like miR156, miR159 and miR164 were interacting only with single AAT genes. Tissues specific expression pattern of many CaAAT genes was observed like CaAAP7 and CaAVT18 in nodules, CaAAP17, CaAVT5 and CaCAT9 in vegetative tissues while CaCAT10 and CaAAP23 in seed related tissues as per the expression analysis. Mature seed transcriptome data revealed that genotypes having high protein content (ICC 8397, ICC 13461) showed low CaAATs expression as compared to the genotypes having low protein content (FG 212, BG 3054). Amino acid profiling of these genotypes revealed a significant difference in amount of essential and non-essential amino acids, probably due to differential expression of CaAATs. Thus, the present study provides insights into the biological role of AAT genes in chickpea, which will facilitate their functional characterization and role in various developmental stages, stress responses and involvement in nutritional quality enhancement.
Collapse
Affiliation(s)
- Gopal Kalwan
- ICAR - National Institute for Plant Biotechnology, New Delhi 110012, India; PG School, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Parichita Priyadarshini
- ICAR - National Institute for Plant Biotechnology, New Delhi 110012, India; PG School, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; ICAR-Indian Grassland and Fodder Research Institute, Jhansi, Uttar Pradesh 284003, India
| | - Kuldeep Kumar
- ICAR - National Institute for Plant Biotechnology, New Delhi 110012, India; PG School, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; ICAR - Indian Institute of Pulses Research, Kanpur, Uttar Pradesh 208024, India
| | | | - Sheel Yadav
- ICAR - National Institute for Plant Biotechnology, New Delhi 110012, India; PG School, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Deshika Kohli
- ICAR - National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Sarvajeet Singh Gill
- Stress Physiology & Molecular Biology Lab, Centre for Biotechnology, Maharshi Dayanand University, Rohtak 124 001, Haryana, India
| | - Kishor Gaikwad
- ICAR - National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Venkatraman Hegde
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Pradeep Kumar Jain
- ICAR - National Institute for Plant Biotechnology, New Delhi 110012, India.
| |
Collapse
|
20
|
Gultyaev AP, Koster C, van Batenburg DC, Sistermans T, van Belle N, Vijfvinkel D, Roussis A. Conserved structured domains in plant non-coding RNA enod40, their evolution and recruitment of sequences from transposable elements. NAR Genom Bioinform 2023; 5:lqad091. [PMID: 37850034 PMCID: PMC10578108 DOI: 10.1093/nargab/lqad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/22/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023] Open
Abstract
Plant long noncoding RNA enod40 is involved in the regulation of symbiotic associations with bacteria, in particular, in nitrogen-fixing root nodules of legumes, and with fungi in phosphate-acquiring arbuscular mycorrhizae formed by various plants. The presence of enod40 genes in plants that do not form such symbioses indicates its other roles in cell physiology. The molecular mechanisms of enod40 RNA function are poorly understood. Enod40 RNAs form several structured domains, conserved to different extents. Due to relatively low sequence similarity, identification of enod40 sequences in plant genomes is not straightforward, and many enod40 genes remain unannotated even in complete genomes. Here, we used comparative structure analysis and sequence similarity searches in order to locate enod40 genes and determine enod40 RNA structures in nitrogen-fixing clade plants and in grasses. The structures combine conserved features with considerable diversity of structural elements, including insertions of structured domain modules originating from transposable elements. Remarkably, these insertions contain sequences similar to tandem repeats and several stem-loops are homologous to microRNA precursors.
Collapse
Affiliation(s)
- Alexander P Gultyaev
- Leiden Institute of Advanced Computer Science, Leiden University, PO Box 9512, 2300 RA Leiden, The Netherlands
- Department of Viroscience, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Celine Koster
- Life Science & Technology Honours College, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
- Amsterdam University Medical Center, Department of Human Genetics, section Ophthalmogenetics, Location AMC, Meibergdreef 9, Amsterdam, The Netherlands
| | - Diederik Cames van Batenburg
- Leiden Institute of Advanced Computer Science, Leiden University, PO Box 9512, 2300 RA Leiden, The Netherlands
- CareRate, Unit E1.165, Stationsplein 45, 3013 AK Rotterdam, The Netherlands
| | - Tom Sistermans
- Leiden Institute of Advanced Computer Science, Leiden University, PO Box 9512, 2300 RA Leiden, The Netherlands
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Niels van Belle
- Leiden Institute of Advanced Computer Science, Leiden University, PO Box 9512, 2300 RA Leiden, The Netherlands
| | - Daan Vijfvinkel
- Leiden Institute of Advanced Computer Science, Leiden University, PO Box 9512, 2300 RA Leiden, The Netherlands
| | - Andreas Roussis
- National & Kapodistrian University of Athens, Faculty of Biology, Section of Botany, Group Molecular Plant Physiology, Panepistimiopolis - Zografou - Athens, 15784, Greece
| |
Collapse
|
21
|
Jha UC, Nayyar H, Roychowdhury R, Prasad PVV, Parida SK, Siddique KHM. Non-coding RNAs (ncRNAs) in plant: Master regulators for adapting to extreme temperature conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108164. [PMID: 38008006 DOI: 10.1016/j.plaphy.2023.108164] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/28/2023]
Abstract
Unusual daily temperature fluctuations caused by climate change and climate variability adversely impact agricultural crop production. Since plants are immobile and constantly receive external environmental signals, such as extreme high (heat) and low (cold) temperatures, they have developed complex molecular regulatory mechanisms to cope with stressful situations to sustain their natural growth and development. Among these mechanisms, non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs), small-interfering RNAs (siRNAs), and long-non-coding RNAs (lncRNAs), play a significant role in enhancing heat and cold stress tolerance. This review explores the pivotal findings related to miRNAs, siRNAs, and lncRNAs, elucidating how they functionally regulate plant adaptation to extreme temperatures. In addition, this review addresses the challenges associated with uncovering these non-coding RNAs and understanding their roles in orchestrating heat and cold tolerance in plants.
Collapse
Affiliation(s)
- Uday Chand Jha
- Sustainable Intensification Innovation Lab, Kansas State University, Department of Agronomy, Manhattan, KS 66506, USA; ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh 208024, India.
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, 160014, India.
| | - Rajib Roychowdhury
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO) - The Volcani Institute, Rishon Lezion 7505101, Israel
| | - P V Vara Prasad
- Sustainable Intensification Innovation Lab, Kansas State University, Department of Agronomy, Manhattan, KS 66506, USA
| | - Swarup K Parida
- National Institute of Plant Genomic Research, New Delhi, 110067, India
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
22
|
Ma X, Nie Z, Huang H, Yan C, Li S, Hu Z, Wang Y, Yin H. Small RNA profiling reveals that an ovule-specific microRNA, cja-miR5179, targets a B-class MADS-box gene in Camellia japonica. ANNALS OF BOTANY 2023; 132:1007-1020. [PMID: 37831901 PMCID: PMC10808017 DOI: 10.1093/aob/mcad155] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND AND AIMS The functional specialization of microRNA and its target genes is often an important factor in the establishment of spatiotemporal patterns of gene expression that are essential to plant development and growth. In different plant lineages, understanding the functional conservation and divergence of microRNAs remains to be explored. METHODS To identify small regulatory RNAs underlying floral patterning, we performed a tissue-specific profiling of small RNAs in various floral organs from single and double flower varieties (flowers characterized by multiple layers of petals) in Camellia japonica. We identified cja-miR5179, which belongs to a deeply conserved microRNA family that is conserved between angiosperms and basal plants but frequently lost in eudicots. We characterized the molecular function of cja-miR5179 and its target - a B-function MADS-box gene - through gene expression analysis and transient expression assays. KEY RESULTS We showed that cja-miR5179 is exclusively expressed in ovule tissues at the early stage of floral development. We found that cja-miR5179 targets the coding sequences of a DEFICIENS-like B-class gene (CjDEF) mRNA, which is located in the K motif of the MADS-box domain; and the target sites of miR5179/MADS-box were consistent in Camellia and orchids. Furthermore, through a petal transient-expression assay, we showed that the BASIC PENTACYSTEINE proteins bind to the GA-rich motifs in the cja-miR5179 promoter region and suppresses its expression. CONCLUSIONS We propose that the regulation between miR5179 and a B-class MADS-box gene in C. japonica has a deep evolutionary origin before the separation of monocots and dicots. During floral development of C. japonica, cja-miR5179 is specifically expressed in the ovule, which may be required for the inhibition of CjDEF function. This work highlights the evolutionary conservation as well as functional divergence of small RNAs in floral development.
