1
|
Biggs D, Chen CM, Davies B. Targeted Integration of Transgenes at the Mouse Gt(ROSA)26Sor Locus. Methods Mol Biol 2023; 2631:299-323. [PMID: 36995674 DOI: 10.1007/978-1-0716-2990-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
The targeting of transgenic constructs at single copy into neutral genomic loci avoids the unpredictable outcomes associated with conventional random integration approaches. The Gt(ROSA)26Sor locus on chromosome 6 has been used many times for the integration of transgenic constructs and is known to be permissive for transgene expression and disruption of the gene is not associated with a known phenotype. Furthermore, the transcript made from the Gt(ROSA)26Sor locus is ubiquitously expressed and subsequently the locus can be used to drive the ubiquitous expression of transgenes.Here we report a protocol for the generation of targeted transgenic alleles at Gt(ROSA)26Sor, taking as an example a conditional overexpression allele, by PhiC31 integrase/recombinase-mediated cassette exchange of an engineered Gt(ROSA)26Sor locus in mouse embryonic stem cells. The overexpression allele is initially silenced by the presence of a loxP flanked stop sequence but can be strongly activated through the action of Cre recombinase.
Collapse
Affiliation(s)
- Daniel Biggs
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Chiann-Mun Chen
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Benjamin Davies
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- The Francis Crick Institute, London, UK.
| |
Collapse
|
2
|
Malaguti M, Portero Migueles R, Annoh J, Sadurska D, Blin G, Lowell S. SyNPL: Synthetic Notch pluripotent cell lines to monitor and manipulate cell interactions in vitro and in vivo. Development 2022; 149:275525. [PMID: 35616331 PMCID: PMC9270970 DOI: 10.1242/dev.200226] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/13/2022] [Indexed: 12/11/2022]
Abstract
Cell-cell interactions govern differentiation and cell competition in pluripotent cells during early development, but the investigation of such processes is hindered by a lack of efficient analysis tools. Here, we introduce SyNPL: clonal pluripotent stem cell lines that employ optimised Synthetic Notch (SynNotch) technology to report cell-cell interactions between engineered ‘sender’ and ‘receiver’ cells in cultured pluripotent cells and chimaeric mouse embryos. A modular design makes it straightforward to adapt the system for programming differentiation decisions non-cell-autonomously in receiver cells in response to direct contact with sender cells. We demonstrate the utility of this system by enforcing neuronal differentiation at the boundary between two cell populations. In summary, we provide a new adaptation of SynNotch technology that could be used to identify cell interactions and to profile changes in gene or protein expression that result from direct cell-cell contact with defined cell populations in culture and in early embryos, and that can be customised to generate synthetic patterning of cell fate decisions. Summary: Optimised Synthetic Notch circuitry in mouse pluripotent stem cells provides a modular tool with which to monitor cell-cell interactions and program synthetic patterning of cell fates in culture and in embryos.
Collapse
Affiliation(s)
- Mattias Malaguti
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Rosa Portero Migueles
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Jennifer Annoh
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Daina Sadurska
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Guillaume Blin
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Sally Lowell
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| |
Collapse
|
3
|
Mroß C, Marko M, Munck M, Glöckner G, Motameny S, Altmüller J, Noegel AA, Eichinger L, Peche VS, Neumann S. Depletion of Nesprin-2 is associated with an embryonic lethal phenotype in mice. Nucleus 2019; 9:503-515. [PMID: 30220251 PMCID: PMC6244730 DOI: 10.1080/19491034.2018.1523664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Nesprin-2 is a nuclear envelope component and provides a link between cytoskeletal components of the cytoplasm and the nucleoplasm. Several isoforms are generated from its gene Syne2. Loss of the largest isoform Nesprin-2 Giant in mice is associated with a skin phenotype and altered wound healing, loss of C-terminal isoforms in mice leads to cardiomyopathies and neurological defects. Here we attempted to establish mice with an inducible knockout of all Nesprin-2 isoforms by inserting shRNA encoding sequences targeting the N- and C-terminus into the ROSA26 locus of mice. This caused early embryonic death of the animals harboring the mutant allele, which was presumably due to leaky expression of the shRNAs. Mutant embryos were only observed before E13. They had an altered appearance and were smaller in size than their wild type littermates. From this we conclude that the Nesprin-2 gene function is crucial during embryonic growth, differentiation and organogenesis.
Collapse
Affiliation(s)
- Carmen Mroß
- a Institute of Biochemistry I, Medical Faculty , University Hospital Cologne; Center for Molecular Medicine Cologne (CMMC) and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) , Koeln , Germany
| | - Marija Marko
- a Institute of Biochemistry I, Medical Faculty , University Hospital Cologne; Center for Molecular Medicine Cologne (CMMC) and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) , Koeln , Germany
| | - Martina Munck
- a Institute of Biochemistry I, Medical Faculty , University Hospital Cologne; Center for Molecular Medicine Cologne (CMMC) and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) , Koeln , Germany
| | - Gernot Glöckner
- a Institute of Biochemistry I, Medical Faculty , University Hospital Cologne; Center for Molecular Medicine Cologne (CMMC) and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) , Koeln , Germany
| | - Susanne Motameny
- b Cologne Center for Genomics (CCG) , University of Cologne , Koeln , Germany
| | - Janine Altmüller
- b Cologne Center for Genomics (CCG) , University of Cologne , Koeln , Germany
| | - Angelika A Noegel
- a Institute of Biochemistry I, Medical Faculty , University Hospital Cologne; Center for Molecular Medicine Cologne (CMMC) and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) , Koeln , Germany
| | - Ludwig Eichinger
- a Institute of Biochemistry I, Medical Faculty , University Hospital Cologne; Center for Molecular Medicine Cologne (CMMC) and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) , Koeln , Germany
| | - Vivek S Peche
- a Institute of Biochemistry I, Medical Faculty , University Hospital Cologne; Center for Molecular Medicine Cologne (CMMC) and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) , Koeln , Germany
| | - Sascha Neumann
- a Institute of Biochemistry I, Medical Faculty , University Hospital Cologne; Center for Molecular Medicine Cologne (CMMC) and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) , Koeln , Germany
| |
Collapse
|
4
|
Ogorodnikov A, Levin M, Tattikota S, Tokalov S, Hoque M, Scherzinger D, Marini F, Poetsch A, Binder H, Macher-Göppinger S, Probst HC, Tian B, Schaefer M, Lackner KJ, Westermann F, Danckwardt S. Transcriptome 3'end organization by PCF11 links alternative polyadenylation to formation and neuronal differentiation of neuroblastoma. Nat Commun 2018; 9:5331. [PMID: 30552333 PMCID: PMC6294251 DOI: 10.1038/s41467-018-07580-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 11/08/2018] [Indexed: 12/12/2022] Open
Abstract
Diversification at the transcriptome 3'end is an important and evolutionarily conserved layer of gene regulation associated with differentiation and dedifferentiation processes. Here, we identify extensive transcriptome 3'end-alterations in neuroblastoma, a tumour entity with a paucity of recurrent somatic mutations and an unusually high frequency of spontaneous regression. Utilising extensive RNAi-screening we reveal the landscape and drivers of transcriptome 3'end-diversification, discovering PCF11 as critical regulator, directing alternative polyadenylation (APA) of hundreds of transcripts including a differentiation RNA-operon. PCF11 shapes inputs converging on WNT-signalling, and governs cell cycle, proliferation, apoptosis and neurodifferentiation. Postnatal PCF11 down-regulation induces a neurodifferentiation program, and low-level PCF11 in neuroblastoma associates with favourable outcome and spontaneous tumour regression. Our findings document a critical role for APA in tumorigenesis and describe a novel mechanism for cell fate reprogramming in neuroblastoma with potentially important clinical implications. We provide an interactive data repository of transcriptome-wide APA covering > 170 RNAis, and an APA-network map with regulatory hubs.
Collapse
Affiliation(s)
- Anton Ogorodnikov
- Posttranscriptional Gene Regulation, Cancer Research and Experimental Haemostasis, University Medical Centre Mainz, Mainz, 55131, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Mainz, Mainz, 55131, Germany
- Centre for Thrombosis and Haemostasis (CTH), University Medical Centre Mainz, Mainz, 55131, Germany
- McManus Laboratory, University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - Michal Levin
- Posttranscriptional Gene Regulation, Cancer Research and Experimental Haemostasis, University Medical Centre Mainz, Mainz, 55131, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Mainz, Mainz, 55131, Germany
- Centre for Thrombosis and Haemostasis (CTH), University Medical Centre Mainz, Mainz, 55131, Germany
| | - Surendra Tattikota
- Posttranscriptional Gene Regulation, Cancer Research and Experimental Haemostasis, University Medical Centre Mainz, Mainz, 55131, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Mainz, Mainz, 55131, Germany
- Centre for Thrombosis and Haemostasis (CTH), University Medical Centre Mainz, Mainz, 55131, Germany
| | - Sergey Tokalov
- Posttranscriptional Gene Regulation, Cancer Research and Experimental Haemostasis, University Medical Centre Mainz, Mainz, 55131, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Mainz, Mainz, 55131, Germany
- Centre for Thrombosis and Haemostasis (CTH), University Medical Centre Mainz, Mainz, 55131, Germany
| | - Mainul Hoque
- Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Denise Scherzinger
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre Mainz, Mainz, 55131, Germany
| | - Federico Marini
- Centre for Thrombosis and Haemostasis (CTH), University Medical Centre Mainz, Mainz, 55131, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre Mainz, Mainz, 55131, Germany
| | - Ansgar Poetsch
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
- Institute for Plant Biochemistry, Ruhr-University Bochum, Bochum, 44801, Germany
- School of Biomedical & Healthcare Sciences, Plymouth University, Plymouth, PL4 8AA, United Kingdom
| | - Harald Binder
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, 79104, Germany
| | | | - Hans Christian Probst
- Institute for Immunology, University Medical Centre Mainz, Mainz, 55131, Germany
- Research Center for Immunotherapy (FZI), University Medical Centre Mainz, Mainz, 55131, Germany
| | - Bin Tian
- Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Michael Schaefer
- Department of Anaesthesiology and Research Centre Translational Neurosciences, University Medical Centre Mainz, Mainz, 55131, Germany
| | - Karl J Lackner
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Mainz, Mainz, 55131, Germany
| | - Frank Westermann
- Division of Neuroblastoma Genomics, German Cancer Research Centre (DKFZ), Heidelberg, 69120, Germany
| | - Sven Danckwardt
- Posttranscriptional Gene Regulation, Cancer Research and Experimental Haemostasis, University Medical Centre Mainz, Mainz, 55131, Germany.
