1
|
Lee AT, Yang MY, Tsai IN, Chang YC, Hung TW, Wang CJ. Gallic Acid Alleviates Glucolipotoxicity-Induced Nephropathy by miR-709-NFE2L2 Pathway in db/db Mice on a High-Fat Diet. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72. [PMID: 39365293 PMCID: PMC11487656 DOI: 10.1021/acs.jafc.4c05898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) has become a major global issue, with diabetic nephropathy (DN) ranking as one of its most serious complications. The involvement of microRNAs (miRNAs) in the progression of T2DM and DN is an area of active research, yet the molecular mechanisms remain only partially elucidated. Gallic acid (GA), a naturally occurring polyphenolic compound found in various plants such as bearberry leaves, pomegranate root bark, tea leaves, and oak bark, has demonstrated antioxidant properties that may offer therapeutic benefits in DN. METHODS AND RESULTS The study aimed to investigate the therapeutic potential of GA in mitigating kidney fibrosis, oxidative stress and inflammation, within a glucolipotoxicity-induced diabetic model using db/db mice. The mice were subjected to a high-fat diet to induce glucolipotoxicity, a condition that mimics the metabolic stress experienced in T2DM. Through microarray data analysis, we identified a significant upregulation of renal miR-709a-5p in the diabetic mice, linking this miRNA to the pathological processes underlying DN. GA treatment was shown to boost the activity of including catalase, essential antioxidant enzymes, glutathione peroxidase and superoxide dismutase, while also reducing lipid accumulation in the kidneys, indicating a protective effect against HFD-induced steatosis. In vitro experiments further revealed that silencing miR-709a-5p in MES-13 renal cells led to a reduction in oxidative stress markers, notably lowering lipid peroxidation markers, and significantly boosting the activity of antioxidant defenses. Additionally, NFE2L2, a crucial transcription factor involved in the antioxidant response, was identified as a direct target of miR-709a-5p. The downregulation of miR-709a-5p by GA suggests that this polyphenol mitigates glucolipotoxicity-induced lipogenesis and oxidative stress, potentially offering a novel therapeutic avenue for managing diabetic fatty liver disease and DN. CONCLUSION Our findings indicate that GA exerts a protective effect in DN by downregulating miR-709a-5p, thereby alleviating oxidative stress through the suppression of NFE2L2. The results highlight the potential of GA and NFE2L2-activating agents as promising therapeutic strategies in the treatment of DN.
Collapse
Affiliation(s)
- Ang-Tse Lee
- Institute
of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Mon-Yuan Yang
- Department
of Health Industry Technology Management, Chung Shan Medical University, Taichung 402, Taiwan
| | - I-Ning Tsai
- Institute
of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yun-Ching Chang
- Department
of Health Industry Technology Management, Chung Shan Medical University, Taichung 402, Taiwan
- Department
of Medical Research, Chung Shan Medical
University Hospital, Taichung 402, Taiwan
| | - Tung-Wei Hung
- Division
of Nephrology, Department of Medicine, Chung
Shan Medical University Hospital, Taichung 40201, Taiwan
- School
of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Chau-Jong Wang
- Department
of Health Industry Technology Management, Chung Shan Medical University, Taichung 402, Taiwan
- Department
of Medical Research, Chung Shan Medical
University Hospital, Taichung 402, Taiwan
| |
Collapse
|
2
|
Garmaa G, Nagy R, Kói T, To UND, Gergő D, Kleiner D, Csupor D, Hegyi P, Kökény G. Panel miRNAs are potential diagnostic markers for chronic kidney diseases: a systematic review and meta-analysis. BMC Nephrol 2024; 25:261. [PMID: 39138396 PMCID: PMC11323638 DOI: 10.1186/s12882-024-03702-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Accurate detection of kidney damage is key to preventing renal failure, and identifying biomarkers is essential for this purpose. We aimed to assess the accuracy of miRNAs as diagnostic tools for chronic kidney disease (CKD). METHODS We thoroughly searched five databases (MEDLINE, Web of Science, Embase, Scopus, and CENTRAL) and performed a meta-analysis using R software. We assessed the overall diagnostic potential using the pooled area under the curve (pAUC), sensitivity (SEN), and specificity (SPE) values and the risk of bias by using the QUADAS-2 tool. The study protocol was registered on PROSPERO (CRD42021282785). RESULTS We analyzed data from 8351 CKD patients, 2989 healthy individuals, and 4331 people with chronic diseases. Among the single miRNAs, the pooled SEN was 0.82, and the SPE was 0.81 for diabetic nephropathy (DN) vs. diabetes mellitus (DM). The SEN and SPE were 0.91 and 0.89 for DN and healthy controls, respectively. miR-192 was the most frequently reported miRNA in DN patients, with a pAUC of 0.91 and SEN and SPE of 0.89 and 0.89, respectively, compared to those in healthy controls. The panel of miRNAs outperformed the single miRNAs (pAUC of 0.86 vs. 0.79, p < 0.05). The SEN and SPE of the panel miRNAs were 0.89 and 0.73, respectively, for DN vs. DM. In the lupus nephritis (LN) vs. systemic lupus erythematosus (SLE) cohorts, the SEN and SPE were 0.84 and 0.81, respectively. Urinary miRNAs tended to be more effective than blood miRNAs (p = 0.06). CONCLUSION MiRNAs show promise as effective diagnostic markers for CKD. The detection of miRNAs in urine and the use of a panel of miRNAs allows more accurate diagnosis.
Collapse
Affiliation(s)
- Gantsetseg Garmaa
- Institute of Translational Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
- Center for Translational Medicine, Semmelweis University, 1085 Budapest, Üllői út 26, Budapest, Hungary
- Department of Pathology, School of Medicine, Mongolian National University of Medical Sciences, Ulan-Bator, 14210, Mongolia
| | - Rita Nagy
- Center for Translational Medicine, Semmelweis University, 1085 Budapest, Üllői út 26, Budapest, Hungary
- Heim Pál National Pediatric Institute, Üllői út 86, Budapest, 1089, Hungary
| | - Tamás Kói
- Center for Translational Medicine, Semmelweis University, 1085 Budapest, Üllői út 26, Budapest, Hungary
- Department of Stochastics, Institute of Mathematics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Uyen Nguyen Do To
- Center for Translational Medicine, Semmelweis University, 1085 Budapest, Üllői út 26, Budapest, Hungary
- András Pető Faculty, Semmelweis University, 1Üllői út 26, Budapest, 1089, Hungary
| | - Dorottya Gergő
- Center for Translational Medicine, Semmelweis University, 1085 Budapest, Üllői út 26, Budapest, Hungary
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Dénes Kleiner
- Center for Translational Medicine, Semmelweis University, 1085 Budapest, Üllői út 26, Budapest, Hungary
- Department of Pharmacy Administration, University Pharmacy, Semmelweis University, Budapest, Hungary
| | - Dezső Csupor
- Center for Translational Medicine, Semmelweis University, 1085 Budapest, Üllői út 26, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary
- Institute of Clinical Pharmacy, University of Szeged, Szikra út 8, Szeged, 6725, Hungary
| | - Péter Hegyi
- Center for Translational Medicine, Semmelweis University, 1085 Budapest, Üllői út 26, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary
- Institute of Pancreatic Diseases, Semmelweis University, Tömő út 25-29, Budapest, Hungary
| | - Gábor Kökény
- Institute of Translational Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary.
- International Nephrology Research and Training Center, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary.
| |
Collapse
|
3
|
Chen G, Wang Y, Zhang L, Yang K, Wang X, Chen X. Research progress on miR-124-3p in the field of kidney disease. BMC Nephrol 2024; 25:252. [PMID: 39112935 PMCID: PMC11308398 DOI: 10.1186/s12882-024-03688-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
MicroRNAs (miRNAs) are 18-25 nucleotides long, single-stranded, non-coding RNA molecules that regulate gene expression. They play a crucial role in maintaining normal cellular functions and homeostasis in organisms. Studies have shown that miR-124-3p is highly expressed in brain tissue and plays a significant role in nervous system development. It is also described as a tumor suppressor, regulating biological processes like cancer cell proliferation, apoptosis, migration, and invasion by controlling multiple downstream target genes. miR-124-3p has been found to be involved in the progression of various kidney diseases, including diabetic kidney disease, calcium oxalate kidney stones, acute kidney injury, lupus nephritis, and renal interstitial fibrosis. It mediates these processes through mechanisms like oxidative stress, inflammation, autophagy, and ferroptosis. To lay the foundation for future therapeutic strategies, this research group reviewed recent studies on the functional roles of miR-124-3p in renal diseases and the regulation of its downstream target genes. Additionally, the feasibility, limitations, and potential application of miR-124-3p as a diagnostic biomarker and therapeutic target were thoroughly investigated.
Collapse
Affiliation(s)
- Guanting Chen
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China
| | - Yaoxian Wang
- Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China.
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China.
| | - Linqi Zhang
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China.
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China.
| | - Kang Yang
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China
| | - Xixi Wang
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China
| | - Xu Chen
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China
| |
Collapse
|
4
|
Gheitasi I, Akbari G, Savari F. Physiological and cellular mechanisms of ischemic preconditioning microRNAs-mediated in underlying of ischemia/reperfusion injury in different organs. Mol Cell Biochem 2024:10.1007/s11010-024-05052-7. [PMID: 39001984 DOI: 10.1007/s11010-024-05052-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/10/2024] [Indexed: 07/15/2024]
Abstract
Ischemia-reperfusion (I/R) injury, as a pathological phenomenon, takes place when blood supply to an organ is disrupted and then aggravated during restoration of blood flow. Ischemic preconditioning (IPC) is a potent method for attenuating subsequent events of IR damage in numerous organs. IPC protocol is determined by a brief and sequential time periods of I/R before the main ischemia. MicroRNAs are endogenous non-coding RNAs that regulate post-transcriptionally target mRNA translation via degrading it and/or suppressing protein synthesis. This review introduces the physiological and cellular mechanisms of ischemic preconditioning microRNAs-mediated after I/R insult in different organs such as the liver, kidney, heart, brain, and intestine. Data of this review have been collected from the scientific articles published in databases such as Science Direct, Scopus, PubMed, Web of Science, and Scientific Information Database from 2000 to 2023. Based on these literature studies, IPC/IR intervention can affect cellular mechanisms including oxidative stress, apoptosis, angiogenesis, and inflammation through up-regulation or down-regulation of multiple microRNAs and their target genes.
Collapse
Affiliation(s)
- Izadpanah Gheitasi
- Department of Physiology, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ghaidafeh Akbari
- Department of Physiology, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Feryal Savari
- Department of Medical Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran.
| |
Collapse
|
5
|
Yu M, Du H, Zhang C, Shi Y. miR-192 family in breast cancer: Regulatory mechanisms and diagnostic value. Biomed Pharmacother 2024; 175:116620. [PMID: 38653113 DOI: 10.1016/j.biopha.2024.116620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
There is a growing interest in the role of the miRNA family in human cancer. The miRNA-192 family is a group of conserved small RNAs, including miR-192, miR-194, and miR-215. Recent studies have shown that the incidence and mortality of breast cancer have been increasing epidemiologically year by year, and it is urgent to clarify the pathogenesis of breast cancer and seek new diagnostic and therapeutic methods. There is increasing evidence that miR-192 family members may be involved in the occurrence and development of breast cancer. This review describes the regulatory mechanism of the miRNA-192 family affecting the malignant behavior of breast cancer cells and evaluates the value of the miRNA-192 family as a diagnostic and prognostic biomarker for breast cancer. It is expected that summarizing and discussing the relationship between miRNA-192 family members and breast cancer, it will provide a new direction for the clinical diagnosis and treatment of breast cancer and basic medical research.
Collapse
Affiliation(s)
- Mingxuan Yu
- Department of Laboratory Medicine, Affiliated Hospital of Inner Mongolia Medical University, PR China.
| | - Hua Du
- College of Basic Medicine, Inner Mongolia Medical University, PR China; Department of Pathology, Affiliated Hospital of Inner Mongolia Medical University, PR China.
| | - Caihong Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Inner Mongolia Medical University, PR China.
| | - Yingxu Shi
- Department of Laboratory Medicine, Affiliated Hospital of Inner Mongolia Medical University, PR China.
| |
Collapse
|
6
|
Wu SG, Chang TH, Tsai MF, Liu YN, Huang YL, Hsu CL, Jheng HN, Shih JY. miR-204 suppresses cancer stemness and enhances osimertinib sensitivity in non-small cell lung cancer by targeting CD44. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102091. [PMID: 38130372 PMCID: PMC10733107 DOI: 10.1016/j.omtn.2023.102091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
Osimertinib is an effective treatment option for patients with advanced non-small cell lung cancer (NSCLC) with EGFR activation or T790M resistance mutations; however, acquired resistance to osimertinib can still develop. This study explored novel miRNA-mRNA regulatory mechanisms that contribute to osimertinib resistance in lung cancer. We found that miR-204 expression in osimertinib-resistant lung cancer cells was markedly reduced compared to that in osimertinib-sensitive parental cells. miR-204 expression levels in cancer cells isolated from treatment-naive pleural effusions were significantly higher than those in cells with acquired resistance to osimertinib. miR-204 enhanced the sensitivity of lung cancer cells to osimertinib and suppressed spheroid formation, migration, and invasion of lung cancer cells. Increased miR-204 expression in osimertinib-resistant cells reversed resistance to osimertinib and enhanced osimertinib-induced apoptosis by upregulating BIM expression levels and activating caspases. Restoration of CD44 (the direct downstream target gene of miR-204) expression reversed the effects of miR-204 on osimertinib sensitivity, recovered cancer stem cell and mesenchymal markers, and suppressed E-cadherin expression. The study demonstrates that miR-204 reduced cancer stemness and epithelial-to-mesenchymal transition, thus overcoming osimertinib resistance in lung cancer by inhibiting the CD44 signaling pathway.
