1
|
Li D, Dawson J, Gunton JE. Therapeutic Potential of Ketogenic Interventions for Autosomal-Dominant Polycystic Kidney Disease: A Systematic Review. Nutrients 2024; 17:145. [PMID: 39796576 PMCID: PMC11723166 DOI: 10.3390/nu17010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/19/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Recent findings have highlighted that abnormal energy metabolism is a key feature of autosomal-dominant polycystic kidney disease (ADPKD). Emerging evidence suggests that nutritional ketosis could offer therapeutic benefits, including potentially slowing or even reversing disease progression. This systematic review aims to synthesise the literature on ketogenic interventions to evaluate the impact in ADPKD. METHODS A systematic search was conducted in Medline, Embase, and Scopus using relevant Medical Subject Headings (MeSH) and keywords. Studies assessing ketogenic interventions in the management of ADPKD in both human and animal models were selected for data extraction and analysis. RESULTS Three animal reports and six human studies were identified. Ketogenic diets (KD) significantly slowed polycystic kidney disease (PKD) progression in rats with improved renal function and reduced cystic areas. There was reduced renal fibrosis and cell proliferation. The supplementation of beta-hydroxybutyrate (BHB) in rats also reduced PKD progression in a dose-dependent manner. Human studies (n = 129) on KD in ADPKD reported consistent body mass index (BMI) reduction across trials, with an average weight loss of ∼4 kg. Improvements in blood pressure were also noted. Ketosis was achieved in varying degrees. Effects on kidney function (eGFR) were beneficial. Results for kidney volume were mixed but most studies were underpowered for this outcome. Lipid profiles showed increases in total cholesterol (∼1 mmol/L) and LDL cholesterol (∼0.4 mmol/L) in most studies. Safety concerns such as "keto flu" symptoms, elevated uric acid levels, and occasional kidney stones were noted. Overall feasibility and adherence to the KD were rated positively by most participants. CONCLUSIONS Human studies are promising; however, they have been limited by small sample sizes and short durations. Larger, long-term trials are needed to assess the efficacy, adherence, and safety of ketogenic diets in people with ADPKD.
Collapse
Affiliation(s)
- Donglai Li
- Centre for Diabetes, Obesity and Endocrinology Research (CDOER), Westmead Institute for Medical Research, Westmead, Sydney, NSW 2145, Australia;
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2066, Australia
| | - Jessica Dawson
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW 2050, Australia;
- Department Nutrition and Dietetics, St George Hospital, Sydney, NSW 2217, Australia
| | - Jenny E. Gunton
- Centre for Diabetes, Obesity and Endocrinology Research (CDOER), Westmead Institute for Medical Research, Westmead, Sydney, NSW 2145, Australia;
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2066, Australia
- Department of Diabetes and Endocrinology, Room 2040, Clinical Sciences Corridor, Westmead Hospital, Westmead, Sydney, NSW 2145, Australia
| |
Collapse
|
2
|
St Pierre K, Cashmore BA, Bolignano D, Zoccali C, Ruospo M, Craig JC, Strippoli GF, Mallett AJ, Green SC, Tunnicliffe DJ. Interventions for preventing the progression of autosomal dominant polycystic kidney disease. Cochrane Database Syst Rev 2024; 10:CD010294. [PMID: 39356039 PMCID: PMC11445802 DOI: 10.1002/14651858.cd010294.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is the leading inherited cause of kidney disease. Clinical management has historically focused on symptom control and reducing associated complications. Improved understanding of the molecular and cellular mechanisms involved in kidney cyst growth and disease progression has resulted in new pharmaceutical agents targeting disease pathogenesis and preventing disease progression. However, the role of disease-modifying agents for all people with ADPKD is unclear. This is an update of a review first published in 2015. OBJECTIVES We aimed to evaluate the benefits and harms of interventions to prevent the progression of ADPKD and the safety based on patient-important endpoints, defined by the Standardised Outcomes in NephroloGy-Polycystic Kidney Disease (SONG-PKD) core outcome set, and general and specific adverse effects. SEARCH METHODS We searched the Cochrane Kidney and Transplants Register of Studies up to 13 August 2024 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Registry Platform (ICTRP) Search Portal, and ClinicalTrials.gov. SELECTION CRITERIA Randomised controlled trials (RCTs) comparing any interventions for preventing the progression of ADPKD with other interventions, placebo, or standard care were considered for inclusion. DATA COLLECTION AND ANALYSIS Two authors independently assessed study risks of bias and extracted data. Summary estimates of effects were obtained using a random-effects model, and results were expressed as risk ratios (RR) and their 95% confidence intervals (CI) for dichotomous outcomes and mean difference (MD) or standardised mean difference (SMD) and 95% CI for continuous outcomes. Confidence in the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. MAIN RESULTS We included 57 studies (8016 participants) that investigated 18 pharmacological interventions (vasopressin 2 receptor (V2R) antagonists, antihypertensive therapy, mammalian target of rapamycin (mTOR) inhibitors, somatostatin analogues, antiplatelet agents, eicosapentaenoic acids, statins, kinase inhibitors, diuretics, anti-diabetic agents, water intake, dietary intervention, and supplements) in this review. Compared to placebo, the V2R antagonist tolvaptan probably preserves eGFR (3 studies, 2758 participants: MD 1.26 mL/min/1.73 m2, 95% CI 0.73 to 1.78; I2 = 0%) and probably slows total kidney volume (TKV) growth in adults (1 study, 1307 participants: MD -2.70 mL/cm, 95% CI -3.24 to -2.16) (moderate certainty evidence). However, there was insufficient evidence to determine tolvaptan's impact on kidney failure and death. There may be no difference in serious adverse events; however, treatment probably increases nocturia, fatigue and liver enzymes, may increase dry mouth and thirst, and may decrease hypertension and urinary and upper respiratory tract infections. Data on the impact of other therapeutic interventions were largely inconclusive. Compared to placebo, somatostatin analogues probably decrease TKV (6 studies, 500 participants: SMD -0.33, 95% CI -0.51 to -0.16; I2 = 11%), probably have little or no effect on eGFR (4 studies, 180 participants: MD 4.11 mL/min/1.73 m3, 95% CI -3.19 to 11.41; I2 = 0%) (moderate certainty evidence), and may have little or no effect on kidney failure (2 studies, 405 participants: RR 0.64, 95% CI 0.16 to 2.49; I2 = 39%; low certainty evidence). Serious adverse events may increase (2 studies, 405 participants: RR 1.81, 95% CI 1.01 to 3.25; low certainty evidence). Somatostatin analogues probably increase alopecia, diarrhoea or abnormal faeces, dizziness and fatigue but may have little or no effect on anaemia or infection. The effect on death is unclear. Targeted low blood pressure probably results in a smaller per cent annual increase in TKV (1 study, 558 participants: MD -1.00, 95% CI -1.67 to -0.33; moderate certainty evidence) compared to standard blood pressure targets, had uncertain effects on death, but probably do not impact other outcomes such as change in eGFR or adverse events. Kidney failure was not reported. Data comparing antihypertensive agents, mTOR inhibitors, eicosapentaenoic acids, statins, vitamin D compounds, metformin, trichlormethiazide, spironolactone, bosutinib, curcumin, niacinamide, prescribed water intake and antiplatelet agents were sparse and inconclusive. An additional 23 ongoing studies were also identified, including larger phase III RCTs, which will be assessed in a future update of this review. AUTHORS' CONCLUSIONS Although many interventions have been investigated in patients with ADPKD, at present, there is little evidence that they improve patient outcomes. Tolvaptan is the only therapeutic intervention that has demonstrated the ability to slow disease progression, as assessed by eGFR and TKV change. However, it has not demonstrated benefits for death or kidney failure. In order to confirm the role of other therapeutic interventions in ADPKD management, large RCTs focused on patient-centred outcomes are needed. The search identified 23 ongoing studies, which may provide more insight into the role of specific interventions.
