1
|
Sanchez-Mut JV, Aso E, Panayotis N, Lott I, Dierssen M, Rabano A, Urdinguio RG, Fernandez AF, Astudillo A, Martin-Subero JI, Balint B, Fraga MF, Gomez A, Gurnot C, Roux JC, Avila J, Hensch TK, Ferrer I, Esteller M. DNA methylation map of mouse and human brain identifies target genes in Alzheimer's disease. ACTA ACUST UNITED AC 2013; 136:3018-27. [PMID: 24030951 PMCID: PMC3784285 DOI: 10.1093/brain/awt237] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The central nervous system has a pattern of gene expression that is closely regulated with respect to functional and anatomical regions. DNA methylation is a major regulator of transcriptional activity, and aberrations in the distribution of this epigenetic mark may be involved in many neurological disorders, such as Alzheimer’s disease. Herein, we have analysed 12 distinct mouse brain regions according to their CpG 5’-end gene methylation patterns and observed their unique epigenetic landscapes. The DNA methylomes obtained from the cerebral cortex were used to identify aberrant DNA methylation changes that occurred in two mouse models of Alzheimer’s disease. We were able to translate these findings to patients with Alzheimer’s disease, identifying DNA methylation-associated silencing of three targets genes: thromboxane A2 receptor (TBXA2R), sorbin and SH3 domain containing 3 (SORBS3) and spectrin beta 4 (SPTBN4). These hypermethylation targets indicate that the cyclic AMP response element-binding protein (CREB) activation pathway and the axon initial segment could contribute to the disease.
Collapse
Affiliation(s)
- Jose V Sanchez-Mut
- 1 Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet, Barcelona, Catalonia, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
L.S. Tang N, Poon T, Poon TCW. Advances in MALDI mass spectrometry in clinical diagnostic applications. Top Curr Chem (Cham) 2013; 336:139-75. [PMID: 23563502 PMCID: PMC7121589 DOI: 10.1007/128_2012_413] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The concept of matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) was first reported in 1985. Since then, MALDI MS technologies have been evolving, and successfully used in genome, proteome, metabolome, and clinical diagnostic research. These technologies are high-throughput and sensitive. Emerging evidence has shown that they are not only useful in qualitative and quantitative analyses of proteins, but also of other types of biomolecules, such as DNA, glycans, and metabolites. Recently, parallel fragmentation monitoring (PFM), which is a method comparable to selected reaction monitoring, has been reported. This highlights the potentials of MALDI-TOF/TOF tandem MS in quantification of metabolites. Here we critically review the applications of the major MALDI MS technologies, including MALDI-TOF MS, MALDI-TOF/TOF MS, SALDI-TOF MS, MALDI-QqQ MS, and SELDI-TOF MS, to the discovery and quantification of disease biomarkers in biological specimens, especially those in plasma/serum specimens. Using SELDI-TOF MS as an example, the presence of systemic bias in biomarker discovery studies employing MALDI-TOF MS and its possible solutions are also discussed in this chapter. The concepts of MALDI, SALDI, SELDI, and PFM are complementary to each other. Theoretically, all these technologies can be combined, leading to the next generation of the MALDI MS technologies. Real applications of MALDI MS technologies in clinical diagnostics should be forthcoming.