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Mainz, Mainz, 55131, Germany.
- Centre for Thrombosis and Haemostasis (CTH), University Medical Centre Mainz, Mainz, 55131, Germany.
- German Centre for Cardiovascular Research (DZHK), Mainz, 55131, Germany.
| |
Collapse
|
5
|
Chandran V, Gao K, Swarup V, Versano R, Dong H, Jordan MC, Geschwind DH. Inducible and reversible phenotypes in a novel mouse model of Friedreich's Ataxia. eLife 2017; 6:e30054. [PMID: 29257745 PMCID: PMC5736353 DOI: 10.7554/elife.30054] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/20/2017] [Indexed: 12/13/2022] Open
Abstract
Friedreich's ataxia (FRDA), the most common inherited ataxia, is caused by recessive mutations that reduce the levels of frataxin (FXN), a mitochondrial iron binding protein. We developed an inducible mouse model of Fxn deficiency that enabled us to control the onset and progression of disease phenotypes by the modulation of Fxn levels. Systemic knockdown of Fxn in adult mice led to multiple phenotypes paralleling those observed in human patients across multiple organ systems. By reversing knockdown after clinical features appear, we were able to determine to what extent observed phenotypes represent reversible cellular dysfunction. Remarkably, upon restoration of near wild-type FXN levels, we observed significant recovery of function, associated pathology and transcriptomic dysregulation even after substantial motor dysfunction and pathology were observed. This model will be of broad utility in therapeutic development and in refining our understanding of the relative contribution of reversible cellular dysfunction at different stages in disease.
Collapse
Affiliation(s)
- Vijayendran Chandran
- Program in Neurogenetics, Department of Neurology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Kun Gao
- Program in Neurogenetics, Department of Neurology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Vivek Swarup
- Program in Neurogenetics, Department of Neurology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Revital Versano
- Program in Neurogenetics, Department of Neurology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Hongmei Dong
- Program in Neurogenetics, Department of Neurology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Maria C Jordan
- Department of Physiology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
- Department of Human Genetics, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
6
|
Hastings NB, Wang X, Song L, Butts BD, Grotz D, Hargreaves R, Fred Hess J, Hong KLK, Huang CRR, Hyde L, Laverty M, Lee J, Levitan D, Lu SX, Maguire M, Mahadomrongkul V, McEachern EJ, Ouyang X, Rosahl TW, Selnick H, Stanton M, Terracina G, Vocadlo DJ, Wang G, Duffy JL, Parker EM, Zhang L. Inhibition of O-GlcNAcase leads to elevation of O-GlcNAc tau and reduction of tauopathy and cerebrospinal fluid tau in rTg4510 mice. Mol Neurodegener 2017; 12:39. [PMID: 28521765 PMCID: PMC5437664 DOI: 10.1186/s13024-017-0181-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 05/09/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Hyperphosphorylation of microtubule-associated protein tau is a distinct feature of neurofibrillary tangles (NFTs) that are the hallmark of neurodegenerative tauopathies. O-GlcNAcylation is a lesser known post-translational modification of tau that involves the addition of N-acetylglucosamine onto serine and threonine residues. Inhibition of O-GlcNAcase (OGA), the enzyme responsible for the removal of O-GlcNAc modification, has been shown to reduce tau pathology in several transgenic models. Clarifying the underlying mechanism by which OGA inhibition leads to the reduction of pathological tau and identifying translatable measures to guide human dosing and efficacy determination would significantly facilitate the clinical development of OGA inhibitors for the treatment of tauopathies. METHODS Genetic and pharmacological approaches are used to evaluate the pharmacodynamic response of OGA inhibition. A panel of quantitative biochemical assays is established to assess the effect of OGA inhibition on pathological tau reduction. A "click" chemistry labeling method is developed for the detection of O-GlcNAcylated tau. RESULTS Substantial (>80%) OGA inhibition is required to observe a measurable increase in O-GlcNAcylated proteins in the brain. Sustained and substantial OGA inhibition via chronic treatment with Thiamet G leads to a significant reduction of aggregated tau and several phosphorylated tau species in the insoluble fraction of rTg4510 mouse brain and total tau in cerebrospinal fluid (CSF). O-GlcNAcylated tau is elevated by Thiamet G treatment and is found primarily in the soluble 55 kD tau species, but not in the insoluble 64 kD tau species thought as the pathological entity. CONCLUSION The present study demonstrates that chronic inhibition of OGA reduces pathological tau in the brain and total tau in the CSF of rTg4510 mice, most likely by directly increasing O-GlcNAcylation of tau and thereby maintaining tau in the soluble, non-toxic form by reducing tau aggregation and the accompanying panoply of deleterious post-translational modifications. These results clarify some conflicting observations regarding the effects and mechanism of OGA inhibition on tau pathology, provide pharmacodynamic tools to guide human dosing and identify CSF total tau as a potential translational biomarker. Therefore, this study provides additional support to develop OGA inhibitors as a treatment for Alzheimer's disease and other neurodegenerative tauopathies.
Collapse
Affiliation(s)
| | - Xiaohai Wang
- Department of In Vivo Pharmacology, West Point, PA USA
| | - Lixin Song
- Department of Neuroscience, Kenilworth, NJ USA
| | | | - Diane Grotz
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Kenilworth, NJ USA
| | | | | | | | | | - Lynn Hyde
- Department of Neuroscience, Kenilworth, NJ USA
| | | | - Julie Lee
- Department of Neuroscience, Kenilworth, NJ USA
| | - Diane Levitan
- Department of Molecular Biomarkers, Kenilworth, NJ USA
| | | | | | | | | | | | | | - Harold Selnick
- Discovery Chemistry, Merck Research Laboratories, West Point, PA USA
| | | | | | | | | | - Joseph L. Duffy
- Discovery Chemistry Merck Research Laboratories, Kenilworth, NJ USA
| | | | - Lili Zhang
- Department of Neuroscience, Kenilworth, NJ USA
| |
Collapse
|
7
|
Conway JRW, Warren SC, Timpson P. Context-dependent intravital imaging of therapeutic response using intramolecular FRET biosensors. Methods 2017; 128:78-94. [PMID: 28435000 DOI: 10.1016/j.ymeth.2017.04.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/13/2017] [Accepted: 04/08/2017] [Indexed: 12/18/2022] Open
Abstract
Intravital microscopy represents a more physiologically relevant method for assessing therapeutic response. However, the movement into an in vivo setting brings with it several additional considerations, the primary being the context in which drug activity is assessed. Microenvironmental factors, such as hypoxia, pH, fibrosis, immune infiltration and stromal interactions have all been shown to have pronounced effects on drug activity in a more complex setting, which is often lost in simpler two- or three-dimensional assays. Here we present a practical guide for the application of intravital microscopy, looking at the available fluorescent reporters and their respective expression systems and analysis considerations. Moving in vivo, we also discuss the microscopy set up and methods available for overlaying microenvironmental context to the experimental readouts. This enables a smooth transition into applying higher fidelity intravital imaging to improve the drug discovery process.
Collapse
Affiliation(s)
- James R W Conway
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2010, Australia
| | - Sean C Warren
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2010, Australia
| | - Paul Timpson
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2010, Australia.
| |
Collapse
|
8
|
Wang Y, Jin T, Dai X, Yan D, Peng Z. Histone deacetylase enzyme silencing using shRNAs enhances radiosensitivity of SW579 thyroid cancer cells. Mol Med Rep 2016; 14:3509-16. [PMID: 27600599 PMCID: PMC5042794 DOI: 10.3892/mmr.2016.5711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 04/15/2016] [Indexed: 12/31/2022] Open
Abstract
The aim of the present study was to screen the enzymes that are associated with the radiosensitivity of SW579 thyroid cancer cells, and investigate whether radiation, combined with specific RNA interference on the screened enzymes, enhances radiosensitivity of SW579 thyroid cancer cells. Quantitative polymerase chain reaction (qPCR) was used to analyze epigenetic enzyme expression changes before and after radiotherapy, and four enzymes, histone deacetylase 1 (HDAC1), HDAC2, HDAC4 and HDAC6 were screened. Western blot analysis was performed to analyze the change in HDAC1, HDAC2, HDAC4 and HDAC6 protein expression following radiotherapy. Short hairpin RNA (ShRNA)‑HDAC1, shRNA‑HDAC2, shRNA‑HDAC4 and shRNA‑HDAC6 plasmids were constructed and SW579 cells were transfected with corresponding shRNA‑HDACs. Reverse transcription‑qPCR was used to detect whether downregulation of HDAC mRNAs had been effective. In addition, shRNA and shRNA negative control (NC) pools were established and transfected into the SW579 cells. The samples were divided into four groups; control, trichostatin A, shRNA pool and shRNA NC pool, to analyze the effective enhancement of specific shRNA on radiosensitivity in thyroid cancer cells. The morphological changes were observed in the SW579 cells, and the number of tumor cells decreased markedly in the shRNA pool group compared with that of the other three groups. Therefore, it was concluded that HDACs present a potential target for increasing the sensitivity of thyroid cancer cells to radiotherapy, and shRNA‑HDAC interference combined with radiotherapy promotes the radiosensitivity of tumors.