Collapse
Affiliation(s)
- Xianjin Ma
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Ziyan Nie
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Hu Huang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Chao Yan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
- Experimental Center for Subtropical Forestry, Chinese Academy of Forestry, Fenyi, Jiangxi 336600, China
| | - Sijia Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Zhikang Hu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Yupeng Wang
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Hengfu Yin
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| |
Collapse
|
23
|
Mariyam, Shafiq M, Sadiq S, Ali Q, Haider MS, Habib U, Ali D, Shahid MA. Identification and characterization of Glycolate oxidase gene family in garden lettuce (Lactuca sativa cv. 'Salinas') and its response under various biotic, abiotic, and developmental stresses. Sci Rep 2023; 13:19686. [PMID: 37952078 PMCID: PMC10640638 DOI: 10.1038/s41598-023-47180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023] Open
Abstract
Glycolate oxidase (GLO) is an FMN-containing enzyme localized in peroxisomes and performs in various molecular and biochemical mechanisms. It is a key player in plant glycolate and glyoxylate accumulation pathways. The role of GLO in disease and stress resistance is well-documented in various plant species. Although studies have been conducted regarding the role of GLO genes from spinach on a microbial level, the direct response of GLO genes to various stresses in short-season and leafy plants like lettuce has not been published yet. The genome of Lactuca sativa cultivar 'Salinas' (v8) was used to identify GLO gene members in lettuce by performing various computational analysis. Dual synteny, protein-protein interactions, and targeted miRNA analyses were conducted to understand the function of GLO genes. The identified GLO genes showed further clustering into two groups i.e., glycolate oxidase (GOX) and hydroxyacid oxidase (HAOX). Genes were observed to be distributed unevenly on three chromosomes, and syntenic analysis revealed that segmental duplication was prevalent. Thus, it might be the main reason for GLO gene diversity in lettuce. Almost all LsGLO genes showed syntenic blocks in respective plant genomes under study. Protein-protein interactions of LsGLO genes revealed various functional enrichments, mainly photorespiration, and lactate oxidation, and among biological processes oxidative photosynthetic carbon pathway was highly significant. Results of in-depth analyses disclosed the interaction of GLO genes with other members of the glycolate pathway and the activity of GLO genes in various organs and developmental stages in lettuce. The extensive genome evaluation of GLO gene family in garden lettuce is believed to be a reference for cloning and studying functional analyses of GLO genes and characterizing other members of glycolate/glyoxylate biosynthesis pathway in various plant species.
Collapse
Affiliation(s)
- Mariyam
- Department of Horticulture, University of the Punjab, Lahore, Pakistan
| | - Muhammad Shafiq
- Department of Horticulture, University of the Punjab, Lahore, Pakistan.
| | - Saleha Sadiq
- Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, University of the Punjab, Lahore, 54590, Pakistan.
| | | | - Umer Habib
- Department of Horticulture, PMAS Arid Agriculture University, Murree Road, Rawalpindi, Pakistan
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, PO Box 2455, 11451, Riyadh, Saudi Arabia
| | - Muhammad Adnan Shahid
- Horticultural Sciences Department, North Florida Research and Education Center, University of Florida/IFAS, Quincy, FL, 32351, USA
| |
Collapse
|
24
|
Fan K, Wang Z, Sze CC, Niu Y, Wong FL, Li MW, Lam HM. MicroRNA 4407 modulates nodulation in soybean by repressing a root-specific ISOPENTENYLTRANSFERASE (GmIPT3). THE NEW PHYTOLOGIST 2023; 240:1034-1051. [PMID: 37653681 DOI: 10.1111/nph.19222] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/28/2023] [Indexed: 09/02/2023]
Abstract
MicroRNAs (miRNAs) are important regulators of plant biological processes, including soybean nodulation. One miRNA, miR4407, was identified in soybean roots and nodules. However, the function of miR4407 in soybean is still unknown. MiR4407, unique to soybean, positively regulates lateral root emergence and root structures and represses a root-specific ISOPENTENYLTRANSFERASE (GmIPT3). By altering the expression of miR4407 and GmIPT3, we investigated the role of miR4407 in lateral root and nodule development. Both miR4407 and GmIPT3 are expressed in the inner root cortex and nodule primordia. Upon rhizobial inoculation, miR4407 was downregulated while GmIPT3 was upregulated. Overexpressing miR4407 reduced the number of nodules in transgenic soybean hairy roots while overexpressing the wild-type GmIPT3 or a miR4407-resistant GmIPT3 mutant (mGmIPT3) significantly increased the nodule number. The mechanism of miR4407 and GmIPT3 functions was also linked to autoregulation of nodulation (AON), where miR4407 overexpression repressed miR172c and activated its target, GmNNC1, turning on AON. Exogenous CK mimicked the effects of GmIPT3 overexpression on miR172c, supporting the notion that GmIPT3 regulates nodulation by enhancing root-derived CK. Overall, our data revealed a new miRNA-mediated regulatory mechanism of nodulation in soybean. MiR4407 showed a dual role in lateral root and nodule development.
Collapse
Affiliation(s)
- Kejing Fan
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zhili Wang
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ching-Ching Sze
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yongchao Niu
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Fuk-Ling Wong
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Man-Wah Li
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hon-Ming Lam
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
25
|
Hazra A, Ghosh S, Naskar S, Rahaman P, Roy C, Kundu A, Chaudhuri RK, Chakraborti D. Global transcriptome analysis reveals fungal disease responsive core gene regulatory landscape in tea. Sci Rep 2023; 13:17186. [PMID: 37821523 PMCID: PMC10567763 DOI: 10.1038/s41598-023-44163-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023] Open
Abstract
Fungal infections are the inevitable limiting factor for productivity of tea. Transcriptome reprogramming recruits multiple regulatory pathways during pathogen infection. A comprehensive meta-analysis was performed utilizing previously reported, well-replicated transcriptomic datasets from seven fungal diseases of tea. The study identified a cumulative set of 18,517 differentially expressed genes (DEGs) in tea, implicated in several functional clusters, including the MAPK signaling pathway, transcriptional regulation, and the biosynthesis of phenylpropanoids. Gene set enrichment analyses under each pathogen stress elucidated that DEGs were involved in ethylene metabolism, secondary metabolism, receptor kinase activity, and various reactive oxygen species detoxification enzyme activities. Expressional fold change of combined datasets highlighting 2258 meta-DEGs shared a common transcriptomic response upon fungal stress in tea. Pervasive duplication events caused biotic stress-responsive core DEGs to appear in multiple copies throughout the tea genome. The co-expression network of meta-DEGs in multiple modules demonstrated the coordination of appropriate pathways, most of which involved cell wall organization. The functional coordination was controlled by a number of hub genes and miRNAs, leading to pathogenic resistance or susceptibility. This first-of-its-kind meta-analysis of host-pathogen interaction generated consensus candidate loci as molecular signatures, which can be associated with future resistance breeding programs in tea.
Collapse
Affiliation(s)
- Anjan Hazra
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Sanatan Ghosh
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Sudipta Naskar
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Piya Rahaman
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Chitralekha Roy
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Anirban Kundu
- Plant Genomics and Bioinformatics Laboratory, P.G. Department of Botany, Ramakrishna Mission Vivekananda Centenary College (Autonomous), Rahara, Kolkata, 700118, India
| | | | - Dipankar Chakraborti
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
26
|
Hazra S, Moulick D, Mukherjee A, Sahib S, Chowardhara B, Majumdar A, Upadhyay MK, Yadav P, Roy P, Santra SC, Mandal S, Nandy S, Dey A. Evaluation of efficacy of non-coding RNA in abiotic stress management of field crops: Current status and future prospective. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:107940. [PMID: 37738864 DOI: 10.1016/j.plaphy.2023.107940] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/23/2023] [Accepted: 08/04/2023] [Indexed: 09/24/2023]
Abstract
Abiotic stresses are responsible for the major losses in crop yield all over the world. Stresses generate harmful ROS which can impair cellular processes in plants. Therefore, plants have evolved antioxidant systems in defence against the stress-induced damages. The frequency of occurrence of abiotic stressors has increased several-fold due to the climate change experienced in recent times and projected for the future. This had particularly aggravated the risk of yield losses and threatened global food security. Non-coding RNAs are the part of eukaryotic genome that does not code for any proteins. However, they have been recently found to have a crucial role in the responses of plants to both abiotic and biotic stresses. There are different types of ncRNAs, for example, miRNAs and lncRNAs, which have the potential to regulate the expression of stress-related genes at the levels of transcription, post-transcription, and translation of proteins. The lncRNAs are also able to impart their epigenetic effects on the target genes through the alteration of the status of histone modification and organization of the chromatins. The current review attempts to deliver a comprehensive account of the role of ncRNAs in the regulation of plants' abiotic stress responses through ROS homeostasis. The potential applications ncRNAs in amelioration of abiotic stresses in field crops also have been evaluated.