Collapse
Affiliation(s)
- Shang-Gin Wu
- Department of Internal Medicine, National Taiwan University Cancer Center, National Taiwan University, Taipei 10672, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University, Taipei 10002, Taiwan
| | - Tzu-Hua Chang
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University, Taipei 10002, Taiwan
| | - Meng-Feng Tsai
- Department of Biomedical Sciences, Da-Yeh University, Changhua 51591, Taiwan
| | - Yi-Nan Liu
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University, Taipei 10002, Taiwan
| | - Yen-Lin Huang
- Department of Pathology, National Taiwan University Cancer Center, National Taiwan University, Taipei 10672, Taiwan
- Department of Pathology, National Taiwan University Hospital, National Taiwan University, Taipei 10002, Taiwan
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, National Taiwan University, Taipei 10002, Taiwan
| | - Han-Nian Jheng
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University, Taipei 10002, Taiwan
| | - Jin-Yuan Shih
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University, Taipei 10002, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| |
Collapse
|
7
|
Dwivedi S, Chavan A, Paul AT. SET7, a lysine-specific methyl transferase: An intriguing epigenetic target to combat diabetic nephropathy. Drug Discov Today 2023; 28:103754. [PMID: 37648018 DOI: 10.1016/j.drudis.2023.103754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/14/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
Diabetic nephropathy (DN) is a dreadful complication of diabetes that affects ∼50% of diabetics and is a leading cause of end-stage renal disease (ESRD). Studies have linked aberrant expression of lysine methyltransferases (KMTs) to the onset and progression of DN. SET7 is a KMT that methylates specific lysine residues of the histone and nonhistone proteins. It plays an important role in the transforming growth factor-β (TGF-β)-induced upregulation of extracellular matrix (ECM)-associated genes that are responsible for the inflammatory cascade observed in DN. Inhibiting SET7 has potential to attenuate renal disorders in animal studies. This review will focus on the role of SET7 in DN and its potential as a therapeutic target to combat DN.
Collapse
Affiliation(s)
- Samarth Dwivedi
- Natural Product Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (Pilani Campus), Pilani 333031, Rajasthan, India
| | - Atharva Chavan
- Natural Product Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (Pilani Campus), Pilani 333031, Rajasthan, India
| | - Atish T Paul
- Natural Product Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (Pilani Campus), Pilani 333031, Rajasthan, India.
| |
Collapse
|
8
|
Gluba-Sagr A, Franczyk B, Rysz-Górzyńska M, Ławiński J, Rysz J. The Role of miRNA in Renal Fibrosis Leading to Chronic Kidney Disease. Biomedicines 2023; 11:2358. [PMID: 37760798 PMCID: PMC10525803 DOI: 10.3390/biomedicines11092358] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic kidney disease (CKD) is an important health concern that is expected to be the fifth most widespread cause of death worldwide by 2040. The presence of chronic inflammation, oxidative stress, ischemia, etc., stimulates the development and progression of CKD. Tubulointerstitial fibrosis is a common pathomechanism of renal dysfunction, irrespective of the primary origin of renal injury. With time, fibrosis leads to end-stage renal disease (ESRD). Many studies have demonstrated that microRNAs (miRNAs, miRs) are involved in the onset and development of fibrosis and CKD. miRNAs are vital regulators of some pathophysiological processes; therefore, their utility as therapeutic agents in various diseases has been suggested. Several miRNAs were demonstrated to participate in the development and progression of kidney disease. Since renal fibrosis is an important problem in chronic kidney disease, many scientists have focused on the determination of miRNAs associated with kidney fibrosis. In this review, we present the role of several miRNAs in renal fibrosis and the potential pathways involved. However, as well as those mentioned above, other miRs have also been suggested to play a role in this process in CKD. The reports concerning the impact of some miRNAs on fibrosis are conflicting, probably because the expression and regulation of miRNAs occur in a tissue- and even cell-dependent manner. Moreover, different assessment modes and populations have been used. There is a need for large studies and clinical trials to confirm the role of miRs in a clinical setting. miRNAs have great potential; thus, their analysis may improve diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Anna Gluba-Sagr
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland
| | - Magdalena Rysz-Górzyńska
- Department of Ophthalmology and Visual Rehabilitation, Medical University of Lodz, 90-549 Lodz, Poland
| | - Janusz Ławiński
- Department of Urology, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-055 Rzeszow, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland
| |
Collapse
|
9
|
Lu GA, Zhang J, Zhao Y, Chen Q, Lin P, Tang T, Tang Z, Wen H, Liufu Z, Wu CI. Canalization of Phenotypes-When the Transcriptome is Constantly but Weakly Perturbed. Mol Biol Evol 2023; 40:msad005. [PMID: 36617265 PMCID: PMC9866258 DOI: 10.1093/molbev/msad005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/09/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Recent studies have increasingly pointed to microRNAs (miRNAs) as the agent of gene regulatory network (GRN) stabilization as well as developmental canalization against constant but small environmental perturbations. To analyze mild perturbations, we construct a Dicer-1 knockdown line (dcr-1 KD) in Drosophila that modestly reduces all miRNAs by, on average, ∼20%. The defining characteristic of stabilizers is that, when their capacity is compromised, GRNs do not change their short-term behaviors. Indeed, even with such broad reductions across all miRNAs, the changes in the transcriptome are very modest during development in stable environment. By comparison, broad knockdowns of other regulatory genes (esp. transcription factors) by the same method should lead to drastic changes in the GRNs. The consequence of destabilization may thus be in long-term development as postulated by the theory of canalization. Flies with modest miRNA reductions may gradually deviate from the developmental norm, resulting in late-stage failures such as shortened longevity. In the optimal culture condition, the survival to adulthood is indeed normal in the dcr-1 KD line but, importantly, adult longevity is reduced by ∼90%. When flies are stressed by high temperature, dcr-1 KD induces lethality earlier in late pupation and, as the perturbations are shifted earlier, the affected stages are shifted correspondingly. Hence, in late stages of development with deviations piling up, GRN would be increasingly in need of stabilization. In conclusion, miRNAs appear to be a solution to weak but constant environmental perturbations.
Collapse
Affiliation(s)
- Guang-An Lu
- State Key Laboratory of Biocontrol, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, China
| | - Jinning Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, China
| | - Yixin Zhao
- State Key Laboratory of Biocontrol, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, China
| | - Qingjian Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, China
| | - Pei Lin
- State Key Laboratory of Biocontrol, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, China
| | - Tian Tang
- State Key Laboratory of Biocontrol, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, China
| | - Zhixiong Tang
- State Key Laboratory of Biocontrol, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, China
| | - Haijun Wen
- State Key Laboratory of Biocontrol, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, China
| | - Zhongqi Liufu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, China
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
10
|
Xu N, Liu J, Li X. Lupus nephritis: The regulatory interplay between epigenetic and MicroRNAs. Front Physiol 2022; 13:925416. [PMID: 36187762 PMCID: PMC9523357 DOI: 10.3389/fphys.2022.925416] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous, small, non-coding RNA molecules that act as epigenetic modifiers to regulate the protein levels of target messenger RNAs without altering their genetic sequences. The highly complex role of miRNAs in the epigenetics of lupus nephritis (LN) is increasingly being recognized. DNA methylation and histone modifications are focal points of epigenetic research. miRNAs play a critical role in renal development and physiology, and dysregulation may result in abnormal renal cell proliferation, inflammation, and fibrosis of the kidneys in LN. However, epigenetic and miRNA-mediated regulation are not mutually exclusive. Further research has established a link between miRNA expression and epigenetic regulation in various disorders, including LN. This review summarizes the most recent evidence regarding the interaction between miRNAs and epigenetics in LN and highlights potential therapeutic and diagnostic targets.
Collapse
Affiliation(s)
- Ning Xu
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jie Liu
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiangling Li
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, China
- *Correspondence: Xiangling Li,
| |
Collapse
|
11
|
Mahtal N, Lenoir O, Tinel C, Anglicheau D, Tharaux PL. MicroRNAs in kidney injury and disease. Nat Rev Nephrol 2022; 18:643-662. [PMID: 35974169 DOI: 10.1038/s41581-022-00608-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 11/09/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by degrading or repressing the translation of their target messenger RNAs. As miRNAs are critical regulators of cellular homeostasis, their dysregulation is a crucial component of cell and organ injury. A substantial body of evidence indicates that miRNAs are involved in the pathophysiology of acute kidney injury (AKI), chronic kidney disease and allograft damage. Different subsets of miRNAs are dysregulated during AKI, chronic kidney disease and allograft rejection, which could reflect differences in the physiopathology of these conditions. miRNAs that have been investigated in AKI include miR-21, which has an anti-apoptotic role, and miR-214 and miR-668, which regulate mitochondrial dynamics. Various miRNAs are downregulated in diabetic kidney disease, including the miR-30 family and miR-146a, which protect against inflammation and fibrosis. Other miRNAs such as miR-193 and miR-92a induce podocyte dedifferentiation in glomerulonephritis. In transplantation, miRNAs have been implicated in allograft rejection and injury. Further work is needed to identify and validate miRNAs as biomarkers of graft function and of kidney disease development and progression. Use of combinations of miRNAs together with other molecular markers could potentially improve diagnostic or predictive power and facilitate clinical translation. In addition, targeting specific miRNAs at different stages of disease could be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Nassim Mahtal
- Paris Cardiovascular Research Center - PARCC, Inserm, Université Paris Cité, Paris, France
| | - Olivia Lenoir
- Paris Cardiovascular Research Center - PARCC, Inserm, Université Paris Cité, Paris, France.
| | - Claire Tinel
- Service de Néphrologie et Transplantation Adulte, Hôpital Necker-Enfants Malades, Université Paris Cité, Assistance Publique-Hôpitaux de Paris, Paris, France.,Institut Necker-Enfants Malades, Inserm, Université Paris Cité, Paris, France
| | - Dany Anglicheau
- Service de Néphrologie et Transplantation Adulte, Hôpital Necker-Enfants Malades, Université Paris Cité, Assistance Publique-Hôpitaux de Paris, Paris, France.,Institut Necker-Enfants Malades, Inserm, Université Paris Cité, Paris, France
| | - Pierre-Louis Tharaux
- Paris Cardiovascular Research Center - PARCC, Inserm, Université Paris Cité, Paris, France.
| |
Collapse
|
12
|
Tapia-Castillo A, Carvajal CA, Pérez JA, Fardella CE. Clinical, biochemical, and miRNA profile of subjects with positive screening of primary aldosteronism and nonclassic apparent mineralocorticoid excess. Endocrine 2022; 77:380-391. [PMID: 35676467 DOI: 10.1007/s12020-022-03103-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/27/2022] [Indexed: 12/15/2022]
Abstract
Primary aldosteronism (PA) and nonclassic apparent mineralocorticoid excess (NCAME) have been recognized as endocrine-related conditions having a broad clinical-biochemical spectrum, spanning from normotension to severe arterial hypertension (AHT). However, the coexistence of both phenotypes have not been reported to date. AIM To identify and characterize clinical and biochemical parameters of subjects with both PA and NCAME conditions (NCAME&PA) and study the miRNA cargo in their urinary extracellular vesicles as potential biomarkers for this novel condition. METHODS We performed a cross-sectional study of 206 Chilean adult subjects from a primary care cohort. We measured blood pressure (BP), cortisol (F), cortisone (E), aldosterone, plasma renin activity (PRA), microalbuminuria (MAC), plasma NGAL, MMP9, fractional-potassium-excretion (FEK). Subjects were classified as NCAME&PA, PA, NCAME, essential hypertensives (EH), or healthy controls (CTL). EV-miRNAs were quantified by Taqman-qPCR. RESULTS We found that 30.6% subjects had an abnormal endocrine phenotype: NCAME&PA (6.8%), PA (11.2%) or NCAME (12.6%), and the prevalence of AHT was 92.9%, 82.6%, and 65%, respectively. NCAME&PA subjects had both lower cortisone (p < 0.05) and lower PRA (p < 0.0001), higher FEK (p = 0.02) and higher MAC (p = 0.01) than EH or CTL. NCAME&PA subjects had also higher NGAL levels than CTL and PA (p < 0.05). Exosome miR-192, miR-133a and miR-21 expression decreased with phenotype severity and correlated with BP and PRA (p < 0.05). CONCLUSION We identified adult subjects with a combined condition of NCAME and PA associated with higher BP, increased renal and endothelial damage markers than control and EH. Additionally, we observed a differential expression of a specific miRNAs, suggesting a potential role of these miRNAs associated to this novel combined phenotype.
Collapse
Affiliation(s)
- Alejandra Tapia-Castillo
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristian A Carvajal
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge A Pérez
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos E Fardella
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy (IMII-ICM), Santiago, Chile.
- Centro Traslacional de Endocrinología UC (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
13
|
Yao X, Sun S, Zi Y, Liu Y, Yang J, Ren L, Chen G, Cao Z, Hou W, Song Y, Shang J, Jiang H, Li Z, Wang H, Zhang P, Shi L, Li QZ, Yu Y, Zheng Y. Comprehensive microRNA-seq transcriptomic profiling across 11 organs, 4 ages, and 2 sexes of Fischer 344 rats. Sci Data 2022; 9:201. [PMID: 35551205 PMCID: PMC9098487 DOI: 10.1038/s41597-022-01285-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 03/04/2022] [Indexed: 11/08/2022] Open
Abstract
Rat is one of the most widely-used models in chemical safety evaluation and biomedical research. However, the knowledge about its microRNA (miRNA) expression patterns across multiple organs and various developmental stages is still limited. Here, we constructed a comprehensive rat miRNA expression BodyMap using a diverse collection of 320 RNA samples from 11 organs of both sexes of juvenile, adolescent, adult and aged Fischer 344 rats with four biological replicates per group. Following the Illumina TruSeq Small RNA protocol, an average of 5.1 million 50 bp single-end reads was generated per sample, yielding a total of 1.6 billion reads. The quality of the resulting miRNA-seq data was deemed to be high from raw sequences, mapped sequences, and biological reproducibility. Importantly, aliquots of the same RNA samples have previously been used to construct the mRNA BodyMap. The currently presented miRNA-seq dataset along with the existing mRNA-seq dataset from the same RNA samples provides a unique resource for studying the expression characteristics of existing and novel miRNAs, and for integrative analysis of miRNA-mRNA interactions, thereby facilitating better utilization of rats for biomarker discovery.
