1
|
Vats A, Laimins L. How human papillomavirus (HPV) targets DNA repair pathways for viral replication: from guardian to accomplice. Microbiol Mol Biol Rev 2025:e0015323. [PMID: 39868790 DOI: 10.1128/mmbr.00153-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Abstract
SUMMARYHuman papillomaviruses (HPVs) are small DNA viruses that are responsible for significant disease burdens worldwide, including cancers of the cervix, anogenital tract, and oropharynx. HPVs infect stratified epithelia at a variety of body locations and link their productive life cycles to the differentiation of the host cell. These viruses have evolved sophisticated mechanisms to exploit cellular pathways, such as DNA damage repair (DDR), to regulate their life cycles. HPVs activate key DDR pathways such as ATM, ATR, and FA, which are critical for maintaining genomic integrity but are often dysregulated in cancers. Importantly, these DDR pathways are essential for HPV replication in undifferentiated cells and amplification upon differentiation. The ability to modulate these DDR pathways not only enables HPV persistence but also contributes to cellular transformation. In this review, we discuss the recent advances in understanding the mechanisms by which HPV manipulates the host DDR pathways and how these depend upon enhanced topoisomerase activity and R-loop formation. Furthermore, the strategies to manipulate DDR pathways utilized by high-risk HPVs are compared with those used by other DNA viruses that exhibit similarities and distinct differences.
Collapse
Affiliation(s)
- Arushi Vats
- Department of Microbiology-Immunology, Northwestern University, Chicago, Illinois, USA
| | - Laimonis Laimins
- Department of Microbiology-Immunology, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
2
|
Johnstone CP, Love KS, Kabaria SR, Jones R, Blanch-Asensio A, Ploessl DS, Peterman EL, Lee R, Yun J, Oakes CG, Mummery CL, Davis RP, DeKosky BJ, Zandstra PW, Galloway KE. Gene syntax defines supercoiling-mediated transcriptional feedback. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.19.633652. [PMID: 39868195 PMCID: PMC11760390 DOI: 10.1101/2025.01.19.633652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Gene syntax-the order and arrangement of genes and their regulatory elements-shapes the dynamic coordination of both natural and synthetic gene circuits. Transcription at one locus profoundly impacts the transcription of nearby adjacent genes, but the molecular basis of this effect remains poorly understood. Here, using integrated reporter circuits in human cells, we show that supercoiling-mediated feedback regulates expression of adjacent genes in a syntax-specific manner. Using Region Capture Micro-C, we measure induction-dependent formation of supercoiled plectonemes and syntax-specific chromatin structures in human induced pluripotent stem cells. Using syntax as a design parameter, we built compact gene circuits, tuning the mean, variance, and stoichiometries of expression across diverse delivery methods and cell types. Integrating supercoiling-mediated feedback into models of gene regulation will expand our understanding of native systems and enhance the design of synthetic gene circuits.
Collapse
Affiliation(s)
| | - Kasey S. Love
- Department of Biological Engineering, MIT, 25 Ames St., Cambridge, MA, 02139, USA
| | - Sneha R. Kabaria
- Department of Chemical Engineering, MIT, 25 Ames St., Cambridge, MA, 02139, USA
| | - Ross Jones
- School of Biomedical Engineering, UBC, 6088 University Boulevard, Vancouver, BC, V6T 1Z3, Canada
- Michael Smith Laboratories, UBC, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Albert Blanch-Asensio
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300RC Leiden, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Leiden University Medical Center
| | - Deon S. Ploessl
- Department of Chemical Engineering, MIT, 25 Ames St., Cambridge, MA, 02139, USA
| | - Emma L. Peterman
- Department of Chemical Engineering, MIT, 25 Ames St., Cambridge, MA, 02139, USA
| | - Rachel Lee
- Department of Chemical Engineering, MIT, 25 Ames St., Cambridge, MA, 02139, USA
| | - Jiyoung Yun
- School of Biomedical Engineering, UBC, 6088 University Boulevard, Vancouver, BC, V6T 1Z3, Canada
- Michael Smith Laboratories, UBC, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Conrad G. Oakes
- Department of Bioengineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Christine L. Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300RC Leiden, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Leiden University Medical Center
| | - Richard P. Davis
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300RC Leiden, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Leiden University Medical Center
| | - Brandon J. DeKosky
- Department of Chemical Engineering, MIT, 25 Ames St., Cambridge, MA, 02139, USA
- The Ragon Institute of Mass General, MIT, and Harvard, 600 Main St., Cambridge, MA, 02139, USA
| | - Peter W. Zandstra
- School of Biomedical Engineering, UBC, 6088 University Boulevard, Vancouver, BC, V6T 1Z3, Canada
- Michael Smith Laboratories, UBC, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Kate E. Galloway
- Department of Chemical Engineering, MIT, 25 Ames St., Cambridge, MA, 02139, USA
| |
Collapse
|
3
|
Stratigi K, Siametis A, Garinis GA. Looping forward: exploring R-loop processing and therapeutic potential. FEBS Lett 2025; 599:244-266. [PMID: 38844597 PMCID: PMC11771710 DOI: 10.1002/1873-3468.14947] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 01/28/2025]
Abstract
Recently, there has been increasing interest in the complex relationship between transcription and genome stability, with specific attention directed toward the physiological significance of molecular structures known as R-loops. These structures arise when an RNA strand invades into the DNA duplex, and their formation is involved in a wide range of regulatory functions affecting gene expression, DNA repair processes or cell homeostasis. The persistent presence of R-loops, if not effectively removed, contributes to genome instability, underscoring the significance of the factors responsible for their resolution and modification. In this review, we provide a comprehensive overview of how R-loop processing can drive either a beneficial or a harmful outcome. Additionally, we explore the potential for manipulating such structures to devise rationalized therapeutic strategies targeting the aberrant accumulation of R-loops.