Collapse
Affiliation(s)
- Nelson L.S. Tang
- grid.10784.3a0000000419370482Dept. of Chemical Pathology and Lab. of Genetics of Disease Suscept., The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Terence Poon
- grid.10784.3a0000000419370482Department of Paediatrics and Proteomics Laboratory, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | | |
Collapse
|
3
|
Ahn J, Choi JH, Won M, Kang CM, Gyun MR, Park HM, Kim CH, Chung KS. The activation of p38 MAPK primarily contributes to UV-induced RhoB expression by recruiting the c-Jun and p300 to the distal CCAAT box of the RhoB promoter. Biochem Biophys Res Commun 2011; 409:211-6. [PMID: 21565167 DOI: 10.1016/j.bbrc.2011.04.121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 04/24/2011] [Indexed: 10/18/2022]
Abstract
The Ras-related small GTP-binding protein RhoB is rapidly induced in response to genotoxic stresses caused by ionizing radiation. It is known that UV-induced RhoB expression results from the binding of activating transcription factor 2 (ATF2) via NF-Y to the inverted CCAAT box (-23) of the RhoB promoter. Here, we show that the association of c-Jun with the distal CCAAT box (-72) is primarily involved in UV-induced RhoB expression and p38 MAPK regulated RhoB induction through the distal CCAAT box. UV-induced RhoB expression and apoptosis were markedly attenuated by pretreatment with the p38 MAPK inhibitor. siRNA knockdown of RhoB, ATF2 and c-Jun resulted in decreased RhoB expression and eventually restored the growth of UV-irradiated Jurkat cells. In the reporter assay using luciferase under the RhoB promoter, inhibition of RhoB promoter activity by the p38 inhibitor and knockdown of c-Jun using siRNA occurred through the distal CCAAT box. Immunoprecipitation and DNA affinity protein binding assays revealed the association of c-Jun and p300 via NF-YA and the dissociation of histone deacetylase 1 (HDAC1) via c-Jun recruitment to the CCAAT boxes of the RhoB promoter. These results suggest that the activation of p38 MAPK primarily contributes to UV-induced RhoB expression by recruiting the c-Jun and p300 proteins to the distal CCAAT box of the RhoB promoter in Jurkat cells.
Collapse
Affiliation(s)
- Jiwon Ahn
- Genome Research Center, KRIBB, Daejeon 305-806, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Shanmugam N, Reddy MA, Natarajan R. Distinct roles of heterogeneous nuclear ribonuclear protein K and microRNA-16 in cyclooxygenase-2 RNA stability induced by S100b, a ligand of the receptor for advanced glycation end products. J Biol Chem 2008; 283:36221-33. [PMID: 18854308 DOI: 10.1074/jbc.m806322200] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Advanced glycation end products play major roles in diabetic complications. They act via their receptor RAGE to induce inflammatory genes such as cyclooxygenase-2 (COX-2). We examined the molecular mechanisms by which the RAGE ligand, S100b, induces COX-2 in monocytes. S100b significantly increased COX-2 mRNA accumulation in THP-1 monocytes at 2 h via mRNA stability. This was further confirmed by showing that S100b increased stability of luciferase-COX-2 3'-UTR mRNA. Chromatin immunoprecipitation and RNA immunoprecipitation revealed that S100b decreased occupancy of the DNA/RNA-binding protein, heterogeneous nuclear ribonuclear protein K (hnRNPK), at the COX-2 promoter but simultaneously increased its binding to the COX-2 3'-UTR. S100b treatment promoted the translocation of nuclear hnRNPK to cytoplasm, whereas a cytoplasmic translocation-deficient hnRNPK mutant inhibited S100b-induced COX-2 mRNA stability. Small interfering RNA-mediated specific knockdown of hnRNPK blocked S100b-induced COX-2 mRNA stability, whereas on the other hand, overexpression of hnRNPK increased S100b-induced COX-2 mRNA stability. S100b promoted the release of entrapped COX-2 mRNA from cytoplasmic processing bodies, sites of mRNA degradation. Furthermore, S100b significantly down-regulated the expression of a key microRNA, miR-16, which can destabilize COX-2 mRNA by binding to its 3'-UTR. MiR-16 inhibitor oligonucleotides increased, whereas, conversely, miR-16 mimic oligonucleotides decreased COX-2 mRNA stability in monocytes, further supporting the inhibitory effects of miR-16. Interestingly, hnRNPK knockdown increased miR-16 binding to COX-2 3'-UTR, indicating a cross-talk between them. These new results demonstrate that diabetic stimuli can efficiently stabilize inflammatory genes via opposing actions of key RNA-binding proteins and miRs.