Collapse
Affiliation(s)
- Swati Hazra
- Sharda School of Agricultural Sciences, Sharda University, Greater Noida, Uttar Pradesh 201310, India.
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal 741235, India.
| | | | - Synudeen Sahib
- S. S. Cottage, Njarackal, P.O.: Perinad, Kollam, 691601, Kerala, India.
| | - Bhaben Chowardhara
- Department of Botany, Faculty of Science and Technology, Arunachal University of Studies, Arunachal Pradesh 792103, India.
| | - Arnab Majumdar
- Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, West Bengal 741246, India.
| | - Munish Kumar Upadhyay
- Department of Civil Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India.
| | - Poonam Yadav
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| | - Priyabrata Roy
- Department of Molecular Biology and Biotechnology, University of Kalyani, West Bengal 741235, India.
| | - Subhas Chandra Santra
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal 741235, India.
| | - Sayanti Mandal
- Department of Biotechnology, Dr. D. Y. Patil Arts, Commerce & Science College (affiliated to Savitribai Phule Pune University), Sant Tukaram Nagar, Pimpri, Pune, Maharashtra-411018, India.
| | - Samapika Nandy
- School of Pharmacy, Graphic Era Hill University, Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India; Department of Botany, Vedanta College, 33A Shiv Krishna Daw Lane, Kolkata-700054, India.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India.
| |
Collapse
|
27
|
Umu SU, Paynter VM, Trondsen H, Buschmann T, Rounge TB, Peterson KJ, Fromm B. Accurate microRNA annotation of animal genomes using trained covariance models of curated microRNA complements in MirMachine. CELL GENOMICS 2023; 3:100348. [PMID: 37601971 PMCID: PMC10435380 DOI: 10.1016/j.xgen.2023.100348] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/15/2023] [Accepted: 05/26/2023] [Indexed: 08/22/2023]
Abstract
The annotation of microRNAs depends on the availability of transcriptomics data and expert knowledge. This has led to a gap between the availability of novel genomes and high-quality microRNA complements. Using >16,000 microRNAs from the manually curated microRNA gene database MirGeneDB, we generated trained covariance models for all conserved microRNA families. These models are available in our tool MirMachine, which annotates conserved microRNAs within genomes. We successfully applied MirMachine to a range of animal species, including those with large genomes and genome duplications and extinct species, where small RNA sequencing is hard to achieve. We further describe a microRNA score of expected microRNAs that can be used to assess the completeness of genome assemblies. MirMachine closes a long-persisting gap in the microRNA field by facilitating automated genome annotation pipelines and deeper studies into the evolution of genome regulation, even in extinct organisms.
Collapse
Affiliation(s)
- Sinan Uğur Umu
- Department of Pathology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Vanessa M. Paynter
- The Arctic University Museum of Norway, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Håvard Trondsen
- Department of Pathology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Trine B. Rounge
- Department of Research, Cancer Registry of Norway, Oslo, Norway
- Centre for Bioinformatics, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Kevin J. Peterson
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Bastian Fromm
- The Arctic University Museum of Norway, UiT - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
28
|
Yue E, Rong F, Liu Z, Ruan S, Lu T, Qian H. Cadmium induced a non-coding RNA microRNA535 mediates Cd accumulation in rice. J Environ Sci (China) 2023; 130:149-162. [PMID: 37032032 DOI: 10.1016/j.jes.2022.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/19/2023]
Abstract
Identifying key regulators related to cadmium (Cd) tolerance and accumulation is the main factor for genetic engineering to improve plants for bioremediation and ensure crop food safety. MicroRNAs (miRNAs), as fine-tuning regulators of genes, participate in various abiotic stress processes. MiR535 is an ancient conserved non-coding small RNA in land plants, positively responding to Cd stress. We investigated the effects of knocking out (mir535) and overexpressing miR535 (mir535 and OE535) under Cd stress in rice plants in this study. The mir535 plants showed better Cd tolerance than wild type (WT), whereas the OE535 showed the opposite effect. Cd accumulated approximately 71.9% and 127% in the roots of mir535 and OE535 plants, respectively, compared to WT, after exposure to 2 µmol/L Cd. In brown rice, the total Cd accumulation of OE535 and mir535 was about 78% greater and 35% lower than WT. When growing in 2 mg/kg Cd of soil, the Cd concentration was significantly lower in mir535 and higher in OE535 than in the WT; afterward, we further revealed the most possible target gene SQUAMOSA promoter binding-like transcription factor 7(SPL7) and it negatively regulates Nramp5 expression, which in turn regulates Cd metabolism. Therefore, the CRISPR/Cas9 technology may be a valuable strategy for creating new rice varieties to ensure food safety.
Collapse
Affiliation(s)
- Erkui Yue
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China; Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Institute of Crops, Hangzhou Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Fuxi Rong
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhen Liu
- Hainan Institute, Zhejiang University, Hainan 572000, China
| | - Songlin Ruan
- Institute of Crops, Hangzhou Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
29
|
Ruperao P, Rangan P, Shah T, Thakur V, Kalia S, Mayes S, Rathore A. The Progression in Developing Genomic Resources for Crop Improvement. Life (Basel) 2023; 13:1668. [PMID: 37629524 PMCID: PMC10455509 DOI: 10.3390/life13081668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Sequencing technologies have rapidly evolved over the past two decades, and new technologies are being continually developed and commercialized. The emerging sequencing technologies target generating more data with fewer inputs and at lower costs. This has also translated to an increase in the number and type of corresponding applications in genomics besides enhanced computational capacities (both hardware and software). Alongside the evolving DNA sequencing landscape, bioinformatics research teams have also evolved to accommodate the increasingly demanding techniques used to combine and interpret data, leading to many researchers moving from the lab to the computer. The rich history of DNA sequencing has paved the way for new insights and the development of new analysis methods. Understanding and learning from past technologies can help with the progress of future applications. This review focuses on the evolution of sequencing technologies, their significant enabling role in generating plant genome assemblies and downstream applications, and the parallel development of bioinformatics tools and skills, filling the gap in data analysis techniques.