Collapse
Affiliation(s)
- Ye Wang
- School of Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Tao Jin
- Department of General Surgery, Shanghai General Hospital, Shanghai 200080, P.R. China
| | - Xueming Dai
- Department of General Surgery, Shanghai General Hospital, Shanghai 200080, P.R. China
| | - Dongwang Yan
- Department of General Surgery, Shanghai General Hospital, Shanghai 200080, P.R. China
| | - Zhihai Peng
- School of Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
9
|
Haussecker D. Stacking up CRISPR against RNAi for therapeutic gene inhibition. FEBS J 2016; 283:3249-60. [PMID: 27090508 DOI: 10.1111/febs.13742] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/10/2016] [Accepted: 04/18/2016] [Indexed: 12/16/2022]
Abstract
Both RNA interference (RNAi) and clustered regularly-interspaced short palindromic repeats (CRISPR) technologies allow for the sequence-specific inhibition of gene function and therefore have the potential to be used as therapeutic modalities. By judging the current public and scientific journal interest, it would seem that CRISPR, by enabling clean, durable knockouts, will dominate therapeutic gene inhibition, also at the expense of RNAi. This review aims to look behind prevailing sentiments and to more clearly define the likely scope of the therapeutic applications of the more recently developed CRISPR technology and its relative strengths and weaknesses with regards to RNAi. It is found that largely because of their broadly overlapping delivery constraints, while CRISPR presents formidable competition for DNA-directed RNAi strategies, its impact on RNAi therapeutics triggered by synthetic oligonucleotides will likely be more moderate. Instead, RNAi and genome editing, and in particular CRISPR, are poised to jointly promote a further shift toward sequence-targeted precision medicines.
Collapse
|
10
|
Lysine-specific demethylase 1 regulates differentiation onset and migration of trophoblast stem cells. Nat Commun 2016; 5:3174. [PMID: 24448552 DOI: 10.1038/ncomms4174] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 12/20/2013] [Indexed: 12/22/2022] Open
Abstract
Propagation and differentiation of stem cell populations are tightly regulated to provide sufficient cell numbers for tissue formation while maintaining the stem cell pool. Embryonic parts of the mammalian placenta are generated from differentiating trophoblast stem cells (TSCs) invading the maternal decidua. Here we demonstrate that lysine-specific demethylase 1 (Lsd1) regulates differentiation onset of TSCs. Deletion of Lsd1 in mice results in the reduction of TSC number, diminished formation of trophectoderm tissues and early embryonic lethality. Lsd1-deficient TSCs display features of differentiation initiation, including alterations of cell morphology, and increased migration and invasion. We show that increased TSC motility is mediated by the premature expression of the transcription factor Ovol2 that is directly repressed by Lsd1 in undifferentiated cells. In summary, our data demonstrate that the epigenetic modifier Lsd1 functions as a gatekeeper for the differentiation onset of TSCs, whereby differentiation-associated cell migration is controlled by the transcription factor Ovol2.
Collapse
|
11
|
Zdzieblo D, Li X, Lin Q, Zenke M, Illich DJ, Becker M, Müller AM. Pcgf6, a polycomb group protein, regulates mesodermal lineage differentiation in murine ESCs and functions in iPS reprogramming. Stem Cells 2015; 32:3112-25. [PMID: 25187489 DOI: 10.1002/stem.1826] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/23/2014] [Indexed: 01/04/2023]
Abstract
Polycomb group (PcG) proteins comprise evolutionary conserved factors with essential functions for embryonic development and adult stem cells. PcG proteins constitute two main multiprotein polycomb repressive complexes (PRC1 and PRC2) that operate in a hierarchical manner to silence gene transcription. Functionally distinct PRC1 complexes are defined by Polycomb group RING finger protein (Pcgf) paralogs. So far, six Pcgf paralogs (Pcgf1-6) have been identified as defining components of different PCR1-type complexes. Paralog-specific functions are not well understood. Here, we show that Pcgf6 is the only Pcgf paralog with high expression in undifferentiated embryonic stem cells (ESCs). Upon differentiation Pcgf6 expression declines. Following Pcgf6 kockdown (KD) in ESCs, the expression of pluripotency genes decreased, while mesodermal- and spermatogenesis-specific genes were derepressed. Concomitantly with the elevated expression of mesodermal lineage markers, Pcgf6 KD ESCs showed increased hemangioblastic and hematopoietic activities upon differentiation suggesting a function of Pcgf6 in repressing mesodermal-specific lineage genes. Consistant with a role in pluripotency, Pcgf6 replaced Sox2 in the generation of germline-competent induced pluripotent stem (iPS) cells. Furthermore, Pcgf6 KD in mouse embryonic fibroblasts reduced the formation of ESC-like colonies in OSKM-driven reprogramming. Together, these analyses indicate that Pcgf6 is nonredundantly involved in maintaining the pluripotent nature of ESCs and it functions in iPS reprogramming.
Collapse
Affiliation(s)
- D Zdzieblo
- Institute for Medical Radiation and Cell Research (MSZ) in the Center of Experimental Molecular Medicine (ZEMM), University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
Dolatshad H, Biggs D, Diaz R, Hortin N, Preece C, Davies B. A versatile transgenic allele for mouse overexpression studies. Mamm Genome 2015; 26:598-608. [PMID: 26369329 PMCID: PMC4653235 DOI: 10.1007/s00335-015-9602-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/17/2015] [Indexed: 12/31/2022]
Abstract
For the analysis of gene function in vivo, gene overexpression in the mouse provides an alternative to loss-of-function knock-out approaches and can help reveal phenotypes where compensatory mechanisms are at play. Furthermore, when multiple lines overexpressing a gene-of-interest at varying levels are studied, the consequences of differences in gene dosage can be explored. Despite these advantages, inherent shortcomings in the methodologies used for the generation of gain-of-function transgenic mouse models have limited their application to functional gene analysis, and the necessity for multiple lines comes at a significant animal and financial cost. The targeting of transgenic overexpression constructs at single copy into neutral genomic loci is the preferred method for the generation of such models, which avoids the unpredictable outcomes associated with conventional random integration. However, despite the increased reliability that targeted transgenic methodologies provide, only one expression level results, as defined by the promoter used. Here, we report a new versatile overexpression allele, the promoter-switch allele, which couples PhiC31 integrase-targeted transgenesis with Flp recombinase promoter switching and Cre recombinase activation. These recombination switches allow the conversion of different overexpression alleles, combining the advantages of transgenic targeting with tunable transgene expression. With this approach, phenotype severity can be correlated with transgene expression in a single mouse model, providing a cost-effective solution amenable to systematic gain-of-function studies.
Collapse
Affiliation(s)
- Hamid Dolatshad
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Daniel Biggs
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Rebeca Diaz
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Nicole Hortin
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Christopher Preece
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Benjamin Davies
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.
| |
Collapse
|
13
|
Candlish M, Angelis RD, Götz V, Boehm U. Gene Targeting in Neuroendocrinology. Compr Physiol 2015; 5:1645-76. [DOI: 10.1002/cphy.c140079] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
CRISPR/Cas9-based generation of knockdown mice by intronic insertion of artificial microRNA using longer single-stranded DNA. Sci Rep 2015; 5:12799. [PMID: 26242611 PMCID: PMC4525291 DOI: 10.1038/srep12799] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 07/10/2015] [Indexed: 11/08/2022] Open
Abstract
Knockdown mouse models, where gene dosages can be modulated, provide valuable insights into gene function. Typically, such models are generated by embryonic stem (ES) cell-based targeted insertion, or pronuclear injection, of the knockdown expression cassette. However, these methods are associated with laborious and time-consuming steps, such as the generation of large constructs with elements needed for expression of a functional RNAi-cassette, ES-cell handling, or screening for mice with the desired knockdown effect. Here, we demonstrate that reliable knockdown models can be generated by targeted insertion of artificial microRNA (amiRNA) sequences into a specific locus in the genome [such as intronic regions of endogenous eukaryotic translation elongation factor 2 (eEF-2) gene] using the Clustered Regularly Interspaced Short Palindromic Repeats/Crispr associated 9 (CRISPR/Cas9) system. We used in vitro synthesized single-stranded DNAs (about 0.5-kb long) that code for amiRNA sequences as repair templates in CRISPR/Cas9 mutagenesis. Using this approach we demonstrate that amiRNA cassettes against exogenous (eGFP) or endogenous [orthodenticle homeobox 2 (Otx2)] genes can be efficiently targeted to a predetermined locus in the genome and result in knockdown of gene expression. We also provide a strategy to establish conditional knockdown models with this method.
Collapse
|
15
|
Ohtsuka M, Miura H, Mochida K, Hirose M, Hasegawa A, Ogura A, Mizutani R, Kimura M, Isotani A, Ikawa M, Sato M, Gurumurthy CB. One-step generation of multiple transgenic mouse lines using an improved Pronuclear Injection-based Targeted Transgenesis (i-PITT). BMC Genomics 2015; 16:274. [PMID: 25887549 PMCID: PMC4404087 DOI: 10.1186/s12864-015-1432-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 03/04/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The pronuclear injection (PI) is the simplest and widely used method to generate transgenic (Tg) mice. Unfortunately, PI-based Tg mice show uncertain transgene expression due to random transgene insertion in the genome, usually with multiple copies. Thus, typically at least three or more Tg lines are produced by injecting over 200 zygotes and the best line/s among them are selected through laborious screening steps. Recently, we developed technologies using Cre-loxP system that allow targeted insertion of single-copy transgene into a predetermined locus through PI. We termed the method as PI-based Targeted Transgenesis (PITT). A similar method using PhiC31-attP/B system was reported subsequently. RESULTS Here, we developed an improved-PITT (i-PITT) method by combining Cre-loxP, PhiC31-attP/B and FLP-FRT systems directly under C57BL/6N inbred strain, unlike the mixed strain used in previous reports. The targeted Tg efficiency in the i-PITT typically ranged from 10 to 30%, with 47 and 62% in two of the sessions, which is by-far the best Tg rate reported. Furthermore, the system could generate multiple Tg mice simultaneously. We demonstrate that injection of up to three different Tg cassettes in a single injection session into as less as 181 zygotes resulted in production of all three separate Tg DNA containing targeted Tg mice. CONCLUSIONS The i-PITT system offers several advantages compared to previous methods: multiplexing capability (i-PITT is the only targeted-transgenic method that is proven to generate multiple different transgenic lines simultaneously), very high efficiency of targeted-transgenesis (up to 62%), significantly reduces animal numbers in mouse-transgenesis and the system is developed under C57BL/6N strain, the most commonly used pure genetic background. Further, the i-PITT system is freely accessible to scientific community.