Collapse
Affiliation(s)
- Narkunaraja Shanmugam
- Division of Diabetes, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | | | | |
Collapse
|
5
|
Favre-Kontula L, Sattonnet-Roche P, Magnenat E, Proudfoot AEI, Boschert U, Xenarios I, Vilbois F, Antonsson B. Detection and identification of plasma proteins that bind GlialCAM using ProteinChip™ Arrays, SELDI-TOF MS, and nano-LC MS/MS. Proteomics 2008; 8:378-88. [DOI: 10.1002/pmic.200700564] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Poon TCW. Opportunities and limitations of SELDI-TOF-MS in biomedical research: practical advices. Expert Rev Proteomics 2007; 4:51-65. [PMID: 17288515 DOI: 10.1586/14789450.4.1.51] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Surface-enhanced laser desorption/ionization time-of-flight mass spectrometry, or surface-enhanced laser desorption/ionization ProteinChip technology, has been widely used in obtaining the quantitative profiles of tissue proteomes, particularly plasma proteomes. Its high-throughput nature and simplicity in its experimental procedures have allowed this technology to become a popular research tool for biomarker discovery in the past 5 years. After accumulating more research experiences, researchers now have a better understanding of the characteristics and limitations of this technology, as well as the pitfalls in biomarker research, by undertaking a comparative proteomic approach. This review provides an overview of the surface-enhanced laser desorption/ionization time-of-flight mass spectrometry, discusses its limitations and provides some possible solutions to help apply this technology to biomarker research.
Collapse
Affiliation(s)
- Terence C W Poon
- Li Ka Shing Institute of Health Sciences, Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong Special Administrative Region, China.
| |
Collapse
|
7
|
Nordhoff E, Lehrach H. Identification and characterization of DNA-binding proteins by mass spectrometry. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2006; 104:111-95. [PMID: 17290821 DOI: 10.1007/10_2006_037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mass spectrometry is the most sensitive and specific analytical technique available for protein identification and quantification. Over the past 10 years, by the use of mass spectrometric techniques hundreds of previously unknown proteins have been identified as DNA-binding proteins that are involved in the regulation of gene expression, replication, or DNA repair. Beyond this task, the applications of mass spectrometry cover all aspects from sequence and modification analysis to protein structure, dynamics, and interactions. In particular, two new, complementary ionization techniques have made this possible: matrix-assisted laser desorption/ionization and electrospray ionization. Their combination with different mass-over-charge analyzers and ion fragmentation techniques, as well as specific enzymatic or chemical reactions and other analytical techniques, has led to the development of a broad repertoire of mass spectrometric methods that are now available for the identification and detailed characterization of DNA-binding proteins. These techniques, how they work, what their requirements and limitations are, and selected examples that document their performance are described and discussed in this chapter.
Collapse
Affiliation(s)
- Eckhard Nordhoff
- Department Lehrach, Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany.
| | | |
Collapse
|
8
|
Zhu Y, Valdes R, Simmons CQ, Linder MW, Pugia MJ, Jortani SA. Analysis of ligand binding by bioaffinity mass spectrometry. Clin Chim Acta 2006; 371:71-8. [PMID: 16624266 DOI: 10.1016/j.cca.2006.02.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 02/16/2006] [Indexed: 11/19/2022]
Abstract
BACKGROUND Ligand binding is commonly analyzed using various immunoassays that are generally time-consuming and some may require secondary antibodies or gel electrophoresis which are also time-consuming and sometimes subjective. We introduced various examples for a more rapid approach using pre-activated surface chips which are analyzed by surface enhanced laser desorption/ionization-time of flight mass spectrometry (SELDI-TOF MS). Specific applications presented in this study include immobilization of antigen, antibody or oligo DNA on pre-activated chips with subsequent identification of the binding antibodies, antigens or DNA binding proteins to demonstrate the universal utility of this novel approach. METHODS BSA-digoxin conjugate (BSA-Dig), anti-digoxin antibody, anti-urinary trypsin inhibitor (uTi) antibody, or a double stranded oligo nucleotide based on the nucleotide sequence between -91 and -10 of the human CYP 450 2E1 promoter were immobilized on the Ciphergen pre-activated surface chips. Anti-digoxin antibody, BSA-digoxin conjugate, uTi, and CYP450 2E1 promoter binding protein were captured on the chip and identified by SELDI-TOF MS. RESULTS A protein with 141kDa was identified from anti-digoxin serum using BSA-Dig chips. This binding was competitively inhibited by addition of digoxin. Using anti-digoxin antibody, a peak at approximately 66kDa was detected in the preparation of BSA-Dig. This peak was also inhibited by free digoxin, suggesting BSA-Dig is detected. uTi fragments with approximately 3kDa to approximately 30kDa in the standard and urine samples were captured on the chip by anti-uTi antibody. Finally, we identified a 95-kDa CYP 450 2E1 promoter binding protein in HeLa cells nuclear extracts. CONCLUSIONS Bioaffinity SELDI-TOF MS is a powerful and versatile approach for analysis of ligands. It eliminates tracer-labeled secondary antibodies and allows for determination of molecular weights of binding proteins and their ligands directly. This approach may also be considered for the detection of enzymes, receptors, or any other specific ligands.