Collapse
Affiliation(s)
- Kitty St Pierre
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Pharmacy Department, Gold Coast University Hospital, Gold Coast, Australia
| | - Brydee A Cashmore
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| | - Davide Bolignano
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Carmine Zoccali
- Institute of Clinical Physiology, CNR - Italian National Council of Research, Reggio Calabria, Italy
| | - Marinella Ruospo
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, Bari, Italy
| | - Jonathan C Craig
- Cochrane Kidney and Transplant, Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Giovanni Fm Strippoli
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, Bari, Italy
- Cochrane Kidney and Transplant, Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| | - Andrew J Mallett
- Department of Renal Medicine, Townsville Hospital and Health Service, Townsville, Australia
- Australasian Kidney Trials Network, The University of Queensland, Herston, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- College of Medicine and Dentistry, James Cook University, Townsville, Australia
| | - Suetonia C Green
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - David J Tunnicliffe
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| |
Collapse
|
3
|
Torres JA, Holznecht N, Asplund DA, Kroes BC, Amarlkhagva T, Haeffner MM, Sharpe EH, Koestner S, Strubl S, Schimmel MF, Kruger S, Agrawal S, Aceves BA, Thangaraju M, Weimbs T. β-hydroxybutyrate recapitulates the beneficial effects of ketogenic metabolic therapy in polycystic kidney disease. iScience 2024; 27:110773. [PMID: 39314240 PMCID: PMC11418134 DOI: 10.1016/j.isci.2024.110773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/30/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
Autosomal-dominant polycystic kidney disease (ADPKD) is a common monogenic disease characterized by the formation of fluid-filled renal cysts, loss of mitochondrial function, decreased fatty acid oxidation, increased glycolysis, and likely renal failure. We previously demonstrated that inducing a state of ketosis ameliorates or reverses PKD progression in multiple animal models. In this study, we compare time-restricted feeding and 48-h periodic fasting regimens in both juvenile and adult Cy/+ rats. Both fasting regimens potently prevent juvenile disease progression and partially reverse PKD in adults. To explore the mechanism of fasting, we administered β-hydroxybutyrate (BHB) to Cy/+ rats and orthologous mouse models of PKD (Pkd1 RC/RC , Pkd1-Ksp:Cre). BHB recapitulated the effects of fasting in these models independent of stereoisomer, suggesting the effects of BHB are largely due to its signaling functions. These findings implicate the use of ketogenic metabolic therapy and BHB supplementation as potential disease modifiers of PKD and point toward underlying mechanisms.
Collapse
Affiliation(s)
- Jacob A. Torres
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Nickolas Holznecht
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - David A. Asplund
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Bradley C. Kroes
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Tselmeg Amarlkhagva
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Matthias M. Haeffner
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Elizabeth H. Sharpe
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Stella Koestner
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Sebastian Strubl
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Margaret F. Schimmel
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Samantha Kruger
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Shagun Agrawal
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Brina A. Aceves
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Muthusamy Thangaraju
- Department of Biochemistry and Molecular Biology, University of Augusta, Augusta, GA, USA
| | - Thomas Weimbs
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
4
|
Ahn Y, Park JH. Novel Potential Therapeutic Targets in Autosomal Dominant Polycystic Kidney Disease from the Perspective of Cell Polarity and Fibrosis. Biomol Ther (Seoul) 2024; 32:291-300. [PMID: 38589290 PMCID: PMC11063481 DOI: 10.4062/biomolther.2023.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 04/10/2024] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), a congenital genetic disorder, is a notable contributor to the prevalence of chronic kidney disease worldwide. Despite the absence of a complete cure, ongoing research aims for early diagnosis and treatment. Although agents such as tolvaptan and mTOR inhibitors have been utilized, their effectiveness in managing the disease during its initial phase has certain limitations. This review aimed to explore new targets for the early diagnosis and treatment of ADPKD, considering ongoing developments. We particularly focus on cell polarity, which is a key factor that influences the process and pace of cyst formation. In addition, we aimed to identify agents or treatments that can prevent or impede the progression of renal fibrosis, ultimately slowing its trajectory toward end-stage renal disease. Recent advances in slowing ADPKD progression have been examined, and potential therapeutic approaches targeting multiple pathways have been introduced. This comprehensive review discusses innovative strategies to address the challenges of ADPKD and provides valuable insights into potential avenues for its prevention and treatment.
Collapse
Affiliation(s)
- Yejin Ahn
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, 04310, 04310, Republic of Korea
| | - Jong Hoon Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, 04310, 04310, Republic of Korea
- Research Institute of Women’s Health, Sookmyung Women’s University, Seoul, 04310, Republic of Korea
| |
Collapse
|
5
|
Yen PW, Chen YA, Wang W, Mao FS, Chao CT, Chiang CK, Lin SH, Tarng DC, Chiu YW, Wu MJ, Chen YC, Kao JTW, Wu MS, Lin CL, Huang JW, Hung KY. The screening, diagnosis, and management of patients with autosomal dominant polycystic kidney disease: A national consensus statement from Taiwan. Nephrology (Carlton) 2024; 29:245-258. [PMID: 38462235 DOI: 10.1111/nep.14287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/29/2024] [Accepted: 02/25/2024] [Indexed: 03/12/2024]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited cause of end-stage kidney disease (ESKD) worldwide. Guidelines for the diagnosis and management of ADPKD in Taiwan remains unavailable. In this consensus statement, we summarize updated information on clinical features of international and domestic patients with ADPKD, followed by suggestions for optimal diagnosis and care in Taiwan. Specifically, counselling for at-risk minors and reproductive issues can be important, including ethical dilemmas surrounding prenatal diagnosis and pre-implantation genetic diagnosis. Studies reveal that ADPKD typically remains asymptomatic until the fourth decade of life, with symptoms resulting from cystic expansion with visceral compression, or rupture. The diagnosis can be made based on a detailed family history, followed by imaging studies (ultrasound, computed tomography, or magnetic resonance imaging). Genetic testing is reserved for atypical cases mostly. Common tools for prognosis prediction include total kidney volume, Mayo classification and PROPKD/genetic score. Screening and management of complications such as hypertension, proteinuria, urological infections, intracranial aneurysms, are also crucial for improving outcome. We suggest that the optimal management strategies of patients with ADPKD include general medical care, dietary recommendations and ADPKD-specific treatments. Key points include rigorous blood pressure control, dietary sodium restriction and Tolvaptan use, whereas the evidence for somatostatin analogues and mammalian target of rapamycin (mTOR) inhibitors remains limited. In summary, we outline an individualized care plan emphasizing careful monitoring of disease progression and highlight the need for shared decision-making among these patients.