Collapse
Affiliation(s)
- Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
| | - Hiromi Miura
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
| | - Keiji Mochida
- RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan.
| | - Michiko Hirose
- RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan.
| | - Ayumi Hasegawa
- RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan.
| | - Atsuo Ogura
- RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan. .,Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki, 305-8572, Japan.
| | - Ryuta Mizutani
- Graduate School of Engineering, Tokai University, Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan.
| | - Minoru Kimura
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
| | - Ayako Isotani
- Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544, Japan.
| | - Channabasavaiah B Gurumurthy
- Mouse Genome Engineering Core Facility, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
16
|
Kumar D, Boehm U. Conditional genetic transsynaptic tracing in the embryonic mouse brain. J Vis Exp 2014. [PMID: 25549135 DOI: 10.3791/52487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Anatomical path tracing is of pivotal importance to decipher the relationship between brain and behavior. Unraveling the formation of neural circuits during embryonic maturation of the brain however is technically challenging because most transsynaptic tracing methods developed to date depend on stereotaxic tracer injection. To overcome this problem, we developed a binary genetic strategy for conditional genetic transsynaptic tracing in the mouse brain. Towards this end we generated two complementary knock-in mouse strains to selectively express the bidirectional transsynaptic tracer barley lectin (BL) and the retrograde transsynaptic tracer Tetanus Toxin fragment C from the ROSA26 locus after Cre-mediated recombination. Cell-specific tracer production in these mice is genetically encoded and does not depend on mechanical tracer injection. Therefore our experimental approach is suitable to study neural circuit formation in the embryonic murine brain. Furthermore, because tracer transfer across synapses depends on synaptic activity, these mouse strains can be used to analyze the communication between genetically defined neuronal populations during brain development at a single cell resolution. Here we provide a detailed protocol for transsynaptic tracing in mouse embryos using the novel recombinant ROSA26 alleles. We have utilized this experimental technique in order to delineate the neural circuitry underlying maturation of the reproductive axis in the developing female mouse brain.
Collapse
Affiliation(s)
- Devesh Kumar
- Department of Pharmacology and Toxicology, University of Saarland School of Medicine;
| | - Ulrich Boehm
- Department of Pharmacology and Toxicology, University of Saarland School of Medicine;
| |
Collapse
|
17
|
piggyBac transposon-derived targeting shRNA interference against the Bombyx mori nucleopolyhedrovirus (BmNPV). Mol Biol Rep 2014; 41:8247-54. [DOI: 10.1007/s11033-014-3726-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/03/2014] [Indexed: 12/13/2022]
|
18
|
Lee H. Genetically engineered mouse models for drug development and preclinical trials. Biomol Ther (Seoul) 2014; 22:267-74. [PMID: 25143803 PMCID: PMC4131519 DOI: 10.4062/biomolther.2014.074] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 12/21/2022] Open
Abstract
Drug development and preclinical trials are challenging processes and more than 80% to 90% of drug candidates fail to gain approval from the United States Food and Drug Administration. Predictive and efficient tools are required to discover high quality targets and increase the probability of success in the process of new drug development. One such solution to the challenges faced in the development of new drugs and combination therapies is the use of low-cost and experimentally manageable in vivo animal models. Since the 1980's, scientists have been able to genetically modify the mouse genome by removing or replacing a specific gene, which has improved the identification and validation of target genes of interest. Now genetically engineered mouse models (GEMMs) are widely used and have proved to be a powerful tool in drug discovery processes. This review particularly covers recent fascinating technologies for drug discovery and preclinical trials, targeted transgenesis and RNAi mouse, including application and combination of inducible system. Improvements in technologies and the development of new GEMMs are expected to guide future applications of these models to drug discovery and preclinical trials.
Collapse
Affiliation(s)
- Ho Lee
- Division of Convergence Technology, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 410-769, Republic of Korea
| |
Collapse
|
19
|
Chan AWS. Progress and prospects for genetic modification of nonhuman primate models in biomedical research. ILAR J 2014; 54:211-23. [PMID: 24174443 DOI: 10.1093/ilar/ilt035] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The growing interest of modeling human diseases using genetically modified (transgenic) nonhuman primates (NHPs) is a direct result of NHPs (rhesus macaque, etc.) close relation to humans. NHPs share similar developmental paths with humans in their anatomy, physiology, genetics, and neural functions; and in their cognition, emotion, and social behavior. The NHP model within biomedical research has played an important role in the development of vaccines, assisted reproductive technologies, and new therapies for many diseases. Biomedical research has not been the primary role of NHPs. They have mainly been used for safety evaluation and pharmacokinetics studies, rather than determining therapeutic efficacy. The development of the first transgenic rhesus macaque (2001) revolutionized the role of NHP models in biomedicine. Development of the transgenic NHP model of Huntington's disease (2008), with distinctive clinical features, further suggested the uniqueness of the model system; and the potential role of the NHP model for human genetic disorders. Modeling human genetic diseases using NHPs will continue to thrive because of the latest advances in molecular, genetic, and embryo technologies. NHPs rising role in biomedical research, specifically pre-clinical studies, is foreseeable. The path toward the development of transgenic NHPs and the prospect of transgenic NHPs in their new role in future biomedicine needs to be reviewed. This article will focus on the advancement of transgenic NHPs in the past decade, including transgenic technologies and disease modeling. It will outline new technologies that may have significant impact in future NHP modeling and will conclude with a discussion of the future prospects of the transgenic NHP model.
Collapse
|
20
|
Hematopoietic overexpression of FOG1 does not affect B-cells but reduces the number of circulating eosinophils. PLoS One 2014; 9:e92836. [PMID: 24747299 PMCID: PMC3991581 DOI: 10.1371/journal.pone.0092836] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 02/26/2014] [Indexed: 12/31/2022] Open
Abstract
We have identified expression of the gene encoding the transcriptional coactivator FOG-1 (Friend of GATA-1; Zfpm1, Zinc finger protein multitype 1) in B lymphocytes. We found that FOG-1 expression is directly or indirectly dependent on the B cell-specific coactivator OBF-1 and that it is modulated during B cell development: expression is observed in early but not in late stages of B cell development. To directly test in vivo the role of FOG-1 in B lymphocytes, we developed a novel embryonic stem cell recombination system. For this, we combined homologous recombination with the FLP recombinase activity to rapidly generate embryonic stem cell lines carrying a Cre-inducible transgene at the Rosa26 locus. Using this system, we successfully generated transgenic mice where FOG-1 is conditionally overexpressed in mature B-cells or in the entire hematopoietic system. While overexpression of FOG-1 in B cells did not significantly affect B cell development or function, we found that enforced expression of FOG-1 throughout all hematopoietic lineages led to a reduction in the number of circulating eosinophils, confirming and extending to mammals the known function of FOG-1 in this lineage.
Collapse
|
21
|
Multiple renal cyst development but not situs abnormalities in transgenic RNAi mice against Inv::GFP rescue gene. PLoS One 2014; 9:e89652. [PMID: 24586938 PMCID: PMC3933642 DOI: 10.1371/journal.pone.0089652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 01/27/2014] [Indexed: 12/05/2022] Open
Abstract
In this study we generated RNA interference (RNAi)-mediated gene knockdown transgenic mice (transgenic RNAi mice) against the functional Inv gene. Inv mutant mice show consistently reversed internal organs (situs inversus), multiple renal cysts and neonatal lethality. The Inv::GFP-rescue mice, which introduced the Inv::GFP fusion gene, can rescue inv mutant mice phenotypes. This indicates that the Inv::GFP gene is functional in vivo. To analyze the physiological functions of the Inv gene, and to demonstrate the availability of transgenic RNAi mice, we introduced a short hairpin RNA expression vector against GFP mRNA into Inv::GFP-rescue mice and analyzed the gene silencing effects and Inv functions by examining phenotypes. Transgenic RNAi mice with the Inv::GFP-rescue gene (Inv-KD mice) down-regulated Inv::GFP fusion protein and showed hypomorphic phenotypes of inv mutant mice, such as renal cyst development, but not situs abnormalities or postnatal lethality. This indicates that shRNAi-mediated gene silencing systems that target the tag sequence of the fusion gene work properly in vivo, and suggests that a relatively high level of Inv protein is required for kidney development in contrast to left/right axis determination. Inv::GFP protein was significantly down-regulated in the germ cells of Inv-KD mice testis compared with somatic cells, suggesting the existence of a testicular germ cell-specific enhanced RNAi system that regulates germ cell development. The Inv-KD mouse is useful for studying Inv gene functions in adult tissue that are unable to be analyzed in inv mutant mice showing postnatal lethality. In addition, the shRNA-based gene silencing system against the tag sequence of the fusion gene can be utilized as a new technique to regulate gene expression in either in vitro or in vivo experiments.
Collapse
|
22
|
RNAi-mediated knockdown of IKK1 in transgenic mice using a transgenic construct containing the human H1 promoter. ScientificWorldJournal 2014; 2014:193803. [PMID: 24523631 PMCID: PMC3913291 DOI: 10.1155/2014/193803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/12/2013] [Indexed: 01/16/2023] Open
Abstract
Inhibition of gene expression through siRNAs is a tool increasingly used for the study of gene function in model systems, including transgenic mice. To achieve perdurable effects, the stable expression of siRNAs by an integrated transgenic construct is necessary. For transgenic siRNA expression, promoters transcribed by either RNApol II or III (such as U6 or H1 promoters) can be used. Relatively large amounts of small RNAs synthesis are achieved when using RNApol III promoters, which can be advantageous in knockdown experiments. To study the feasibility of H1 promoter-driven RNAi-expressing constructs for protein knockdown in transgenic mice, we chose IKK1 as the target gene. Our results indicate that constructs containing the H1 promoter are sensitive to the presence of prokaryotic sequences and to transgene position effects, similar to RNApol II promoters-driven constructs. We observed variable expression levels of transgenic siRNA among different tissues and animals and a reduction of up to 80% in IKK1 expression. Furthermore, IKK1 knockdown led to hair follicle alterations. In summary, we show that constructs directed by the H1 promoter can be used for knockdown of genes of interest in different organs and for the generation of animal models complementary to knockout and overexpression models.