Collapse
Affiliation(s)
- Xintong Yao
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China
| | - Shanyue Sun
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China
| | - Yi Zi
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China
| | - Yaqing Liu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China
| | - Jingcheng Yang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China
| | - Luyao Ren
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China
| | - Guangchun Chen
- Department of Immunology, Microarray and Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Zehui Cao
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China
| | - Wanwan Hou
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China
| | - Yueqiang Song
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China
| | - Jun Shang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China
| | - He Jiang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China
| | - Zhihui Li
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China
| | - Haiyan Wang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China
| | - Peipei Zhang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China
| | - Quan-Zhen Li
- Department of Immunology, Microarray and Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Ying Yu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China.
| | - Yuanting Zheng
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
14
|
Motshwari DD, George C, Matshazi DM, Weale CJ, Davids SFG, Zemlin AE, Erasmus RT, Kengne AP, Matsha TE. Expression of whole blood miR-126-3p, -30a-5p, -1299, -182-5p and -30e-3p in chronic kidney disease in a South African community-based sample. Sci Rep 2022; 12:4107. [PMID: 35260775 PMCID: PMC8904505 DOI: 10.1038/s41598-022-08175-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 02/04/2022] [Indexed: 12/30/2022] Open
Abstract
The burden of chronic kidney disease (CKD) in Africa remains poorly characterized, due partly to the lack of appropriate diagnostic strategies. Although in recent years the diagnostic and prognostic utility of microRNAs (miRNAs) have gained prominence in the context of CKD, its value has not been evaluated in African populations. We investigated the expression of whole blood miRNAs (miR-126-3p, -30a-5p, -1299, -182-5p and -30e-3p) in a total sample of 1449 comprising of 13.3% individuals with CKD (stage 1-5) and 26.4% male participants, as well as the association of these miRNAs with prevalent CKD, in a community-based sample of South African adults. We used Reverse Transcription Quantitative Real-Time PCR (RT-qPCR) to analyze miRNA expression. There was an increased expression in whole blood miR-126-3p, -30a-5p, -1299 and -182-5p in individuals with CKD, compared to those without (all p ≤ 0.036), whereas miR-30e-3p showed no significant difference between the groups (p = 0.482). Only miR-126-3p, -182-5p and -30e-3p were independently associated with increased risk of CKD (all p ≤ 0.022). This study showed for the first time that there is a dysregulation of whole blood miR-126-3p, -30a-5p, -1299 and -182-5p in South Africans of mixed-ancestry with CKD. More research is needed to ascertain their role in CKD risk screening in African populations.
Collapse
Affiliation(s)
- Dipuo D Motshwari
- SAMRC/CPUT/Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Science, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Cindy George
- Non-Communicable Disease Research Unit, South African Medical Research Council, Parow, Francie van Zijl Drive, Parow Valley, Cape Town, South Africa.
| | - Don M Matshazi
- SAMRC/CPUT/Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Science, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Cecil J Weale
- SAMRC/CPUT/Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Science, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Saarah F G Davids
- SAMRC/CPUT/Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Science, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Annalise E Zemlin
- Division of Chemical Pathology, Faculty of Medicine and Health Sciences, National Health Laboratory Service (NHLS) and University of Stellenbosch, Cape Town, South Africa
| | - Rajiv T Erasmus
- SAMRC/CPUT/Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Science, Cape Peninsula University of Technology, Cape Town, South Africa
- Division of Chemical Pathology, Faculty of Medicine and Health Sciences, National Health Laboratory Service (NHLS) and University of Stellenbosch, Cape Town, South Africa
| | - Andre P Kengne
- Non-Communicable Disease Research Unit, South African Medical Research Council, Parow, Francie van Zijl Drive, Parow Valley, Cape Town, South Africa
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Tandi E Matsha
- SAMRC/CPUT/Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Science, Cape Peninsula University of Technology, Cape Town, South Africa
| |
Collapse
|
15
|
Motshwari DD, Matshazi DM, Erasmus R, Kengne AP, Matsha TE, George C. MicroRNAs associated with chronic kidney disease in the general population and high-risk subgroups: protocol for a systematic review and meta-analysis. BMJ Open 2022; 12:e057500. [PMID: 35173010 PMCID: PMC8852766 DOI: 10.1136/bmjopen-2021-057500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/28/2022] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Chronic kidney disease (CKD) is a significant health and economic burden, owing to its ever-increasing global prevalence. Due to the limitations in the current diagnostic methods, CKD is frequently diagnosed at advanced stages, where there is an increased risk of cardiovascular complications and end-stage kidney disease. As such, there has been considerable interest in microRNAs (miRNAs) as potential markers for CKD detection. This review seeks to identify all miRNAs associated with CKD and/or markers of kidney function or kidney damage in the general population and high-risk subgroups, and explore their expression profiles in these populations. METHODS AND ANALYSIS A systematic search of published literature will be conducted for observational studies that report on miRNAs associated with CKD or kidney function or kidney damage markers (serum creatinine and cystatin C, estimated glomerular filtration rate and urinary albumin excretion) in adult humans. The electronic database search will be restricted to English and French publications up to 31 October 2021. Two investigators will independently screen and identify studies for inclusion, as well as extract data from eligible studies. Risk-of-bias and methodological quality will be assessed by the Newcastle-Ottawa Quality Assessment Scale for observational studies and Grading of Recommendations Assessment, Development and Evaluation tools. Appropriate meta-analytic techniques will be used to pool estimates from studies with similar miRNAs, overall and by major characteristics, including by country or region, sample size, gender and risk-of-bias score. Heterogeneity of the estimates across studies will be quantified and publication bias investigated. This protocol is reported according to Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols 2015 guidelines. ETHICS AND DISSEMINATION This study design does not require formal ethical clearance and findings will be published in a peer-reviewed journal. CONCLUSION This review will provide the expression pattern of miRNAs associated with CKD. This will allow for further research into the identified miRNAs, which could later be used as biomarkers for prediction and early detection of CKD, monitoring of disease progression to advanced stages and as potential therapeutic targets. PROSPERO REGISTRATION NUMBER CRD42021270028.
Collapse
Affiliation(s)
- Dipuo Dephney Motshwari
- Department of Biomedical Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Don Makwakiwe Matshazi
- Department of Biomedical Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Rajiv Erasmus
- Department of Chemical Pathology, Stellenbosch University, Stellenbosch, South Africa
| | - A P Kengne
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Tygerberg, South Africa
- Department of Medicine, University of Cape Town, Rondebosch, South Africa
| | - Tandi E Matsha
- Department of Biomedical Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Cindy George
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Tygerberg, South Africa
| |
Collapse
|
16
|
Molecular Mechanisms of Amylin Turnover, Misfolding and Toxicity in the Pancreas. Molecules 2022; 27:molecules27031021. [PMID: 35164285 PMCID: PMC8838401 DOI: 10.3390/molecules27031021] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/24/2022] [Accepted: 01/29/2022] [Indexed: 12/13/2022] Open
Abstract
Amyloidosis is a common pathological event in which proteins self-assemble into misfolded soluble and insoluble molecular forms, oligomers and fibrils that are often toxic to cells. Notably, aggregation-prone human islet amyloid polypeptide (hIAPP), or amylin, is a pancreatic hormone linked to islet β-cells demise in diabetics. The unifying mechanism by which amyloid proteins, including hIAPP, aggregate and kill cells is still matter of debate. The pathology of type-2 diabetes mellitus (T2DM) is characterized by extracellular and intracellular accumulation of toxic hIAPP species, soluble oligomers and insoluble fibrils in pancreatic human islets, eventually leading to loss of β-cell mass. This review focuses on molecular, biochemical and cell-biology studies exploring molecular mechanisms of hIAPP synthesis, trafficking and degradation in the pancreas. In addition to hIAPP turnover, the dynamics and the mechanisms of IAPP–membrane interactions; hIAPP aggregation and toxicity in vitro and in situ; and the regulatory role of diabetic factors, such as lipids and cholesterol, in these processes are also discussed.
Collapse
|
17
|
Liu S, Song H, Liu Z, Lu W, Zhang Q, Cheng J. Selection of References for microRNA Quantification in Japanese Flounder (Paralichthys olivaceus) Normal Tissues and Edwardsiella tarda-Infected Livers. Genes (Basel) 2022; 13:genes13020175. [PMID: 35205219 PMCID: PMC8871525 DOI: 10.3390/genes13020175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/09/2022] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
MicroRNA (miRNA) plays essential roles in post-transcriptional regulation of protein coding genes, and the quantitative real-time polymerase chain reaction (qRT-PCR) is the powerful and broadly employed tool to conduct studies of miRNA expression. Identifying appropriate references to normalize quantitative data is a prerequisite to ensure the qRT-PCR accuracy. Until now, there has been no report about miRNA reference for qRT-PCR in Japanese flounder (Paralichthys olivaceus), one important marine cultured fish along the coast of Northern Asia. In this study, combined with miRNA-Seq analysis and literature search, 10 candidates (miR-34a-5p, miR-205-5p, miR-101a-3p, miR-22-3p, miR-23a-3p, miR-210-5p, miR-30c-5p, U6, 5S rRNA, and 18S rRNA) were chosen as potential references to test their expression stability among P. olivaceus tissues, and in livers of P. olivaceus infected with Edwardsiella tarda at different time points. The expression stability of these candidates was analyzed by qRT-PCR and evaluated with Delta CT, BestKeeper, geNorm, as well as NormFinder methods, and RefFinder was employed to estimate the comprehensive ranking according to the four methods. As the result, miR-22-3p and miR-23a-3p were proved to be the suitable combination as reference miRNAs for both P. olivaceus normal tissues and livers infected with E. tarda, and they were successfully applied to normalize miR-7a and miR-221-5p expression in P. olivaceus livers in response to E. tarda infection. All these results provide valuable information for P. olivaceus miRNA quantitative expression analysis in the future.
Collapse
Affiliation(s)
- Saisai Liu
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, 5 Yushan Road, Qingdao 266003, China; (S.L.); (H.S.); (Z.L.); (W.L.); (Q.Z.)
| | - Haofei Song
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, 5 Yushan Road, Qingdao 266003, China; (S.L.); (H.S.); (Z.L.); (W.L.); (Q.Z.)
| | - Zeyu Liu
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, 5 Yushan Road, Qingdao 266003, China; (S.L.); (H.S.); (Z.L.); (W.L.); (Q.Z.)
| | - Wei Lu
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, 5 Yushan Road, Qingdao 266003, China; (S.L.); (H.S.); (Z.L.); (W.L.); (Q.Z.)
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, 5 Yushan Road, Qingdao 266003, China; (S.L.); (H.S.); (Z.L.); (W.L.); (Q.Z.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China
| | - Jie Cheng
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, 5 Yushan Road, Qingdao 266003, China; (S.L.); (H.S.); (Z.L.); (W.L.); (Q.Z.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China
- Correspondence: ; Tel.: +86-0532-82031986
| |
Collapse
|
18
|
Zhou X, Dai H, Jiang H, Rui H, Liu W, Dong Z, Zhang N, Zhao Q, Feng Z, Hu Y, Hou F, Zheng Y, Liu B. MicroRNAs: Potential mediators between particulate matter 2.5 and Th17/Treg immune disorder in primary membranous nephropathy. Front Pharmacol 2022; 13:968256. [PMID: 36210816 PMCID: PMC9532747 DOI: 10.3389/fphar.2022.968256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022] Open
Abstract
Primary membranous nephropathy (PMN), is an autoimmune glomerular disease and the main reason of nephrotic syndrome in adults. Studies have confirmed that the incidence of PMN increases yearly and is related to fine air pollutants particulate matter 2.5 (PM2.5) exposure. These imply that PM2.5 may be associated with exposure to PMN-specific autoantigens, such as the M-type receptor for secretory phospholipase A2 (PLA2R1). Emerging evidence indicates that Th17/Treg turns to imbalance under PM2.5 exposure, but the molecular mechanism of this process in PMN has not been elucidated. As an important indicator of immune activity in multiple diseases, Th17/Treg immune balance is sensitive to antigens and cellular microenvironment changes. These immune pathways play an essential role in the disease progression of PMN. Also, microRNAs (miRNAs) are susceptible to external environmental stimulation and play link role between the environment and immunity. The contribution of PM2.5 to PMN may induce Th17/Treg imbalance through miRNAs and then produce epigenetic affection. We summarize the pathways by which PM2.5 interferes with Th17/Treg immune balance and attempt to explore the intermediary roles of miRNAs, with a particular focus on the changes in PMN. Meanwhile, the mechanism of PM2.5 promoting PLA2R1 exposure is discussed. This review aims to clarify the potential mechanism of PM2.5 on the pathogenesis and progression of PMN and provide new insights for the prevention and treatment of the disease.