Collapse
Affiliation(s)
- Pao-Wen Yen
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Yung-An Chen
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Wei Wang
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Fang-Sheng Mao
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Chia-Ter Chao
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Min-Sheng General Hospital, Taoyuan City, Taiwan
| | - Chih-Kang Chiang
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Shih-Hua Lin
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Der-Cherng Tarng
- Division of Nephrology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Wen Chiu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Ju Wu
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Yung-Chang Chen
- Kidney Research Center, Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Juliana Tze-Wah Kao
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University-Shuang-Ho Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
- Division of Nephrology, Department of Internal Medicine, Fu-Jen Catholic University Hospital, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Mai-Szu Wu
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University-Shuang-Ho Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-Liang Lin
- Division of Nephrology, Department of Internal Medicine, Chia-Yi Chang Gung Memorial Hospital, Chia-Yi County, Taiwan
| | - Jenq-Wen Huang
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Kuan-Yu Hung
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University-Shuang-Ho Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
| |
Collapse
|
6
|
Mahboobipour AA, Ala M, Safdari Lord J, Yaghoobi A. Clinical manifestation, epidemiology, genetic basis, potential molecular targets, and current treatment of polycystic liver disease. Orphanet J Rare Dis 2024; 19:175. [PMID: 38671465 PMCID: PMC11055360 DOI: 10.1186/s13023-024-03187-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Polycystic liver disease (PLD) is a rare condition observed in three genetic diseases, including autosomal dominant polycystic liver disease (ADPLD), autosomal dominant polycystic kidney disease (ADPKD), and autosomal recessive polycystic kidney disease (ARPKD). PLD usually does not impair liver function, and advanced PLD becomes symptomatic when the enlarged liver compresses adjacent organs or increases intra-abdominal pressure. Currently, the diagnosis of PLD is mainly based on imaging, and genetic testing is not required except for complex cases. Besides, genetic testing may help predict patients' prognosis, classify patients for genetic intervention, and conduct early treatment. Although the underlying genetic causes and mechanisms are not fully understood, previous studies refer to primary ciliopathy or impaired ciliogenesis as the main culprit. Primarily, PLD occurs due to defective ciliogenesis and ineffective endoplasmic reticulum quality control. Specifically, loss of function mutations of genes that are directly involved in ciliogenesis, such as Pkd1, Pkd2, Pkhd1, and Dzip1l, can lead to both hepatic and renal cystogenesis in ADPKD and ARPKD. In addition, loss of function mutations of genes that are involved in endoplasmic reticulum quality control and protein folding, trafficking, and maturation, such as PRKCSH, Sec63, ALG8, ALG9, GANAB, and SEC61B, can impair the production and function of polycystin1 (PC1) and polycystin 2 (PC2) or facilitate their degradation and indirectly promote isolated hepatic cystogenesis or concurrent hepatic and renal cystogenesis. Recently, it was shown that mutations of LRP5, which impairs canonical Wnt signaling, can lead to hepatic cystogenesis. PLD is currently treated by somatostatin analogs, percutaneous intervention, surgical fenestration, resection, and liver transplantation. In addition, based on the underlying molecular mechanisms and signaling pathways, several investigational treatments have been used in preclinical studies, some of which have shown promising results. This review discusses the clinical manifestation, complications, prevalence, genetic basis, and treatment of PLD and explains the investigational methods of treatment and future research direction, which can be beneficial for researchers and clinicians interested in PLD.
Collapse
Affiliation(s)
- Amir Ali Mahboobipour
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moein Ala
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Javad Safdari Lord
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Yaghoobi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| |
Collapse
|
7
|
Kofotolios I, Bonios MJ, Adamopoulos M, Mourouzis I, Filippatos G, Boletis JN, Marinaki S, Mavroidis M. The Han:SPRD Rat: A Preclinical Model of Polycystic Kidney Disease. Biomedicines 2024; 12:362. [PMID: 38397964 PMCID: PMC10887417 DOI: 10.3390/biomedicines12020362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) stands as the most prevalent hereditary renal disorder in humans, ultimately culminating in end-stage kidney disease. Animal models carrying mutations associated with polycystic kidney disease have played an important role in the advancement of ADPKD research. The Han:SPRD rat model, carrying an R823W mutation in the Anks6 gene, is characterized by cyst formation and kidney enlargement. The mutated protein, named Samcystin, is localized in cilia of tubular epithelial cells and seems to be involved in cystogenesis. The homozygous Anks6 mutation leads to end-stage renal disease and death, making it a critical factor in kidney development and function. This review explores the utility of the Han:SPRD rat model, highlighting its phenotypic similarity to human ADPKD. Specifically, we discuss its role in preclinical trials and its importance for investigating the pathogenesis of the disease and developing new therapeutic approaches.
Collapse
Affiliation(s)
- Ioannis Kofotolios
- Clinic of Nephrology and Renal Tranplantation, Laiko Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece (M.M.)
| | - Michael J. Bonios
- Heart Failure and Transplant Unit, Onassis Cardiac Surgery Center, 17674 Athens, Greece;
| | - Markos Adamopoulos
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece (M.M.)
| | - Iordanis Mourouzis
- Department of Pharmacology, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Gerasimos Filippatos
- Department of Cardiology, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - John N. Boletis
- Clinic of Nephrology and Renal Tranplantation, Laiko Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Smaragdi Marinaki
- Clinic of Nephrology and Renal Tranplantation, Laiko Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Manolis Mavroidis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece (M.M.)
| |
Collapse
|
8
|
Pala R, Barui AK, Mohieldin AM, Zhou J, Nauli SM. Folate conjugated nanomedicines for selective inhibition of mTOR signaling in polycystic kidneys at clinically relevant doses. Biomaterials 2023; 302:122329. [PMID: 37722182 PMCID: PMC10836200 DOI: 10.1016/j.biomaterials.2023.122329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
Although rapamycin is a very effective drug for rodents with polycystic kidney disease (PKD), it is not encouraging in the clinical trials due to the suboptimal dosages compelled by the off-target side effects. We here report the generation, characterization, specificity, functionality, pharmacokinetic, pharmacodynamic and toxicology profiles of novel polycystic kidney-specific-targeting nanoparticles (NPs). We formulated folate-conjugated PLGA-PEG NPs, which can be loaded with multiple drugs, including rapamycin (an mTOR inhibitor) and antioxidant 4-hydroxy-TEMPO (a nephroprotective agent). The NPs increased the efficacy, potency and tolerability of rapamycin resulting in an increased survival rate and improved kidney function by decreasing side effects and reducing biodistribution to other organs in PKD mice. The daily administration of rapamycin-alone (1 mg/kg/day) could now be achieved with a weekly injection of NPs containing rapamycin (379 μg/kg/week). This polycystic kidney-targeting nanotechnology, for the first time, integrated advances in the use of 1) nanoparticles as a delivery cargo, 2) folate for targeting, 3) near-infrared Cy5-fluorophore for in vitro and in vivo live imaging, 4) rapamycin as a pharmacological therapy, and 5) TEMPO as a combinational therapy. The slow sustained-release of rapamycin by polycystic kidney-targeting NPs demonstrates a new era of nanomedicine in treatment for chronic kidney diseases at clinically relevant doses.