Collapse
|
23
|
Bouwman P, van der Gulden H, van der Heijden I, Drost R, Klijn CN, Prasetyanti P, Pieterse M, Wientjens E, Seibler J, Hogervorst FBL, Jonkers J. A high-throughput functional complementation assay for classification of BRCA1 missense variants. Cancer Discov 2013; 3:1142-55. [PMID: 23867111 DOI: 10.1158/2159-8290.cd-13-0094] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Mutations in BRCA1 and BRCA2 account for the majority of hereditary breast and ovarian cancers, and therefore sequence analysis of both genes is routinely conducted in patients with early-onset breast cancer. Besides mutations that clearly abolish protein function or are known to increase cancer risk, a large number of sequence variants of uncertain significance (VUS) have been identified. Although several functional assays for BRCA1 VUSs have been described, thus far it has not been possible to conduct a high-throughput analysis in the context of the full-length protein. We have developed a relatively fast and easy cDNA-based functional assay to classify BRCA1 VUSs based on their ability to functionally complement BRCA1-deficient mouse embryonic stem cells. Using this assay, we have analyzed 74 unclassified BRCA1 missense mutants for which all predicted pathogenic variants are confined to the BRCA1 RING and BRCT domains. SIGNIFICANCE BRCA1 VUSs are frequently found in patients with hereditary breast or ovarian cancer and present a serious problem for clinical geneticists. This article describes the generation, validation, and application of a reliable high-throughput assay for the functional classification of BRCA1 sequence variants of uncertain significance.
Collapse
Affiliation(s)
- Peter Bouwman
- 1Division of Molecular Pathology and Cancer Genomics Centre and 2Department of Pathology, The Netherlands Cancer Institute Amsterdam, The Netherlands; and 3TaconicArtemis GmbH, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Focal segmental glomerulosclerosis is induced by microRNA-193a and its downregulation of WT1. Nat Med 2013; 19:481-7. [PMID: 23502960 DOI: 10.1038/nm.3142] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 02/16/2013] [Indexed: 02/08/2023]
Abstract
Focal segmental glomerulosclerosis (FSGS) is a frequent and severe glomerular disease characterized by destabilization of podocyte foot processes. We report that transgenic expression of the microRNA miR-193a in mice rapidly induces FSGS with extensive podocyte foot process effacement. Mechanistically, miR-193a inhibits the expression of the Wilms' tumor protein (WT1), a transcription factor and master regulator of podocyte differentiation and homeostasis. Decreased expression levels of WT1 lead to downregulation of its target genes PODXL (podocalyxin) and NPHS1 (nephrin), as well as several other genes crucial for the architecture of podocytes, initiating a catastrophic collapse of the entire podocyte-stabilizing system. We found upregulation of miR-193a in isolated glomeruli from individuals with FSGS compared to normal kidneys or individuals with other glomerular diseases. Thus, upregulation of miR-193a provides a new pathogenic mechanism for FSGS and is a potential therapeutic target.
Collapse
|
25
|
In vivo knockdown of TAK1 accelerates bone marrow proliferation/differentiation and induces systemic inflammation. PLoS One 2013; 8:e57348. [PMID: 23505428 PMCID: PMC3591390 DOI: 10.1371/journal.pone.0057348] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 01/21/2013] [Indexed: 11/29/2022] Open
Abstract
TAK1 (TGF-β Activated Kinase 1) is a MAPK kinase kinase, which activates the p38- and JNK-MAPK and NF-κB pathways downstream of receptors such as Toll-Like-, cytokine- and T-cell and B-cell receptors. Representing such an important node in the pro-inflammatory signal-transduction network, the function of TAK1 has been studied extensively. TAK1 knock-out mice are embryonic lethal, while conditional knock-out mice demonstrated either a pro- or anti-inflammatory function. To study the function of TAK1 protein in the adult immune system, we generated and characterized a transgenic mouse expressing TAK1 shRNA under the control of a doxycycline-inducible promoter. Following treatment of TAK-1 shRNA transgenic mice with doxycycline an effective knockdown of TAK1 protein levels was observed in lymphoid organs and cells in the peritoneal cavity (>50% down regulation). TAK1 knockdown resulted in significant changes in leukocyte populations in blood, bone marrow, spleen and peritoneal cavity. Upon TAK1 knockdown mice demonstrated splenomegaly, signs of systemic inflammation (increased levels of circulating cytokines and increase in cellularity of the B-cell areas and in germinal center development in the follicles) and degenerative changes in heart, kidneys and liver. Not surprisingly, TAK1-Tg mice treated with LPS or anti-CD3 antibodies showed enhanced cytokine/chemokine secretion. Finally, analysis of progenitor cells in the bone marrow upon doxycycline treatment showed increased proliferation and differentiation of myeloid progenitor cells. Given the similarity of the phenotype with TGF-β genetic models, our data suggest that in our model the function of TAK1 in TGF-β signal-transduction is overruling its function in pro-inflammatory signaling.
Collapse
|
26
|
Abstract
Gene silencing by RNA interference (RNAi) has become a standard method for the characterization of gene function in mammalian cells. Short hairpin (sh) RNAs expressed from stably integrated vectors mediate gene knockdown both in cultured cells and in mice, presenting a fast alternative to gene knockout approaches. We describe three strategies to control gene silencing in mice that can be applied to any transcript of interest. This shRNA based approach enables either i) constitutive body-wide knockdown, ii) cell type-specific knockdown controlled by Cre recombinase, or iii) inducible body-wide knockdown controlled by doxycycline. For reliable expression the shRNA vector of interest is inserted into a Rosa26 docking site of ES cells by a site-specific recombinase. These ES cells can then be used to generate shRNA transgenic mice. This technology enables the production of adult knockdown mice within 11 months for an expedite in vivo validation of drug targets.
Collapse
|
27
|
Alim Z, Hartshorn C, Mai O, Stitt I, Clay C, Tobet S, Boehm U. Gonadotrope plasticity at cellular and population levels. Endocrinology 2012; 153:4729-39. [PMID: 22893721 PMCID: PMC3685717 DOI: 10.1210/en.2012-1360] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hormone-secreting cells within the anterior pituitary gland may form organized and interdigitated networks that adapt to changing endocrine conditions in different physiological contexts. For gonadotropes, this might reflect a strategy to cope with acute changes throughout different female reproductive stages. The current study examined gonadotropes in female mice at characteristically different hormonal stages: prepubertal, postpubertal, and lactating. Gonadotrope plasticity was examined at the level of the whole population and single cells at different stages by imaging both fixed and live pituitary slices. The use of a model animal providing for the identification of selectively fluorescent gonadotropes allowed the particular advantage of defining cellular plasticity specifically for gonadotropes. In vivo analyses of gonadotropes relative to vasculature showed significantly different gonadotrope distributions across physiological states. Video microscopy studies using live slices ex vivo demonstrated pituitary cell plasticity in the form of movements and protrusions in response to GnRH. As positive feedback from rising estradiol levels is important for priming the anterior pituitary gland for the LH surge, experiments provide evidence of estradiol effects on GnRH signaling in gonadotropes. The experiments presented herein provide new insight into potential plasticity of gonadotropes within the anterior pituitary glands of female mice.
Collapse
Affiliation(s)
- Zahara Alim
- Institute for Neural Signal Transduction, Center for Molecular Neurobiology, 20251 Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Belizário JE, Akamini P, Wolf P, Strauss B, Xavier-Neto J. New routes for transgenesis of the mouse. J Appl Genet 2012; 53:295-315. [PMID: 22569888 DOI: 10.1007/s13353-012-0096-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 02/01/2012] [Accepted: 04/05/2012] [Indexed: 12/19/2022]
Abstract
Transgenesis refers to the molecular genetic techniques for directing specific insertions, deletions and point mutations in the genome of germ cells in order to create genetically modified organisms (GMO). Genetic modification is becoming more practicable, efficient and predictable with the development and use of a variety of cell and molecular biology tools and DNA sequencing technologies. A collection of plasmidial and viral vectors, cell-type specific promoters, positive and negative selectable markers, reporter genes, drug-inducible Cre-loxP and Flp/FRT recombinase systems are available which ensure efficient transgenesis in the mouse. The technologies for the insertion and removal of genes by homologous-directed recombination in embryonic stem cells (ES) and generation of targeted gain- and loss-of function alleles have allowed the creation of thousands of mouse models of a variety of diseases. The engineered zinc finger nucleases (ZFNs) and small hairpin RNA-expressing constructs are novel tools with useful properties for gene knockout free of ES manipulation. In this review we briefly outline the different approaches and technologies for transgenesis as well as their advantages and disadvantages. We also present an overview on how the novel integrative mouse and human genomic databases and bioinformatics approaches have been used to understand genotype-phenotype relationships of hundreds of mutated and candidate disease genes in mouse models. The updating and continued improvements of the genomic technologies will eventually help us to unraveling the biological and pathological processes in such a way that they can be translated more efficiently from mouse to human and vise-versa.
Collapse
Affiliation(s)
- José E Belizário
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Avenida Lineu Prestes, 1524, CEP 05508-900, São Paulo, SP, Brazil.
| | | | | | | | | |
Collapse
|
29
|
Tsanov KM, Nishi Y, Peterson KA, Liu J, Baetscher M, McMahon AP. An embryonic stem cell-based system for rapid analysis of transcriptional enhancers. Genesis 2012; 50:443-50. [PMID: 22083581 DOI: 10.1002/dvg.20820] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 10/19/2011] [Accepted: 10/26/2011] [Indexed: 11/07/2022]
Abstract
With the growing use of genome-wide screens for cis-regulatory elements, there is a pressing need for platforms that enable fast and cost-effective experimental validation of identified hits in relevant developmental and tissue contexts. Here, we describe a murine embryonic stem cell (ESC)-based system that facilitates rapid analysis of putative transcriptional enhancers. Candidate enhancers are targeted with high efficiency to a defined genomic locus via recombinase-mediated cassette exchange. Targeted ESCs are subsequently differentiated in vitro into desired cell types, where enhancer activity is monitored by reporter gene expression. As a proof of principle, we analyzed a previously characterized, Sonic hedgehog (Shh)-dependent, V3 interneuron progenitor (pV3)-specific enhancer for the Nkx2.2 gene, and observed highly specific enhancer activity. Given the broad potential of ESCs to generate a spectrum of cell types, this system can serve as an effective platform for the characterization of gene regulatory networks controlling cell fate specification and cell function.