Collapse
Affiliation(s)
- Kalliopi Stratigi
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology‐HellasHeraklionCreteGreece
| | - Athanasios Siametis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology‐HellasHeraklionCreteGreece
- Department of BiologyUniversity of CreteHeraklionCreteGreece
| | - George A. Garinis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology‐HellasHeraklionCreteGreece
- Department of BiologyUniversity of CreteHeraklionCreteGreece
| |
Collapse
|
4
|
Jose L, Smith K, Crowner A, Androphy EJ, DeSmet M. Senataxin mediates R-loop resolution on HPV episomes. J Virol 2024; 98:e0100324. [PMID: 39046232 PMCID: PMC11334462 DOI: 10.1128/jvi.01003-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 06/29/2024] [Indexed: 07/25/2024] Open
Abstract
Three-stranded DNA-RNA structures known as R-loops that form during papillomavirus transcription can cause transcription-replication conflicts and lead to DNA damage. We found that R-loops accumulated at the viral early promoter in human papillomavirus (HPV) episomal cells but were greatly reduced in cells with integrated HPV genomes. RNA-DNA helicases unwind R-loops and allow for transcription and replication to proceed. Depletion of the RNA-DNA helicase senataxin (SETX) using siRNAs increased the presence of R-loops at the viral early promoter in HPV-31 (CIN612) and HPV-16 (W12) episomal HPV cell lines. Depletion of SETX reduced viral transcripts in episomal HPV cell lines. The viral E2 protein, which binds with high affinity to specific palindromes near the promoter and origin, complexes with SETX, and both SETX and E2 are present at the viral p97 promoter in CIN612 and W12 cells. SETX overexpression increased E2 transcription activity on the p97 promoter. SETX depletion also significantly increased integration of viral genomes in CIN612 cells. Our results demonstrate that SETX resolves viral R-loops to proceed with HPV transcription and prevent genome integration.IMPORTANCEPapillomaviruses contain small circular genomes of approximately 8 kilobase pairs and undergo unidirectional transcription from the sense strand of the viral genome. Co-transcriptional R-loops were recently reported to be present at high levels in cells that maintain episomal HPV and were also detected at the early viral promoter. R-loops can inhibit transcription and DNA replication. The process that removes R-loops from the PV genome and the requisite enzymes are unknown. We propose a model in which the host RNA-DNA helicase senataxin assembles on the HPV genome to resolve R-loops in order to maintain the episomal status of the viral genome.
Collapse
Affiliation(s)
- Leny Jose
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Keely Smith
- Indiana University Simon Comprehensive Cancer Center American Cancer Society Post-Baccalaureate Diversity in Cancer Research Education Program, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Anaiya Crowner
- Indiana University Simon Comprehensive Cancer Center American Cancer Society Post-Baccalaureate Diversity in Cancer Research Education Program, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Elliot J. Androphy
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Marsha DeSmet
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
5
|
Islam Z, Polash A, Suzawa M, Chim B, Kuhn S, Sultana S, Cutrona N, Smith PT, Kabat J, Ganesan S, Foroushani A, Hafner M, Muljo SA. MATRIN3 deficiency triggers autoinflammation via cGAS-STING activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587645. [PMID: 38712171 PMCID: PMC11071297 DOI: 10.1101/2024.04.01.587645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Interferon-stimulated genes (ISGs) comprise a program of immune effectors important for host immune defense. When uncontrolled, ISGs play a central role in interferonopathies and other inflammatory diseases. The mechanisms responsible for turning on ISGs are not completely known. By investigating MATRIN3 (MATR3), a nuclear RNA-binding protein mutated in familial ALS, we found that perturbing MATR3 results in elevated expression of ISGs. Using an integrative approach, we elucidate a pathway that leads to activation of cGAS-STING. This outlines a plausible mechanism for pathogenesis in a subset of ALS, and suggests new diagnostic and therapeutic approaches for this fatal disease.