Collapse
Affiliation(s)
- Pradeep Ruperao
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India
| | - Parimalan Rangan
- ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi 110012, India;
| | - Trushar Shah
- International Institute of Tropical Agriculture (IITA), Nairobi 30709-00100, Kenya;
| | - Vivek Thakur
- Department of Systems & Computational Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India;
| | - Sanjay Kalia
- Department of Biotechnology, Ministry of Science and Technology, Government of India, New Delhi 110003, India;
| | - Sean Mayes
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India
| | - Abhishek Rathore
- Excellence in Breeding, International Maize and Wheat Improvement Center (CIMMYT), Hyderabad 502324, India
| |
Collapse
|
30
|
Liu Y, Yu Y, Fei S, Chen Y, Xu Y, Zhu Z, He Y. Overexpression of Sly-miR398b Compromises Disease Resistance against Botrytis cinerea through Regulating ROS Homeostasis and JA-Related Defense Genes in Tomato. PLANTS (BASEL, SWITZERLAND) 2023; 12:2572. [PMID: 37447133 DOI: 10.3390/plants12132572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
MicroRNAs (miRNAs) have been shown to be critical components in plant immunity. MicroRNA398 (miR398) is a highly conserved miRNA in all land plants and plays crucial roles in diverse biotic stress responses. However, the role of miR398 has not yet been characterized in tomato resistance against Botrytis cinerea. In this report, the transcript levels of sly-miR398b were strongly decreased in B. cinerea-infected leaves and the overexpression of sly-miR398b resulted in enhanced susceptibility. The attenuated expression of cytosol Cu/Zn-SOD (CSD1), chloroplast Cu/Zn-SOD (CSD2), and guaiacol peroxidase (GPOD), as well as the decreased activities of superoxide dismutase (SOD) and GPOD, collectively led to increased hydrogen peroxide (H2O2) accumulation in sly-miR398b overexpressing plants. Furthermore, sly-miR398b was induced by methyl jasmonate (MeJA) treatment. The overexpression of sly-miR398b suppressed the expression of TomLoxD, LapA, and PR-STH2 in response to B. cinerea and MeJA treatment. Our data demonstrate that sly-miR398b overexpression negatively regulates the resistance to B. cinerea in tomato by inducing the accumulation of reactive oxygen species (ROS) and downregulating the expression of MeJA-responsive defense genes.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Yiren Yu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Shihong Fei
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Yuxin Chen
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Yunmin Xu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhujun Zhu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Yong He
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
31
|
Sadaqat M, Umer B, Attia KA, Abdelkhalik AF, Azeem F, Javed MR, Fatima K, Zameer R, Nadeem M, Tanveer MH, Sun S, Ercisli S, Nawaz MA. Genome-wide identification and expression profiling of two-component system (TCS) genes in Brassica oleracea in response to shade stress. Front Genet 2023; 14:1142544. [PMID: 37323660 PMCID: PMC10267837 DOI: 10.3389/fgene.2023.1142544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/26/2023] [Indexed: 06/17/2023] Open
Abstract
The Two-component system (TCS) consists of Histidine kinases (HKs), Phosphotransfers (HPs), and response regulator (RR) proteins. It has an important role in signal transduction to respond to a wide variety of abiotic stresses and hence in plant development. Brassica oleracea (cabbage) is a leafy vegetable, which is used for food and medicinal purposes. Although this system was identified in several plants, it had not been identified in Brassica oleracea yet. This genome-wide study identified 80 BoTCS genes consisting of 21 HKs, 8 HPs, 39 RRs, and 12 PRRs. This classification was done based on conserved domains and motif structure. Phylogenetic relationships of BoTCS genes with Arabidopsis thaliana, Oryza sativa, Glycine max, and Cicer arietinum showed conservation in TCS genes. Gene structure analysis revealed that each subfamily had conserved introns and exons. Both tandem and segmental duplication led to the expansion of this gene family. Almost all of the HPs and RRs were expanded through segmental duplication. Chromosomal analysis showed that BoTCS genes were dispersed across all nine chromosomes. The promoter regions of these genes were found to contain a variety of cis-regulatory elements. The 3D structure prediction of proteins also confirmed the conservation of structure within subfamilies. MicroRNAs (miRNAs) involved in the regulation of BoTCSs were also predicted and their regulatory roles were also evaluated. Moreover, BoTCSs were docked with abscisic acid to evaluate their binding. RNA-seq-based expression analysis and validation by qRT-PCR showed significant variation of expression for BoPHYs, BoERS1.1, BoERS2.1, BoERS2.2, BoRR10.2, and BoRR7.1 suggesting their importance in stress response. These genes showing unique expression can be further used in manipulating the plant's genome to make the plant more resistant the environmental stresses which will ultimately help in the increase of plant's yield. More specifically, these genes have altered expression in shade stress which clearly indicates their importance in biological functions. These findings are important for future functional characterization of TCS genes in generating stress-responsive cultivars.
Collapse
Affiliation(s)
- Muhammad Sadaqat
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Basit Umer
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Kotb A. Attia
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Amr F. Abdelkhalik
- Biotechnology School, Nile University, Giza, Egypt
- Rice Biotechnology Lab, Rice Research and Training Center, Field Crops Research Institute, ARC, Kafrelshikh, Egypt
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Muhammad Rizwan Javed
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Kinza Fatima
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Roshan Zameer
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Majid Nadeem
- Wheat Research Institute, Ayub Agriculture Research Institute, Faisalabad, Pakistan
| | | | - Sangmi Sun
- Department of Biotechnology, Chonnam National University, Yesosu Campus, Yesosu Si, Republic of Korea
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum, Türkiye
- HGF Agro, Ata Teknokent, Erzurum, Türkiye
| | - Muhammad Amjad Nawaz
- Advanced Engineering School (Agrobiotek), Tomsk State University, Tomsk, Russia
- Center for Research in the Field of Materials and Technologies, Tomsk State University, Tomsk, Russia
| |
Collapse
|
32
|
Singh A, AT V, Gupta K, Sharma S, Kumar S. Long non-coding RNA and microRNA landscape of two major domesticated cotton species. Comput Struct Biotechnol J 2023; 21:3032-3044. [PMID: 37266406 PMCID: PMC10229759 DOI: 10.1016/j.csbj.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 06/03/2023] Open
Abstract
Allotetraploid cotton plants Gossypium hirsutum and Gossypium barbadense have been widely cultivated for their natural, renewable textile fibres. Even though ncRNAs in domesticated cotton species have been extensively studied, systematic identification and annotation of lncRNAs and miRNAs expressed in various tissues and developmental stages under various biological contexts are limited. This influences the comprehension of their functions and future research on these cotton species. Here, we report high confidence lncRNAs and miRNA collection from G. hirsutum accession and G. barbadense accession using large-scale RNA-seq and small RNA-seq datasets incorporated into a user-friendly database, CoNCRAtlas. This database provides a wide range and depth of lncRNA and miRNA annotation based on the systematic integration of extensive annotations such as expression patterns derived from transcriptome data analysis in thousands of samples, as well as multi-omics annotations. We assume this comprehensive resource will accelerate evolutionary and functional studies in ncRNAs and inform future breeding programs for cotton improvement. CoNCRAtlas is accessible at http://www.nipgr.ac.in/CoNCRAtlas/.
Collapse
Affiliation(s)
- Ajeet Singh
- Bioinformatics Lab, National Institute of Plant Genome Research, New Delhi 110067, India
- Postdoctoral Associate, Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Vivek AT
- Bioinformatics Lab, National Institute of Plant Genome Research, New Delhi 110067, India
| | - Kanika Gupta
- Bioinformatics Lab, National Institute of Plant Genome Research, New Delhi 110067, India
| | - Shruti Sharma
- Bioinformatics Lab, National Institute of Plant Genome Research, New Delhi 110067, India
| | - Shailesh Kumar
- Bioinformatics Lab, National Institute of Plant Genome Research, New Delhi 110067, India
| |
Collapse
|
33
|
Gajardo HA, Gómez-Espinoza O, Boscariol Ferreira P, Carrer H, Bravo LA. The Potential of CRISPR/Cas Technology to Enhance Crop Performance on Adverse Soil Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091892. [PMID: 37176948 PMCID: PMC10181257 DOI: 10.3390/plants12091892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Worldwide food security is under threat in the actual scenery of global climate change because the major staple food crops are not adapted to hostile climatic and soil conditions. Significant efforts have been performed to maintain the actual yield of crops, using traditional breeding and innovative molecular techniques to assist them. However, additional strategies are necessary to achieve the future food demand. Clustered regularly interspaced short palindromic repeat/CRISPR-associated protein (CRISPR/Cas) technology, as well as its variants, have emerged as alternatives to transgenic plant breeding. This novelty has helped to accelerate the necessary modifications in major crops to confront the impact of abiotic stress on agriculture systems. This review summarizes the current advances in CRISPR/Cas applications in crops to deal with the main hostile soil conditions, such as drought, flooding and waterlogging, salinity, heavy metals, and nutrient deficiencies. In addition, the potential of extremophytes as a reservoir of new molecular mechanisms for abiotic stress tolerance, as well as their orthologue identification and edition in crops, is shown. Moreover, the future challenges and prospects related to CRISPR/Cas technology issues, legal regulations, and customer acceptance will be discussed.
