1
|
Ding Y, Peng YY, Li S, Tang C, Gao J, Wang HY, Long ZY, Lu XM, Wang YT. Single-Cell Sequencing Technology and Its Application in the Study of Central Nervous System Diseases. Cell Biochem Biophys 2024; 82:329-342. [PMID: 38133792 DOI: 10.1007/s12013-023-01207-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
The mammalian central nervous system consists of a large number of cells, which contain not only different types of neurons, but also a large number of glial cells, such as astrocytes, oligodendrocytes, and microglia. These cells are capable of performing highly refined electrophysiological activities and providing the brain with functions such as nutritional support, information transmission and pathogen defense. The diversity of cell types and individual differences between cells have brought inspiration to the study of the mechanism of central nervous system diseases. In order to explore the role of different cells, a new technology, single-cell sequencing technology has emerged to perform specific analysis of high-throughput cell populations, and has been continuously developed. Single-cell sequencing technology can accurately analyze single-cell expression in mixed-cell populations and collect cells from different spatial locations, time stages and types. By using single-cell sequencing technology to compare gene expression profiles of normal and diseased cells, it is possible to discover cell subsets associated with specific diseases and their associated genes. Therefore, scientists can understand the development process, related functions and disease state of the nervous system from an unprecedented depth. In conclusion, single-cell sequencing technology provides a powerful technology for the discovery of novel therapeutic targets for central nervous system diseases.
Collapse
Affiliation(s)
- Yang Ding
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yu-Yuan Peng
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Sen Li
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Can Tang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jie Gao
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Hai-Yan Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zai-Yun Long
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiu-Min Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Yong-Tang Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
2
|
Afruza R, Suzuki F, Nabi A. PHARMACOGENETICS AND PHARMACOGENOMICS IN PERSONALIZED MEDICINE: ROLE OF GENE POLYMORPHISM IN DRUG RESPONSE. BIOTECHNOLOGY AND BIOINFORMATICS 2014:35-71. [DOI: 10.1201/b17104-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
|
3
|
Arneson N, Moreno J, Iakovlev V, Ghazani A, Warren K, McCready D, Jurisica I, Done SJ. Comparison of whole genome amplification methods for analysis of DNA extracted from microdissected early breast lesions in formalin-fixed paraffin-embedded tissue. ISRN ONCOLOGY 2012; 2012:710692. [PMID: 22530150 PMCID: PMC3317021 DOI: 10.5402/2012/710692] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 11/09/2011] [Indexed: 12/03/2022]
Abstract
To understand cancer progression, it is desirable to study the earliest stages of its development, which are often microscopic lesions. Array comparative genomic hybridization (aCGH) is a valuable high-throughput molecular approach for discovering DNA copy number changes; however, it requires a relatively large amount of DNA, which is difficult to obtain from microdissected lesions. Whole genome amplification (WGA) methods were developed to increase DNA quantity; however their reproducibility, fidelity, and suitability for formalin-fixed paraffin-embedded (FFPE) samples are questioned. Using aCGH analysis, we compared two widely used approaches for WGA: single cell comparative genomic hybridization protocol (SCOMP) and degenerate oligonucleotide primed PCR (DOP-PCR). Cancer cell line and microdissected FFPE breast cancer DNA samples were amplified by the two WGA methods and subjected to aCGH. The genomic profiles of amplified DNA were compared with those of non-amplified controls by four analytic methods and validated by quantitative PCR (Q-PCR). We found that SCOMP-amplified samples had close similarity to non-amplified controls with concordance rates close to those of reference tests, while DOP-amplified samples had a statistically significant amount of changes. SCOMP is able to amplify small amounts of DNA extracted from FFPE samples and provides quality of aCGH data similar to non-amplified samples.
Collapse
Affiliation(s)
- Nona Arneson
- Division of Applied Molecular Oncology, Ontario Cancer Institute, Princess Margaret Hospital, Toronto, ON, Canada M5G 2M9
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Teraoka H, Ito S, Ikeda H, Kubota A, Abou Elmagd MM, Kitazawa T, Kim EY, Iwata H, Endoh D. Differential display system with vertebrate-common degenerate oligonucleotide primers: uncovering genes responsive to dioxin in avian embryonic liver. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:27-33. [PMID: 21786751 DOI: 10.1021/es201085m] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
To assess possible impacts of environmental pollutants on gene expression profiles in a variety of organisms, we developed a novel differential display system with primer sets that are common in seven vertebrate species, based on degenerate oligonucleotide-primed PCR (DOP-PCR). An 8-mer inverse repeat motif was found in most transcripts from the seven vertebrates including fish to primates with detailed transcriptome information; more than 10,000 motifs were recognized in common in the transcripts of the seven species. Among them, we selected 275 common motifs that cover about 40-70% of transcripts throughout these species, and designed 275 DOP-PCR primers that were common to seven vertebrate species (common DOP-PCR primers). To detect genes responsive to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in developing embryos, differential display with common DOP-PCR primers was applied to embryonic liver of two avian species, the chicken (Gallus gallus) and the common cormorant (Phalacrocorax carbo), which were exposed in ovo to TCDD. The cDNA bands that showed differences between the control and TCDD-treated groups were sequenced and the mRNA expression levels were confirmed by real-time RT-PCR. This approach succeeded in isolating novel dioxin-responsive genes that include 10 coding genes in the chicken, and 1 coding gene and 1 unknown transcript in the cormorant, together with cytochrome P450 1As that have already been well established as dioxin markers. These results highlighted the usefulness of systematically designed novel differential display systems to search genes responsive to chemicals in vertebrates, including wild species, for which transcriptome information is not available.