Collapse
Affiliation(s)
- Kaloyan M Tsanov
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | |
Collapse
|
30
|
Inagaki A, Sleddens-Linkels E, Wassenaar E, Ooms M, van Cappellen WA, Hoeijmakers JHJ, Seibler J, Vogt TF, Shin MK, Grootegoed JA, Baarends WM. Meiotic functions of RAD18. J Cell Sci 2011; 124:2837-50. [PMID: 21807948 PMCID: PMC3213229 DOI: 10.1242/jcs.081968] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
RAD18 is an ubiquitin ligase that is involved in replication damage bypass and DNA double-strand break (DSB) repair processes in mitotic cells. Here, we investigated the testicular phenotype of Rad18-knockdown mice to determine the function of RAD18 in meiosis, and in particular, in the repair of meiotic DSBs induced by the meiosis-specific topoisomerase-like enzyme SPO11. We found that RAD18 is recruited to a specific subfraction of persistent meiotic DSBs. In addition, RAD18 is recruited to the chromatin of the XY chromosome pair, which forms the transcriptionally silent XY body. At the XY body, RAD18 mediates the chromatin association of its interaction partners, the ubiquitin-conjugating enzymes HR6A and HR6B. Moreover, RAD18 was found to regulate the level of dimethylation of histone H3 at Lys4 and maintain meiotic sex chromosome inactivation, in a manner similar to that previously observed for HR6B. Finally, we show that RAD18 and HR6B have a role in the efficient repair of a small subset of meiotic DSBs.
Collapse
Affiliation(s)
- Akiko Inagaki
- Department of Reproduction and Development, Erasmus MC, University Medical Center, 3000 CA Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Castro-Perez JM, Roddy TP, Shah V, Wang SP, Ouyang X, Ogawa A, McLaren DG, Tadin-Strapps M, Robinson MJ, Bartz SR, Ason B, Chen Y, Previs SF, Wong KK, Vreeken RJ, Johns DG, Hubbard BK, Hankemeier T, Mitnaul L. Attenuation of Slc27a5 gene expression followed by LC-MS measurement of bile acid reconjugation using metabolomics and a stable isotope tracer strategy. J Proteome Res 2011; 10:4683-91. [PMID: 21819150 DOI: 10.1021/pr200475g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The purpose of this study was to evaluate the use of high resolution LC-MS together with metabolomics and D(4)-cholic acid (D(4)-CA) as a metabolic tracer to measure the metabolism and reconjugation of bile acids (BAs) in vitro and in vivo. Metabolic tracers are very important because they allow for the direct detection (substrate-to-product) of small and significant biological perturbations that may not be apparent when monitoring "static" endogenous levels of particular metabolites. Slc27a5, also known as fatty acid transport protein 5 (FATP5), is the hepatic BA-CoA ligase involved in reconjugating BAs during enterohepatic BA recycling. Using Slc27a5-cKD mice, silencing of ∼90% gene expression was achieved followed by reduction in the reconjugation of D(4)-CA to D(4)-taurocholic acid (D(4)-TCA), as well as other conjugated BA metabolites in plasma (p = 0.0031). The method described allowed a rapid measure of many D(4) and endogenous BA. Analysis of bile resulted in the detection of 39 BA metabolites from a 13 min analytical run. Finally, the utilization of a novel high resolution mass spectrometry method in combination with metabolomics and a stable isotope metabolic tracer allowed for the detection of targeted and untargeted BAs following silencing of the Slc27a5 gene in primary hepatocytes and in mice.
Collapse
|
32
|
Raab M, Kappel S, Krämer A, Sanhaji M, Matthess Y, Kurunci-Csacsko E, Calzada-Wack J, Rathkolb B, Rozman J, Adler T, Busch DH, Esposito I, Fuchs H, Gailus-Durner V, Klingenspor M, Wolf E, Sänger N, Prinz F, Angelis MHD, Seibler J, Yuan J, Bergmann M, Knecht R, Kreft B, Strebhardt K. Toxicity modelling of Plk1-targeted therapies in genetically engineered mice and cultured primary mammalian cells. Nat Commun 2011; 2:395. [PMID: 21772266 PMCID: PMC3144583 DOI: 10.1038/ncomms1395] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 06/16/2011] [Indexed: 01/08/2023] Open
Abstract
High attrition rates of novel anti-cancer drugs highlight the need for improved models to predict toxicity. Although polo-like kinase 1 (Plk1) inhibitors are attractive candidates for drug development, the role of Plk1 in primary cells remains widely unexplored. Therefore, we evaluated the utility of an RNA interference-based model to assess responses to an inducible knockdown (iKD) of Plk1 in adult mice. Here we show that Plk1 silencing can be achieved in several organs, although adverse events are rare. We compared responses in Plk1-iKD mice with those in primary cells kept under controlled culture conditions. In contrast to the addiction of many cancer cell lines to the non-oncogene Plk1, the primary cells' proliferation, spindle assembly and apoptosis exhibit only a low dependency on Plk1. Responses to Plk1-depletion, both in cultured primary cells and in our iKD-mouse model, correspond well and thus provide the basis for using validated iKD mice in predicting responses to therapeutic interventions.
Collapse
Affiliation(s)
- Monika Raab
- Department of Obstetrics and Gynecology, School of Medicine, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
- Klinik und Poliklinik für Hals-, Nasen- und Ohrenheilkunde, UKE Hamburg, Martinistrasse 52, 20246 Hamburg, Germany
- These authors contributed equally to this work
| | - Sven Kappel
- Department of Obstetrics and Gynecology, School of Medicine, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
- These authors contributed equally to this work
| | - Andrea Krämer
- Department of Obstetrics and Gynecology, School of Medicine, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Mourad Sanhaji
- Department of Obstetrics and Gynecology, School of Medicine, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Yves Matthess
- Department of Obstetrics and Gynecology, School of Medicine, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Elisabeth Kurunci-Csacsko
- Department of Obstetrics and Gynecology, School of Medicine, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Julia Calzada-Wack
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstrasse, 85764 Munich/Neuherberg, Germany
| | - Birgit Rathkolb
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstrasse, 85764 Munich/Neuherberg, Germany
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Jan Rozman
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstrasse, 85764 Munich/Neuherberg, Germany
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center, Technische Universität München, Gregor-Mendel-Strasse 2, 85350 Freising-Weihenstephan, Germany
| | - Thure Adler
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstrasse, 85764 Munich/Neuherberg, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Trogerstrasse 30, 81675 Munich, Germany
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Trogerstrasse 30, 81675 Munich, Germany
| | - Irene Esposito
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstrasse, 85764 Munich/Neuherberg, Germany
- Institute of Pathology, Technische Universität München, Ismaningerstrasse 22, 81675 Munich, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstrasse, 85764 Munich/Neuherberg, Germany
| | - Valérie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstrasse, 85764 Munich/Neuherberg, Germany
| | - Martin Klingenspor
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center, Technische Universität München, Gregor-Mendel-Strasse 2, 85350 Freising-Weihenstephan, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Nicole Sänger
- Department of Obstetrics and Gynecology, School of Medicine, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Florian Prinz
- Bayer Schering Pharma AG, Global Drug Discovery, Therapeutic Research Group Oncology, Müllerstrasse 178, 13353 Berlin, Germany
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstrasse, 85764 Munich/Neuherberg, Germany
- Lehrstuhl für Experimentelle Genetik, Technische Universität München, Emil-Ramann-Strasse 8, 85350 Freising-Weihenstephan, Germany
| | - Jost Seibler
- TaconicArtemis GmbH, Neurather Ring 1, 51063 Köln, Germany
| | - Juping Yuan
- Department of Obstetrics and Gynecology, School of Medicine, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Martin Bergmann
- Institute of Veterinary Anatomy, Histology and Embryology, University of Giessen, Frankfurterstrasse 98, 35392GiessenGermany
| | - Rainald Knecht
- Klinik und Poliklinik für Hals-, Nasen- und Ohrenheilkunde, UKE Hamburg, Martinistrasse 52, 20246 Hamburg, Germany
| | - Bertolt Kreft
- Bayer Schering Pharma AG, Global Drug Discovery, Therapeutic Research Group Oncology, Müllerstrasse 178, 13353 Berlin, Germany
| | - Klaus Strebhardt
- Department of Obstetrics and Gynecology, School of Medicine, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
33
|
Podolska K, Svoboda P. Targeting genes in living mammals by RNA interference. Brief Funct Genomics 2011; 10:238-47. [DOI: 10.1093/bfgp/elr013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
34
|
Reversible suppression of an essential gene in adult mice using transgenic RNA interference. Proc Natl Acad Sci U S A 2011; 108:7113-8. [PMID: 21482754 DOI: 10.1073/pnas.1104097108] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNAi has revolutionized loss-of-function genetics by enabling sequence-specific suppression of virtually any gene. Furthermore, tetracycline response elements (TRE) can drive expression of short hairpin RNAs (shRNAs) for inducible and reversible target gene suppression. Here, we demonstrate the feasibility of transgenic inducible RNAi for suppression of essential genes. We set out to directly target cell proliferation by screening an RNAi library against DNA replication factors and identified multiple shRNAs against Replication Protein A, subunit 3 (RPA3). We generated transgenic mice with TRE-driven Rpa3 shRNAs whose expression enforced a reversible cell cycle arrest. In adult mice, the block in cell proliferation caused rapid atrophy of the intestinal epithelium which led to weight loss and lethality within 8-11 d of shRNA induction. Upon shRNA withdrawal, villus atrophy and weight loss were fully reversible. Thus, shRpa3 transgenic mice provide an interesting tool to study tissue maintenance and regeneration. Overall, we have established a robust system that serves the purpose of temperature-sensitive alleles in other model organisms, enabling inducible and reversible suppression of essential genes in a mammalian system.