Collapse
Affiliation(s)
- Rajasekharreddy Pala
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA, 92618, USA; Marlin Biopharma, Irvine, CA, 92620, USA.
| | - Ayan K Barui
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA, 92618, USA
| | - Ashraf M Mohieldin
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA, 92618, USA
| | - Jing Zhou
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Surya M Nauli
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA, 92618, USA; Marlin Biopharma, Irvine, CA, 92620, USA.
| |
Collapse
|
9
|
Sieben CJ, Harris PC. Experimental Models of Polycystic Kidney Disease: Applications and Therapeutic Testing. KIDNEY360 2023; 4:1155-1173. [PMID: 37418622 PMCID: PMC10476690 DOI: 10.34067/kid.0000000000000209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Polycystic kidney diseases (PKDs) are genetic disorders characterized by the formation and expansion of numerous fluid-filled renal cysts, damaging normal parenchyma and often leading to kidney failure. Although PKDs comprise a broad range of different diseases, with substantial genetic and phenotypic heterogeneity, an association with primary cilia represents a common theme. Great strides have been made in the identification of causative genes, furthering our understanding of the genetic complexity and disease mechanisms, but only one therapy so far has shown success in clinical trials and advanced to US Food and Drug Administration approval. A key step in understanding disease pathogenesis and testing potential therapeutics is developing orthologous experimental models that accurately recapitulate the human phenotype. This has been particularly important for PKDs because cellular models have been of limited value; however, the advent of organoid usage has expanded capabilities in this area but does not negate the need for whole-organism models where renal function can be assessed. Animal model generation is further complicated in the most common disease type, autosomal dominant PKD, by homozygous lethality and a very limited cystic phenotype in heterozygotes while for autosomal recessive PKD, mouse models have a delayed and modest kidney disease, in contrast to humans. However, for autosomal dominant PKD, the use of conditional/inducible and dosage models have resulted in some of the best disease models in nephrology. These have been used to help understand pathogenesis, to facilitate genetic interaction studies, and to perform preclinical testing. Whereas for autosomal recessive PKD, using alternative species and digenic models has partially overcome these deficiencies. Here, we review the experimental models that are currently available and most valuable for therapeutic testing in PKD, their applications, success in preclinical trials, advantages and limitations, and where further improvements are needed.
Collapse
Affiliation(s)
- Cynthia J Sieben
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
10
|
Márquez-Nogueras KM, Vuchkovska V, Kuo IY. Calcium signaling in polycystic kidney disease- cell death and survival. Cell Calcium 2023; 112:102733. [PMID: 37023534 PMCID: PMC10348384 DOI: 10.1016/j.ceca.2023.102733] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/20/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Polycystic kidney disease is typified by cysts in the kidney and extra-renal manifestations including hypertension and heart failure. The main genetic underpinning this disease are loss-of function mutations to the two polycystin proteins, polycystin 1 and polycystin 2. Molecularly, the disease is characterized by changes in multiple signaling pathways including down regulation of calcium signaling, which, in part, is contributed by the calcium permeant properties of polycystin 2. These signaling pathways enable the cystic cells to survive and avoid cell death. This review focuses on the studies that have emerged in the past 5 years describing how the structural insights gained from PC-1 and PC-2 inform the calcium dependent molecular pathways of autophagy and the unfolded protein response that are regulated by the polycystin proteins and how it leads to cell survival and/or cell death.
Collapse
Affiliation(s)
- Karla M Márquez-Nogueras
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, 2160 S. First Ave, Maywood, IL, USA
| | - Virdjinija Vuchkovska
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, 2160 S. First Ave, Maywood, IL, USA; Graduate School, Loyola University Chicago, 2160 S. First Ave, Maywood, IL, USA
| | - Ivana Y Kuo
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, 2160 S. First Ave, Maywood, IL, USA.
| |
Collapse
|
11
|
Devlin L, Dhondurao Sudhindar P, Sayer JA. Renal ciliopathies: promising drug targets and prospects for clinical trials. Expert Opin Ther Targets 2023; 27:325-346. [PMID: 37243567 DOI: 10.1080/14728222.2023.2218616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023]
Abstract
INTRODUCTION Renal ciliopathies represent a collection of genetic disorders characterized by deficiencies in the biogenesis, maintenance, or functioning of the ciliary complex. These disorders, which encompass autosomal dominant polycystic kidney disease (ADPKD), autosomal recessive polycystic kidney disease (ARPKD), and nephronophthisis (NPHP), typically result in cystic kidney disease, renal fibrosis, and a gradual deterioration of kidney function, culminating in kidney failure. AREAS COVERED Here we review the advances in basic science and clinical research into renal ciliopathies which have yielded promising small compounds and drug targets, within both preclinical studies and clinical trials. EXPERT OPINION Tolvaptan is currently the sole approved treatment option available for ADPKD patients, while no approved treatment alternatives exist for ARPKD or NPHP patients. Clinical trials are presently underway to evaluate additional medications in ADPKD and ARPKD patients. Based on preclinical models, other potential therapeutic targets for ADPKD, ARPKD, and NPHP look promising. These include molecules targeting fluid transport, cellular metabolism, ciliary signaling and cell-cycle regulation. There is a real and urgent clinical need for translational research to bring novel treatments to clinical use for all forms of renal ciliopathies to reduce kidney disease progression and prevent kidney failure.
Collapse
Affiliation(s)
- Laura Devlin
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Praveen Dhondurao Sudhindar
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - John A Sayer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
- Renal Services, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle Upon Tyne, UK
| |
Collapse
|
12
|
Huynh C, Ryu J, Lee J, Inoki A, Inoki K. Nutrient-sensing mTORC1 and AMPK pathways in chronic kidney diseases. Nat Rev Nephrol 2023; 19:102-122. [PMID: 36434160 DOI: 10.1038/s41581-022-00648-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2022] [Indexed: 11/27/2022]
Abstract
Nutrients such as glucose, amino acids and lipids are fundamental sources for the maintenance of essential cellular processes and homeostasis in all organisms. The nutrient-sensing kinases mechanistic target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) are expressed in many cell types and have key roles in the control of cell growth, proliferation, differentiation, metabolism and survival, ultimately contributing to the physiological development and functions of various organs, including the kidney. Dysregulation of these kinases leads to many human health problems, including cancer, neurodegenerative diseases, metabolic disorders and kidney diseases. In the kidney, physiological levels of mTOR and AMPK activity are required to support kidney cell growth and differentiation and to maintain kidney cell integrity and normal nephron function, including transport of electrolytes, water and glucose. mTOR forms two functional multi-protein kinase complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Hyperactivation of mTORC1 leads to podocyte and tubular cell dysfunction and vulnerability to injury, thereby contributing to the development of chronic kidney diseases, including diabetic kidney disease, obesity-related kidney disease and polycystic kidney disease. Emerging evidence suggests that targeting mTOR and/or AMPK could be an effective therapeutic approach to controlling or preventing these diseases.