Collapse
Affiliation(s)
- Yusheng Zhu
- Department of Pathology and Laboratory Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | | | | | | | | | | |
Collapse
|
9
|
Wang H, Yang X, Bowick GC, Herzog NK, Luxon BA, Lomas LO, Gorenstein DG. Identification of proteins bound to a thioaptamer probe on a proteomics array. Biochem Biophys Res Commun 2006; 347:586-93. [PMID: 16842751 DOI: 10.1016/j.bbrc.2006.06.132] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 06/16/2006] [Indexed: 10/24/2022]
Abstract
A rapid method to screen and identify unknown bound proteins to specific nucleic acid probes anchored on ProteinChip array surfaces from crude biological samples has been developed in this paper. It was demonstrated with screening specific binding proteins from LPS-stimulated mouse 70Z/3 pre-B cell nuclear extracts by direct coupling of thioaptamer XBY-S2 to the pre-activated ProteinChip array surfaces. With pre-fractionation of crude nuclear extracts by ion exchange method, specific "on-chip" captured proteins have been obtained that were pure enough to do "on-chip" digestion and the subsequent identification of the "on-chip" bound proteins by microsequencing of the trypsin digested peptide fragments through tandem MS. Five mouse heterogeneous nuclear ribonucleoproteins (hnRNPs) A1, A2/B1, A3, A/B, and D0 were identified. To verify those bound hnRNPs, a novel thioaptamer/antibody sandwich assay provides highly sensitive and selective identification of proteins on ProteinChip arrays.
Collapse
Affiliation(s)
- He Wang
- Ciphergen, Inc., Fremont, CA 94555, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Zhu Y, Valdes R, Jortani SA. Application of bioaffinity mass spectrometry for analysis of ligands. Ther Drug Monit 2006; 27:694-9. [PMID: 16404796 DOI: 10.1097/01.ftd.0000179851.32093.dc] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Bioaffinity mass spectrometry is a novel technology for analysis of binding proteins and their ligands. In this review, we introduce the concepts and principles of bioaffinity surface-enhanced laser desorption/ionization-time of flight mass spectrometry (SELDI-TOF MS). Various preactivated chip types and several approaches for binding of ligands or their binders to the chips are discussed. We also provide specific examples for the use of this technology for screening antibodies, analyzing ligands, glycoconjugates, protein-protein inter-actions, and DNA (RNA) binding proteins. In pursuit of developing new tests or studies of mechanism of drug action in therapeutic drug monitoring practice, this technology may provide a more rapid approach for ligand-binder studies.