Collapse
Affiliation(s)
- Xiaoshan Zhou
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Haoran Dai
- Shunyi Branch, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Hanxue Jiang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Hongliang Rui
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Institute of Chinese Medicine, Beijing, China
| | - Wenbin Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhaocheng Dong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Na Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Qihan Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Zhendong Feng
- Pinggu Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Yuehong Hu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Fanyu Hou
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yang Zheng
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Shunyi Branch, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
19
|
Carvajal CA, Tapia-Castillo A, Pérez JA, Fardella CE. Primary Aldosteronism, Aldosterone, and Extracellular Vesicles. Endocrinology 2022; 163:6433012. [PMID: 34918071 DOI: 10.1210/endocr/bqab240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Indexed: 01/02/2023]
Abstract
Primary aldosteronism (PA) is an endocrine related condition leading to arterial hypertension due to inappropriately high and unregulated aldosterone concentration. Recently, a broad spectrum of PA has been recognized, which brings new challenges associated with early identification of this condition that affect renal epithelial and extrarenal tissues. Reports have shown the potential role of extracellular vesicles (EVs) and EV cargo as novel and complementary biomarkers in diagnosis and prognosis of PA. In vivo and in vitro studies have identified specific EV surface antigens, EV-proteins, and EV microRNAs that can be useful to develop novel diagnostic algorithms to detect, confirm, or follow up the PA. Moreover, the study of EVs in the field of PA provides further insight in the pathophysiological mechanism of the PA disease.
Collapse
Affiliation(s)
- Cristian A Carvajal
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandra Tapia-Castillo
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge A Pérez
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos E Fardella
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
20
|
Carvajal CA, Tapia-Castillo A, Pérez JA, Fardella CE. Serum Alpha-1-Acid Glycoprotein-1 and Urinary Extracellular Vesicle miR-21-5p as Potential Biomarkers of Primary Aldosteronism. Front Immunol 2021; 12:768734. [PMID: 34804057 PMCID: PMC8603108 DOI: 10.3389/fimmu.2021.768734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
Primary aldosteronism (PA) is the most common cause of secondary hypertension and reaches a prevalence of 6-10%. PA is an endocrine disorder, currently identified as a broad-spectrum phenotype, spanning from normotension to hypertension. In this regard, several studies have made advances in the identification of mediators and novel biomarkers of PA as specific proteins, miRNAs, and lately, extracellular vesicles (EVs) and their cargo. Aim To evaluate lipocalins LCN2 and AGP1, and specific urinary EV miR-21-5p and Let-7i-5p as novel biomarkers for PA. Subjects and Methods A cross-sectional study was performed in 41 adult subjects classified as normotensive controls (CTL), essential hypertensives (EH), and primary aldosteronism (PA) subjects, who were similar in gender, age, and BMI. Systolic (SBP) and diastolic (DBP) blood pressure, aldosterone, plasma renin activity (PRA), and aldosterone to renin ratio (ARR) were determined. Inflammatory parameters were defined as hs-C-reactive protein (hs-CRP), PAI-1, MMP9, IL6, LCN2, LCN2-MMP9, and AGP1. We isolated urinary EVs (uEVs) and measured two miRNA cargo miR-21-5p and Let-7i-5p by Taqman-qPCR. Statistical analyses as group comparisons were performed by Kruskall-Wallis, and discriminatory analyses by ROC curves were performed with SPSS v21 and Graphpad-Prism v9. Results PA and EH subjects have significantly higher SBP and DBP (p <0.05) than the control group. PA subjects have similar hs-CRP, PAI-1, IL-6, MMP9, LCN2, and LCN2-MMP9 but have higher levels of AGP1 (p <0.05) than the CTL&EH group. The concentration and size of uEVs and miRNA Let-7i-5p did not show any difference between groups. In PA, we found significantly lower levels of miR-21-5p than controls (p <0.05). AGP1 was associated with aldosterone, PRA, and ARR. ROC curves detected AUC for AGP1 of 0.90 (IC 95 [0.79 - 1.00], p <0.001), and combination of AGP1 and EV-miR-21-5p showed an AUC of 0.94 (IC 95 [0.85 - 1.00], p<0.001) to discriminate the PA condition from EH and controls. Conclusion Serum AGP1 protein was found to be increased, and miR-21-5p in uEVs was decreased in subjects classified as PA. Association of AGP1 with aldosterone, renin activity, and ARR, besides the high discriminatory capacity of AGP1 and uEV-miR-21-5p to identify the PA condition, place both as potential biomarkers of PA.
Collapse
Affiliation(s)
- Cristian A Carvajal
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Endocrinology, Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile.,Center for Translational Research in Endocrinology (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandra Tapia-Castillo
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Endocrinology, Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile.,Center for Translational Research in Endocrinology (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge A Pérez
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Endocrinology, Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile.,Center for Translational Research in Endocrinology (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos E Fardella
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Endocrinology, Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile.,Center for Translational Research in Endocrinology (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
21
|
Caus M, Eritja À, Bozic M. Role of microRNAs in Obesity-Related Kidney Disease. Int J Mol Sci 2021; 22:ijms222111416. [PMID: 34768854 PMCID: PMC8583993 DOI: 10.3390/ijms222111416] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Obesity is a major global health problem and is associated with a significant risk of renal function decline. Obesity-related nephropathy, as one of the complications of obesity, is characterized by a structural and functional damage of the kidney and represents one of the important contributors to the morbidity and mortality worldwide. Despite increasing data linking hyperlipidemia and lipotoxicity to kidney injury, the apprehension of molecular mechanisms leading to a development of kidney damage is scarce. MicroRNAs (miRNAs) are endogenously produced small noncoding RNA molecules with an important function in post-transcriptional regulation of gene expression. miRNAs have been demonstrated to be important regulators of a vast array of physiological and pathological processes in many organs, kidney being one of them. In this review, we present an overview of miRNAs, focusing on their functional role in the pathogenesis of obesity-associated renal pathologies. We explain novel findings regarding miRNA-mediated signaling in obesity-related nephropathies and highlight advantages and future perspectives of the therapeutic application of miRNAs in renal diseases.
Collapse
|
22
|
Hu H, Zhang J, Li Y, Ding J, Chen W, Guo Z. LncRNA SPANXA2-OT1 Participates in the Occurrence and Development of EMT in Calcium Oxalate Crystal-Induced Kidney Injury by Adsorbing miR-204 and Up-Regulating Smad5. Front Med (Lausanne) 2021; 8:719980. [PMID: 34646842 PMCID: PMC8502877 DOI: 10.3389/fmed.2021.719980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: To explore the regulatory mechanism of long non-coding RNAs (lncRNAs) in the occurrence and development of epithelial-mesenchymal transition (EMT) in calcium oxalate crystal-induced kidney injury. Materials and Methods: Gene core technique was used to screen differentially expressed lncRNAs and mRNAs in HK-2 cells before and after calcium oxalate monohydrate (COM) stimulation; differentially expressed mRNAs were then analyzed using GO and pathway analysis. The role of target lncRNA in EMT in renal tubular epithelial cells induced by COM was further investigated by applying a series of in vitro experiments. Results: Four differentially expressed lncRNAs (ABCA9-AS1, SPANXA2-OT1, RP11-955H22.1, and RP11-748C4.1) were up-regulated after 48 h of COM stimulation compared to the control group, where up-regulated expression of lncRNA SPANXA2-OT1 was the most significant. Thus, lncRNA SPANXA2-OT1 was further examined. Interference lncRNA SPANXA2-OT1 reversed the down-regulation of E-cadherin and Pan-ck, and up-regulated Vimentin and α-SMA induced by COM stimulation. The application of miR204 inhibitor weakened the interference effect of interfering RNA on lncRNA SPANXA2-OT1 and promoted the occurrence of EMT. Moreover, the miR204 simulator alleviated the overexpression effect of lncRNA SPANXA2-OT1 on COM-stimulated renal tubular epithelial cells and inhibited the occurrence of EMT in renal tubular epithelial cells. Also, a dual-luciferase reporter assay showed that miR-204 could bind to lncRNA SPANXA2-OT1 and Smad5, while lncRNA SPANXA2-OT1 could inhibit cell proliferation and promote cell apoptosis. Conclusion: The lncRNA SPANXA2-OT1 is involved in the occurrence and development of EMT in renal tubular epithelial cells induced by crystalline kidney injury by adsorbing miR-204 and up-regulating Smad5.
Collapse
Affiliation(s)
- Haiyan Hu
- Department of Nephrology, Changhai Hospital, The Naval Military Medical University, Shanghai, China
| | - Jie Zhang
- Department of Nephrology, Changhai Hospital, The Naval Military Medical University, Shanghai, China.,Department of Nephrology, Hainan Hospital of Chinese PLA General Hospital, The Hainan Academician Team Innovation Center, Sanya, China
| | - Yinhui Li
- Department of Nephrology, Changhai Hospital, The Naval Military Medical University, Shanghai, China
| | - Jiarong Ding
- Department of Nephrology, Changhai Hospital, The Naval Military Medical University, Shanghai, China
| | - Wei Chen
- Department of Nephrology, Changhai Hospital, The Naval Military Medical University, Shanghai, China
| | - Zhiyong Guo
- Department of Nephrology, Changhai Hospital, The Naval Military Medical University, Shanghai, China
| |
Collapse
|
23
|
Sargazi S, Mollashahi B, Sargazi S, Heidari Nia M, Saravani R, Mirinejad S, Alidadi A. Prevalence of miR146a Gene Polymorphisms in Diabetic and Non-diabetic Patients with Chronic Kidney Disease. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, TRANSACTIONS A: SCIENCE 2021. [DOI: 10.1007/s40995-021-01229-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Gaspari L, Paris F, Soyer-Gobillard MO, Kalfa N, Sultan C, Hamamah S. [Environmental endocrine disruptors and fertility]. ACTA ACUST UNITED AC 2021; 50:402-408. [PMID: 34560302 DOI: 10.1016/j.gofs.2021.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 11/18/2022]
Abstract
Endocrine disruptor chemicals (EDCs) are ubiquitous contaminants in the environment, wildlife, and humans. During the last 20 years, several epidemiological, clinical and experimental studies have demonstrated the role of EDCs on the reduction of male and female fertility. The concept of foetal origins of adult disease is particularly topical in the field of reproduction. Moreover, exposure to EDCs during pregnancy has been shown to influence epigenetic programming of endocrine signalling and other important physiological pathways, and provided the basis for multi- and transgenerational transmission of adult diseases. However, the large panel of EDCs simultaneously present in the air, sol and water makes the quantification of human exposition still a challenge. Gas chromatography coupled with mass spectrometry, the measurement of total plasmatic hormonal bioactivity on stably transfected cell lines as well as the EDC analysis in hair samples are useful methods of evaluation. More recently, microRNAs analysis offers a new perspective in the comprehension of the mechanisms behind the modulation of cellular response to foetal or post-natal exposure to EDCs. They will help researchers and clinicians in identifying EDCs exposition markers and new therapeutic approaches in the future.
Collapse
Affiliation(s)
- L Gaspari
- CHU Montpellier, univ Montpellier, unité d'endocrinologie-gynécologie pédiatrique, service de pédiatrie, Montpellier, France; CHU Montpellier, univ Montpellier, centre de référence maladies rares du développement génital, constitutif Sud, hôpital Lapeyronie, Montpellier, France; Univ Montpellier, Inserm 1203, développement embryonnaire fertilité environnement, Montpellier, France
| | - F Paris
- CHU Montpellier, univ Montpellier, unité d'endocrinologie-gynécologie pédiatrique, service de pédiatrie, Montpellier, France; CHU Montpellier, univ Montpellier, centre de référence maladies rares du développement génital, constitutif Sud, hôpital Lapeyronie, Montpellier, France; Univ Montpellier, Inserm 1203, développement embryonnaire fertilité environnement, Montpellier, France
| | - M-O Soyer-Gobillard
- Univ Sorbonne, CNRS, Paris, France; Association Hhorages-France, Asnières-sur-Oise, France
| | - N Kalfa
- CHU Montpellier, univ Montpellier, centre de référence maladies rares du développement génital, constitutif Sud, hôpital Lapeyronie, Montpellier, France; CHU Montpellier, univ Montpellier, département de chirurgie viscérale et urologique pédiatrique, hôpital Lapeyronie, Montpellier, France; Univ Montpellier, Institut Debrest de santé publique IDESP, UMR Inserm, Montpellier, France
| | - C Sultan
- CHU Montpellier, univ Montpellier, unité d'endocrinologie-gynécologie pédiatrique, service de pédiatrie, Montpellier, France
| | - S Hamamah
- Univ Montpellier, Inserm 1203, développement embryonnaire fertilité environnement, Montpellier, France; CHU Montpellier, univ Montpellier, département de biologie de la reproduction, biologie de la reproduction/DPI et CECOS, hôpital Arnaud-de-Villeneuve, 34295 Montpellier, France.
| |
Collapse
|
25
|
Forouhari S, Mahmoudi E, Safdarian E, Beygi Z, Gheibihayat SM. MicroRNA: A Potential Diagnosis for Male Infertility. Mini Rev Med Chem 2021; 21:1226-1236. [PMID: 33302836 DOI: 10.2174/1389557520999201209213319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/14/2020] [Accepted: 10/19/2020] [Indexed: 11/22/2022]
Abstract
Male infertility is one of the major global health problems, in particular, in more than half of the affected men. Genetic factors are important for identifying men with idiopathic infertility along with semen analysis. Valid and useful information can be obtained through non-invasive molecular research. Among these, small single-stranded non-coding RNA molecules of microRNAs (abbreviated miRNAs) are non-invasive biomarkers with a diagnostic value by regulating the post-transcriptional gene silence through repression and prevention of the translation process. The association between various types of male infertility and miRNA regulation changes has been evaluated to understand the biological function of miRNA and gene targets. Accordingly, further study of the function of miRNAs associated with reproductive disorders could lead researchers to further understand the molecular mechanisms of male infertility in order to find effective biomarkers and therapeutic strategies. Therefore, the present review article aimed at scrutinizing those researches investigating the altered miRNA expression in testicles, epididymis, and spermatozoa.