Collapse
Affiliation(s)
- Hiroki Teraoka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Darouich S, Popovici C, Missirian C, Moncla A. Use of DOP-PCR for amplification and labeling of BAC DNA for FISH. Biotech Histochem 2011; 87:117-21. [PMID: 21314248 DOI: 10.3109/10520295.2011.559175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fluorescence in situ hybridization (FISH) is a powerful molecular cytogenetic method that permits rapid detection of specific chromosomal rearrangements. It is based on the hybridization of fluorescent labeled probes to metaphase chromosomes or interphase nuclei. The DNA probes commonly are generated from cloned sources such as bacterial artificial chromosomes (BACs). The major disadvantage of this approach is that it requires laborious and time-consuming work. We used a degenerate oligonucleotide primed polymerase chain reaction (DOP-PCR) for both amplification and labeling of very small amounts of purified BAC DNA for FISH. The DOP-PCR reaction was processed in two steps: pre-amplification followed by simultaneous amplification and labeling of BAC DNA. The DOP-PCR probes obtained provided good hybridization signals and low background. Thus, DOP-PCR can be used to produce unlimited quantities of FISH probes with decreased cost and labor.
Collapse
Affiliation(s)
- S Darouich
- Electron Microscopy Laboratory, Faculty of Medicine of Tunis, Tunisia
| | | | | | | |
Collapse
|
6
|
BEJA‐PEREIRA ALBANO, OLIVEIRA RITA, ALVES PAULOC, SCHWARTZ MICHAELK, LUIKART GORDON. Advancing ecological understandings through technological transformations in noninvasive genetics. Mol Ecol Resour 2009; 9:1279-301. [DOI: 10.1111/j.1755-0998.2009.02699.x] [Citation(s) in RCA: 258] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- ALBANO BEJA‐PEREIRA
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485‐661 Vairão, Portugal
| | - RITA OLIVEIRA
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485‐661 Vairão, Portugal
- Departamento de Zoologia e Antropologia, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre s/n, 4169‐007 Porto, Portugal
| | - PAULO C. ALVES
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485‐661 Vairão, Portugal
- Departamento de Zoologia e Antropologia, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre s/n, 4169‐007 Porto, Portugal
| | - MICHAEL K. SCHWARTZ
- USDA Forest Service, Rocky Mountain Research Station, Missoula, MT 59801, USA
| | - GORDON LUIKART
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485‐661 Vairão, Portugal
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
7
|
Arneson N, Hughes S, Houlston R, Done S. Whole-Genome Amplification by Degenerate Oligonucleotide Primed PCR (DOP-PCR). ACTA ACUST UNITED AC 2008; 2008:pdb.prot4919. [PMID: 21356673 DOI: 10.1101/pdb.prot4919] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTIONPCR-based whole-genome amplification (WGA) has the goal of generating microgram quantities of genome-representative DNA from picogram or nanogram amounts of starting material. This amplification should introduce little, or ideally no, representational bias. Unlike other techniques for WGA, PCR-based methods are generally less affected by DNA quality and are more applicable to DNA extracted from various sources (fixed and fresh tissues). The degenerate-oligonucleotide-primed PCR (DOP-PCR) method described here allows complete genome coverage in a single reaction. In contrast to the pairs of target-specific primer sequences used in traditional PCR, only a single primer, which has defined sequences at its 5'-end (containing an XhoI restriction site) and 3'-end and a random hexamer sequence between them, is used here. DOP-PCR comprises two different cycling stages. In stage 1 (low stringency), low-temperature annealing and extension in the first five to eight cycles occurs at many binding sites in the genome. The 3'-end of the primer binds at sites in the genome complementary to the 6-bp well-defined sequence at the 3'-end of the primer (~10(6) sites in the human genome). The adjacent random hexamer sequence (displaying all possible combinations of the nucleotides A, G, C, and T) can then anneal and tags these sequences with the DOP primer. In stage 2 (high stringency; >25 cycles), the PCR annealing temperature is raised, which increases priming specificity during amplification of the tagged sequence. DOP-PCR generates a smear of DNA fragments (200-1000 bp) that are visible on an agarose gel.
Collapse
|
8
|
Iwamoto K, Bundo M, Ueda J, Nakano Y, Ukai W, Hashimoto E, Saito T, Kato T. Detection of chromosomal structural alterations in single cells by SNP arrays: a systematic survey of amplification bias and optimized workflow. PLoS One 2007; 2:e1306. [PMID: 18074030 PMCID: PMC2111048 DOI: 10.1371/journal.pone.0001306] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Accepted: 11/16/2007] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND In single-cell human genome analysis using whole-genome amplified product, a strong amplification bias involving allele dropout and preferential amplification hampers the quality of results. Using an oligonucleotide single nucleotide polymorphism (SNP) array, we systematically examined the nature of this amplification bias, including frequency, degree, and preference for genomic location, and we assessed the effects of this amplification bias on subsequent genotype and chromosomal copy number analyses. METHODOLOGY/PRINCIPAL FINDINGS We found a large variability in amplification bias among the amplified products obtained by multiple displacement amplification (MDA), and this bias had a severe effect on the genotype and chromosomal copy number analyses. We established optimal experimental conditions for pre-screening for high-quality amplified products, processing array data, and analyzing chromosomal structural alterations. Using this optimized protocol, we successfully detected previously unidentified chromosomal structural alterations in single cells from a lymphoblastoid cell line. These alterations were subsequently confirmed by karyotype analysis. In addition, we successfully obtained reproducible chromosomal copy number profiles of single cells from the cell line with a complex karyotype, indicating the applicability and potential of our optimized workflow. CONCLUSIONS/SIGNIFICANCE Our results suggest that the quality of amplification products should be critically assessed before using them for genomic analyses. The method of MDA-based whole-genome amplification followed by SNP array analysis described here will be useful for exploring chromosomal alterations in single cells.