Collapse
Affiliation(s)
- Christopher Huynh
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jaewhee Ryu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jooho Lee
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Ayaka Inoki
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ken Inoki
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
Genetics, pathobiology and therapeutic opportunities of polycystic liver disease. Nat Rev Gastroenterol Hepatol 2022; 19:585-604. [PMID: 35562534 DOI: 10.1038/s41575-022-00617-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 12/12/2022]
Abstract
Polycystic liver diseases (PLDs) are inherited genetic disorders characterized by progressive development of intrahepatic, fluid-filled biliary cysts (more than ten), which constitute the main cause of morbidity and markedly affect the quality of life. Liver cysts arise in patients with autosomal dominant PLD (ADPLD) or in co-occurrence with renal cysts in patients with autosomal dominant or autosomal recessive polycystic kidney disease (ADPKD and ARPKD, respectively). Hepatic cystogenesis is a heterogeneous process, with several risk factors increasing the odds of developing larger cysts. Depending on the causative gene, PLDs can arise exclusively in the liver or in parallel with renal cysts. Current therapeutic strategies, mainly based on surgical procedures and/or chronic administration of somatostatin analogues, show modest benefits, with liver transplantation as the only potentially curative option. Increasing research has shed light on the genetic landscape of PLDs and consequent cholangiocyte abnormalities, which can pave the way for discovering new targets for therapy and the design of novel potential treatments for patients. Herein, we provide a critical and comprehensive overview of the latest advances in the field of PLDs, mainly focusing on genetics, pathobiology, risk factors and next-generation therapeutic strategies, highlighting future directions in basic, translational and clinical research.
Collapse
|
14
|
Zhang Y, Daniel EA, Metcalf J, Dai Y, Reif GA, Wallace DP. CaMK4 overexpression in polycystic kidney disease promotes mTOR-mediated cell proliferation. J Mol Cell Biol 2022; 14:6674767. [PMID: 36002021 PMCID: PMC9802383 DOI: 10.1093/jmcb/mjac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 06/01/2022] [Accepted: 08/18/2022] [Indexed: 01/14/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by progressive enlargement of fluid-filled cysts, causing nephron loss and a decline in renal function. Mammalian target of rapamycin (mTOR) is overactive in cyst-lining cells and contributes to abnormal cell proliferation and cyst enlargement; however, the mechanism for mTOR stimulation remains unclear. We discovered that calcium/calmodulin (CaM) dependent kinase IV (CaMK4), a multifunctional kinase, is overexpressed in the kidneys of ADPKD patients and PKD mouse models. In human ADPKD cells, CaMK4 knockdown reduced mTOR abundance and the phosphorylation of ribosomal protein S6 kinase (S6K), a downstream target of mTOR. Pharmacologic inhibition of CaMK4 with KN-93 reduced phosphorylated S6K and S6 levels and inhibited cell proliferation and in vitro cyst formation of ADPKD cells. Moreover, inhibition of calcium/CaM-dependent protein kinase kinase-β and CaM, two key upstream regulators of CaMK4, also decreased mTOR signaling. The effects of KN-93 were independent of the liver kinase B1-adenosine monophosphate-activated protein kinase (AMPK) pathway, and the combination of KN-93 and metformin, an AMPK activator, had additive inhibitory effects on mTOR signaling and in vitro cyst growth. Our data suggest that increased CaMK4 expression and activity contribute to mTOR signaling and the proliferation of cystic cells of ADPKD kidneys.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160-3018, USA,Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160-3018, USA
| | - Emily A Daniel
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160-3018, USA,Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160-3018, USA
| | - July Metcalf
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160-3018, USA,Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160-3018, USA
| | - Yuqiao Dai
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160-3018, USA,Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160-3018, USA
| | - Gail A Reif
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160-3018, USA,Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160-3018, USA
| | | |
Collapse
|
15
|
Iliuta IA, Song X, Pickel L, Haghighi A, Retnakaran R, Scholey J, Sung HK, Steinberg GR, Pei Y. Shared pathobiology identifies AMPK as a therapeutic target for obesity and autosomal dominant polycystic kidney disease. Front Mol Biosci 2022; 9:962933. [PMID: 36106024 PMCID: PMC9467623 DOI: 10.3389/fmolb.2022.962933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/21/2022] [Indexed: 12/02/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common Mendelian kidney disease, affecting approximately one in 1,000 births and accounting for 5% of end-stage kidney disease in developed countries. The pathophysiology of ADPKD is strongly linked to metabolic dysregulation, which may be secondary to defective polycystin function. Overweight and obesity are highly prevalent in patients with ADPKD and constitute an independent risk factor for progression. Recent studies have highlighted reduced AMP-activated protein kinase (AMPK) activity, increased mammalian target of rapamycin (mTOR) signaling, and mitochondrial dysfunction as shared pathobiology between ADPKD and overweight/obesity. Notably, mTOR and AMPK are two diametrically opposed sensors of energy metabolism that regulate cell growth and proliferation. However, treatment with the current generation of mTOR inhibitors is poorly tolerated due to their toxicity, making clinical translation difficult. By contrast, multiple preclinical and clinical studies have shown that pharmacological activation of AMPK provides a promising approach to treat ADPKD. In this narrative review, we summarize the pleiotropic functions of AMPK as a regulator of cellular proliferation, macromolecule metabolism, and mitochondrial biogenesis, and discuss the potential for pharmacological activation of AMPK to treat ADPKD and obesity-related kidney disease.
Collapse
Affiliation(s)
- Ioan-Andrei Iliuta
- Division of Nephrology, Department of Medicine, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Xuewen Song
- Division of Nephrology, Department of Medicine, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Lauren Pickel
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Amirreza Haghighi
- Division of Nephrology, Department of Medicine, University Health Network and University of Toronto, Toronto, ON, Canada
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Ravi Retnakaran
- Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - James Scholey
- Division of Nephrology, Department of Medicine, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Hoon-Ki Sung
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Gregory R. Steinberg
- Department of Medicine, Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, ON, Canada
| | - York Pei
- Division of Nephrology, Department of Medicine, University Health Network and University of Toronto, Toronto, ON, Canada
- *Correspondence: York Pei,
| |
Collapse
|
16
|
Restoration of atypical protein kinase C ζ function in autosomal dominant polycystic kidney disease ameliorates disease progression. Proc Natl Acad Sci U S A 2022; 119:e2121267119. [PMID: 35867829 PMCID: PMC9335328 DOI: 10.1073/pnas.2121267119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) affects more than 500,000 individuals in the United States alone. In most cases, ADPKD is caused by a loss-of-function mutation in the PKD1 gene, which encodes polycystin-1 (PC1). Previous studies reported that PC1 interacts with atypical protein kinase C (aPKC). Here we show that PC1 binds to the ζ isoform of aPKC (PKCζ) and identify two PKCζ phosphorylation sites on PC1's C-terminal tail. PKCζ expression is down-regulated in patients with ADPKD and orthologous and nonorthologous PKD mouse models. We find that the US Food and Drug Administration-approved drug FTY720 restores PKCζ expression in in vitro and in vivo models of polycystic kidney disease (PKD) and this correlates with ameliorated disease progression in multiple PKD mouse models. Importantly, we show that FTY720 treatment is less effective in PKCζ null versions of these PKD mouse models, elucidating a PKCζ-specific mechanism of action that includes inhibiting STAT3 activity and cyst-lining cell proliferation. Taken together, our results reveal that PKCζ down-regulation is a hallmark of PKD and that its stabilization by FTY720 may represent a therapeutic approach to the treat the disease.