Collapse
Affiliation(s)
- Yusheng Zhu
- Department of Pathology and Laboratory Medicine, University of Louisville School of Medicine, KY 40202, USA
| | | | | |
Collapse
|
11
|
Harris D, Zhang Z, Chaubey B, Pandey VN. Identification of cellular factors associated with the 3'-nontranslated region of the hepatitis C virus genome. Mol Cell Proteomics 2006; 5:1006-18. [PMID: 16500930 DOI: 10.1074/mcp.m500429-mcp200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Chronic infection by hepatitis C virus (HCV) is the leading cause of severe hepatitis that often develops into liver cirrhosis and hepatocellular carcinoma. The molecular mechanisms underlying HCV replication and pathogenesis are poorly understood. Similarly, the role(s) of host factors in the replication of HCV remains largely undefined. Based on our knowledge of other RNA viruses, it is likely that a number of cellular factors may be involved in facilitating HCV replication. It has been demonstrated that elements within the 3'-nontranslated region (3'-NTR) of the (+) strand HCV genome are essential for initiation of (-) strand synthesis. The RNA signals within the highly conserved 3'-NTR may be the site for recruiting cellular factors that mediate virus replication/pathogenesis. However, the identities of putative cellular factors interacting with these RNA signals remain unknown. In this report, we demonstrate that an RNA affinity capture system developed in our laboratory used in conjunction with LC/MS/MS allowed us to positively identify more than 70 cellular proteins that interact with the 3'-NTR (+) of HCV. Binding of these cellular proteins was not competed out by a 10-fold excess of nonspecific competitor RNA. With few exceptions, all of the identified cellular proteins are RNA-binding proteins whose reported cellular functions provide unique insights into host cell-virus interactions and possible mechanisms influencing HCV replication and HCV-associated pathogenesis. Small interfering RNA-mediated silencing of selected 3'-NTR-binding proteins in an HCV replicon cell line reduced replicon RNA to undetectable levels, suggesting important roles for these cellular factors in HCV replication.
Collapse
Affiliation(s)
- Dylan Harris
- Department of Biochemistry and Molecular Biology and Centre for the Study of Emerging and Re-emerging Pathogens, University of Medicine and Dentistry of New Jersey--New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | | | |
Collapse
|
12
|
Krabbe JG, Lingeman H, Niessen WMA, Irth H. Ligand-exchange detection of phosphorylated peptides using liquid chromatography electrospray mass spectrometry. Anal Chem 2004; 75:6853-60. [PMID: 14670045 DOI: 10.1021/ac0349476] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) is used to selectively detect analytes with a high affinity for metal ions. The detection method is based on the selective monitoring of a competing ligand at its specific m/z value that is released during the ligand-exchange reaction of a metal-ligand complex with analyte(s) eluting from a reversed-phase liquid chromatography column. The ligand-exchange reaction proceeds in a postcolumn reaction detection system placed prior to the inlet of the electrospray MS interface. The feasibility of metal affinity detection by ESI-MS is demonstrated using phosphorylated peptides and iron(III)methylcalcein blue as reactant, as a model system. Methylcalcein blue (MCB) released upon interaction with phosphorylated peptides is detected at m/z 278. The ligand-exchange detection is coupled to a C8 reversed-phase column to separate several nonphosphorylated enkephalins and the phosphorylated peptides pp60 c-src (P) and M2170. Detection limits of 2 microM were obtained for pp60 c-src (P) and M2170. The linearity of the detection method is tested in the range of 2-80 micromol/L phosphorylated compounds (r(2) = 0.9996), and a relative standard deviation of less than 8% (n = 3) for all MCB responses of the different concentrations of phosphorylated compounds was obtained. The presented method showed specificity for phosphorylated peptides and may prove a useful tool for studying other ligand-exchange reactions and metal-protein interactions.
Collapse
Affiliation(s)
- J G Krabbe
- Faculty of Sciences, Division of Chemistry, Department of Analytical Chemistry and Applied Spectroscopy, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
13
|
Yaneva M, Tempst P. Affinity capture of specific DNA-binding proteins for mass spectrometric identification. Anal Chem 2004; 75:6437-48. [PMID: 14640712 DOI: 10.1021/ac034698l] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We describe a general approach for affinity microcapture of site-specific, nucleic acid-binding proteins. The major difficulties to developing this method into a widely applicable protocol derived from the need for a massive enrichment and the inadvertent, extensive binding of nonspecific proteins to the bait. On the basis of a detailed analysis, we propose (i) a one-step fractionation of crude extracts on P11 phosphocellulose, followed by (ii) a discrete series of positive/negative selections on wild-type and site-mutated ligand DNA in a magnetic microparticulate format, with cobalt magnets, concatamerized and biotinylated ligands, selective salt conditions, and improved competitor DNAs. We also present rules for determining the precise number and order of selections. The approach and protocol allowed isolation of four, low-abundance transcription factors and repressors from 2 x 10(9) cultured leukemia cells. Captured proteins were 10-20,000-fold enriched from the nuclear extract, in a form and amounts that permitted facile MALDI-TOF and TOF/TOF MS-based protein identification. This is 1-2 orders of magnitude better than many previous efforts and in a fraction of the time (approximately 1 factor/week). The method can be applied to any protein that binds DNA, including those with modest to low affinity, and bridges functional-biochemical studies on replication, transcriptional regulation, and DNA repair with the analytical power of mass spectrometry-based proteomics.