Collapse
Affiliation(s)
- Humberto A Gajardo
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 1145, Chile
| | - Olman Gómez-Espinoza
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 1145, Chile
- Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| | - Pedro Boscariol Ferreira
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba 13418-900, Brazil
| | - Helaine Carrer
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba 13418-900, Brazil
| | - León A Bravo
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 1145, Chile
| |
Collapse
|
34
|
Salih H, Bai W, Zhao M, Liang Y, Yang R, Zhang D, Li X. Genome-Wide Characterization and Expression Analysis of Transcription Factor Families in Desert Moss Syntrichia caninervis under Abiotic Stresses. Int J Mol Sci 2023; 24:ijms24076137. [PMID: 37047111 PMCID: PMC10094499 DOI: 10.3390/ijms24076137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/05/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Transcription factor (TF) families play important roles in plant stress responses. S. caninervis is a new model moss for plant desiccation tolerance studies. Here, we report a high-confidence identification and characterization of 591 TFs representing 52 families that covered all chromosomes in S. caninervis. GO term and KEGG pathway analysis showed that TFs were involved in the regulation of transcription, DNA-templated, gene expression, binding activities, plant hormone signal transduction, and circadian rhythm. A number of TF promoter regions have a mixture of various hormones-related cis-regulatory elements. AP2/ERF, bHLH, MYB, and C2H2-zinc finger TFs were the overrepresented TF families in S. caninervis, and the detailed classification of each family is performed based on structural features. Transcriptome analysis revealed the transcript abundances of some ScAP2/ERF, bHLH, MYB, and C2H2 genes were accumulated in the treated S. caninervis under cold, dehydration, and rehydration stresses. The RT-qPCR results strongly agreed with RNA-seq analysis, indicating these TFs might play a key role in S. caninervis response to abiotic stress. Our comparative TF characterization and classification provide the foundations for functional investigations of the dominant TF genes involved in S. caninervis stress response, as well as excellent stress tolerance gene resources for plant stress resistance breeding.
Collapse
|
35
|
Li Y, Vasupalli N, Cai O, Lin X, Wu H. Network of miR396-mRNA in Tissue Differentiation in Moso Bamboo ( Phyllostachys edulis). PLANTS (BASEL, SWITZERLAND) 2023; 12:1103. [PMID: 36903962 PMCID: PMC10005394 DOI: 10.3390/plants12051103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
MiR396 plays an essential role in various developmental processes. However, the miR396-mRNA molecular network in bamboo vascular tissue differentiation during primary thickening has not been elucidated. Here, we revealed that three of the five members from the miR396 family were overexpressed in the underground thickening shoots collected from Moso bamboo. Furthermore, the predicted target genes were up/down-regulated in the early (S2), middle (S3) and late (S4) developmental samples. Mechanistically, we found that several of the genes encoding protein kinases (PKs), growth-regulating factors (GRF), transcription factors (TFs), and transcription regulators (TRs) were the potential targets of miR396 members. Moreover, we identified QLQ (Gln, Leu, Gln) and WRC (Trp, Arg, Cys) d omains in five PeGRF homologs and a Lipase_3 domain and a K_trans domain in another two potential targets, where the cleavage targets were identified via degradome sequencing (p < 0.05). The sequence alignment indicated many mutations in the precursor sequence of miR396d between Moso bamboo and rice. Our dual-luciferase assay revealed that ped-miR396d-5p binds to a PeGRF6 homolog. Thus, the miR396-GRF module was associated with Moso bamboo shoot development. Fluorescence in situ hybridization localized miR396 in the vascular tissues of the leaves, stems, and roots of pot Moso bamboo seedlings at the age of two months. Collectively, these experiments revealed that miR396 functions as a regulator of vascular tissue differentiation in Moso bamboo. Additionally, we propose that miR396 members are targets for bamboo improvement and breeding.
Collapse
Affiliation(s)
- Ying Li
- National State Forestry and Grassland Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing 100102, China
| | - Naresh Vasupalli
- Bamboo Industry Institute, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Ou Cai
- Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaofang Lin
- National State Forestry and Grassland Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing 100102, China
| | - Hongyu Wu
- Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
36
|
Chen L, Sun ZL. PmliHFM: Predicting Plant miRNA-lncRNA Interactions with Hybrid Feature Mining Network. Interdiscip Sci 2023; 15:44-54. [PMID: 36223068 DOI: 10.1007/s12539-022-00540-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022]
Abstract
Due to the crucial role of interactions between microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in biological processes, the study of their biological functions is necessary. So far, the various computational methods have been employed to make predictions of the miRNA-lncRNA interaction, which compensate for the inadequacy of biological experiments. However, the existing methods do not consider the differences between miRNA and lncRNA in feature extraction. In this paper, we propose a hybrid feature mining network, named PmliHFM, for predicting plant miRNA-lncRNA interactions. Firstly, miRNA and lncRNA with different sequence lengths are encoded by different encodings, which can reduce the loss of information caused by using the same coding approach. Then, a hybrid feature mining network is designed to adapt to different encoding methods and extract more useful feature information than a single network. Finally, an ensemble module is utilized to integrate the training results of the hybrid feature mining network, while a prediction module is employed to determine whether there are interactions. By testing on multiple test sets, PmliHFM outperforms several state-of-the-art approaches. The results show that the AUC of PmliHFM achieves 0.8[Formula: see text], 3.1[Formula: see text] and 0.4[Formula: see text] improvement respectively on three balanced datasets, and achieves 2.1[Formula: see text] and 1.8[Formula: see text] improvement respectively on two imbalanced datasets. These experiments demonstrate the feasibility of the proposed method.
Collapse
Affiliation(s)
- Lin Chen
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, Anhui, China
- School of Electrical Engineering and Automation, Anhui University, Hefei, 230601, Anhui, China
| | - Zhan-Li Sun
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, Anhui, China.
- School of Electrical Engineering and Automation, Anhui University, Hefei, 230601, Anhui, China.
| |
Collapse
|
37
|
Ooi SE, Sarpan N, Taranenko E, Feshah I, Nuraziyan A, Roowi SH, Burhan MN, Jayanthi N, Rahmah ARS, Teh OK, Ong-Abdullah M, Tatarinova TV. Small RNAs and Karma methylation in Elaeis guineensis mother palms are linked to high clonal mantling. PLANT MOLECULAR BIOLOGY 2023; 111:345-363. [PMID: 36609897 DOI: 10.1007/s11103-022-01330-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
The mantled phenotype is an abnormal somaclonal variant arising from the oil palm cloning process and severe phenotypes lead to oil yield losses. Hypomethylation of the Karma retrotransposon within the B-type MADS-box EgDEF1 gene has been associated with this phenotype. While abnormal Karma-EgDEF1 hypomethylation was detected in mantled clones, we examined the methylation state of Karma in ortets that gave rise to high mantling rates in their clones. Small RNAs (sRNAs) were proposed to play a role in Karma hypomethylation as part of the RNA-directed DNA methylation process, hence differential expression analysis of sRNAs between the ortet groups was conducted. While no sRNA was differentially expressed at the Karma-EgDEF1 region, three sRNA clusters were differentially regulated in high-mantling ortets. The first two down-regulated clusters were possibly derived from long non-coding RNAs while the third up-regulated cluster was derived from the intron of a DnaJ chaperone gene. Several predicted mRNA targets for the first two sRNA clusters conversely displayed increased expression in high-mantling relative to low-mantling ortets. These predicted mRNA targets may be associated with defense or pathogenesis response. In addition, several differentially methylated regions (DMRs) were identified in Karma and its surrounding regions, mainly comprising subtle CHH hypomethylation in high-mantling ortets. Four of the 12 DMRs were located in a region corresponding to hypomethylated areas at the 3'end of Karma previously reported in mantled clones. Further investigations on these sRNAs and DMRs may indicate the predisposition of certain ortets towards mantled somaclonal variation.
Collapse
Affiliation(s)
- Siew-Eng Ooi
- Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia.
| | - Norashikin Sarpan
- Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Elizaveta Taranenko
- Department of Biology, University of La Verne, La Verne, CA, USA
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia, 660036
| | - Ishak Feshah
- Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Azimi Nuraziyan
- Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | | | | | - Nagappan Jayanthi
- Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Abdul Rahman Siti Rahmah
- Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Ooi-Kock Teh
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2, Academia Rd., Nankang, Taipei, Taiwan, R.O.C
| | - Meilina Ong-Abdullah
- Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia.
| | - Tatiana V Tatarinova
- Department of Biology, University of La Verne, La Verne, CA, USA.
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia, 660036.
- Vavilov Institute for General Genetics, Moscow, Russia.