Collapse
Affiliation(s)
- Sedighe Forouhari
- Infertility Research Center, Research center of Quran, Hadith and medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elahe Mahmoudi
- Vali Asr Educational Hospital Arsanjan, University of Medical science's Shiraz, Iran
| | - Esmat Safdarian
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Zahra Beygi
- Department of Midwifery, School of Nursing and Midwifery, Islamic Azad University Meybod Branch, Yazd, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
26
|
Ding H, Li J, Li Y, Yang M, Nie S, Zhou M, Zhou Z, Yang X, Liu Y, Hou FF. MicroRNA-10 negatively regulates inflammation in diabetic kidney via targeting activation of the NLRP3 inflammasome. Mol Ther 2021; 29:2308-2320. [PMID: 33744467 DOI: 10.1016/j.ymthe.2021.03.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/23/2021] [Accepted: 03/15/2021] [Indexed: 01/17/2023] Open
Abstract
NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome activation has emerged as a central mediator of kidney inflammation in diabetic kidney disease (DKD). However, the mechanism underlying this activation in DKD remains poorly defined. In this study, we found that kidney-enriched microRNA-10a and -10b (miR-10a/b), predominantly expressed in podocytes and tubular epithelial cells, were downregulated in kidney from diabetic mice and patients with DKD. High glucose decreased miR-10a/b expression in vitro in an osmolarity-independent manner. miR-10a/b functioned as negative regulators of the NLRP3 inflammasome through targeting the 3'untranslated region of NLRP3 mRNA, inhibiting assembly of the NLRP3 inflammasome and decreasing caspase-1-dependent release of pro-inflammatory cytokines. Delivery of miR-10a/b into kidney prevented NLRP3 inflammasome activation and renal inflammation, and it reduced albuminuria in streptozotocin (STZ)-treated mice, whereas knocking down miR-10a/b increased NLRP3 inflammasome activation. Restoration of miR-10a/b expression in established DKD ameliorated kidney inflammation and mitigated albuminuria in both db/db and STZ-treated mice. These results suggest a novel intervention strategy for inhibiting kidney inflammation in DKD by targeting the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Hanying Ding
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China
| | - Jinxiang Li
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China
| | - Yang Li
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China
| | - Minliang Yang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China
| | - Sheng Nie
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China
| | - Miaomiao Zhou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China
| | - Zhanmei Zhou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China
| | - Xiaobing Yang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China
| | - Youhua Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China
| | - Fan Fan Hou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China.
| |
Collapse
|
27
|
Abstract
Chronic kidney disease (CKD), which is characterized by the gradual loss of kidney function, is a growing worldwide problem due to CKD-related morbidity and mortality. There are no reliable and early biomarkers enabling the monitoring, the stratification of CKD progression and the estimation of the risk of CKD-related complications, and therefore, the search for such molecules is still going on. Numerous studies have provided evidence that miRNAs are potentially important particles in the CKD field. Studies indicate that some miRNA levels can be increased in patients with CKD stages III–V and hemodialysis and decreased in renal transplant recipients (miR-143, miR-145 and miR-223) as well as elevated in patients with CKD stages III–V, decreased in hemodialysis patients and even more markedly decreased in renal transplant recipients (miR-126 and miR-155). miRNA have great potential of being sensitive and specific biomarkers in kidney diseases as they are tissue specific and stable in various biological materials. Some promising non-invasive miRNA biomarkers have already been recognized in renal disease with the potential to enhance diagnostic accuracy, predict prognosis and monitor the course of disease. However, large-scale clinical trials enrolling heterogeneous patients are required to evaluate the clinical value of miRNAs.
Collapse
|
28
|
Liu J, Liu Y, Wang F, Liang M. miR-204: Molecular Regulation and Role in Cardiovascular and Renal Diseases. Hypertension 2021; 78:270-281. [PMID: 34176282 DOI: 10.1161/hypertensionaha.121.14536] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The field of microRNA research has evolved from studies aiming to gauge the importance of microRNAs to those focusing on understanding a subset of specific microRNAs that have emerged as potent regulators of molecular systems and pathophysiological conditions. In this article, we review the molecular features and regulation of miR-204 and the growing body of evidence for an important role of miR-204 in the regulation of cardiovascular and renal physiology and pathophysiological processes. miR-204 exhibits a highly tissue-specific expression pattern, and miR-204 abundance is regulated by several transcriptional and posttranscriptional mechanisms. Strong evidence supports a role for miR-204 in attenuating pulmonary arterial hypertension and hypertensive and diabetic renal injury while promoting hypertension and endothelial dysfunction in a wide range of model systems. miR-204 may influence these disease processes by targeting several biological pathways in a tissue-specific manner. miR-204 is dysregulated in patients with cardiovascular and renal diseases. The unequivocal functional roles and clear clinical relevance indicate that miR-204 is a high-value microRNA in cardiovascular and renal diseases.
Collapse
Affiliation(s)
- Jing Liu
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee
| | - Yong Liu
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee
| | - Feng Wang
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee
| | - Mingyu Liang
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee
| |
Collapse
|
29
|
Pawluczyk I, Nicholson M, Barbour S, Er L, Selvaskandan H, Bhachu JS, Barratt J. A Pilot Study to Predict Risk of IgA Nephropathy Progression Based on miR-204 Expression. Kidney Int Rep 2021; 6:2179-2188. [PMID: 34386667 PMCID: PMC8343780 DOI: 10.1016/j.ekir.2021.05.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction Immunoglobulin (Ig)A nephropathy (IgAN) is the most frequently diagnosed primary glomerulonephritis worldwide. Despite the common diagnostic feature of mesangial IgA-containing immune complex deposition, the clinical course of the disease is extremely variable, with 30% of patients developing end-stage kidney disease within 20 years of diagnosis. Therefore, identifying which patients are likely to progress is paramount. Results In this pilot study, we found that urinary exosomal miR-204 expression was significantly reduced in IgAN compared with healthy subjects. However, there was no difference in miR-204 expression between IgAN and non-IgAN chronic kidney disease controls. Analysis of miR-204 expression in kidney biopsy cores by next-generation sequencing followed by quantitative polymerase chain reaction validation in independent cohorts demonstrated that expression of miR-204 was significantly lower in IgAN compared with thin-membrane nephropathy but not compared with membranous nephropathy. Patients with IgAN at high risk of future progression had significantly lower expression of miR-204 than those at low risk of progression. Cortical localization indicated that miR-204 was preferentially expressed in the interstitium compared with glomeruli in IgAN nonprogressors and that this distribution was lost in IgAN progressors. Receiver operating characteristic curve analysis between the 2 IgAN cohorts revealed an area under the curve of 0.82. In addition, miR-204 expression correlated with known clinicopathological prognostic risk factors. Importantly, incorporating miR-204 into the International IgAN risk prediction tool improved the diagnostic power of the algorithm to predict risk of progression. Conclusion Additional large-scale studies are now needed to validate the additive value of miR-204 in improving risk prediction in IgAN and more broadly in chronic kidney disease.
Collapse
Affiliation(s)
- Izabella Pawluczyk
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Matthew Nicholson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Sean Barbour
- Division of Nephrology, University of British Columbia, Vancouver, Canada
| | - Lee Er
- Division of Nephrology, University of British Columbia, Vancouver, Canada
| | - Haresh Selvaskandan
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Jasraj S Bhachu
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
30
|
The Non-Coding RNA Landscape in IgA Nephropathy-Where Are We in 2021? J Clin Med 2021; 10:jcm10112369. [PMID: 34071162 PMCID: PMC8198207 DOI: 10.3390/jcm10112369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
IgA nephropathy (IgAN) is the most commonly diagnosed primary glomerulonephritis worldwide. It is a slow progressing disease with approximately 30% of cases reaching end-stage kidney disease within 20 years of diagnosis. It is currently only diagnosed by an invasive biopsy and treatment options are limited. However, the current surge in interest in RNA interference is opening up new horizons for the use of this new technology in the field of IgAN management. A greater understanding of the fundamentals of RNA interference offers exciting possibilities both for biomarker discovery and, more importantly, for novel therapeutic approaches to target key pathogenic pathways in IgAN. This review aims to summarise the RNA interference literature in the context of microRNAs and their association with the multifaceted aspects of IgA nephropathy.
Collapse
|
31
|
Roth M, Jain P, Koo J, Chaterji S. Simultaneous learning of individual microRNA-gene interactions and regulatory comodules. BMC Bioinformatics 2021; 22:237. [PMID: 33971820 PMCID: PMC8111732 DOI: 10.1186/s12859-021-04151-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 04/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) function in post-transcriptional regulation of gene expression by binding to target messenger RNAs (mRNAs). Because of the key part that miRNAs play, understanding the correct regulatory role of miRNAs in diverse patho-physiological conditions is of great interest. Although it is known that miRNAs act combinatorially to regulate genes, precise identification of miRNA-gene interactions and their specific functional roles in regulatory comodules remains a challenge. We developed THEIA, an effective method for simultaneously predicting miRNA-gene interactions and regulatory comodules, which group functionally related miRNAs and genes via non-negative matrix factorization (NMF). RESULTS We apply THEIA to RNA sequencing data from breast invasive carcinoma samples and demonstrate its effectiveness in discovering biologically significant regulatory comodules that are significantly enriched in spatial miRNA clusters, biological pathways, and various cancers. CONCLUSIONS THEIA is a theoretically rigorous optimization algorithm that simultaneously predicts the strength and direction (i.e., up-regulation or down-regulation) of the effect of modules of miRNAs on a gene. We posit that if THEIA is capable of recovering known clusters of genes and miRNA, then the clusters found by our method not previously identified by literature are also likely to have biological significance. We believe that these novel regulatory comodules found by our method will be a springboard for further research into the specific functional roles of these new functional ensembles of miRNAs and genes,especially those related to diseases like breast cancer.
Collapse
Affiliation(s)
| | - Pranjal Jain
- Electrical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | | | - Somali Chaterji
- Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
32
|
Shihana F, Wong WKM, Joglekar MV, Mohamed F, Gawarammana IB, Isbister GK, Hardikar AA, Seth D, Buckley NA. Urinary microRNAs as non-invasive biomarkers for toxic acute kidney injury in humans. Sci Rep 2021; 11:9165. [PMID: 33911095 PMCID: PMC8080685 DOI: 10.1038/s41598-021-87918-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 04/05/2021] [Indexed: 12/29/2022] Open
Abstract
MicroRNAs in biofluids are potential biomarkers for detecting kidney and other organ injuries. We profiled microRNAs in urine samples from patients with Russell's viper envenoming or acute self-poisoning following paraquat, glyphosate, or oxalic acid [with and without acute kidney injury (AKI)] and on healthy controls. Discovery analysis profiled for 754 microRNAs using TaqMan OpenArray qPCR with three patients per group (12 samples in each toxic agent). From these, 53 microRNAs were selected and validated in a larger cohort of patients (Russell's viper envenoming = 53, paraquat = 51, glyphosate = 51, oxalic acid = 40) and 27 healthy controls. Urinary microRNAs had significantly higher expression in patients poisoned/envenomed by different nephrotoxic agents in both discovery and validation cohorts. Seven microRNAs discriminated severe AKI patients from no AKI for all four nephrotoxic agents. Four microRNAs (miR-30a-3p, miR-30a-5p, miR-92a, and miR-204) had > 17 fold change (p < 0.0001) and receiver operator characteristics area-under-curve (ROC-AUC) > 0.72. Pathway analysis of target mRNAs of these differentially expressed microRNAs showed association with the regulation of different nephrotoxic signaling pathways. In conclusion, human urinary microRNAs could identify toxic AKI early after acute injury. These urinary microRNAs have potential clinical application as early non-invasive diagnostic AKI biomarkers.
Collapse
Affiliation(s)
- Fathima Shihana
- Clinical Pharmacology and Toxicology Research Group, Biomedical Informatics and Digital Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
- South Asian Clinical Toxicology Research Collaboration, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka.
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, Australia.
| | - Wilson K M Wong
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Mugdha V Joglekar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Fahim Mohamed
- Clinical Pharmacology and Toxicology Research Group, Biomedical Informatics and Digital Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- South Asian Clinical Toxicology Research Collaboration, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
- Allied Health Sciences, Department of Pharmacy, University of Peradeniya, Peradeniya, Sri Lanka
- Australian Kidney Biomarker Reference Laboratory, Department of Nephrology, Prince of Wales Hospital and Clinical School, University of New South Wales, Sydney, Australia
| | - Indika B Gawarammana
- South Asian Clinical Toxicology Research Collaboration, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Geoffrey K Isbister
- Clinical Toxicology Research Group, University of Newcastle, Newcastle, NSW, Australia
| | - Anandwardhan A Hardikar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Devanshi Seth
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, Australia
- Discipline of Clinical Medicine and Addiction Medicine, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Drug Health Services, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Nicholas A Buckley
- Clinical Pharmacology and Toxicology Research Group, Biomedical Informatics and Digital Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
- South Asian Clinical Toxicology Research Collaboration, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka.