Collapse
Affiliation(s)
- Mariana Yaneva
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, and Weill Graduate School of Medical Sciences, Cornell University, New York, New York 10021, USA
| | | |
Collapse
|
14
|
Tang N, Tornatore P, Weinberger SR. Current developments in SELDI affinity technology. MASS SPECTROMETRY REVIEWS 2004; 23:34-44. [PMID: 14625891 DOI: 10.1002/mas.10066] [Citation(s) in RCA: 310] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The overall history and recent advancements in Surface-Enhanced Laser Desorption/Ionization (SELDI) affinity technology is reviewed. A detailed account of SELDI technology, utilizing Immobilized-Metal Affinity surfaces, pseudo-specific chromatographic surfaces, and biospecific interactive surfaces, is presented with particular emphasis placed upon examination of fundamental characteristics as well as specific applications for each. Finally, a detailed review of the specific use of such affinity surfaces in fundamental aspects of clinical, process, and research proteomics activity is presented.
Collapse
Affiliation(s)
- Ning Tang
- Ciphergen Biosystems, 6611 Dumbarton Circle, Fremont, California 94555, USA
| | | | | |
Collapse
|
15
|
Shiwa M, Nishimura Y, Wakatabe R, Fukawa A, Arikuni H, Ota H, Kato Y, Yamori T. Rapid discovery and identification of a tissue-specific tumor biomarker from 39 human cancer cell lines using the SELDI ProteinChip platform. Biochem Biophys Res Commun 2003; 309:18-25. [PMID: 12943657 DOI: 10.1016/s0006-291x(03)01520-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Useful biomarkers are needed for early detection of cancers. To demonstrate the potential diagnostic usefulness of a new proteomic technology, we performed Expression Difference Mapping analysis on 39 cancer cell lines from 9 different tissues using ProteinChip technology. A protein biomarker candidate of 12kDa was found in colon cancer cells. We then optimized the purification conditions for this biomarker by utilizing Retentate Chromatography mass spectrometry (RC-MS). The optimized purification conditions developed "on-chip" were directly transferred to conventional chromatography to purify the biomarker, which was identified as prothymosin-alpha by ProteinChip time-of-flight mass spectrometry (TOF MS) and ProteinChip-Tandem MS systems. The relative expression level of prothymosin-alpha between colon cancer cells and normal colon mucosal cells was evaluated on the same ProteinChip platform. Prothymosin-alpha expression in colon cancer cells was clearly higher than in normal colon cells. These results indicate that prothymosin-alpha could be a potential biomarker for colon cancer, and that the ProteinChip platform could perform the whole process of biomarker discovery from screening to evaluation of the identified marker.
Collapse
Affiliation(s)
- Mieko Shiwa
- Yokohama Laboratory, Ciphergen Biosystems K.K., Yokohama Business Park East Tower 14F, 134 Godo-cho, Hodogaya-ku, Yokohama, Kanagawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Humeny A, Beck C, Becker CM, Jeltsch A. Detection and analysis of enzymatic DNA methylation of oligonucleotide substrates by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Anal Biochem 2003; 313:160-6. [PMID: 12576072 DOI: 10.1016/s0003-2697(02)00568-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF) mass spectrometry was employed to analyze DNA methylation carried out by the Escherichia coli dam DNA methyltransferase using oligonucleotide substrates with molecular masses of 5000-10,000 Da per strand. The mass spectrometry assay offers several advantages: (i) it directly shows the methylation as the increase in the mass of the substrate DNA, (ii) it is nonradioactive, (iii) it is quantitative, and (iv) it can be automated for high-throughput applications. Since unmethylated and methylated DNA are detected, the ratio of methylation can be determined directly and accurately. Furthermore, the assay allows detection individually of the methylation of several substrates in competition, offering an ideal setup to analyze the specificity of DNA interacting with enzymes. We could not identify methylation at any noncanonical site, indicating that the dam MTase is a very specific enzyme. Finally, MALDI-TOF mass spectrometry permitted assessment of the number of methyl groups incorporated into each DNA strand, thereby, allowing study of mechanistic details such as the processivity of the methylation reaction. We provide evidence that the dam MTase modifies DNA in a processive reaction, confirming earlier findings.