Collapse
|
17
|
Senatore E, Iannucci R, Chiuso F, Delle Donne R, Rinaldi L, Feliciello A. Pathophysiology of Primary Cilia: Signaling and Proteostasis Regulation. Front Cell Dev Biol 2022; 10:833086. [PMID: 35646931 PMCID: PMC9130585 DOI: 10.3389/fcell.2022.833086] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/21/2022] [Indexed: 01/29/2023] Open
Abstract
Primary cilia are microtubule-based, non-motile sensory organelles present in most types of growth-arrested eukaryotic cells. They are transduction hubs that receive and transmit external signals to the cells in order to control growth, differentiation and development. Mutations of genes involved in the formation, maintenance or disassembly of ciliary structures cause a wide array of developmental genetic disorders, also known as ciliopathies. The primary cilium is formed during G1 in the cell cycle and disassembles at the G2/M transition. Following the completion of the cell division, the cilium reassembles in G1. This cycle is finely regulated at multiple levels. The ubiquitin-proteasome system (UPS) and the autophagy machinery, two main protein degradative systems in cells, play a fundamental role in cilium dynamics. Evidence indicate that UPS, autophagy and signaling pathways may act in synergy to control the ciliary homeostasis. However, the mechanisms involved and the links between these regulatory systems and cilium biogenesis, dynamics and signaling are not well defined yet. Here, we discuss the reciprocal regulation of signaling pathways and proteolytic machineries in the control of the assembly and disassembly of the primary cilium, and the impact of the derangement of these regulatory networks in human ciliopathies.
Collapse
|
18
|
Pinostrobin inhibits renal CFTR-mediated Cl- secretion and retards cyst growth in cell-derived cyst and polycystic kidney disease rats. J Pharmacol Sci 2022; 148:369-376. [DOI: 10.1016/j.jphs.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 01/09/2022] [Accepted: 02/14/2022] [Indexed: 11/23/2022] Open
|
19
|
Caplan MJ. AMPK and Polycystic Kidney Disease Drug Development: An Interesting Off-Target Target. Front Med (Lausanne) 2022; 9:753418. [PMID: 35174190 PMCID: PMC8841847 DOI: 10.3389/fmed.2022.753418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/10/2022] [Indexed: 11/20/2022] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease is a genetic disease that causes dramatic perturbations of both renal tissue architecture and of a multitude of cellular signaling pathways. The relationship between the products of the genes whose mutations cause polycystic kidney disease and these signaling pathways remains difficult to determine. It is clear, however, that cellular metabolism is dramatically altered in cells that are affected by polycystic kidney disease mutations. Adenosine monophosphate-stimulated protein kinase is a master regulator of cellular energy use and generation pathways whose activity appears to be perturbed in cells affected by polycystic kidney disease. Furthermore, modulation of this enzyme's activity may constitute a promising approach for the development of new therapeutics for polycystic kidney disease.
Collapse
|
20
|
Knol MGE, Kramers BJ, Gansevoort RT, van Gastel MDA. The association of glucagon with disease severity and progression in patients with autosomal dominant polycystic kidney disease: an observational cohort study. Clin Kidney J 2021; 14:2582-2590. [PMID: 34950469 PMCID: PMC8690142 DOI: 10.1093/ckj/sfab112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/11/2021] [Indexed: 11/13/2022] Open
Abstract
Background Mammalian target of rapamycin (mTOR) inhibitors and ketogenesis have been shown to ameliorate disease progression in experimental autosomal dominant polycystic kidney disease (ADPKD). Glucagon is known to lower mTOR activity and stimulate ketogenesis. We hypothesized that in ADPKD patients, higher endogenous glucagon is associated with less disease severity and progression. Methods Data were analysed from 664 Dutch ADPKD patients participating in the Developing Intervention Strategies to Halt Progression of ADPKD observational cohort, including patients >18 years of age with an estimated glomerular filtration rate (eGFR) ≥15 mL/min/1.73 m2 and excluding patients with concomitant diseases or medication use that may impact the natural course of ADPKD. The association between glucagon and disease severity and progression was tested using multivariate linear regression and mixed modelling, respectively. Results The median glucagon concentration was 5.0 pmol/L [interquartile range (IQR) 3.4-7.2) and differed significantly between females and males [4.3 pmol/L (IQR 2.9-6.0) and 6.6 (4.5-9.5), P < 0.001, respectively]. Intrasubject stability of glucagon in 30 patients showed a strong correlation (Pearson's correlation coefficient 0.893; P < 0.001). Moreover, glucagon showed significant associations with known determinants (sex, body mass index and copeptin; all P < 0.01) and known downstream effects (glucose, haemoglobin A1c and cholesterol; all P < 0.05), suggesting that glucagon was measured reliably. Cross-sectionally, glucagon was associated with eGFR and height-adjusted total kidney volume, but in the opposite direction of our hypothesis, and these lost significance after adjustment for confounders. Glucagon was not associated with an annual decline in kidney function or growth in kidney volume. Conclusions These data do not provide evidence for a role of endogenous glucagon as a protective hormone in ADPKD. Intervention studies are needed to determine the relation between glucagon and ADPKD.
Collapse
Affiliation(s)
- Martine G E Knol
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bart J Kramers
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ron T Gansevoort
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maatje D A van Gastel
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
21
|
Pagliarini R, Podrini C. Metabolic Reprogramming and Reconstruction: Integration of Experimental and Computational Studies to Set the Path Forward in ADPKD. Front Med (Lausanne) 2021; 8:740087. [PMID: 34901057 PMCID: PMC8652061 DOI: 10.3389/fmed.2021.740087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022] Open
Abstract
Metabolic reprogramming is a key feature of Autosomal Dominant Polycystic Kidney Disease (ADPKD) characterized by changes in cellular pathways occurring in response to the pathological cell conditions. In ADPKD, a broad range of dysregulated pathways have been found. The studies supporting alterations in cell metabolism have shown that the metabolic preference for abnormal cystic growth is to utilize aerobic glycolysis, increasing glutamine uptake and reducing oxidative phosphorylation, consequently resulting in ADPKD cells shifting their energy to alternative energetic pathways. The mechanism behind the role of the polycystin proteins and how it leads to disease remains unclear, despite the identification of numerous signaling pathways. The integration of computational data analysis that accompanies experimental findings was pivotal in the identification of metabolic reprogramming in ADPKD. Here, we summarize the important results and argue that their exploitation may give further insights into the regulative mechanisms driving metabolic reprogramming in ADPKD. The aim of this review is to provide a comprehensive overview on metabolic focused studies and potential targets for treatment, and to propose that computational approaches could be instrumental in advancing this field of research.
Collapse
Affiliation(s)
- Roberto Pagliarini
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS-San Raffaele Scientific Institute, Milan, Italy
| | - Christine Podrini
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS-San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
22
|
Ren Z, Zhang Z, Liu TM, Ge W. Novel zebrafish polycystic kidney disease models reveal functions of the Hippo pathway in renal cystogenesis. Dis Model Mech 2021; 14:272239. [PMID: 34545930 PMCID: PMC8592019 DOI: 10.1242/dmm.049027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 09/10/2021] [Indexed: 12/14/2022] Open
Abstract
The Hippo signaling pathway is a kinase cascade that plays an important role in organ size control. As the main effectors of the Hippo pathway, transcription coactivators Yap1/Wwtr1 are regulated by the upstream kinase Stk3. Recent studies in mammals have implicated the Hippo pathway in kidney development and kidney diseases. To further illustrate its roles in vertebrate kidney, we generated a series of zebrafish mutants targeting stk3, yap1 and wwtr1 genes. The stk3−/− mutant exhibited edema, formation of glomerular cysts and pronephric tubule dilation during the larval stage. Interestingly, disruption of wwtr1, but not yap1, significantly alleviated the renal phenotypes of the stk3−/− mutant, and overexpression of Wwtr1 with the CMV promoter also induced pronephric phenotypes, similar to those of the stk3−/− mutant, during larval stage. Notably, adult fish with Wwtr1 overexpression developed phenotypes similar to those of human polycystic kidney disease (PKD). Overall, our analyses revealed roles of Stk3 and Wwtr1 in renal cyst formation. Using a pharmacological approach, we further demonstrated that Stk3-deficient zebrafish could serve as a PKD model for drug development. Summary: A zebrafish stk3 mutant line and Wwtr1 overexpression line provide evidence for functions of the Hippo signaling pathway in renal cyst formation and represent potential models for polycystic kidney disease.