Collapse
Affiliation(s)
- Zohirul Islam
- Integrative Immunobiology Section, Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH); Bethesda, Maryland 20892, USA
| | - Ahsan Polash
- RNA Molecular Biology Laboratory, National Institute for Arthritis and Musculoskeletal and Skin Disease (NIAMS), NIH; Bethesda, Maryland 20892, USA
| | - Masataka Suzawa
- RNA Molecular Biology Laboratory, National Institute for Arthritis and Musculoskeletal and Skin Disease (NIAMS), NIH; Bethesda, Maryland 20892, USA
| | - Bryan Chim
- Integrative Immunobiology Section, Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH); Bethesda, Maryland 20892, USA
| | - Skyler Kuhn
- Integrated Data Sciences Section, Research Technologies Branch (RTB), NIAID, NIH; Bethesda, Maryland 20892, USA
| | - Sabrina Sultana
- Integrative Immunobiology Section, Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH); Bethesda, Maryland 20892, USA
| | - Nicholas Cutrona
- Integrative Immunobiology Section, Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH); Bethesda, Maryland 20892, USA
| | - Patrick T. Smith
- Integrative Immunobiology Section, Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH); Bethesda, Maryland 20892, USA
| | - Juraj Kabat
- Biological Imaging Section, RTB, NIAID, NIH; Bethesda, Maryland 20892, USA
| | - Sundar Ganesan
- Biological Imaging Section, RTB, NIAID, NIH; Bethesda, Maryland 20892, USA
| | - Amir Foroushani
- Integrative Immunobiology Section, Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH); Bethesda, Maryland 20892, USA
| | - Markus Hafner
- RNA Molecular Biology Laboratory, National Institute for Arthritis and Musculoskeletal and Skin Disease (NIAMS), NIH; Bethesda, Maryland 20892, USA
| | - Stefan A. Muljo
- Integrative Immunobiology Section, Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH); Bethesda, Maryland 20892, USA
| |
Collapse
|
6
|
Westover KR, Jin P, Yao B. Bridging the gap: R-loop mediated genomic instability and its implications in neurological diseases. Epigenomics 2024; 16:589-608. [PMID: 38530068 PMCID: PMC11160457 DOI: 10.2217/epi-2023-0379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/12/2024] [Indexed: 03/27/2024] Open
Abstract
R-loops, intricate three-stranded structures formed by RNA-DNA hybrids and an exposed non-template DNA strand, are fundamental to various biological phenomena. They carry out essential and contrasting functions within cellular mechanisms, underlining their critical role in maintaining cellular homeostasis. The specific cellular context that dictates R-loop formation determines their function, particularly emphasizing the necessity for their meticulous genomic regulation. Notably, the aberrant formation or misregulation of R-loops is implicated in numerous neurological disorders. This review focuses on the complex interactions between R-loops and double-strand DNA breaks, exploring how R-loop dysregulation potentially contributes to the pathogenesis of various brain disorders, which could provide novel insights into the molecular mechanisms underpinning neurological disease progression and identify potential therapeutic targets by highlighting these aspects.
Collapse
Affiliation(s)
- Katherine R Westover
- Department of Human Genetics, Emory University, School of Medicine, Atlanta, GA 30322, USA
| | - Peng Jin
- Department of Human Genetics, Emory University, School of Medicine, Atlanta, GA 30322, USA
| | - Bing Yao
- Department of Human Genetics, Emory University, School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
7
|
Bradley L, Savage KI. 'From R-lupus to cancer': Reviewing the role of R-loops in innate immune responses. DNA Repair (Amst) 2023; 131:103581. [PMID: 37832251 DOI: 10.1016/j.dnarep.2023.103581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
Cells possess an inherent and evolutionarily conserved ability to detect and respond to the presence of foreign and pathological 'self' nucleic acids. The result is the stimulation of innate immune responses, signalling to the host immune system that defence mechanisms are necessary to protect the organism. To date, there is a vast body of literature describing innate immune responses to various nucleic acid species, including dsDNA, ssDNA and ssRNA etc., however, there is limited information available on responses to R-loops. R-loops are 3-stranded nucleic acid structures that form during transcription, upon DNA damage and in various other settings. Emerging evidence suggests that innate immune responses may also exist for the detection of R-loop related nucleic acid structures, implicating R-loops as drivers of inflammatory states. In this review, we aim to summarise the evidence indicating that R-loops are immunogenic species that can trigger innate immune responses in physiological and pathological settings and discuss the implications of this in the study of various diseases and therapeutic development.