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
38
|
Sly-miR398 Participates in Cadmium Stress Acclimation by Regulating Antioxidant System and Cadmium Transport in Tomato ( Solanum lycopersicum). Int J Mol Sci 2023; 24:ijms24031953. [PMID: 36768277 PMCID: PMC9915548 DOI: 10.3390/ijms24031953] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Cadmium (Cd) pollution is one of the major threats in agricultural production, and can cause oxidative damage and growth limitation in plants. MicroRNA398 (miR398) is involved in plant resistance to different stresses, and the post-transcriptional regulation of miR398 on CSDs plays a key role. Here, we report that miR398 was down-regulated in tomato in response to Cd stress. Simultaneously, CSD1 and SOD were up-regulated, with CSD2 unchanged, suggesting CSD1 is involved in miR398-induced regulation under Cd stress. In addition, the role of miR398 in Cd tolerance in tomato was evaluated using a transgenic line overexpressing MIR398 (miR398#OE) in which the down-expression of miR398 was disrupted. The results showed that Cd stress induced more significant growth inhibition, oxidative damage, and antioxidant enzymes disorder in miR398#OE than that in wild type (WT). Moreover, higher Cd concentration in the shoot and xylem sap, and net Cd influx rate, were observed in miR398#OE, which could be due to the increased Cd uptake genes (IRT1, IRT2, and NRAMP2) and decreased Cd compartmentalization gene HMA3. Overall, our results indicate that down-regulated miR398 plays a protective role in tomato against Cd stress by modulating the activity of antioxidant enzymes and Cd uptake and translocation.
Collapse
|
39
|
Guo Z, Li B, Du J, Shen F, Zhao Y, Deng Y, Kuang Z, Tao Y, Wan M, Lu X, Wang D, Wang Y, Han Y, Wei J, Li L, Guo X, Zhao C, Yang X. LettuceGDB: The community database for lettuce genetics and omics. PLANT COMMUNICATIONS 2023; 4:100425. [PMID: 35964156 PMCID: PMC9860171 DOI: 10.1016/j.xplc.2022.100425] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/29/2022] [Accepted: 08/10/2022] [Indexed: 05/17/2023]
Abstract
As a globally popular leafy vegetable and a representative plant of the Asteraceae family, lettuce has great economic and academic significance. In the last decade, high-throughput sequencing, phenotyping, and other multi-omics data in lettuce have accumulated on a large scale, thus increasing the demand for an integrative lettuce database. Here, we report the establishment of a comprehensive lettuce database, LettuceGDB (https://www.lettucegdb.com/). As an omics data hub, the current LettuceGDB includes two reference genomes with detailed annotations; re-sequencing data from over 1000 lettuce varieties; a collection of more than 1300 worldwide germplasms and millions of accompanying phenotypic records obtained with manual and cutting-edge phenomics technologies; re-analyses of 256 RNA sequencing datasets; a complete miRNAome; extensive metabolite information for representative varieties and wild relatives; epigenetic data on the genome-wide chromatin accessibility landscape; and various lettuce research papers published in the last decade. Five hierarchically accessible functions (Genome, Genotype, Germplasm, Phenotype, and O-Omics) have been developed with a user-friendly interface to enable convenient data access. Eight built-in tools (Assembly Converter, Search Gene, BLAST, JBrowse, Primer Design, Gene Annotation, Tissue Expression, Literature, and Data) are available for data downloading and browsing, functional gene exploration, and experimental practice. A community forum is also available for information sharing, and a summary of current research progress on different aspects of lettuce is included. We believe that LettuceGDB can be a comprehensive functional database amenable to data mining and database-driven exploration, useful for both scientific research and lettuce breeding.
Collapse
Affiliation(s)
- Zhonglong Guo
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P.R. China; State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, P.R. China; Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-biotechnology Research Center, Beijing 100097, P.R. China; College of Biology and the Environment, Nanjing Forestry University, Nanjing 510275, P.R. China
| | - Bo Li
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P.R. China; Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-biotechnology Research Center, Beijing 100097, P.R. China
| | - Jianjun Du
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P.R. China; Beijing Key Lab of Digital Plant, Beijing Research Center for Information Technology in Agriculture, Beijing 100097, P.R. China
| | - Fei Shen
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P.R. China; Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-biotechnology Research Center, Beijing 100097, P.R. China
| | - Yongxin Zhao
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P.R. China; Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-biotechnology Research Center, Beijing 100097, P.R. China
| | - Yang Deng
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P.R. China; Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-biotechnology Research Center, Beijing 100097, P.R. China
| | - Zheng Kuang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P.R. China; Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-biotechnology Research Center, Beijing 100097, P.R. China
| | - Yihan Tao
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, P.R. China
| | - Miaomiao Wan
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, P.R. China
| | - Xianju Lu
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P.R. China; Beijing Key Lab of Digital Plant, Beijing Research Center for Information Technology in Agriculture, Beijing 100097, P.R. China
| | - Dong Wang
- WeiRan Biotech, Beijing 100085, P.R. China
| | - Ying Wang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P.R. China; State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, P.R. China; Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-biotechnology Research Center, Beijing 100097, P.R. China
| | - Yingyan Han
- Beijing Key Laboratory of New Technology in Agricultural Application, Beijing University of Agriculture, Beijing 102206, P.R. China
| | - Jianhua Wei
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P.R. China
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, P.R. China
| | - Xinyu Guo
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P.R. China; Beijing Key Lab of Digital Plant, Beijing Research Center for Information Technology in Agriculture, Beijing 100097, P.R. China.
| | - Chunjiang Zhao
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P.R. China; Beijing Key Lab of Digital Plant, Beijing Research Center for Information Technology in Agriculture, Beijing 100097, P.R. China.
| | - Xiaozeng Yang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P.R. China; Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-biotechnology Research Center, Beijing 100097, P.R. China.
| |
Collapse
|
40
|
Volná A, Bartas M, Nezval J, Pech R, Pečinka P, Špunda V, Červeň J. Beyond the Primary Structure of Nucleic Acids: Potential Roles of Epigenetics and Noncanonical Structures in the Regulations of Plant Growth and Stress Responses. Methods Mol Biol 2023; 2642:331-361. [PMID: 36944887 DOI: 10.1007/978-1-0716-3044-0_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Epigenetics deals with changes in gene expression that are not caused by modifications in the primary sequence of nucleic acids. These changes beyond primary structures of nucleic acids not only include DNA/RNA methylation, but also other reversible conversions, together with histone modifications or RNA interference. In addition, under particular conditions (such as specific ion concentrations or protein-induced stabilization), the right-handed double-stranded DNA helix (B-DNA) can form noncanonical structures commonly described as "non-B DNA" structures. These structures comprise, for example, cruciforms, i-motifs, triplexes, and G-quadruplexes. Their formation often leads to significant differences in replication and transcription rates. Noncanonical RNA structures have also been documented to play important roles in translation regulation and the biology of noncoding RNAs. In human and animal studies, the frequency and dynamics of noncanonical DNA and RNA structures are intensively investigated, especially in the field of cancer research and neurodegenerative diseases. In contrast, noncanonical DNA and RNA structures in plants have been on the fringes of interest for a long time and only a few studies deal with their formation, regulation, and physiological importance for plant stress responses. Herein, we present a review focused on the main fields of epigenetics in plants and their possible roles in stress responses and signaling, with special attention dedicated to noncanonical DNA and RNA structures.
Collapse
Affiliation(s)
- Adriana Volná
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Martin Bartas
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Jakub Nezval
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Radomír Pech
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Petr Pečinka
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Vladimír Špunda
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic
| | - Jiří Červeň
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
| |
Collapse
|
41
|
Gómez-Martín C, Aparicio-Puerta E, Hackenberg M. sRNAtoolbox: Dockerized Analysis of Small RNA Sequencing Data in Model and Non-model Species. Methods Mol Biol 2023; 2630:179-213. [PMID: 36689184 DOI: 10.1007/978-1-0716-2982-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The current versions of the microRNA databases MiRgeneDB, miRBase, and PmiREN contain annotations for a total of 358 different species. Public repositories, however, host small RNA sequencing data for over 800 species. This discrepancy implies that microRNA research is also very active in species that neither have an available high-quality genome assembly nor annotations for microRNAs or other types of noncoding genes. These cases are particularly challenging to analyze because reference sequences need to be collected from different sources and processed and formatted appropriately so that the dedicated small RNA analysis tools can make use of them. In this protocol we describe how small RNA sequencing data can be easily analyzed by means of a dockerized version of the well-established sRNAtoolbox/sRNAbench small RNA tools. We outline the analysis of two publicly available datasets to demonstrate basic aspects like the preparation of the local database, expression profiling, or differential expression analysis as well as more advanced features such as quantification of exogenous RNA content and data analysis in non-model species.