Collapse
Affiliation(s)
- Zhiqin Ren
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Zhiwei Zhang
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Tzu-Ming Liu
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| |
Collapse
|
23
|
Liebau MC. Is There a Functional Role of Mitochondrial Dysfunction in the Pathogenesis of ARPKD? Front Med (Lausanne) 2021; 8:739534. [PMID: 34676227 PMCID: PMC8523777 DOI: 10.3389/fmed.2021.739534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/03/2021] [Indexed: 12/02/2022] Open
Affiliation(s)
- Max Christoph Liebau
- Department of Pediatrics, Center for Molecular Medicine, and Center for Rare Diseases, University Hospital Cologne and Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
24
|
Cordido A, Nuñez-Gonzalez L, Martinez-Moreno JM, Lamas-Gonzalez O, Rodriguez-Osorio L, Perez-Gomez MV, Martin-Sanchez D, Outeda P, Chiaravalli M, Watnick T, Boletta A, Diaz C, Carracedo A, Sanz AB, Ortiz A, Garcia-Gonzalez MA. TWEAK Signaling Pathway Blockade Slows Cyst Growth and Disease Progression in Autosomal Dominant Polycystic Kidney Disease. J Am Soc Nephrol 2021; 32:1913-1932. [PMID: 34155062 PMCID: PMC8455272 DOI: 10.1681/asn.2020071094] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 03/06/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND In autosomal dominant polycystic kidney disease (ADPKD), cyst development and enlargement lead to ESKD. Macrophage recruitment and interstitial inflammation promote cyst growth. TWEAK is a TNF superfamily (TNFSF) cytokine that regulates inflammatory responses, cell proliferation, and cell death, and its receptor Fn14 (TNFRSF12a) is expressed in macrophage and nephron epithelia. METHODS To evaluate the role of the TWEAK signaling pathway in cystic disease, we evaluated Fn14 expression in human and in an orthologous murine model of ADPKD. We also explored the cystic response to TWEAK signaling pathway activation and inhibition by peritoneal injection. RESULTS Meta-analysis of published animal-model data of cystic disease reveals mRNA upregulation of several components of the TWEAK signaling pathway. We also observed that TWEAK and Fn14 were overexpressed in mouse ADPKD kidney cysts, and TWEAK was significantly high in urine and cystic fluid from patients with ADPKD. TWEAK administration induced cystogenesis and increased cystic growth, worsening the phenotype in a murine ADPKD model. Anti-TWEAK antibodies significantly slowed the progression of ADPKD, preserved renal function, and improved survival. Furthermore, the anti-TWEAK cystogenesis reduction is related to decreased cell proliferation-related MAPK signaling, decreased NF-κB pathway activation, a slight reduction of fibrosis and apoptosis, and an indirect decrease in macrophage recruitment. CONCLUSIONS This study identifies the TWEAK signaling pathway as a new disease mechanism involved in cystogenesis and cystic growth and may lead to a new therapeutic approach in ADPKD.
Collapse
Affiliation(s)
- Adrian Cordido
- Group of Genetics and Developmental Biology of Renal Diseases, Nephrology Laboratory (N°11), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela Clinical Hospital Complex (CHUS), Santiago de Compostela, Spain,Genomic Medicine Group, Santiago de Compostela Clinical Hospital Complex (CHUS), Santiago de Compostela, Spain,RedInRen RETIC, Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Nuñez-Gonzalez
- Group of Genetics and Developmental Biology of Renal Diseases, Nephrology Laboratory (N°11), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela Clinical Hospital Complex (CHUS), Santiago de Compostela, Spain,Genomic Medicine Group, Santiago de Compostela Clinical Hospital Complex (CHUS), Santiago de Compostela, Spain
| | - Julio M. Martinez-Moreno
- Department of Nephrology and Hypertension, Jiménez Díaz Foundation (Health Research Institute and Autonomous University of Madrid), Madrid, Spain
| | - Olaya Lamas-Gonzalez
- Group of Genetics and Developmental Biology of Renal Diseases, Nephrology Laboratory (N°11), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela Clinical Hospital Complex (CHUS), Santiago de Compostela, Spain
| | - Laura Rodriguez-Osorio
- RedInRen RETIC, Instituto de Salud Carlos III, Madrid, Spain,Department of Nephrology and Hypertension, Jiménez Díaz Foundation (Health Research Institute and Autonomous University of Madrid), Madrid, Spain
| | - Maria Vanessa Perez-Gomez
- RedInRen RETIC, Instituto de Salud Carlos III, Madrid, Spain,Department of Nephrology and Hypertension, Jiménez Díaz Foundation (Health Research Institute and Autonomous University of Madrid), Madrid, Spain
| | - Diego Martin-Sanchez
- RedInRen RETIC, Instituto de Salud Carlos III, Madrid, Spain,Department of Nephrology and Hypertension, Jiménez Díaz Foundation (Health Research Institute and Autonomous University of Madrid), Madrid, Spain
| | - Patricia Outeda
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Marco Chiaravalli
- Division of Genetics and Cell Biology, Molecular Basis of Cystic Kidney Disorders Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)–San Raffaele Scientific Institute, Milan, Italy
| | - Terry Watnick
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | | | - Candido Diaz
- Group of Genetics and Developmental Biology of Renal Diseases, Nephrology Laboratory (N°11), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela Clinical Hospital Complex (CHUS), Santiago de Compostela, Spain,Nephrology Service, Santiago de Compostela Clinical Hospital Complex (CHUS), Santiago de Compostela, Spain
| | - Angel Carracedo
- Genomic Medicine Group, Santiago de Compostela Clinical Hospital Complex (CHUS), Santiago de Compostela, Spain,Galician Public Foundation of Genomic Medicine, Santiago de Compostela Clinical Hospital Complex (CHUS), Santiago de Compostela, Spain,Center in Network of Rare Diseases (CIBERER), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana B. Sanz
- RedInRen RETIC, Instituto de Salud Carlos III, Madrid, Spain,Department of Nephrology and Hypertension, Jiménez Díaz Foundation (Health Research Institute and Autonomous University of Madrid), Madrid, Spain
| | - Alberto Ortiz
- RedInRen RETIC, Instituto de Salud Carlos III, Madrid, Spain,Department of Nephrology and Hypertension, Jiménez Díaz Foundation (Health Research Institute and Autonomous University of Madrid), Madrid, Spain
| | - Miguel A. Garcia-Gonzalez
- Group of Genetics and Developmental Biology of Renal Diseases, Nephrology Laboratory (N°11), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela Clinical Hospital Complex (CHUS), Santiago de Compostela, Spain,Genomic Medicine Group, Santiago de Compostela Clinical Hospital Complex (CHUS), Santiago de Compostela, Spain,RedInRen RETIC, Instituto de Salud Carlos III, Madrid, Spain,Galician Public Foundation of Genomic Medicine, Santiago de Compostela Clinical Hospital Complex (CHUS), Santiago de Compostela, Spain
| |
Collapse
|
25
|
The cellular pathways and potential therapeutics of Polycystic Kidney Disease. Biochem Soc Trans 2021; 49:1171-1188. [PMID: 34156429 DOI: 10.1042/bst20200757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023]
Abstract
Polycystic Kidney Disease (PKD) refers to a group of disorders, driven by the formation of cysts in renal tubular cells and is currently one of the leading causes of end-stage renal disease. The range of symptoms observed in PKD is due to mutations in cilia-localising genes, resulting in changes in cellular signalling. As such, compounds that are currently in preclinical and clinical trials target some of these signalling pathways that are dysregulated in PKD. In this review, we highlight these pathways including cAMP, EGF and AMPK signalling and drugs that target them and may show promise in lessening the disease burden of PKD patients. At present, tolvaptan is the only approved therapy for ADPKD, however, it carries several adverse side effects whilst comparatively, no pharmacological drug is approved for ARPKD treatment. Aside from this, drugs that have been the subject of multiple clinical trials such as metformin, which targets AMPK signalling and somatostatins, which target cAMP signalling have shown great promise in reducing cyst formation and cellular proliferation. This review also discusses other potential and novel targets that can be used for future interventions, such as β-catenin and TAZ, where research has shown that a reduction in the overexpression of these signalling components results in amelioration of disease phenotype. Thus, it becomes apparent that well-designed preclinical investigations and future clinical trials into these pathways and other potential signalling targets are crucial in bettering disease prognosis for PKD patients and could lead to personalised therapy approaches.