Collapse
Affiliation(s)
- Kazuya Iwamoto
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Wako, Saitama, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Schoenborn V, Gohlke H, Heid IM, Illig T, Utermann G, Kronenberg F. Sample selection algorithm to improve quality of genotyping from plasma-derived DNA: to separate the wheat from the chaff. Hum Mutat 2007; 28:1141-9. [PMID: 17614297 DOI: 10.1002/humu.20575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Plasma and serum samples were often the only biological material collected for earlier epidemiological studies. These studies have a huge informative content, especially due to their long follow-up and would be an invaluable treasure for genetic investigations. However, often no banked DNA is available. To use the small amounts of DNA present in plasma, in a first step, we applied magnetic bead technology to extract this DNA, followed by a whole-genome amplification (WGA) using phi29-polymerase. We assembled 88 sample pairs, each consisting of WGA plasma DNA and the corresponding whole-blood DNA. We genotyped nine highly polymorphic short tandem repeats (STRs) and 23 SNPs in both DNA sources. The average within-pair discordance was 3.8% for SNPs and 15.9% for STR genotypes, respectively. We developed an algorithm based on one-half of the sample pairs and validated on the other one-half to identify the samples with high WGA plasma DNA quality to assure low genotyping error and to exclude plasma DNA samples with insufficient quality: excluding samples showing homozygosity at five or more of the nine STR loci yielded exclusion of 22.7% of all samples and decreased average discordance for STR and SNP markers to 3.92% and 0.63%, respectively. For SNPs, this is very close to the error observed for genomic DNA in many laboratories. Our workflow and sample selection algorithm offers new opportunities to recover reliable DNA from stored plasma material. This algorithm is superior to testing the amount of input DNA.
Collapse
Affiliation(s)
- Veit Schoenborn
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
10
|
Ribacke U, Mok BW, Wirta V, Normark J, Lundeberg J, Kironde F, Egwang TG, Nilsson P, Wahlgren M. Genome wide gene amplifications and deletions in Plasmodium falciparum. Mol Biochem Parasitol 2007; 155:33-44. [PMID: 17599553 DOI: 10.1016/j.molbiopara.2007.05.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 04/13/2007] [Accepted: 05/15/2007] [Indexed: 11/24/2022]
Abstract
The extent to which duplications and deletions occur in the Plasmodium falciparum genome, outside of the subtelomeres, and their contribution to the virulence of the malaria parasite is not known. Here we show the presence of multiple genome wide copy number polymorphisms (CNPs) covering 82 genes, the most extensive spanning a cumulative size of 110kilobases. CNPs were identified in both laboratory strains and fresh clinical isolates using a 70-mer oligonucleotide microarray in conjunction with fluorescent in situ hybridizations and real-time quantitative PCR. The CNPs were found on all chromosomes except on chromosomes 6 and 8 and involved a total of 50 genes with increased copy numbers and 32 genes with decreased copy numbers relative to the 3D7 parasite. The genes, amplified in up to six copies, encode molecules involved in cell cycle regulation, cell division, drug resistance, erythrocyte invasion, sexual differentiation and unknown functions. These together with previous findings, suggest that the malaria parasite employs gene duplications and deletions as general strategies to enhance its survival and spread. Further analysis of the impact of discovered genetic differences and the underlying mechanisms is likely to generate a better understanding of the biology and the virulence of the malaria parasite.
Collapse
Affiliation(s)
- Ulf Ribacke
- Swedish Institute for Infectious Disease Control, SE-17182 Solna, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Coskun S, Alsmadi O. Whole genome amplification from a single cell: a new era for preimplantation genetic diagnosis. Prenat Diagn 2007; 27:297-302. [PMID: 17278176 DOI: 10.1002/pd.1667] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Preimplantation genetic diagnosis (PGD) is a technique used for determining the genetic status of a single cell biopsied from embryos or oocytes. Genetic analysis from a single cell is both rewarding and challenging, especially in PGD. The starting material is very limited and not replaceable, and the diagnosis has to be made in a very short time. Different whole genome amplification (WGA) techniques have been developed to specifically increase the DNA quantities originating from clinical samples with limited DNA contents. In this review, currently available WGA techniques are introduced and, among them, multiple displacement amplification (MDA) is discussed in detail. MDA generates abundant assay-ready DNA to perform broad panels of genetic assays through its ability to rapidly amplify genomes from single cells. The utilization of MDA for single-cell molecular analysis is expanding at a high rate, and MDA is expected to soon become an integral part of PGD.
Collapse
Affiliation(s)
- Serdar Coskun
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| | | |
Collapse
|
12
|
Imai K, Ogai Y, Nishizawa D, Kasai S, Ikeda K, Koga H. A novel SNP detection technique utilizing a multiple primer extension (MPEX) on a phospholipid polymer-coated surface. MOLECULAR BIOSYSTEMS 2007; 3:547-53. [PMID: 17639130 DOI: 10.1039/b701645j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conventional methods for detecting single nucleotide polymorphisms (SNPs), including direct DNA sequencing, pyrosequencing, and melting curve analysis, are to a great extent limited by their requirement for particular detection instruments. To overcome this limitation, we established a novel SNP detection technique utilizing multiple primer extension (MPEX) on a phospholipid polymer-coated surface. This technique is based on the development of a new plastic S-BIO PrimeSurface with a biocompatible polymer; its surface chemistry offers extraordinarily stable thermal properties, as well as chemical properties advantageous for enzymatic reactions on the surface. To visualize allele-specific PCR products on the surface, biotin-dUTP was incorporated into newly synthesized PCR products during the extension reaction. The products were ultimately detected by carrying out a colorimetric reaction with substrate solution containing 4-nitro-blue tetrazolium chloride (NBT) and 5-bromo-4-chloro-3-indolyl phosphate (BCIP). We demonstrated the significance of this novel SNP detection technique by analyzing representative SNPs on 4 LD blocks of the micro opioid receptor gene. We immobilized 20 allele-specific oligonucleotides on this substrate, and substantially reproduced the results previously obtained by other methods.