Collapse
Affiliation(s)
- Andreas Humeny
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander Universität Erlangen-Nürnberg, Fahrstrasse 17, 91054 Erlangen, Germany
| | | | | | | |
Collapse
|
17
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2002; 37:1298-1307. [PMID: 12489092 DOI: 10.1002/jms.259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|
18
|
Forde CE, McCutchen-Maloney SL. Characterization of transcription factors by mass spectrometry and the role of SELDI-MS. MASS SPECTROMETRY REVIEWS 2002; 21:419-439. [PMID: 12666149 DOI: 10.1002/mas.10040] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Over the last decade, much progress has been made in the field of biological mass spectrometry, with numerous advances in technology, resolution, and affinity capture. The field of genomics has also been transformed by the sequencing and characterization of entire genomes. Some of the next challenges lie in understanding the relationship between the genome and the proteome, the protein complement of the genome, and in characterizing the regulatory processes involved in progressing from gene to functional protein. In this new age of proteomics, development of mass spectrometry methods to characterize transcription factors promises to add greatly to our understanding of regulatory networks that govern expression. However, at this time, regulatory networks of transcription factors are mostly uncharted territory. In this review, we summarize the latest advances in characterization of transcription factors by mass spectrometry including affinity capture, identification of complexes of DNA-binding proteins, structural characterization, determination of protein-DNA and protein-protein interactions, assessment of modification sites and metal binding, studies of functional activity, and the latest chip technologies that use SELDI-MS that allow the rapid capture and identification of transcription factors.
Collapse
Affiliation(s)
- Cameron E Forde
- Biodefense Division, Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, California 94550, USA
| | | |
Collapse
|
19
|
Rusconi F, Guillonneau F, Praseuth D. Contributions of mass spectrometry in the study of nucleic acid-binding proteins and of nucleic acid-protein interactions. MASS SPECTROMETRY REVIEWS 2002; 21:305-348. [PMID: 12645088 DOI: 10.1002/mas.10036] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nucleic-acid-protein (NA-P) interactions play essential roles in a variety of biological processes-gene expression regulation, DNA repair, chromatin structure regulation, transcription regulation, RNA processing, and translation-to cite only a few. Such biological processes involve a broad spectrum of NA-P interactions as well as protein-protein (P-P) interactions. These interactions are dynamic, in terms of the chemical composition of the complexes involved and in terms of their mere existence, which may be restricted to a given cell-cycle phase. In this review, the contributions of mass spectrometry (MS) to the deciphering of these intricate networked interactions are described along with the numerous applications in which it has proven useful. Such applications include, for example, the identification of the partners involved in NA-P or P-P complexes, the identification of post-translational modifications that (may) regulate such complexes' activities, or even the precise molecular mapping of the interaction sites in the NA-P complex. From a biological standpoint, we felt that it was worth the reader's time to be as informative as possible about the functional significance of the analytical methods reviewed herein. From a technical standpoint, because mass spectrometry without proper sample preparation would serve no purpose, each application described in this review is detailed by duly emphasizing the sample preparation-whenever this step is considered innovative-that led to significant analytical achievements.
Collapse
Affiliation(s)
- Filippo Rusconi
- UMR CNRS 8646, U INSERM 565, USM MNHN 0503-43, rue Cuvier, F-75231, Paris Cedex 05, France
| | | | | |
Collapse
|