Collapse
|
35
|
Kleinhammer A, Wurst W, Kühn R. Constitutive and conditional RNAi transgenesis in mice. Methods 2011; 53:430-6. [PMID: 21184828 DOI: 10.1016/j.ymeth.2010.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 11/30/2010] [Accepted: 12/17/2010] [Indexed: 01/01/2023] Open
|
36
|
Wen S, Götze IN, Mai O, Schauer C, Leinders-Zufall T, Boehm U. Genetic identification of GnRH receptor neurons: a new model for studying neural circuits underlying reproductive physiology in the mouse brain. Endocrinology 2011; 152:1515-26. [PMID: 21303944 DOI: 10.1210/en.2010-1208] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
GnRH signaling regulates reproductive physiology in vertebrates via the hypothalamic-pituitary-gonadal axis. In addition, GnRH signaling has been postulated to act on the brain. However, elucidating its functional role in the central nervous system has been hampered because of the difficulty in identifying direct GnRH signaling targets in live brain tissue. Here we used a binary genetic strategy to visualize GnRH receptor (GnRHR) neurons in the mouse brain and started to characterize these cells. First, we expressed different fluorescent proteins in GnRHR neurons and mapped their precise distribution throughout the brain. Remarkably, neuronal GnRHR expression was only initiated after postnatal day 16, suggesting peri- and postpubertal functions of GnRH signaling in this organ. GnRHR neurons were found in different brain areas. Many GnRHR neurons were identified in areas influencing sexual behaviors. Furthermore, GnRHR neurons were detected in brain areas that process olfactory and pheromonal cues, revealing one efferent pathway by which the neuroendocrine hypothalamus may influence the sensitivity towards chemosensory cues. Using confocal Ca(2+) imaging in brain slices, we show that GnRHR neurons respond reproducibly to extracellular application of GnRH or its analog [D-TRP(6)]-LH-RH, indicating that these neurons express functional GnRHR. Interestingly, the duration and shape of the Ca(2+) responses were similar within and different between brain areas, suggesting that GnRH signaling may differentially influence brain functions to affect reproductive success. Our new mouse model sets the stage to analyze the next level of GnRH signaling in reproductive physiology and behavior.
Collapse
Affiliation(s)
- Shuping Wen
- Institute for Neural Signal Transduction, Center for Molecular Neurobiology, Falkenried 94, D-20251 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Acehan D, Vaz F, Houtkooper RH, James J, Moore V, Tokunaga C, Kulik W, Wansapura J, Toth MJ, Strauss A, Khuchua Z. Cardiac and skeletal muscle defects in a mouse model of human Barth syndrome. J Biol Chem 2010; 286:899-908. [PMID: 21068380 DOI: 10.1074/jbc.m110.171439] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Barth syndrome is an X-linked genetic disorder caused by mutations in the tafazzin (taz) gene and characterized by dilated cardiomyopathy, exercise intolerance, chronic fatigue, delayed growth, and neutropenia. Tafazzin is a mitochondrial transacylase required for cardiolipin remodeling. Although tafazzin function has been studied in non-mammalian model organisms, mammalian genetic loss of function approaches have not been used. We examined the consequences of tafazzin knockdown on sarcomeric mitochondria and cardiac function in mice. Tafazzin knockdown resulted in a dramatic decrease of tetralinoleoyl cardiolipin in cardiac and skeletal muscles and accumulation of monolysocardiolipins and cardiolipin molecular species with aberrant acyl groups. Electron microscopy revealed pathological changes in mitochondria, myofibrils, and mitochondrion-associated membranes in skeletal and cardiac muscles. Echocardiography and magnetic resonance imaging revealed severe cardiac abnormalities, including left ventricular dilation, left ventricular mass reduction, and depression of fractional shortening and ejection fraction in tafazzin-deficient mice. Tafazzin knockdown mice provide the first mammalian model system for Barth syndrome in which the pathophysiological relationships between altered content of mitochondrial phospholipids, ultrastructural abnormalities, myocardial and mitochondrial dysfunction, and clinical outcome can be completely investigated.
Collapse
Affiliation(s)
- Devrim Acehan
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kleinhammer A, Deussing J, Wurst W, Kühn R. Conditional RNAi in mice. Methods 2010; 53:142-50. [PMID: 20705138 DOI: 10.1016/j.ymeth.2010.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 08/06/2010] [Accepted: 08/06/2010] [Indexed: 11/29/2022] Open
Abstract
RNA interference (RNAi)-mediated gene knockdown has developed into a routine method to assess gene function in cultured mammalian cells in a fast and easy manner. For the use of RNAi in mice, short hairpin (sh) RNAs expressed stably from the genome are a fast alternative to conventional knockout approaches. We developed a strategy for complete or conditional gene knockdown in mice, where the Cre/loxP system is used to activate RNAi in a time and tissue dependent manner. Alternatively doxycycline controlled shRNA expression vectors can be used for conditional gene silencing. Single copy RNAi constructs are placed into the Rosa26 locus of ES cells by recombinase mediated cassette exchange and transmitted through the germline of chimeric mice. The shRNA transgenic offspring can be either directly used for phenotypic analysis or are further crossed to a Cre transgenic strain to activate conditional shRNA vectors. The site specific insertion of single copy shRNA vectors allows the expedite and reproducible production of knockdown mice and provides an easy and fast approach to assess gene function in vivo.
Collapse
Affiliation(s)
- Aljoscha Kleinhammer
- Institute for Developmental Genetics, Helmholtz Center Munich - German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg/Munich, Germany.
| | | | | | | |
Collapse
|
39
|
Yang R, Castriota G, Chen Y, Cleary MA, Ellsworth K, Shin MK, Tran JL, Vogt TF, Wu M, Xu S, Yang X, Zhang BB, Berger JP, Qureshi SA. RNAi-mediated germline knockdown of FABP4 increases body weight but does not improve the deranged nutrient metabolism of diet-induced obese mice. Int J Obes (Lond) 2010; 35:217-25. [PMID: 20603627 PMCID: PMC3056343 DOI: 10.1038/ijo.2010.128] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Objective: To investigate the impact of reduced adipocyte fatty acid-binding protein 4 (FABP4) in control of body weight, glucose and lipid homeostasis in diet-induced obese (DIO) mice. Methods: We applied RNA interference (RNAi) technology to generate FABP4 germline knockdown mice to investigate their metabolic phenotype. Results: RNAi-mediated knockdown reduced FABP4 mRNA expression and protein levels by almost 90% in adipocytes of standard chow-fed mice. In adipocytes of DIO mice, RNAi reduced FABP4 expression and protein levels by 70 and 80%, respectively. There was no increase in adipocyte FABP5 expression in FABP4 knockdown mice. The knockdown of FABP4 significantly increased body weight and fat mass in DIO mice. However, FABP4 knockdown did not affect plasma glucose and lipid homeostasis in DIO mice; nor did it improve their insulin sensitivity. Conclusion: Our data indicate that robust knockdown of FABP4 increases body weight and fat mass without improving glucose and lipid homeostasis in DIO mice.
Collapse
Affiliation(s)
- R Yang
- Department of Metabolic Disorders-Diabetes, Merck Research Laboratories, Rahway, NJ 07065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Svoboda P, Stein P. RNAi experiments in mouse oocytes and early embryos. Cold Spring Harb Protoc 2010; 2009:pdb.top56. [PMID: 20147032 DOI: 10.1101/pdb.top56] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The discovery of RNA interference (RNAi) in 1998 ushered in a new era in biology. RNAi currently serves as a favorite approach for inhibition of gene function in many areas of research. This article provides a brief review of RNAi and discussion of the benefits and drawbacks of using long double-stranded RNA (dsRNA) in mammalian oocytes and early embryos. We also provide an introduction to protocols for RNAi experiments in mouse, including preparation and microinjection of dsRNA into mouse oocytes and early embryos, and preparation and testing of constructs for transgenic RNAi based on long hairpin RNA expression.
Collapse
Affiliation(s)
- Petr Svoboda
- Institute of Molecular Genetics, Academy of Sciences of Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | | |
Collapse
|
41
|
Myostatin Gene Knockdown by Myostatin-specific Short Interfering Hairpin RNAs Increases MyoD Expression in C2C12 Myoblasts*. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2009.00486] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Abstract
RNA interference (RNAi)-mediated gene knockdown has developed into a routine method to assess gene function in cultured mammalian cells in a fast and easy manner. For the use of RNAi in mice, short hairpin (sh) RNAs expressed from transgenic vectors are a fast alternative to conventional knockout approaches. We describe our strategy to elicit body-wide, cell type-specific, or inducible gene silencing in mice by control of shRNA expression through Cre recombinase or doxycycline. For reproducible expression of shRNAs, vectors are placed into the Rosa26 locus of ES cells by recombinase-mediated cassette exchange and transmitted through the germ line of chimeric mice. The site specific insertion of single copy shRNA vectors allows to expedite and reproducible production of knockdown mice and provides a simple approach to assess gene function in vivo.
Collapse
|
43
|
Abstract
Within the past 10 years, RNA interference has emerged as a powerful experimental tool as it allows rapid gene function analysis. Unique features such as reversibility of gene silencing and simultaneous targeting of several genes characterize the approach. In this chapter, transgenic RNAi techniques in reverse mouse genetics are discussed and protocols are provided.
Collapse
|
44
|
Abstract
Expression of small hairpin RNA (shRNA) in mammalian cells can trigger potent RNAi-mediated gene silencing. The dominant-acting RNAi can often result in phenotypes similar to that of a null allele. Moreover, the generation of shRNA knockdown mice and subsequent phenotypic analysis can be achieved in a condensed timeline compared to that of conventional gene-targeting knockout strategies. Here, we discuss methods for the in vivo analysis of gene function in adult mouse tissues following tetracycline-induced RNA knockdown in a single-copy inducible polymerase III promoter-driven shRNA system.