Collapse
Affiliation(s)
- Kazuhide Imai
- Laboratory of Medical Genomics, Department of Human Genome Technology, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Large fragment Bst DNA polymerase for whole genome amplification of DNA from formalin-fixed paraffin-embedded tissues. BMC Genomics 2006; 7:312. [PMID: 17156491 PMCID: PMC1764024 DOI: 10.1186/1471-2164-7-312] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Accepted: 12/12/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Formalin-fixed paraffin-embedded (FFPE) tissues represent the largest source of archival biological material available for genomic studies of human cancer. Therefore, it is desirable to develop methods that enable whole genome amplification (WGA) using DNA extracted from FFPE tissues. Multiple-strand Displacement Amplification (MDA) is an isothermal method for WGA that uses the large fragment of Bst DNA polymerase. To date, MDA has been feasible only for genomic DNA isolated from fresh or snap-frozen tissue, and yields a representational distortion of less than threefold. RESULTS We amplified genomic DNA of five FFPE samples of normal human lung tissue with the large fragment of Bst DNA polymerase. Using quantitative PCR, the copy number of 7 genes was evaluated in both amplified and original DNA samples. Four neuroblastoma xenograft samples derived from cell lines with known N-myc gene copy number were also evaluated, as were 7 samples of non-small cell lung cancer (NSCLC) tumors with known Skp2 gene amplification. In addition, we compared the array comparative genomic hybridization (CGH)-based genome profiles of two NSCLC samples before and after Bst MDA. A median 990-fold amplification of DNA was achieved. The DNA amplification products had a very high molecular weight (> 23 Kb). When the gene content of the amplified samples was compared to that of the original samples, the representational distortion was limited to threefold. Array CGH genome profiles of amplified and non-amplified FFPE DNA were similar. CONCLUSION Large fragment Bst DNA polymerase is suitable for WGA of DNA extracted from FFPE tissues, with an expected maximal representational distortion of threefold. Amplified DNA may be used for the detection of gene copy number changes by quantitative realtime PCR and genome profiling by array CGH.
Collapse
|
14
|
Andrés O, Rönn AC, Ferrando A, Bosch M, Domingo-Roura X. Sequence quality is maintained after multiple displacement amplification of non-invasively obtained macaque semen DNA. Biotechnol J 2006; 1:466-9. [PMID: 16892275 DOI: 10.1002/biot.200600011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Whole genome amplification protocols are revolutionizing the fields of molecular and conservation biology as they open the possibility of obtaining a large number of copies of a complete genome from minute amounts of sample. Multiple displacement amplification (MDA) is a whole genome amplification technique based on the properties of the phi29 DNA polymerase, which leads to a uniform representation of the genome with very low error rates. In this study we performed MDA on 28 macaque DNA samples extracted from blood or non-invasively collected semen from which we obtained mitochondrial control region sequences both before and after MDA. The length of the readable sequences was longer for the original samples than for the MDA products, but the number of unresolved positions was comparable both before and after MDA. We conclude that the MDA technique is useful for increasing the amount of DNA for sequencing mitochondrial regions in the case of non-invasively collected semen samples.
Collapse
Affiliation(s)
- Olga Andrés
- Genètica de la Conservació, Institut de Recerca i Tecnologia Agroalimentàries, Cabrils, Spain.
| | | | | | | | | |
Collapse
|
15
|
Fehér LZ, Balázs M, Kelemen JZ, Zvara A, Németh I, Varga-Orvos Z, Puskás LG. Improved DOP-PCR-based representational whole-genome amplification using quantitative real-time PCR. ACTA ACUST UNITED AC 2006; 15:43-8. [PMID: 16531768 DOI: 10.1097/00019606-200603000-00007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In many cases, only a minute amount of partially degraded genomic DNA can be extracted from archived clinical samples. Diverse whole-genome amplification methods are applied to provide sufficient amount of DNA for comparative genome hybridization, single-nucleotide polymorphism, and microsatellite analyses. In these applications, the reliability of the amplification techniques is particularly important. In PCR-based approaches, the plateau effect can seriously alter the original relative copy number of certain chromosomal regions. To eliminate this distorting effect, we improved the standard degenerate oligonucleotide-primed PCR (DOP-PCR) technique by following the amplification status with quantitative real-time PCR (QRT-PCR). With real-time detection of the products, we could eliminate DNA overamplification. Probes were prepared from 10 different tumor samples: primary and metastatic melanoma tissues, epidermoid and bronchioloalveolar lung carcinomas, 2 renal cell carcinomas, 2 colorectal carcinomas, and a Conn and Cushing adenoma. Probes were generated by using nonamplified and amplified genomic DNA with DOP-PCR and DOP-PCR combined with QRT-PCR. To demonstrate the reliability of the QRT-PCR based amplification protocol, altogether 152 relative copy number changes of 44 regions were determined. There was 85.6% concordance in copy number alterations between the QRT-PCR protocol and the nonamplified samples, whereas this value was only 63.8% for the traditional DOP-PCR. Our results demonstrate that our protocol preserves the original copy number of different chromosomal regions in amplified genomic DNA than standard DOP-PCR techniques more accurately.