- Drug Health Services, Royal Prince Alfred Hospital, Sydney, NSW, Australia.
| |
Collapse
|
33
|
Sarkar JP, Saha I, Sarkar A, Maulik U. Machine learning integrated ensemble of feature selection methods followed by survival analysis for predicting breast cancer subtype specific miRNA biomarkers. Comput Biol Med 2021; 131:104244. [PMID: 33550016 DOI: 10.1016/j.compbiomed.2021.104244] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/24/2021] [Accepted: 01/24/2021] [Indexed: 12/25/2022]
Abstract
Breast cancer is the second leading cancer type among females. In this regard, it is found that microRNAs play an important role by regulating the gene expressions at the post-transcriptional phase. However, identification of the most influencing miRNAs in breast cancer subtypes is a challenging task, while the recent advancement in Next Generation Sequencing techniques allows analyzing high throughput expression data of miRNAs. Thus, we have conducted this research with the help of NGS data of breast cancer in order to identify the most significant miRNA biomarkers. The selected miRNA biomarkers are highly associated with the multiple breast cancer subtypes. For this purpose, a two-phase technique, called Machine Learning Integrated Ensemble of Feature Selection Methods, followed by survival analysis, is proposed. In the first phase, we have selected the best among seven machine learning techniques based on classification accuracy using the entire set of features (in this case miRNAs). Subsequently, eight different feature selection methods are used separately in order to rank the features and validate each set of top features using the selected machine learning technique by considering a multi-class classification task of the breast cancer subtypes. In the second phase, based on the classification accuracy values, the top features from each feature selection method are considered to make an ensemble to provide further categorization of the miRNAs as 8*, 7* up to 1*. The 8* miRNAs provide the highest average classification accuracy of 86% after 10-fold cross-validation. Thereafter, 27 miRNAs are identified from the list that is confined within 8* to 4* miRNAs based on their importance in survival for breast cancer subtypes using Cox regression based survival analysis. Moreover, expression analysis, regulatory network analysis, protein-protein interaction analysis, KEGG pathway and gene ontology enrichment analysis are performed in order to validate biological significance of the proposed solution. Additionally, we have prepared a miRNA-protein-drug interaction network to identify possible drug for the selected miRNAs. Thus, our findings may be considered during a clinical trial for the treatment of breast cancer patients.
Collapse
Affiliation(s)
- Jnanendra Prasad Sarkar
- Larsen & Toubro Infotech Ltd., Pune, India; Department of Computer Science and Engineering, Jadavpur University, Kolkata, India
| | - Indrajit Saha
- Department of Computer Science and Engineering, National Institute of Technical Teachers' Training & Research, Kolkata, 700106, India.
| | - Anasua Sarkar
- Department of Computer Science and Engineering, Jadavpur University, Kolkata, India
| | - Ujjwal Maulik
- Department of Computer Science and Engineering, Jadavpur University, Kolkata, India
| |
Collapse
|
34
|
Pawluczyk IZA, Didangelos A, Barbour SJ, Er L, Becker JU, Martin R, Taylor S, Bhachu JS, Lyons EG, Jenkins RH, Fraser D, Molyneux K, Perales-Patón J, Saez-Rodriguez J, Barratt J. Differential expression of microRNA miR-150-5p in IgA nephropathy as a potential mediator and marker of disease progression. Kidney Int 2021; 99:1127-1139. [PMID: 33417998 DOI: 10.1016/j.kint.2020.12.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 01/05/2023]
Abstract
Understanding why certain patients with IgA nephropathy progress to kidney failure while others maintain normal kidney function remains a major unanswered question. To help answer this, we performed miRNome profiling by next generation sequencing of kidney biopsies in order to identify microRNAs specifically associated with the risk of IgA nephropathy progression. Following sequencing and validation in independent cohorts, four microRNAs (-150-5p, -155-5p, -146b-5p, -135a-5p) were found to be differentially expressed in IgA nephropathy progressors compared to non-progressors, and patients with thin membrane nephropathy, lupus nephritis and membranous nephropathy, and correlated with estimated glomerular filtration rate, proteinuria, and the Oxford MEST-C scores (five histological features that are independent predictors of clinical outcome). Each individual microRNA increased the discrimination score of the International IgAN Prediction Tool, although due to the small number of samples the results did not reach statistical significance. miR-150-5p exhibited the largest amplitude of expression between cohorts and displayed the best discrimination between IgA nephropathy progressors and non-progressors by receiver operating curve analysis (AUC: 0.8). However, expression was similarly upregulated in kidneys with established fibrosis and low estimated glomerular filtration rates at the time of biopsy. Consistent with a more generic role in kidney fibrosis, in situ hybridization revealed that miR-150-5p was found in lymphoid infiltrates, and areas of proliferation and fibrosis consistent with the known drivers of progression. Thus, miR-150-5p may be a potential functional mediator of kidney fibrosis that may add value in predicting risk of progression in IgA nephropathy and other kidney diseases.
Collapse
Affiliation(s)
- Izabella Z A Pawluczyk
- The Mayer IgA Nephropathy Laboratories, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.
| | - Athanasios Didangelos
- The Mayer IgA Nephropathy Laboratories, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Sean J Barbour
- Division of Nephrology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lee Er
- Division of Nephrology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jan U Becker
- Institute of Pathology, University of Cologne, Cologne, Germany
| | - Roberto Martin
- Bioinformatics and Biostatistics Unit, Madrid Institute for Advanced Studies (IMDEA) Food, CEI UAM+CSIS, Madrid, Spain
| | - Scott Taylor
- The Mayer IgA Nephropathy Laboratories, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Jasraj S Bhachu
- The Mayer IgA Nephropathy Laboratories, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Edward G Lyons
- The Mayer IgA Nephropathy Laboratories, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Robert H Jenkins
- Wales Kidney Research Institute, Division of Infection and Immunity, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Donald Fraser
- Wales Kidney Research Institute, Division of Infection and Immunity, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Karen Molyneux
- The Mayer IgA Nephropathy Laboratories, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Javier Perales-Patón
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Jonathan Barratt
- The Mayer IgA Nephropathy Laboratories, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
35
|
Chen A, Wang H, Su Y, Zhang C, Qiu Y, Zhou Y, Wan Y, Hu B, Li Y. Exosomes: Biomarkers and Therapeutic Targets of Diabetic Vascular Complications. Front Endocrinol (Lausanne) 2021; 12:720466. [PMID: 34456875 PMCID: PMC8387814 DOI: 10.3389/fendo.2021.720466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/22/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetic vascular complications (DVC) including macrovascular and microvascular lesions, have a significant impact on public health, and lead to increased patient mortality. Disordered intercellular cascades play a vital role in diabetic systemic vasculopathy. Exosomes participate in the abnormal signal transduction of local vascular cells and mediate the transmission of metabolic disorder signal molecules in distant organs and cells through the blood circulation. They can store different signaling molecules in the membrane structure and release them into the blood, urine, and tears. In recent years, the carrier value and therapeutic effect of exosomes derived from stem cells have garnered attention. Exosomes are not only a promising biomarker but also a potential target and tool for the treatment of DVC. This review explored changes in the production process of exosomes in the diabetic microenvironment and exosomes' early warning role in DVC from different systems and their pathological processes. On the basis of these findings, we discussed the future direction of exosomes in the treatment of DVC, and the current limitations of exosomes in DVC research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bo Hu
- *Correspondence: Yanan Li, ; Bo Hu,
| | - Yanan Li
- *Correspondence: Yanan Li, ; Bo Hu,
| |
Collapse
|
36
|
Connor KL, Teenan O, Cairns C, Banwell V, Thomas RA, Rodor J, Finnie S, Pius R, Tannahill GM, Sahni V, Savage CO, Hughes J, Harrison EM, Henderson RB, Marson LP, Conway BR, Wigmore SJ, Denby L. Identifying cell-enriched miRNAs in kidney injury and repair. JCI Insight 2020; 5:140399. [PMID: 33328386 PMCID: PMC7819746 DOI: 10.1172/jci.insight.140399] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022] Open
Abstract
Small noncoding RNAs, miRNAs (miRNAs), are emerging as important modulators in the pathogenesis of kidney disease, with potential as biomarkers of kidney disease onset, progression, or therapeutic efficacy. Bulk tissue small RNA-sequencing (sRNA-Seq) and microarrays are widely used to identify dysregulated miRNA expression but are limited by the lack of precision regarding the cellular origin of the miRNA. In this study, we performed cell-specific sRNA-Seq on tubular cells, endothelial cells, PDGFR-β+ cells, and macrophages isolated from injured and repairing kidneys in the murine reversible unilateral ureteric obstruction model. We devised an unbiased bioinformatics pipeline to define the miRNA enrichment within these cell populations, constructing a miRNA catalog of injury and repair. Our analysis revealed that a significant proportion of cell-specific miRNAs in healthy animals were no longer specific following injury. We then applied this knowledge of the relative cell specificity of miRNAs to deconvolute bulk miRNA expression profiles in the renal cortex in murine models and human kidney disease. Finally, we used our data-driven approach to rationally select macrophage-enriched miR-16-5p and miR-18a-5p and demonstrate that they are promising urinary biomarkers of acute kidney injury in renal transplant recipients.
Collapse
Affiliation(s)
- Katie L Connor
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom.,Edinburgh Transplant Unit, Edinburgh Royal Infirmary, Edinburgh, United Kingdom.,Centre for Inflammation Research and
| | - Oliver Teenan
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Carolynn Cairns
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Victoria Banwell
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom.,Edinburgh Transplant Unit, Edinburgh Royal Infirmary, Edinburgh, United Kingdom.,Centre for Inflammation Research and
| | - Rachel Ab Thomas
- Edinburgh Transplant Unit, Edinburgh Royal Infirmary, Edinburgh, United Kingdom.,Centre for Inflammation Research and
| | - Julie Rodor
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Sarah Finnie
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Riinu Pius
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Vishal Sahni
- Medicines Research Centre, GlaxoSmithKline, Stevenage, United Kingdom
| | | | | | - Ewen M Harrison
- Edinburgh Transplant Unit, Edinburgh Royal Infirmary, Edinburgh, United Kingdom.,Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Lorna P Marson
- Edinburgh Transplant Unit, Edinburgh Royal Infirmary, Edinburgh, United Kingdom.,Centre for Inflammation Research and
| | - Bryan R Conway
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen J Wigmore
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom.,Edinburgh Transplant Unit, Edinburgh Royal Infirmary, Edinburgh, United Kingdom
| | - Laura Denby
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
37
|
Jeon BS, Lee SH, Hwang SR, Yi H, Bang JH, Tham NTT, Lee HK, Woo GH, Kang HG, Ku HO. Identification of urinary microRNA biomarkers for in vivo gentamicin-induced nephrotoxicity models. J Vet Sci 2020; 21:e81. [PMID: 33263228 PMCID: PMC7710462 DOI: 10.4142/jvs.2020.21.e81] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/20/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Although previous in vivo studies explored urinary microRNA (miRNA), there is no agreement on nephrotoxicity-specific miRNA biomarkers. OBJECTIVES In this study, we assessed whether urinary miRNAs could be employed as biomarkers for nephrotoxicity. METHODS For this, literature-based candidate miRNAs were identified by reviewing the previous studies. Female Sprague-Dawley rats received subcutaneous injections of a single dose or repeated doses (3 consecutive days) of gentamicin (GEN; 137 or 412 mg/kg). The expression of miRNAs was analyzed by real-time reverse transcription-polymerase chain reaction in 16 h pooled urine from GEN-treated rats. RESULTS GEN-induced acute kidney injury was confirmed by the presence of tubular necrosis. We identified let-7g-5p, miR-21-3p, 26b-3p, 192-5p, and 378a-3p significantly upregulated in the urine of GEN-treated rats with the appearance of the necrosis in proximal tubules. Specifically, miR-26-3p, 192-5p, and 378a-3p with highly expressed levels in urine of rats with GEN-induced acute tubular injury were considered to have sensitivities comparable to clinical biomarkers, such as blood urea nitrogen, serum creatinine, and urinary kidney injury molecule protein. CONCLUSIONS These results indicated the potential involvement of urinary miRNAs in chemical-induced nephrotoxicity, suggesting that certain miRNAs could serve as biomarkers for acute nephrotoxicity.
Collapse
Affiliation(s)
- Byung Suk Jeon
- Toxicological Evaluation Laboratory, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Soo Ho Lee
- Toxicological Evaluation Laboratory, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - So Ryeon Hwang
- Toxicological Evaluation Laboratory, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Hee Yi
- Toxicological Evaluation Laboratory, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Ji Hyun Bang
- Toxicological Evaluation Laboratory, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Nga Thi Thu Tham
- Toxicological Evaluation Laboratory, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Hyun Kyoung Lee
- Animal Pathodiagnostic Laboratory, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Gye Hyeong Woo
- Department of Clinical Laboratory Science, Semyung University, Jecheon 27136, Korea
| | - Hwan Goo Kang
- Department of Clinical Laboratory Science, Semyung University, Jecheon 27136, Korea.
| | - Hyun Ok Ku
- Toxicological Evaluation Laboratory, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea.
| |
Collapse
|
38
|
Fluitt MB, Shivapurkar N, Kumari M, Singh S, Li L, Tiwari S, Ecelbarger CM. Systemic inhibition of miR-451 increases fibrotic signaling and diminishes autophagic response to exacerbate renal damage in Tallyho/Jng mice. Am J Physiol Renal Physiol 2020; 319:F476-F486. [PMID: 32715758 PMCID: PMC7509278 DOI: 10.1152/ajprenal.00594.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
miRNAs provide fine tuning of gene expression via inhibition of translation. miR-451 has a modulatory role in cell cycling via downregulation of mechanistic target of rapamycin. We aimed to test whether chronic systemic inhibition of miR-451 would enhance renal fibrosis (associated with deranged autophagy). Adult TallyHo/Jng mice (obese insulin resistant) were randomized to two treatment groups to receive either miR-451 inhibition [via a locked nucleic acid construct] or a similar scrambled locked nucleic acid control for 8 wk. All mice were fed a high-fat diet (60% kcal from fat) ad libitum and humanely euthanized after 12 wk. Kidneys and blood were collected for analysis. Renal expression of miR-451 was sixfold lower in inhibitor-treated mice compared with control mice. miR-451 inhibition increased kidney weight and collagen and glycogen deposition. Blood chemistry revealed significantly higher Na+ and anion gap (relative metabolic acidosis) in inhibitor-treated mice. Western blot analysis and immunohistochemistry of the kidney revealed that the inhibitor increased markers of renal injury and fibrosis, e.g., kidney injury molecule 1, neutrophil gelatinase-associated lipocalin, transforming growth factor-β, 14-3-3 protein-ζ, mechanistic target of rapamycin, AMP-activated protein kinase-α, calcium-binding protein 39, matrix metallopeptidase-9, and the autophagy receptor sequestosome 1. In contrast, the inhibitor reduced the epithelial cell integrity marker collagen type IV and the autophagy markers microtubule-associated protein 1A/1B light chain 3B and beclin-1. Taken together, these results support a protective role for miR-451 in reducing renal fibrosis by enhancing autophagy in obese mice.