Collapse
Affiliation(s)
- Leanne Bradley
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Rd, Belfast, United Kingdom
| | - Kienan I Savage
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Rd, Belfast, United Kingdom.
| |
Collapse
|
8
|
Yang S, Winstone L, Mondal S, Wu Y. Helicases in R-loop Formation and Resolution. J Biol Chem 2023; 299:105307. [PMID: 37778731 PMCID: PMC10641170 DOI: 10.1016/j.jbc.2023.105307] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023] Open
Abstract
With the development and wide usage of CRISPR technology, the presence of R-loop structures, which consist of an RNA-DNA hybrid and a displaced single-strand (ss) DNA, has become well accepted. R-loop structures have been implicated in a variety of circumstances and play critical roles in the metabolism of nucleic acid and relevant biological processes, including transcription, DNA repair, and telomere maintenance. Helicases are enzymes that use an ATP-driven motor force to unwind double-strand (ds) DNA, dsRNA, or RNA-DNA hybrids. Additionally, certain helicases have strand-annealing activity. Thus, helicases possess unique positions for R-loop biogenesis: they utilize their strand-annealing activity to promote the hybridization of RNA to DNA, leading to the formation of R-loops; conversely, they utilize their unwinding activity to separate RNA-DNA hybrids and resolve R-loops. Indeed, numerous helicases such as senataxin (SETX), Aquarius (AQR), WRN, BLM, RTEL1, PIF1, FANCM, ATRX (alpha-thalassemia/mental retardation, X-linked), CasDinG, and several DEAD/H-box proteins are reported to resolve R-loops; while other helicases, such as Cas3 and UPF1, are reported to stimulate R-loop formation. Moreover, helicases like DDX1, DDX17, and DHX9 have been identified in both R-loop formation and resolution. In this review, we will summarize the latest understandings regarding the roles of helicases in R-loop metabolism. Additionally, we will highlight challenges associated with drug discovery in the context of targeting these R-loop helicases.
Collapse
Affiliation(s)
- Shizhuo Yang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lacey Winstone
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sohaumn Mondal
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yuliang Wu
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
9
|
Duardo RC, Guerra F, Pepe S, Capranico G. Non-B DNA structures as a booster of genome instability. Biochimie 2023; 214:176-192. [PMID: 37429410 DOI: 10.1016/j.biochi.2023.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Non-canonical secondary structures (NCSs) are alternative nucleic acid structures that differ from the canonical B-DNA conformation. NCSs often occur in repetitive DNA sequences and can adopt different conformations depending on the sequence. The majority of these structures form in the context of physiological processes, such as transcription-associated R-loops, G4s, as well as hairpins and slipped-strand DNA, whose formation can be dependent on DNA replication. It is therefore not surprising that NCSs play important roles in the regulation of key biological processes. In the last years, increasing published data have supported their biological role thanks to genome-wide studies and the development of bioinformatic prediction tools. Data have also highlighted the pathological role of these secondary structures. Indeed, the alteration or stabilization of NCSs can cause the impairment of transcription and DNA replication, modification in chromatin structure and DNA damage. These events lead to a wide range of recombination events, deletions, mutations and chromosomal aberrations, well-known hallmarks of genome instability which are strongly associated with human diseases. In this review, we summarize molecular processes through which NCSs trigger genome instability, with a focus on G-quadruplex, i-motif, R-loop, Z-DNA, hairpin, cruciform and multi-stranded structures known as triplexes.
Collapse
Affiliation(s)
- Renée C Duardo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Federico Guerra
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Simona Pepe
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126, Bologna, Italy.
| |
Collapse
|
10
|
Sobol RW. Editorial: DNA repair and nucleic acid therapeutics in cancer. NAR Cancer 2023; 5:zcad044. [PMID: 37645072 PMCID: PMC10461458 DOI: 10.1093/narcan/zcad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/31/2023] Open
Affiliation(s)
- Robert W Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| |
Collapse
|