Collapse
Affiliation(s)
- Liliána Z Fehér
- Laboratory of Functional Genomics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
16
|
Di Vinci A, Gelvi I, Banelli B, Casciano I, Allemanni G, Romani M. Meth-DOP-PCR: an assay for the methylation profiling of trace amounts of DNA extracted from bodily fluids. J Transl Med 2006; 86:297-303. [PMID: 16446707 DOI: 10.1038/labinvest.3700384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cancer cells release their DNA into the patient's bodily fluids and cancer-specific signatures can be recognized in the circulating DNA. The aberrant methylation of CpG-rich regions in gene promoter sequences is an early marker of cell transformation whose specificity and optimal sensitivity can be achieved by assessing the methylation status of multiple genes ('methylation profiling'). Most of the current technologies for methylation analysis rely upon the combination of chemical conversion of the DNA and PCR analysis for the detection of methylated and unmethylated alleles. However, the small amount of circulating DNA, and its fragmentation, dramatically reduces the template DNA molecules making difficult the methylation profiling. To overcome this limitation, we have developed the Meth-DOP-PCR assay, a combination between a modified degenerate oligonucleotide primed PCR (DOP-PCR) and methylation-specific PCR (MSP), for the high-throughput methylation analysis of trace-amount of circulating DNA. We have demonstrated the concordance between Meth-DOP-PCR and MSP and shown the application of this technique for the methylation analysis of DNA extracted from the serum of lung cancer patients. We have estimated that through this procedure it is possible to obtain at least a 25-fold increase of the number of determinations allowing the methylation profiling from less than 1 ml of serum. Thus, Meth-DOP-PCR appears as a simple, cost-effective and efficient technique, for the development of novel methylation-based diagnostic assays.
Collapse
Affiliation(s)
- Angela Di Vinci
- Experimental Oncology C, Istituto Nazionale per la Ricerca sul Cancro (IST-GE), Genova, Italy
| | | | | | | | | | | |
Collapse
|
17
|
Ng G, Roberts I, Coleman N. Evaluation of 3 Methods of Whole-Genome Amplification for Subsequent Metaphase Comparative Genomic Hybridization. ACTA ACUST UNITED AC 2005; 14:203-12. [PMID: 16319690 DOI: 10.1097/01.pas.0000177801.60121.05] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A common aim in cancer research is to investigate mechanisms of malignant progression by genetic analysis of key stages, including pre-malignancy, microinvasion, and micrometastases. As such lesions are small and require microdissection from clinical samples, the amount of DNA that can be recovered is limited and frequently inadequate for commonly used techniques of genomic analysis, such as comparative genomic hybridization (CGH). There is a critical requirement for techniques of whole-genome amplification that minimize representation bias in the amplified sample. Several techniques have been described, although their relative suitability for CGH has not been examined adequately. Here we compare the abilities of degenerate oligonucleotide-primed PCR (DOP-PCR), multiple-strand displacement amplification (MDA), and balanced PCR accurately to amplify limited amounts of template DNA for use in CGH. Amplification by DOP-PCR and MDA, but not balanced PCR faithfully preserved the original genomic content following amplification, as evidenced by generally concordant CGH copy number karyograms. Whereas the amplification products of DOP-PCR were immediately available for labeling and hybridization, the products of MDA required a further digestion step to produce optimal-sized probes for CGH. Moreover, MDA was less reliable overall than DOP-PCR at the lowest starting amount of 10 pg of template DNA. We conclude that DOP-PCR is the method of choice for whole-genome amplification of minute quantities of DNA to enable global genomic analysis to be performed on limited clinical samples.
Collapse
Affiliation(s)
- Grace Ng
- Medical Research Council, Cancer Cell Unit, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | | | | |
Collapse
|
18
|
Carret CK, Horrocks P, Konfortov B, Winzeler E, Qureshi M, Newbold C, Ivens A. Microarray-based comparative genomic analyses of the human malaria parasite Plasmodium falciparum using Affymetrix arrays. Mol Biochem Parasitol 2005; 144:177-86. [PMID: 16174539 DOI: 10.1016/j.molbiopara.2005.08.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 08/16/2005] [Accepted: 08/16/2005] [Indexed: 12/13/2022]
Abstract
Microarray-based comparative genomic hybridization (CGH) provides a powerful tool for whole genome analyses and the rapid detection of genomic variation that underlies virulence and disease. In the field of Plasmodium research, many of the parasite genomes that one might wish to study in a high throughput manner are not laboratory clones, but clinical isolates. One of the key limitations to the use of clinical samples in CGH, however, is the miniscule amounts of genomic DNA available. Here we describe the successful application of multiple displacement amplification (MDA), a non-PCR-based amplification method that exhibits clear advantages over all other currently available methods. Using MDA, CGH was performed on a panel of NF54 and IT/FCR3 clones, identifying previously published deletions on chromosomes 2 and 9 as well as polymorphism in genes associated with disease pathology.