Collapse
|
45
|
Abstract
In 1991, Soriano and coworkers isolated the ROSA26 locus in a gene-trap mutagenesis screening performed in mouse embryonic stem (ES) cells. The ubiquitous expression of ROSA26 in embryonic and adult tissues, together with the high frequency of gene-targeting events observed at this locus in murine ES cells has led to the establishment in the past 10 years of over 130 knock-in lines expressing successfully from the ROSA26 locus a variety of transgenes including reporters, site-specific recombinases and, recently, noncoding RNAs. Different strategies can be employed to drive transgene expression from the ROSA26 locus. This chapter provides an overview of the current methodologies used to generate ROSA26 knock-in lines and describes different approaches that exploit the ROSA26 gene to control expression of transgenes, including miRNAs, in a temporal, cell-type, and stage-specific fashion.
Collapse
Affiliation(s)
- Stefano Casola
- IFOM, The FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| |
Collapse
|
46
|
A significant increase of RNAi efficiency in human cells by the CMV enhancer with a tRNAlys promoter. J Biomed Biotechnol 2009; 2009:514287. [PMID: 19859553 PMCID: PMC2766573 DOI: 10.1155/2009/514287] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 06/21/2009] [Accepted: 07/31/2009] [Indexed: 01/10/2023] Open
Abstract
RNA interference (RNAi) is the process of mRNA degradation induced by double-stranded RNA in a sequence-specific manner. Different types of promoters, such as U6, H1, tRNA, and CMV, have been used to control the inhibitory effect of RNAi expression vectors. In the present study, we constructed two shRNA expression vectors, respectively, controlled by tRNAlys
and CMV enhancer-tRNAlys promoters. Compared to the vectors with tRNAlys or U6 promoter, the vector with a CMV enhancer-tRNAlys promoter silenced pokemon more efficiently on both the mRNA and the protein levels. Meanwhile, the silencing of pokemon inhibited the proliferation of MCF7 cells, but the induction of apoptosis of MCF7 cells was not observed. We conclude that the CMV enhancer-tRNAlys promoter may be a powerful tool in driving intracellular expression of shRNA which can efficiently silence targeted gene.
Collapse
|
47
|
Purcell SH, Cantlon JD, Wright CD, Henkes LE, Seidel GE, Anthony RV. The involvement of proline-rich 15 in early conceptus development in sheep. Biol Reprod 2009; 81:1112-21. [PMID: 19605793 DOI: 10.1095/biolreprod.109.076190] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The ruminant conceptus undergoes a period of elongation that is required for maternal recognition of pregnancy, prior to attaching to the endometrium. The purpose of these studies was to investigate the role of proline-rich 15 (PRR15) in the sheep conceptus by examining mRNA expression, protein localization, and the effect of PRR15 mRNA degradation. Conceptuses were collected on Days 11, 13, 15, 16, 17, 21, and 30 after mating. Quantitative RT-PCR showed expression of PRR15 mRNA corresponded with the process of trophoblast elongation, with peak expression occurring on Days 15 and 16. A recombinant ovine PRR15 was generated and used to create polyclonal antibodies against PRR15. Immunohistochemistry of a Day 15 conceptus indicated that PRR15 was localized predominantly in the nucleus of the trophectoderm and extraembryonic primitive endoderm. To test whether PRR15 was required during early conceptus development, RNA interference was employed. Blastocysts collected on Day 8 after mating were infected with a lentivirus expressing a short-hairpin RNA (shRNA) that targeted PRR15 mRNA for degradation, an shRNA containing a three-nucleotide mismatch to PRR15 mRNA, or a lentivirus expressing no shRNA. After infection, blastocysts were transferred into recipient ewes and collected back on Day 15 of gestation. Although the majority of the control and mismatched shRNA-treated conceptuses elongated and survived to Day 15, none of the embryos treated with the lentivirus expressing shRNA against PRR15 mRNA elongated, and most died. In conclusion, expression of PRR15 mRNA occurred during a narrow window of conceptus development, and degradation of PRR15 mRNA led to conceptus demise or abnormal development.
Collapse
Affiliation(s)
- Scott H Purcell
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | | | | | | | | | | |
Collapse
|
48
|
Kotnik K, Popova E, Todiras M, Mori MA, Alenina N, Seibler J, Bader M. Inducible transgenic rat model for diabetes mellitus based on shRNA-mediated gene knockdown. PLoS One 2009; 4:e5124. [PMID: 19340286 PMCID: PMC2659743 DOI: 10.1371/journal.pone.0005124] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 03/02/2009] [Indexed: 01/17/2023] Open
Abstract
The rat is an important animal model in biomedical research, but gene targeting technology is not established for this species. Therefore, we aimed to produce transgenic knockdown rats using shRNA technology and pronuclear microinjection. To this purpose, we employed a tetracycline-inducible shRNA expression system targeting the insulin receptor (IR). Doxycycline (DOX) treatment of the resulting transgenic rats led to a dose-dependent and reversible increase in blood glucose caused by ubiquitous inhibition of IR expression and signalling. We could neither detect an interferon response nor disturbances in microRNA processing after DOX treatment excluding toxic effects of shRNA expression. Low dose DOX treatment induced a chronic state of diabetes mellitus. In conclusion, we have developed a technology which allows the specific, inducible, and reversible suppression of any gene of interest in the rat. Our first transgenic rat line generated with this method represents an inducible model for diabetes mellitus.
Collapse
Affiliation(s)
- Katarina Kotnik
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
49
|
Palais G, Nguyen Dinh Cat A, Friedman H, Panek-Huet N, Millet A, Tronche F, Gellen B, Mercadier JJ, Peterson A, Jaisser F. Targeted transgenesis at the HPRT locus: an efficient strategy to achieve tightly controlled in vivo conditional expression with the tet system. Physiol Genomics 2009; 37:140-6. [DOI: 10.1152/physiolgenomics.90328.2008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The tet-inducible system has been widely used to achieve conditional gene expression in genetically modified mice. To alleviate the frequent difficulties associated with recovery of relevant transgenic founders, we tested whether a controlled strategy of transgenesis would support reliable cell-specific, doxycycline (Dox)-controlled transgene expression in vivo. Taking advantage of the potent hypoxanthine-aminopterin-thymidine selection strategy and an embryonic stem (ES) cell line supporting efficient germ-line transmission, we used hypoxanthine phosphoribosyltransferase ( HPRT) targeting to insert a single copy tet-inducible construct designed to allow both glucocorticoid receptor (GR) and β-galactosidase (β-Gal) expression. Conditional, Dox-dependent GR and β-Gal expression was evidenced in targeted ES cells. Breeding ES-derived single copy transgenic mice with mice bearing appropriate tet transactivators resulted in β-Gal expression both qualitatively and quantitatively similar to that observed in mice with random integration of the same construct. Interestingly, GR expression in mice was dependent on transgene orientation in the HPRT locus while embryonic stem cell expression was not. Thus, a conditional construct inserted in single copy and in predetermined orientation at the HPRT locus demonstrated a Dox-dependent gene expression phenotype in adult mice suggesting that controlled insertion of tet-inducible constructs at the HPRT locus can provide an efficient alternative strategy to reproducibly generate animal models with tetracycline-induced transgene expression.
Collapse
Affiliation(s)
- G. Palais
- Institut National de la Santé et de la Recherche Médicale (INSERM), U772
- Collège de France
- l'Université Paris Descartes, Paris, France
| | - A. Nguyen Dinh Cat
- Institut National de la Santé et de la Recherche Médicale (INSERM), U772
- Collège de France
- l'Université Paris Descartes, Paris, France
| | - H. Friedman
- Laboratory of Developmental Biology, H-5, Royal Victoria Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - N. Panek-Huet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U772
- Collège de France
- l'Université Paris Descartes, Paris, France
| | - A. Millet
- Collège de France
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 7148
| | - F. Tronche
- Collège de France
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 7148
| | - B. Gellen
- INSERM, U698
- l'Université Paris 7, Paris, France
| | | | - A. Peterson
- Laboratory of Developmental Biology, H-5, Royal Victoria Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - F. Jaisser
- Institut National de la Santé et de la Recherche Médicale (INSERM), U772
- Collège de France
- l'Université Paris Descartes, Paris, France
| |
Collapse
|
50
|
Nyabi O, Naessens M, Haigh K, Gembarska A, Goossens S, Maetens M, De Clercq S, Drogat B, Haenebalcke L, Bartunkova S, De Vos I, De Craene B, Karimi M, Berx G, Nagy A, Hilson P, Marine JC, Haigh JJ. Efficient mouse transgenesis using Gateway-compatible ROSA26 locus targeting vectors and F1 hybrid ES cells. Nucleic Acids Res 2009; 37:e55. [PMID: 19279185 PMCID: PMC2673446 DOI: 10.1093/nar/gkp112] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The ability to rapidly and efficiently generate reliable Cre/loxP conditional transgenic mice would greatly complement global high-throughput gene targeting initiatives aimed at identifying gene function in the mouse. We report here the generation of Cre/loxP conditional ROSA26-targeted ES cells within 3–4 weeks by using Gateway® cloning to build the target vectors. The cDNA of the gene of interest can be expressed either directly by the ROSA26 promoter providing a moderate level of expression or by a CAGG promoter placed in the ROSA26 locus providing higher transgene expression. Utilization of F1 hybrid ES cells with exceptional developmental potential allows the production of germ line transmitting, fully or highly ES cell-derived mice by aggregation of cells with diploid embryos. The presented streamlined procedures accelerate the examination of phenotypical consequences of transgene expression. It also provides a unique tool for comparing the biological activity of polymorphic or splice variants of a gene, or products of different genes functioning in the same or parallel pathways in an overlapping manner.
Collapse
Affiliation(s)
- Omar Nyabi
- Department for Molecular Biomedical Research, VIB, Gent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|