Collapse
Affiliation(s)
- Maurice B. Fluitt
- 1Division of Endocrinology and Metabolism, Department of Medicine, Georgetown University, Washington, District of Columbia
| | - Narayan Shivapurkar
- 1Division of Endocrinology and Metabolism, Department of Medicine, Georgetown University, Washington, District of Columbia
| | - Manju Kumari
- 2Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Sarojini Singh
- 2Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Lijun Li
- 1Division of Endocrinology and Metabolism, Department of Medicine, Georgetown University, Washington, District of Columbia
| | - Swasti Tiwari
- 2Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Carolyn M. Ecelbarger
- 1Division of Endocrinology and Metabolism, Department of Medicine, Georgetown University, Washington, District of Columbia
| |
Collapse
|
39
|
Liao Y, Wang Z, Wang L, Lin Y, Ye Z, Zeng X, Wei F. MicroRNA-27a-3p directly targets FosB to regulate cell proliferation, apoptosis, and inflammation responses in immunoglobulin a nephropathy. Biochem Biophys Res Commun 2020; 529:1124-1130. [PMID: 32819575 DOI: 10.1016/j.bbrc.2020.06.115] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 06/23/2020] [Indexed: 01/08/2023]
Abstract
Immunoglobulin A nephropathy (IgAN) constitutes the most common primary glomerulonephritis worldwide; however, the exact pathogenesis of IgAN is unknown. Previous genome-wide analysis of microRNA (miRNA) expression in the kidney has confirmed that miRNAs are closely related to the pathological changes of IgAN. Accordingly, in this study we found that miR-27a-3p is upregulated in IgAN kidney tissues in addition to human podocytes and tubule epithelial HK2 but not mesangial cells. Methylthiazolyldiphenyl-tetrazolium bromide (MTT), flow cytometry, real-time polymerase chain reaction, western blot, and enzyme-linked immunosorbent assays were used to verify the regulatory effects of miR-27a-3p and its inhibition on cell proliferation, apoptosis, and release of inflammatory factors in podocytes and HK2 cells. The target genes of miR-27a-3p were predicted using bioinformatics software; the identity of FosB as a target gene of miR-27a-3p was confirmed by luciferase report assay and western blot. Overall, our findings demonstrated that miR-27a-3p regulates cell apoptosis, cell proliferation, and the release of inflammatory cytokines of human podocytes and HK2 cells by directly targeting FosB. Our results therefore suggested that miR-27a-3p might be associated with the pathophysiology of IgAN and may represent a potential target for further studies related to IgAN mechanism or therapeutics.
Collapse
Affiliation(s)
- Yu Liao
- 2nd Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China
| | - Ziyan Wang
- 2nd Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; General Hospital of Guangzhou Military Command of PLA, Guangzhou, 510062, China
| | - Lixin Wang
- Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China; 2nd Clinical Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510062, China
| | - Yanzhao Lin
- Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China; 2nd Clinical Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510062, China
| | - Ziyi Ye
- Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China; 2nd Clinical Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510062, China
| | - Xufang Zeng
- Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China; 2nd Clinical Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510062, China
| | - Fangning Wei
- Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China; 2nd Clinical Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510062, China.
| |
Collapse
|
40
|
Mishan MA, Tabari MAK, Parnian J, Fallahi J, Mahrooz A, Bagheri A. Functional mechanisms of miR-192 family in cancer. Genes Chromosomes Cancer 2020; 59:722-735. [PMID: 32706406 DOI: 10.1002/gcc.22889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
By growing research on the mechanisms and functions of microRNAs (miRNAs, miRs), the role of these noncoding RNAs gained more attention in healthcare. Due to the remarkable regulatory role of miRNAs, any dysregulation in their expression causes cellular functional impairment. In recent years, it has become increasingly apparent that these small molecules contribute to development, cell differentiation, proliferation, apoptosis, and tumor growth. In many studies, the miR-192 family has been suggested as a potential prognostic and diagnostic biomarker and even as a possible therapeutic target for several cancers. However, the mechanistic effects of the miR-192 family on cancer cells are still controversial. Here, we have reviewed each family member of the miR-192 including miR-192, miR-194, and miR-215, and discussed their mechanistic roles in various cancers.
Collapse
Affiliation(s)
- Mohammad Amir Mishan
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Javad Parnian
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Jafar Fallahi
- Molecular Medicine Department, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolkarim Mahrooz
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
41
|
Cheng Y, Wang D, Wang F, Liu J, Huang B, Baker MA, Yin J, Wu R, Liu X, Regner KR, Usa K, Liu Y, Zhang C, Dong L, Geurts AM, Wang N, Miller SS, He Y, Liang M. Endogenous miR-204 Protects the Kidney against Chronic Injury in Hypertension and Diabetes. J Am Soc Nephrol 2020; 31:1539-1554. [PMID: 32487559 DOI: 10.1681/asn.2019101100] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/09/2020] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Aberrant microRNA (miRNA) expression affects biologic processes and downstream genes that are crucial to CKD initiation or progression. The miRNA miR-204-5p is highly expressed in the kidney but whether miR-204-5p plays any role in the development of chronic renal injury is unknown. METHODS We used real-time PCR to determine levels of miR-204 in human kidney biopsies and animal models. We generated Mir204 knockout mice and used locked nucleic acid-modified anti-miR to knock down miR-204-5p in mice and rats. We used a number of physiologic, histologic, and molecular techniques to analyze the potential role of miR-204-5p in three models of renal injury. RESULTS Kidneys of patients with hypertension, hypertensive nephrosclerosis, or diabetic nephropathy exhibited a significant decrease in miR-204-5p compared with controls. Dahl salt-sensitive rats displayed lower levels of renal miR-204-5p compared with partially protected congenic SS.13BN26 rats. Administering anti-miR-204-5p to SS.13BN26 rats exacerbated interlobular artery thickening and renal interstitial fibrosis. In a mouse model of hypertensive renal injury induced by uninephrectomy, angiotensin II, and a high-salt diet, Mir204 gene knockout significantly exacerbated albuminuria, renal interstitial fibrosis, and interlobular artery thickening, despite attenuation of hypertension. In diabetic db/db mice, administering anti-miR-204-5p exacerbated albuminuria and cortical fibrosis without influencing blood glucose levels. In all three models, inhibiting miR-204-5p or deleting Mir204 led to upregulation of protein tyrosine phosphatase SHP2, a target gene of miR-204-5p, and increased phosphorylation of signal transducer and activator of transcription 3, or STAT3, which is an injury-promoting effector of SHP2. CONCLUSIONS These findings indicate that the highly expressed miR-204-5p plays a prominent role in safeguarding the kidneys against common causes of chronic renal injury.
Collapse
Affiliation(s)
- Yuan Cheng
- Department of Nephrology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Clinical Institute of Anhui Medical University, Shenzhen, People's Republic of China.,The Center for Nephrology and Urology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, People's Republic of China.,Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Dandan Wang
- The Center for Nephrology and Urology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, People's Republic of China.,Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, People's Republic of China
| | - Feng Wang
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Jing Liu
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Baorui Huang
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Maria Angeles Baker
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jianyong Yin
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Rui Wu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Xuanchen Liu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Kevin R Regner
- Division of Nephrology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kristie Usa
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yong Liu
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Congxiao Zhang
- Section of Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Lijin Dong
- Section of Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Aron M Geurts
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Niansong Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Sheldon S Miller
- Section of Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Yongcheng He
- Department of Nephrology, Shenzhen Hengsheng Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Mingyu Liang
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
42
|
Brandenburger T, Lorenzen JM. Diagnostic and Therapeutic Potential of microRNAs in Acute Kidney Injury. Front Pharmacol 2020; 11:657. [PMID: 32477132 PMCID: PMC7240101 DOI: 10.3389/fphar.2020.00657] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/22/2020] [Indexed: 01/22/2023] Open
Abstract
During hospital stay, about 20% of adult patients experience an episode of acute kidney injury (AKI), which is characterized by a rapid decrease in kidney function. Diagnostic tools regarding early diagnosis of kidney dysfunction prior to AKI and markers of renal recovery are not available. Additionally, there is no therapeutic option for the treatment of AKI. Thus, better and more specific diagnostic and therapeutic options are urgently needed in daily clinical practice. NoncodingRNAs (ncRNAs) have come into focus of research in the context of AKI in the last decade. The best characterized group of ncRNAs are microRNAs (miRNAs). An increasing body of literature has shown that miRNAs are involved in the pathogenesis of AKI and that they are promising future tools in the diagnosis and therapy of AKI. However, there are obstacles to be overcome before miRNAs can be transferred to patient care. This review will give an overview of our current knowledge of miRNA involvement in the context of AKI while critically evaluating their diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Timo Brandenburger
- Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Johan M Lorenzen
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
43
|
Zhang Z, Xu L, He L, Wang J, Shi X, Li Z, Shi S, Hou K, Teng Y, Qu X. MiR-891a-5p as a prognostic marker and therapeutic target for hormone receptor-positive breast cancer. J Cancer 2020; 11:3771-3782. [PMID: 32328182 PMCID: PMC7171503 DOI: 10.7150/jca.40750] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Breast cancer is one of the most frequent malignant tumors worldwide, with 1.67 million newly-diagnosed cases and 522,000 deaths each year. Therefore, seeking the novel biomarkers and therapeutic targets that contribute to postoperative recurrence and metastasis in patients with breast cancer is emerging and facilitates the development of innovative therapeutics. Methods: Retrieving the dataset of patients with hormone receptor (HR)-positive breast cancers from Gene Expression Omnibus (GEO) and collecting the data from the patients with HR-positive breast cancers enrolled in the First Affiliated Hospital of China Medical University are so as to identify the miRNAs associated with metastasis and distant metastasis-free survival (DMFS). Then MTT and Transwell migration assays were used to validate the effect of miRNAs on cell proliferation and migration of estrogen receptor-positive breast cancer T47D and MCF7 cells in vitro, respectively. Results: From GSE59829 dataset, the miRNA expression levels of miR-891a-5p, miR-383-5p and miR-1295a were significantly downregulated while the levels of miR-128-3p, miR-661 and miR-296-3p were significantly upregulated in breast cancers from patients with metastasis as compared to the matched non-metastatic group. Moreover, low expression levels of miR-891a-5p, miR-383-5p and miR-1295a or high expression levels of miR-128-3p, miR-661 and miR-296-3p were respectively associated with low DMFS in patients with breast cancer. Our clinical cohort study supported that the levels of miR-891a-5p, miR-383-5p and miR-1295a were significantly lower in breast cancers from the metastasis group when compared with non-metastatic group. However, there is no significant difference with regard to the levels of miR-128-3p, miR-661 and miR-296-3p in breast cancer between these two groups. Moreover, low expression levels of miR-891a-5p and miR-383-5p but not miR-1295a in breast cancer were significantly associated with low DMFS in patients, implying that the expression of miR-891a-5p and miR-383-5p were the potential prognosis markers for metastatic human breast cancers. Further investigation disclosed that miR-891a-5p but not miR-383-5p restrained both proliferation and migration of T47D and MCF7 cells. In silico analysis of miRNAs target gene through online computational algorithms revealed that A Disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) is the downstream target for miR-891a-5p. Further study confirmed that miR-891a-5p impeded ADAM10 expression by directly binding to its 3'UTR, leading to the inhibition of breast cancer cells proliferation and migration. Moreover, silencing ADAM10 inhibited T47D and MCF7 cells growth and migration. Conclusion: miR-891a-5p is the vital prognostic marker for HR-positive breast cancer. In addition, miR-891a-5p and miR-383-5p are the potential targets for HR-positive breast cancer therapeutics.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Department of Medical Oncology and Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China.,Department of Medical Oncology, Liaoning Provincial People's Hospital, The People's Hospital of China Medical University, Shenyang 110016, China
| | - Lu Xu
- Department of Medical Oncology and Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Lijie He
- Department of Medical Oncology, Liaoning Provincial People's Hospital, The People's Hospital of China Medical University, Shenyang 110016, China
| | - Jin Wang
- Department of Medical Oncology and Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiaonan Shi
- Department of Medical Oncology, the First Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhi Li
- Department of Medical Oncology and Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Sha Shi
- Department of Medical Oncology and Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Kezuo Hou
- Department of Medical Oncology and Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yuee Teng
- Department of Medical Oncology and Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiujuan Qu
- Department of Medical Oncology and Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
44
|
Shakaryants GA, Kozhevnikova MV, Kaplunova VY, Privalova EV, Lishuta AS, Korobkova EO, Belenkov YN. [Focus on the Myocardial Hypertrophy from the Perspective of Transcriptomics and Metabolomics]. KARDIOLOGIIA 2020; 60:120-129. [PMID: 32394866 DOI: 10.18087/cardio.2020.4.n1063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
This review presents major directions in studies of myocardial hypertrophy from the aspect of transcriptomics and metabolomics. Understanding of trigger mechanisms of myocardial hypertrophy will permit transition from basic studies to individualized clinical application of innovative technologies in the treatment of heart diseases, such as targeted therapy. At the present time, methods have been developed for diagnostics and prediction of cardiovascular diseases based on the metabolomic profiling and the evaluation of microRNA expression. Progress in studying molecular and genetic processes underlying the development of cardiovascular diseases may provide invaluable information for clinical cardiology.