Collapse
Affiliation(s)
- Céline Karine Carret
- Pathogen Microarrays Group, The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
| | | | | | | | | | | | | |
Collapse
|
19
|
Kschischo M, Kern R, Gieger C, Steinhauser M, Tolle R. Automatic scoring and quality assessment using accuracy bounds for FP-TDI SNP genotyping data. ACTA ACUST UNITED AC 2005; 4:75-84. [PMID: 16128609 DOI: 10.2165/00822942-200504020-00001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND Human diversity, namely single nucleotide polymorphisms (SNPs), is becoming a focus of biomedical research. Despite the binary nature of SNP determination, the majority of genotyping assay data need a critical evaluation for genotype calling. We applied statistical models to improve the automated analysis of 2-dimensional SNP data. METHODS We derived several quantities in the framework of Gaussian mixture models that provide figures of merit to objectively measure the data quality. The accuracy of individual observations is scored as the probability of belonging to a certain genotype cluster, while the assay quality is measured by the overlap between the genotype clusters. RESULTS The approach was extensively tested with a dataset of 438 nonredundant SNP assays comprising >150,000 datapoints. The performance of our automatic scoring method was compared with manual assignments. The agreement for the overall assay quality is remarkably good, and individual observations were scored differently by man and machine in 2.6% of cases, when applying stringent probability threshold values. CONCLUSION Our definition of bounds for the accuracy for complete assays in terms of misclassification probabilities goes beyond other proposed analysis methods. We expect the scoring method to minimise human intervention and provide a more objective error estimate in genotype calling.
Collapse
Affiliation(s)
- Maik Kschischo
- University of Applied Sciences Koblenz, RheinAhrCampus, Remagen, Germany
| | | | | | | | | |
Collapse
|
20
|
Thompson MD, Bowen RAR, Wong BYL, Antal J, Liu Z, Yu H, Siminovitch K, Kreiger N, Rohan TE, Cole DEC. Whole genome amplification of buccal cell DNA: genotyping concordance before and after multiple displacement amplification. Clin Chem Lab Med 2005; 43:157-62. [PMID: 15843209 DOI: 10.1515/cclm.2005.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
While buccal cells provide an easily accessible source of genomic DNA, the amount extracted may be insufficient for many studies. Whole genome amplification (WGA) using multiple displacement amplification (MDA) may optimize buccal cell genomic DNA yield. We compared the usefulness, in epidemiological surveys, of DNA derived from buccal cells collected by alcohol mouthwash and amplified by WGA protocol and standard protocols. Buccal cell collection kits were mailed to 300 randomly selected members of a large cohort study, and 189 subjects returned buccal cell samples. We determined: (i) which QIAamp DNA Blood Mini Kit extraction protocol (tissue or blood) produced more DNA; and (ii) whether it is feasible to use MDA to prepare DNA for single nucleotide polymorphism (SNP) genotyping of markers such as the methylenetetrahydrofolate reductase (MTHFR) and vitamin D receptor (VDR) genes. The two DNA extraction protocols were tested on 20 different patient samples each. The tissue protocol yielded more DNA than the blood protocol (15.4+/-8.6 vs. 7.6+/-7.1 microg, p<0.0001). The 20 DNA samples extracted using the tissue protocol were then subjected to pre- and post-MDA genotyping using amplicons for the MTHFR SNP at C677T and the intron 8 VDR SNP. No genotyping discrepancies were detected in pair-wise comparisons of pre- and post-MDA. Genotyping DNA from MDA-based WGA is indistinguishable from routine polymerase chain reaction and offers a stable DNA source for genomic research and clinical diagnosis.
Collapse
Affiliation(s)
- Miles D Thompson
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hughes S, Arneson N, Done S, Squire J. The use of whole genome amplification in the study of human disease. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2005; 88:173-89. [PMID: 15561304 DOI: 10.1016/j.pbiomolbio.2004.01.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The availability of large amounts of genomic DNA is of critical importance for many of the molecular biology assays used in the analysis of human disease. However, since the amount of patient tissue available is often limited and as particular foci of interest may consist of only a few hundred cells, the yield of DNA is often insufficient for extensive analysis. To address this problem, several whole genome amplification (WGA) methodologies have been developed. Initial WGA approaches were based on the polymerase chain reaction (PCR). However, recent reports have described the use of non-PCR-based linear amplification protocols for WGA. Using these methods, it is possible to generate microgram quantities of DNA starting with as little as 1mg of genomic DNA. This review will provide an overview of WGA approaches and summarize some of the uses for amplified DNA in various high-throughput genetic applications.
Collapse
Affiliation(s)
- Simon Hughes
- Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, Ontario, Canada.
| | | | | | | |
Collapse
|
22
|
Tzvetkov MV, Becker C, Kulle B, Nürnberg P, Brockmöller J, Wojnowski L. Genome-wide single-nucleotide polymorphism arrays demonstrate high fidelity of multiple displacement-based whole-genome amplification. Electrophoresis 2005; 26:710-5. [PMID: 15690424 DOI: 10.1002/elps.200410121] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Whole-genome DNA amplification by multiple displacement (MD-WGA) is a promising tool to obtain sufficient DNA amounts from samples of limited quantity. Using Affymetrix' GeneChip Human Mapping 10K Arrays, we investigated the accuracy and allele amplification bias in DNA samples subjected to MD-WGA. We observed an excellent concordance (99.95%) between single-nucleotide polymorphisms (SNPs) called both in the nonamplified and the corresponding amplified DNA. This concordance was only 0.01% lower than the intra-assay reproducibility of the genotyping technique used. However, MD-WGA failed to amplify an estimated 7% of polymorphic loci. Due to the algorithm used to call genotypes, this was detected only for heterozygous loci. We achieved a 4.3-fold reduction of noncalled SNPs by combining the results from two independent MD-WGA reactions. This indicated that inter-reaction variations rather than specific chromosomal loci reduced the efficiency of MD-WGA. Consistently, we detected no regions of reduced amplification, with the exception of several SNPs located near chromosomal ends. Altogether, despite a substantial loss of polymorphic sites, MD-WGA appears to be the current method of choice to amplify genomic DNA for array-based SNP analyses. The number of nonamplified loci can be substantially reduced by amplifying each DNA sample in duplicate.