Collapse
Affiliation(s)
- Cristina Gómez-Martín
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | | | | |
Collapse
|
42
|
Kuang Z, Zhao Y, Yang X. Plant MicroRNA Identification and Annotation Using Deep Sequencing Data. Methods Mol Biol 2023; 2595:239-250. [PMID: 36441467 DOI: 10.1007/978-1-0716-2823-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MicroRNAs (miRNAs) are endogenous non-coding small RNAs, which regulate gene expression at the post-transcriptional level. A large number of studies have revealed that they play key roles in diverse life activities, such as growth and development. In the last decade, deep sequencing technology has generated substantial small RNA sequencing (sRNA-Seq) data. Meanwhile, numerous tools have been developed to identify miRNAs from these sRNA-Seq data, resulting in a surge of miRNA annotations. Among these tools, the series of miRDeep-P and miRDeep-P2 have been widely used in plant miRNA annotation. Here, we employed miRDeep-P2 to demonstrate the plant miRNA annotation processes step by step using the deep sequencing data.
Collapse
Affiliation(s)
- Zheng Kuang
- Beijing Agro-biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, P.R. China
| | - Yongxin Zhao
- Beijing Agro-biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, P.R. China
| | - Xiaozeng Yang
- Beijing Agro-biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, P.R. China.
| |
Collapse
|
43
|
Gómez-Martín C, Zhou H, Medina JM, Aparicio-Puerta E, Hackenberg M, Shi B. Comprehensive, integrative genomic analysis of microRNA expression profiles in different tissues of two wheat cultivars with different traits. Funct Integr Genomics 2022; 23:15. [PMID: 36562829 DOI: 10.1007/s10142-022-00920-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/04/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
Wheat is one of the most important food sources on Earth. MicroRNAs (miRNA) play important roles in wheat productivity. To identify wheat miRNAs, we constructed and sequenced sRNA libraries from leaves and roots of two wheat cultivars (RAC875 and Kukri) with many different traits. Given that available miRNA wheat complement in the plant-specific database PmiREN ( https://pmiren.com ) does not include root tissues and root-associated miRNAs might thus be missing, we performed first the prediction of novel miRNAs using the sRNAbench tool. We found a total of 150 putatively novel miRNA genes with expression of both arms from 289 unique mature sequences and nearly 30% of all miRNA reads in roots corresponded to novel miRNAs. In contrast, this figure in leaves dropped to under 3%, confirming the undersampling of roots in the complement of known miRNAs. By using 120 publicly available wheat datasets, 598 Zea mays small RNA libraries, 64 plant species genomes, wheat degradome library, and functional enrichment analysis, a subset of novel miRNAs were confirmed as bona-fide miRNAs. Of the total 605 miRNAs identified in this study inclusive of 316 known miRNAs, 528 miRNAs were shared by both cultivars, 429 miRNAs were shared by both root tissues and 329 miRNAs were shared by both leaf tissues. In addition, 32 miRNAs were specific to Kukri while 45 miRNAs were specific to RAC875. These miRNAs had diverse functions, such as regulation of gene transcription, protein translation, energy metabolism, and cell cycle progression. Our data provide a genome-wide miRNA expression profile in these two wheat cultivars and help functional studies of wheat genomics.
Collapse
Affiliation(s)
- Cristina Gómez-Martín
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Hui Zhou
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, 5064, Australia
| | - José Maria Medina
- Computational Genomics and Bioinformatics Group, Genetics Department, University of Granada, 18071, Granada, Spain.,Bioinformatics Laboratory, Centro de Investigación Biomédica, Biotechnology Institute, PTS, Avda. del Conocimiento S/N, 18100, Granada, Spain
| | - Ernesto Aparicio-Puerta
- Computational Genomics and Bioinformatics Group, Genetics Department, University of Granada, 18071, Granada, Spain.,Bioinformatics Laboratory, Centro de Investigación Biomédica, Biotechnology Institute, PTS, Avda. del Conocimiento S/N, 18100, Granada, Spain.,Instituto de Investigación Biosanitaria Ibs.GRANADA, University of Granada, 18071, Granada, Spain.,Excellence Research Unit "Modelling Nature" (MNat), University of Granada, 18071, Granada, Spain
| | - Michael Hackenberg
- Computational Genomics and Bioinformatics Group, Genetics Department, University of Granada, 18071, Granada, Spain. .,Bioinformatics Laboratory, Centro de Investigación Biomédica, Biotechnology Institute, PTS, Avda. del Conocimiento S/N, 18100, Granada, Spain. .,Instituto de Investigación Biosanitaria Ibs.GRANADA, University of Granada, 18071, Granada, Spain. .,Excellence Research Unit "Modelling Nature" (MNat), University of Granada, 18071, Granada, Spain.
| | - Bujun Shi
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, 5064, Australia.
| |
Collapse
|
44
|
Teh OK, Singh P, Ren J, Huang LT, Ariyarathne M, Salamon BP, Wang Y, Kotake T, Fujita T. Surface-localized glycoproteins act through class C ARFs to fine-tune gametophore initiation in Physcomitrium patens. Development 2022; 149:282110. [PMID: 36520083 DOI: 10.1242/dev.200370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 10/17/2022] [Indexed: 12/23/2022]
Abstract
Arabinogalactan proteins are functionally diverse cell wall structural glycoproteins that have been implicated in cell wall remodeling, although the mechanistic actions remain elusive. Here, we identify and characterize two AGP glycoproteins, SLEEPING BEAUTY (SB) and SB-like (SBL), that negatively regulate the gametophore bud initiation in Physcomitrium patens by dampening cell wall loosening/softening. Disruption of SB and SBL led to accelerated gametophore formation and altered cell wall compositions. The function of SB is glycosylation dependent and genetically connected with the class C auxin response factor (ARF) transcription factors PpARFC1B and PpARFC2. Transcriptomics profiling showed that SB upregulates PpARFC2, which in turn suppresses a range of cell wall-modifying genes that are required for cell wall loosening/softening. We further show that PpARFC2 binds directly to multiple AuxRE motifs on the cis-regulatory sequences of PECTIN METHYLESTERASE to suppress its expression. Hence, our results demonstrate a mechanism by which the SB modulates the strength of intracellular auxin signaling output, which is necessary to fine-tune the timing of gametophore initials formation.
Collapse
Affiliation(s)
- Ooi Kock Teh
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec.2, Academia Rd., Nankang, Taipei 11529, Taiwan.,Department of Biological Sciences, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Prerna Singh
- Graduate School of Life Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Junling Ren
- Graduate School of Life Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Lin Tzu Huang
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec.2, Academia Rd., Nankang, Taipei 11529, Taiwan
| | - Menaka Ariyarathne
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec.2, Academia Rd., Nankang, Taipei 11529, Taiwan
| | - Benjamin Prethiviraj Salamon
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec.2, Academia Rd., Nankang, Taipei 11529, Taiwan
| | - Yu Wang
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec.2, Academia Rd., Nankang, Taipei 11529, Taiwan
| | - Toshihisa Kotake
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Tomomichi Fujita
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| |
Collapse
|
45
|
Luján-Soto E, Aguirre de la Cruz PI, Juárez-González VT, Reyes JL, Sanchez MDLP, Dinkova TD. Transcriptional Regulation of zma- MIR528a by Action of Nitrate and Auxin in Maize. Int J Mol Sci 2022; 23:15718. [PMID: 36555358 PMCID: PMC9779399 DOI: 10.3390/ijms232415718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/23/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
In recent years, miR528, a monocot-specific miRNA, has been assigned multifaceted roles during development and stress response in several plant species. However, the transcription regulation and the molecular mechanisms controlling MIR528 expression in maize are still poorly explored. Here we analyzed the zma-MIR528a promoter region and found conserved transcription factor binding sites related to diverse signaling pathways, including the nitrate (TGA1/4) and auxin (AuxRE) response networks. Accumulation of both pre-miR528a and mature miR528 was up-regulated by exogenous nitrate and auxin treatments during imbibition, germination, and maize seedling establishment. Functional promoter analyses demonstrated that TGA1/4 and AuxRE sites are required for transcriptional induction by both stimuli. Overall, our findings of the nitrogen- and auxin-induced zma-MIR528a expression through cis-regulatory elements in its promoter contribute to the knowledge of miR528 regulome.