Collapse
Affiliation(s)
- G A Shakaryants
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - M V Kozhevnikova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - V Yu Kaplunova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - E V Privalova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A S Lishuta
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - E O Korobkova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - Yu N Belenkov
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
45
|
Khan A, Zahra A, Mumtaz S, Fatmi MQ, Khan MJ. Integrated In-silico Analysis to Study the Role of microRNAs in the Detection of Chronic Kidney Diseases. Curr Bioinform 2020. [DOI: 10.2174/1574893614666190923115032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background:
MicroRNAs (miRNAs) play an important role in the pathogenesis of
various renal diseases, including Chronic Kidney Diseases (CKD). CKD refers to the gradual loss
of kidney function with the declining Glomerular Functional Rate (GFR).
Objective:
This study focused on the regulatory mechanism of miRNA to control gene expression
in CKD.
Methods:
In this context, two lists of Differentially Expressed Genes (DEGs) were obtained; one
from the three selected experiments by setting a cutoff p-value of <0.05 (List A), and one from a
list of target genes of miRNAs (List B). Both lists were then compared to get a common dataset of
33 miRNAs, each had a set of DEGs i.e. both up-regulated and down-regulated genes (List C).
These data were subjected to functional enrichment analysis, network illustration, and gene
homology studies.
Results:
This study confirmed the active participation of various miRNAs i.e. hsa -miR-15a-5p,
hsa-miR-195-5p, hsa-miR-365-3p, hsa-miR-30a-5p, hsa-miR-124-3p, hsa-miR-200b-3p, and hsamiR-
429 in the dysregulation of genes involved in kidney development and function. Integrated
analyses depicted that miRNAs modulated renal development, homeostasis, various metabolic
processes, immune responses, and ion transport activities. Furthermore, homology studies of
miRNA-mRNA hybrid highlighted the effect of partial complementary binding pattern on the
regulation of genes by miRNA.
Conclusion:
The study highlighted the great values of miRNAs as biomarkers in kidney diseases.
In addition, the need for further investigations on miRNA-based studies is also commended in the
development of diagnostic, prognostic, and therapeutic tools for renal diseases.
Collapse
Affiliation(s)
- Amina Khan
- Department of Biosciences, COMSATS University Islamabad, Park Road, Chak Shahzad, Islamabad-45600, Pakistan
| | - Andleeb Zahra
- Department of Biosciences, COMSATS University Islamabad, Park Road, Chak Shahzad, Islamabad-45600, Pakistan
| | - Sana Mumtaz
- Department of Biosciences, COMSATS University Islamabad, Park Road, Chak Shahzad, Islamabad-45600, Pakistan
| | - M. Qaiser Fatmi
- Department of Biosciences, COMSATS University Islamabad, Park Road, Chak Shahzad, Islamabad-45600, Pakistan
| | - Muhammad J. Khan
- Department of Biosciences, COMSATS University Islamabad, Park Road, Chak Shahzad, Islamabad-45600, Pakistan
| |
Collapse
|
46
|
Magayr TA, Song X, Streets AJ, Vergoz L, Chang L, Valluru MK, Yap HL, Lannoy M, Haghighi A, Simms RJ, Tam FWK, Pei Y, Ong ACM. Global microRNA profiling in human urinary exosomes reveals novel disease biomarkers and cellular pathways for autosomal dominant polycystic kidney disease. Kidney Int 2020; 98:420-435. [PMID: 32622528 DOI: 10.1016/j.kint.2020.02.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 01/14/2020] [Accepted: 02/06/2020] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) play an important role in regulating gene expression in health and disease but their role in modifying disease expression in Autosomal Dominant Polycystic Kidney Disease (ADPKD) remains uncertain. Here, we profiled human urinary exosome miRNA by global small RNA-sequencing in an initial discovery cohort of seven patients with ADPKD with early disease (eGFR over 60ml/min/1.73m2), nine with late disease (eGFR under 60ml/min/1.73m2), and compared their differential expression with six age and sex matched healthy controls. Two kidney-enriched candidate miRNA families were identified (miR-192/miR-194-2 and miR-30) and selected for confirmatory testing in a 60 patient validation cohort by quantitative polymerase chain reaction. We confirmed that miR-192-5p, miR-194-5p, miR-30a-5p, miR-30d-5p and miR-30e-5p were significantly downregulated in patient urine exosomes, in murine Pkd1 cystic kidneys and in human PKD1 cystic kidney tissue. All five miRNAs showed significant correlations with baseline eGFR and ultrasound-determined mean kidney length and improved the diagnostic performance (area under the curve) of mean kidney length for the rate of disease progression. Finally, inverse correlations of these two miRNA families with increased expression in their predicted target genes in patient PKD1 cystic tissue identified dysregulated pathways and transcriptional networks including novel interactions between miR-194-5p and two potentially relevant candidate genes, PIK3R1 and ANO1. Thus, our results identify a subset of urinary exosomal miRNAs that could serve as novel biomarkers of disease progression and suggest new therapeutic targets in ADPKD.
Collapse
Affiliation(s)
- Tajdida A Magayr
- Kidney Genetics Group, Academic Nephrology Unit, University of Sheffield Medical School, Sheffield, UK
| | - Xuewen Song
- Division of Nephrology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Andrew J Streets
- Kidney Genetics Group, Academic Nephrology Unit, University of Sheffield Medical School, Sheffield, UK
| | - Laura Vergoz
- Kidney Genetics Group, Academic Nephrology Unit, University of Sheffield Medical School, Sheffield, UK
| | - Lijun Chang
- Kidney Genetics Group, Academic Nephrology Unit, University of Sheffield Medical School, Sheffield, UK
| | - Manoj K Valluru
- Kidney Genetics Group, Academic Nephrology Unit, University of Sheffield Medical School, Sheffield, UK
| | - Hsiu L Yap
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, Hammersmith Hospital, London, UK
| | - Morgane Lannoy
- Kidney Genetics Group, Academic Nephrology Unit, University of Sheffield Medical School, Sheffield, UK
| | - Amirreza Haghighi
- Division of Nephrology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Roslyn J Simms
- Kidney Genetics Group, Academic Nephrology Unit, University of Sheffield Medical School, Sheffield, UK
| | - Frederick W K Tam
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, Hammersmith Hospital, London, UK
| | - York Pei
- Division of Nephrology, University Health Network, University of Toronto, Toronto, Ontario, Canada.
| | - Albert C M Ong
- Kidney Genetics Group, Academic Nephrology Unit, University of Sheffield Medical School, Sheffield, UK.
| |
Collapse
|
47
|
Vychytilova-Faltejskova P, Slaby O. MicroRNA-215: From biology to theranostic applications. Mol Aspects Med 2019; 70:72-89. [DOI: 10.1016/j.mam.2019.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/10/2019] [Accepted: 03/17/2019] [Indexed: 02/07/2023]
|
48
|
Tapia-Castillo A, Guanzon D, Palma C, Lai A, Barros E, Allende F, Vecchiola A, Fardella CE, Salomón C, Carvajal CA. Downregulation of exosomal miR-192-5p and miR-204-5p in subjects with nonclassic apparent mineralocorticoid excess. J Transl Med 2019; 17:392. [PMID: 31775784 PMCID: PMC6880399 DOI: 10.1186/s12967-019-02143-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/15/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The "nonclassic" apparent mineralocorticoid excess (NC-AME) has been identified in approximately 7% of general population. This phenotype is characterized by low plasma renin activity (PRA), high serum cortisol (F) to cortisone (E) ratio, low cortisone, high Fractional Excretion of potassium (FEK) and normal-elevated systolic blood pressure (SBP). An early detection and/or identification of novel biomarkers of this phenotype could avoid the progression or future complications leading to arterial hypertension. Isolation of extracellular vesicles, such as exosomes, in specific biofluids support the identification of tissue-specific RNA and miRNA, which may be useful as novel biomarkers. Our aim was to identify miRNAs within urinary exosomes associated to the NC-AME phenotype. METHODS We perform a cross-sectional study in a primary care cohort of 127 Chilean subjects. We measured BP, serum cortisol, cortisone, aldosterone, PRA. According to the previous reported, a subgroup of subjects was classified as NC-AME (n = 10). Urinary exosomes were isolated and miRNA cargo was sequenced by Illumina-NextSeq-500. RESULTS We found that NC-AME subjects had lower cortisone (p < 0.0001), higher F/E ratio (p < 0.0001), lower serum potassium (p = 0.009) and higher FEK 24 h (p = 0.03) than controls. We found miR-204-5p (fold-change = 0.115; p 0.001) and miR-192-5p (fold-change = 0.246; p 0.03) are both significantly downregulated in NC-AME. miR-192-5p expression was correlated with PRA (r = 0.45; p 0.028) and miR-204-5p expression with SBP (r = - 0.48, p 0.027) and F/E ratio (r = - 0.48; p 0.026). CONCLUSIONS These findings could support a potential role of these miRNAs as regulators and novel biomarkers of the NC-AME phenotype.
Collapse
Affiliation(s)
- Alejandra Tapia-Castillo
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, piso 4, Santiago, 8330077, Chile
- Centro Traslacional de Endocrinología (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
| | - Dominic Guanzon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Carlos Palma
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Andrew Lai
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Eric Barros
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, piso 4, Santiago, 8330077, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
| | - Fidel Allende
- Centro Traslacional de Endocrinología (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Clinical Laboratories, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrea Vecchiola
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, piso 4, Santiago, 8330077, Chile
- Centro Traslacional de Endocrinología (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
| | - Carlos E Fardella
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, piso 4, Santiago, 8330077, Chile
- Centro Traslacional de Endocrinología (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
| | - Carlos Salomón
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, 4029, Australia
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | - Cristian A Carvajal
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, piso 4, Santiago, 8330077, Chile.
- Centro Traslacional de Endocrinología (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy (IMII-ICM), Santiago, Chile.
| |
Collapse
|
49
|
The Role of MicroRNAs in Selected Forms of Glomerulonephritis. Int J Mol Sci 2019; 20:ijms20205050. [PMID: 31614644 PMCID: PMC6834307 DOI: 10.3390/ijms20205050] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/05/2019] [Accepted: 10/09/2019] [Indexed: 02/08/2023] Open
Abstract
Glomerulonephritis (GN) represents a collection of kidney diseases characterized by inflammation within the renal glomeruli and small blood vessels. The lesions that occur in other nephron structures mainly result from the harmful effects of proteinuria. In recent years, an emphasis has been placed on gaining a better insight into the pathogenesis and pathophysiology of GN in order to facilitate diagnoses and provide efficient and targeted treatments of the disease. Owing to the advanced molecular and genetic diagnostic techniques available today, researchers have been able to elucidate that most cases of GN are determined by genetic risk factors and are associated with the abnormal functioning of the immune system (the immunologically mediated forms of GN). MicroRNAs (miRNAs) are a group of single-stranded, non-coding molecules, approximately 20 nucleotides in length, that act as regulatory factors in the post-transcriptional processes capable of regulating the expression of multiple genes. In this paper we present the available research aiming to determine effects of miRNAs on the development and progression of GN and discuss the potential role of miRNAs as new diagnostic markers and therapeutic targets.
Collapse
|
50
|
Hassan MG, Morise F, Osman NA, Salam LA, Yehia H, Hamdi M, El Husseiny NM, NasrAllah MM. Micro RNA-192 Is Negatively Associated With Cardiovascular Events Among Wait-Listed Potential Kidney Transplant Recipients on Hemodialysis Over a 5-year Follow-up Period. Transplant Proc 2019; 51:2237-2240. [PMID: 31399202 DOI: 10.1016/j.transproceed.2019.02.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/29/2019] [Accepted: 02/17/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Patients with chronic renal disease are susceptible to accelerated vascular calcification and cardiovascular morbidity and mortality. Micro RNAs (miRNAs) have been linked to the pathogenesis of cardiovascular diseases in the general population. AIM This study was carried out to evaluate the link between miRNA 192 and vascular calcification, pre-existing as well as newly occurring major adverse cardiovascular events, and mortality among hemodialysis patients who are also considered to be potential kidney transplant recipients. METHODS We screened 64 potential transplant recipients on hemodialysis at our university hospital. Pre-existing overt cardiovascular disease was recorded; new adverse cardiovascular events and all causes of death over an observational period of 5 years were prospectively followed. Vascular calcification was measured in the aorta using computerized tomography scans, and micro RNA 192 was measured. RESULTS The final study population included 55 patients followed for 63 months. Micro RNA 192 was significantly lower in patients who had preexisting cardiovascular disease (P = .015) as well and in all patients who had experienced any event by the end of the observational period (P = .012). A multiregression analysis model including micro RNA, age, dialysis vintage, intradialytic hypotension, vascular calcification, diabetes, systolic blood pressure, and smoking found the only independently correlating factor to cardiovascular events in this model to be micro RNA (β = -0.286, P = .05). CONCLUSIONS MiRNA 192 levels are significantly lower among patients experiencing cardiovascular events while on hemodialysis awaiting kidney transplantation.
Collapse
Affiliation(s)
- Mona G Hassan
- Department of Nephrology & Department of Internal Medicine, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
| | - Fadia Morise
- Department of Nephrology & Department of Internal Medicine, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
| | - Noha A Osman
- Department of Nephrology, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
| | - Lobna Abdel Salam
- Genome Unit, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
| | - Hesham Yehia
- Department of Cardiology, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Hamdi
- Department of Critical Care, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
| | - Noha M El Husseiny
- Department of Internal Medicine, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
| | - M M NasrAllah
- Department of Nephrology, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|