Collapse
Affiliation(s)
- Mladen V Tzvetkov
- Department of Clinical Pharmacology, Georg-August-University Göttingen, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Bannai M, Higuchi K, Akesaka T, Furukawa M, Yamaoka M, Sato K, Tokunaga K. Single-nucleotide-polymorphism genotyping for whole-genome-amplified samples using automated fluorescence correlation spectroscopy. Anal Biochem 2004; 327:215-21. [PMID: 15051538 DOI: 10.1016/j.ab.2004.01.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Indexed: 11/26/2022]
Abstract
Whole-genome amplification (WGA) methods were adopted for single-nucleotide-polymorphism (SNP) typing to minimize the amount of genomic DNA that has to be used in typing for thousands of different SNPs in large-scale studies; 5-10 ng of genomic DNA was amplified by a WGA method (improved primer-extension-preamplification-polymerase chain reaction (I-PEP-PCR), degenerated oligonucleotide primer-PCR (DOP-PCR), or multiple displacement amplification (MDA)). Using 1/100 to 1/500 amounts of the whole-genome-amplified products as templates, subsequent analyses were successfully performed. SNPs were genotyped by the sequence-specific primer (SSP)-PCR method followed by fluorescence correlation spectroscopy (FCS). The typing results were evaluated for four different SNPs on tumor necrosis factor receptor 1 and 2 genes (TNFR1 and TNFR2). The genotypes determined by the SSP-FCS method using the WGA products were 100% in concordance with those determined by nucleotide sequencing using genomic DNAs. We have already carried out typing of more than 300 different SNPs and are currently performing 7,500-10,000 typings per day using WGA samples from patients with several common diseases. WGA coupled with FCS allows specific and high-throughput genotyping of thousands of samples for thousands of different SNPs.
Collapse
Affiliation(s)
- Makoto Bannai
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | | | | | | | |
Collapse
|
24
|
Jacobs S, Grussendorf-Conen EI, Rösener I, Rübben A. Molecular Analysis of the Effect of Topical Imiquimod Treatment of HPV 2/27/57-Induced Common Warts. Skin Pharmacol Physiol 2004; 17:258-66. [PMID: 15452412 DOI: 10.1159/000080219] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Accepted: 05/03/2004] [Indexed: 12/22/2022]
Abstract
Imiquimod is effective in the treatment of genital warts and clinical studies suggest activity against common warts as well. We have analyzed the effect of topical imiquimod on gene expression and virus load in human papilloma virus (HPV) 2/27/57-induced common warts. mRNA was extracted from keratinocyte culture, from normal skin, from three untreated common warts and from three common warts treated topically with 5% imiquimod cream twice daily. Differential gene expression was demonstrated by RT-PCR and by cDNA microarray hybridization. We further analyzed viral DNA content in scales from three superficially pared imiquimod-treated warts by real-time PCR. Comparison of normal skin with wart tissue revealed that HPV 2/27/57 infection led to an induction of IL-6, IL-10 and interferon-gamma inducible protein (IP10) and to an up-regulation of TGF-beta. We could further detect expression of PCTAIRE-3, WNT2B, frizzled-3, notch-2, notch-4 and BRCA2 in normal skin and common warts. Analysis of imiquimod-treated warts demonstrated that imiquimod enhanced IL-6 expression and induced IL-8, GM-CSF, MRP-8 and MRP-14. It could also be shown that imiquimod led to an infiltration of wart tissue with macrophages and to a strong decrease of viral copy number in warts within 3 months of treatment. Our data thus provide molecular proof of principle for imiquimod treatment of cutaneous common warts.
Collapse
Affiliation(s)
- S Jacobs
- Department of Dermatology, University Hospital of the RWTH Aachen, Aachen, Germany
| | | | | | | |
Collapse
|
25
|
Matsuzaki H, Loi H, Dong S, Tsai YY, Fang J, Law J, Di X, Liu WM, Yang G, Liu G, Huang J, Kennedy GC, Ryder TB, Marcus GA, Walsh PS, Shriver MD, Puck JM, Jones KW, Mei R. Parallel genotyping of over 10,000 SNPs using a one-primer assay on a high-density oligonucleotide array. Genome Res 2004; 14:414-25. [PMID: 14993208 PMCID: PMC353229 DOI: 10.1101/gr.2014904] [Citation(s) in RCA: 263] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The analysis of single nucleotide polymorphisms (SNPs) is increasingly utilized to investigate the genetic causes of complex human diseases. Here we present a high-throughput genotyping platform that uses a one-primer assay to genotype over 10,000 SNPs per individual on a single oligonucleotide array. This approach uses restriction digestion to fractionate the genome, followed by amplification of a specific fractionated subset of the genome. The resulting reduction in genome complexity enables allele-specific hybridization to the array. The selection of SNPs was primarily determined by computer-predicted lengths of restriction fragments containing the SNPs, and was further driven by strict empirical measurements of accuracy, reproducibility, and average call rate, which we estimate to be >99.5%, >99.9%, and>95%, respectively [corrected]. With average heterozygosity of 0.38 and genome scan resolution of 0.31 cM, the SNP array is a viable alternative to panels of microsatellites (STRs). As a demonstration of the utility of the genotyping platform in whole-genome scans, we have replicated and refined a linkage region on chromosome 2p for chronic mucocutaneous candidiasis and thyroid disease, previously identified using a panel of microsatellite (STR) markers.