Collapse
Affiliation(s)
- Eduardo Luján-Soto
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Méxcio 04510, Mexico
| | - Paola I. Aguirre de la Cruz
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Méxcio 04510, Mexico
| | - Vasti T. Juárez-González
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Méxcio 04510, Mexico
- Department of Plant Biology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - José L. Reyes
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Av. Universidad 2001, Cuernavaca 62210, Mexico
| | - María de la Paz Sanchez
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Tzvetanka D. Dinkova
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Méxcio 04510, Mexico
| |
Collapse
|
46
|
Yu Y, Zhang T, Sun J, Jing T, Shen Y, Zhang K, Chen Y, Ding D, Wang G, Yang J, Tang J, Shi Z, Wang D, Gou M. Evolutionary characterization of miR396s in Poaceae exemplified by their genetic effects in wheat and maize. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111465. [PMID: 36155239 DOI: 10.1016/j.plantsci.2022.111465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/01/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
MiR396s play important roles in regulating plant growth and stress response, and great potential for crop yield promotion was anticipated. For more comprehensive and precise understanding of miR396s in Poaceae, we analyzed the phylogenetic linkage, gene expression, and chromosomal distribution of miR396s in this study. Although the mature miR396s' sequences were mostly conserved, differential expression patterns and chromosomal distribution were found among Poaceae species including the major cereal crops rice, wheat, and maize. Consistently, in comparison with rice, wheat and maize plants transformed with the target mimicry construct of miR396 (MIM396) exhibited differential effects on grain size and disease resistance. While the TaMIM396 plants showed increased grain size, panicle length and sensitivity to B. graminis, the ZmMIM396 plants didn't show obvious changes in grain size and disease resistance. In Addition, several GROWTH-REGULATING FACTOR (GRF) genes in wheat and maize were repressed by miR396s, which could be reversed by MIM396, confirming the conserved regulatory roles of miR396 on GRFs. While providing new solution to enhance grain yield in wheat and revealing potential regulatory variations of miR396s in controlling grain size and disease resistance in different crops, this study gives clues to further explore miR396s' functions in other Poaceae species.
Collapse
Affiliation(s)
- Yanwen Yu
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Tongxiang Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Jingfan Sun
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Teng Jing
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Yanjie Shen
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Kunpu Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Yan Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dong Ding
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Guoying Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianping Yang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Jihua Tang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; The Shennong Laboratory, Zhengzhou, Henan 450002, China
| | - Zhenying Shi
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China.
| | - Mingyue Gou
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
47
|
Guo Z, Kuang Z, Deng Y, Li L, Yang X. Identification of Species-Specific MicroRNAs Provides Insights into Dynamic Evolution of MicroRNAs in Plants. Int J Mol Sci 2022; 23:ijms232214273. [PMID: 36430750 PMCID: PMC9698635 DOI: 10.3390/ijms232214273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNAs) are an important class of regulatory small RNAs that program gene expression, mainly at the post-transcriptional level. Although sporadic examples of species-specific miRNAs (termed SS-miRNAs) have been reported, a genome-scale study across a variety of distant species has not been assessed. Here, by comprehensively analyzing miRNAs in 81 plant species phylogenetically ranging from chlorophytes to angiosperms, we identified 8048 species-specific miRNAs from 5499 families, representing over 61.2% of the miRNA families in the examined species. An analysis of the conservation from different taxonomic levels supported the high turnover rate of SS-miRNAs, even over short evolutionary distances. A comparison of the intrinsic features between SS-miRNAs and NSS-miRNAs (non-species-specific miRNAs) indicated that the AU content of mature miRNAs was the most striking difference. Our data further illustrated a significant bias of the genomic coordinates towards SS-miRNAs lying close to or within genes. By analyzing the 125,267 putative target genes for the 7966 miRNAs, we found the preferentially regulated functions of SS-miRNAs related to diverse metabolic processes. Collectively, these findings underscore the dynamic evolution of miRNAs in the species-specific lineages.
Collapse
Affiliation(s)
- Zhonglong Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Zheng Kuang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yang Deng
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- Correspondence: (L.L.); (X.Y.)
| | - Xiaozeng Yang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Correspondence: (L.L.); (X.Y.)
| |
Collapse
|
48
|
Alzahrani S, Applegate C, Swarbreck D, Dalmay T, Folkes L, Moulton V. Degradome Assisted Plant MicroRNA Prediction Under Alternative Annotation Criteria. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:3374-3383. [PMID: 34559659 DOI: 10.1109/tcbb.2021.3115023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Current microRNA (miRNA) prediction methods are generally based on annotation criteria that tend to miss potential functional miRNAs. Recently, new miRNA annotation criteria have been proposed that could lead to improvements in miRNA prediction methods in plants. Here, we investigate the effect of the new criteria on miRNA prediction in Arabidopsis thaliana and present a new degradome assisted functional miRNA prediction approach. We investigated the effect by applying the new criteria, and a more permissive criteria on miRNA prediction using existing miRNA prediction tools. We also developed an approach to miRNA prediction that is assisted by the functional information extracted from the analysis of degradome sequencing. We demonstrate the improved performance of degradome assisted miRNA prediction compared to unassisted prediction and evaluate the approach using miRNA differential expression analysis. We observe how the miRNA predictions fit under the different criteria and show a potential novel miRNA that has been missed within Arabidopsis thaliana. Additionally, we introduce a freely available software 'PAREfirst' that employs the degradome assisted approach. The study shows that some miRNAs could be missed due to the stringency of the former annotation criteria, and combining a degradome assisted approach with more permissive miRNA criteria can expand confident miRNA predictions.
Collapse
|
49
|
Zhang B, Fei Y, Feng J, Zhu X, Wang R, Xiao H, Zhang H, Huang J. RiceNCexp: a rice non-coding RNA co-expression atlas based on massive RNA-seq and small-RNA seq data. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6068-6077. [PMID: 35762882 DOI: 10.1093/jxb/erac285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Non-coding RNAs (ncRNAs) play important roles in regulating expression of protein-coding genes. Although gene expression databases have emerged in a timely manner, a comprehensive expression database for ncRNAs is still lacking. Herein, we constructed a rice ncRNA co-expression atlas (RiceNCexp), based on 491 RNA-seq and 274 small RNA (sRNA)-seq datasets. RiceNCexp hosts four types of ncRNAs, namely lncRNAs, PHAS genes, miRNAs, and phasiRNAs. RiceNCexp provides comprehensive expression information for rice ncRNAs in 22 tissues/organs, an efficient tau-based mining tool for tissue-specific ncRNAs, and the robust co-expression analysis among ncRNAs or between ncRNAs and protein-coding genes, based on 116 pairs of RNA-seq and sRNA-seq libraries from the same experiments. In summary, RiceNCexp is a user-friendly and comprehensive rice ncRNA co-expression atlas and can be freely accessed at https://cbi.njau.edu.cn/RiceNCexp/.
Collapse
Affiliation(s)
- Baoyi Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Yuhan Fei
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiejie Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Xueai Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Rui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Hanqing Xiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongsheng Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Ji Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
- Jiangsu Key Laboratory for Information Agriculture, Nanjing 210095, China
| |
Collapse
|
50
|
Tomato MicroRNAs and Their Functions. Int J Mol Sci 2022; 23:ijms231911979. [PMID: 36233279 PMCID: PMC9569937 DOI: 10.3390/ijms231911979] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs) define an essential class of non-coding small RNAs that function as posttranscriptional modulators of gene expression. They are coded by MIR genes, several hundreds of which exist in the genomes of Arabidopsis and rice model plants. The functional analysis of Arabidopsis and rice miRNAs indicate that their miRNAs regulate a wide range of processes including development, reproduction, metabolism, and stress. Tomato serves as a major model crop for the study of fleshy fruit development and ripening but until recently, information on the identity of its MIR genes and their coded miRNAs was limited and occasionally contradictory. As a result, the majority of tomato miRNAs remained uncharacterized. Recently, a comprehensive annotation of tomato MIR genes has been carried out by several labs and us. In this review, we curate and organize the resulting partially overlapping MIR annotations into an exhaustive and non-redundant atlas of tomato MIR genes. There are 538 candidate and validated MIR genes in the atlas, of which, 169, 18, and 351 code for highly conserved, Solanaceae-specific, and tomato-specific miRNAs, respectively. Furthermore, a critical review of functional studies on tomato miRNAs is presented, highlighting validated and possible functions, creating a useful resource for future tomato miRNA research.
Collapse
|