Collapse
|
26
|
Kang H, Qin ZS, Niu T, Liu JS. Incorporating genotyping uncertainty in haplotype inference for single-nucleotide polymorphisms. Am J Hum Genet 2004; 74:495-510. [PMID: 14966673 PMCID: PMC1182263 DOI: 10.1086/382284] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2003] [Accepted: 12/22/2003] [Indexed: 12/29/2022] Open
Abstract
The accuracy of the vast amount of genotypic information generated by high-throughput genotyping technologies is crucial in haplotype analyses and linkage-disequilibrium mapping for complex diseases. To date, most automated programs lack quality measures for the allele calls; therefore, human interventions, which are both labor intensive and error prone, have to be performed. Here, we propose a novel genotype clustering algorithm, GeneScore, based on a bivariate t-mixture model, which assigns a set of probabilities for each data point belonging to the candidate genotype clusters. Furthermore, we describe an expectation-maximization (EM) algorithm for haplotype phasing, GenoSpectrum (GS)-EM, which can use probabilistic multilocus genotype matrices (called "GenoSpectrum") as inputs. Combining these two model-based algorithms, we can perform haplotype inference directly on raw readouts from a genotyping machine, such as the TaqMan assay. By using both simulated and real data sets, we demonstrate the advantages of our probabilistic approach over the current genotype scoring methods, in terms of both the accuracy of haplotype inference and the statistical power of haplotype-based association analyses.
Collapse
Affiliation(s)
- Hosung Kang
- Department of Statistics, Harvard University, Cambridge, MA; Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor; and Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston
| | - Zhaohui S. Qin
- Department of Statistics, Harvard University, Cambridge, MA; Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor; and Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston
| | - Tianhua Niu
- Department of Statistics, Harvard University, Cambridge, MA; Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor; and Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston
| | - Jun S. Liu
- Department of Statistics, Harvard University, Cambridge, MA; Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor; and Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston
| |
Collapse
|
27
|
Rook MS, Delach SM, Deyneko G, Worlock A, Wolfe JL. Whole genome amplification of DNA from laser capture-microdissected tissue for high-throughput single nucleotide polymorphism and short tandem repeat genotyping. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:23-33. [PMID: 14695315 PMCID: PMC1602222 DOI: 10.1016/s0002-9440(10)63092-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/22/2003] [Indexed: 11/20/2022]
Abstract
Genome-wide screening of genetic alterations between normal and cancer cells, as well as among subgroups of tumors, is important for establishing molecular mechanism and classification of cancer. Gene silencing through loss of heterozygosity is widely observed in cancer cells and detectable by analyzing allelic loss of single nucleotide polymorphism and/or short tandem repeat markers. To use minute quantities of DNA that are available through laser capture microdissection (LCM) of cancer cells, a whole genome amplification method that maintains locus and allele balance is essential. We have successfully used a ø29 polymerase-based isothermal whole genome amplification method to amplify LCM DNA using a proteinase K lysis procedure coupled with a pooling strategy. Through single nucleotide polymorphism and short tandem repeat genotype analysis we demonstrate that using pooled DNA from two or three separate amplification reactions significantly reduces any allele bias introduced during amplification. This strategy is especially effective when using small quantities of source DNA. Although a convenient alkaline lysis DNA extraction procedure provided satisfactory results from using 1500 to 3000 LCM cells, proteinase K digestion was superior for lower cell numbers. Accurate genotyping is achieved with as few as 100 cells when both proteinase K extraction and pooling are applied.
Collapse
|
28
|
Lovmar L, Fredriksson M, Liljedahl U, Sigurdsson S, Syvänen AC. Quantitative evaluation by minisequencing and microarrays reveals accurate multiplexed SNP genotyping of whole genome amplified DNA. Nucleic Acids Res 2003; 31:e129. [PMID: 14576329 PMCID: PMC275486 DOI: 10.1093/nar/gng129] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Whole genome amplification (WGA) procedures such as primer extension preamplification (PEP) or multiple displacement amplification (MDA) have the potential to provide an unlimited source of DNA for large-scale genetic studies. We have performed a quantitative evaluation of PEP and MDA for genotyping single nucleotide polymorphisms (SNPs) using multiplex, four-color fluorescent minisequencing in a microarray format. Forty-five SNPs were genotyped and the WGA methods were evaluated with respect to genotyping success, signal-to-noise ratios, power of genotype discrimination, yield and imbalanced amplification of alleles in the MDA product. Both PEP and MDA products provided genotyping results with a high concordance to genomic DNA. For PEP products the power of genotype discrimination was lower than for MDA due to a 2-fold lower signal-to-noise ratio. MDA products were indistinguishable from genomic DNA in all aspects studied. To obtain faithful representation of the SNP alleles at least 0.3 ng DNA should be used per MDA reaction. We conclude that the use of WGA, and MDA in particular, is a highly promising procedure for producing DNA in sufficient amounts even for genome wide SNP mapping studies.
Collapse
Affiliation(s)
- Lovisa Lovmar
- Molecular Medicine, Department of Medical Sciences, Entrance 70, 3rd Floor, Research Department 2, Uppsala University Hospital, SE-75185 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
29
|
Abstract
Real-time PCR is the state-of-the-art technique to quantify nucleic acids for mutation detection, genotyping and chimerism analysis. Since its development in the 1990s, many different assay formats have been developed and the number of real-time PCR machines of different design is continuously increasing. This review provides a survey of the instruments and assay formats available and discusses the pros and cons of each. The principles of quantitative real-time PCR and melting curve analysis are explained. The quantification algorithms with internal and external standardization are derived mathematically, and potential pitfalls for the data analysis are discussed. Finally, examples of applications of this extremely versatile technique are given that demonstrate the enormous impact of real-time PCR on life sciences and molecular medicine.
Collapse
Affiliation(s)
- Jochen Wilhelm
- Institut für Pathologie, Klinikum der Justus-Liebig-Universität Giessen, Langhansstrasse 10, 35392 Giessen, Germany.
| | | |
Collapse
|