Collapse
|
26
|
Millet-Boureima C, He S, Le TBU, Gamberi C. Modeling Neoplastic Growth in Renal Cell Carcinoma and Polycystic Kidney Disease. Int J Mol Sci 2021; 22:3918. [PMID: 33920158 PMCID: PMC8070407 DOI: 10.3390/ijms22083918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Renal cell carcinoma (RCC) and autosomal dominant polycystic kidney disease (ADPKD) share several characteristics, including neoplastic cell growth, kidney cysts, and limited therapeutics. As well, both exhibit impaired vasculature and compensatory VEGF activation of angiogenesis. The PI3K/AKT/mTOR and Ras/Raf/ERK pathways play important roles in regulating cystic and tumor cell proliferation and growth. Both RCC and ADPKD result in hypoxia, where HIF-α signaling is activated in response to oxygen deprivation. Primary cilia and altered cell metabolism may play a role in disease progression. Non-coding RNAs may regulate RCC carcinogenesis and ADPKD through their varied effects. Drosophila exhibits remarkable conservation of the pathways involved in RCC and ADPKD. Here, we review the progress towards understanding disease mechanisms, partially overlapping cellular and molecular dysfunctions in RCC and ADPKD and reflect on the potential for the agile Drosophila genetic model to accelerate discovery science, address unresolved mechanistic aspects of these diseases, and perform rapid pharmacological screens.
Collapse
Affiliation(s)
- Cassandra Millet-Boureima
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada; (C.M.-B.); (S.H.); (T.B.U.L.)
| | - Stephanie He
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada; (C.M.-B.); (S.H.); (T.B.U.L.)
| | - Thi Bich Uyen Le
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada; (C.M.-B.); (S.H.); (T.B.U.L.)
- Haematology-Oncology Research Group, National University Cancer Institute, Singapore 119228, Singapore
| | - Chiara Gamberi
- Department of Biology, Coastal Carolina University, Conway, SC 29528-6054, USA
| |
Collapse
|
27
|
Zhu P, Qiu Q, Harris PC, Xu X, Lin X. mtor Haploinsufficiency Ameliorates Renal Cysts and Cilia Abnormality in Adult Zebrafish tmem67 Mutants. J Am Soc Nephrol 2021; 32:822-836. [PMID: 33574160 PMCID: PMC8017545 DOI: 10.1681/asn.2020070991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/21/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Although zebrafish embryos have been used to study ciliogenesis and model polycystic kidney disease (PKD), adult zebrafish remain unexplored. METHODS Transcription activator-like effector nucleases (TALEN) technology was used to generate mutant for tmem67, the homolog of the mammalian causative gene for Meckel syndrome type 3 (MKS3). Classic 2D and optical-clearing 3D imaging of an isolated adult zebrafish kidney were used to examine cystic and ciliary phenotypes. A hypomorphic mtor strain or rapamycin was used to inhibit mTOR activity. RESULTS Adult tmem67 zebrafish developed progressive mesonephric cysts that share conserved features of mammalian cystogenesis, including a switch of cyst origin with age and an increase in proliferation of cyst-lining epithelial cells. The mutants had shorter and fewer distal single cilia and greater numbers of multiciliated cells (MCCs). Absence of a single cilium preceded cystogenesis, and expansion of MCCs occurred after pronephric cyst formation and was inversely correlated with the severity of renal cysts in young adult zebrafish, suggesting a primary defect and an adaptive action, respectively. Finally, the mutants exhibited hyperactive mTOR signaling. mTOR inhibition ameliorated renal cysts in both the embryonic and adult zebrafish models; however, it only rescued ciliary abnormalities in the adult mutants. CONCLUSIONS Adult zebrafish tmem67 mutants offer a new vertebrate model for renal cystic diseases, in which cilia morphology can be analyzed at a single-nephron resolution and mTOR inhibition proves to be a candidate therapeutic strategy.
Collapse
Affiliation(s)
- Ping Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Qi Qiu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Peter C. Harris
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota,Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Xueying Lin
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
28
|
Duong Phu M, Bross S, Burkhalter MD, Philipp M. Limitations and opportunities in the pharmacotherapy of ciliopathies. Pharmacol Ther 2021; 225:107841. [PMID: 33771583 DOI: 10.1016/j.pharmthera.2021.107841] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/11/2021] [Indexed: 01/10/2023]
Abstract
Ciliopathies are a family of rather diverse conditions, which have been grouped based on the finding of altered or dysfunctional cilia, potentially motile, small cellular antennae extending from the surface of postmitotic cells. Cilia-related disorders include embryonically arising conditions such as Joubert, Usher or Kartagener syndrome, but also afflictions with a postnatal or even adult onset phenotype, i.e. autosomal dominant polycystic kidney disease. The majority of ciliopathies are syndromic rather than affecting only a single organ due to cilia being found on almost any cell in the human body. Overall ciliopathies are considered rare diseases. Despite that, pharmacological research and the strive to help these patients has led to enormous therapeutic advances in the last decade. In this review we discuss new treatment options for certain ciliopathies, give an outlook on promising future therapeutic strategies, but also highlight the limitations in the development of therapeutic approaches of ciliopathies.
Collapse
Affiliation(s)
- Max Duong Phu
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Stefan Bross
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Martin D Burkhalter
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Melanie Philipp
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany.
| |
Collapse
|
29
|
Gui Y, Dai C. mTOR Signaling in Kidney Diseases. KIDNEY360 2020; 1:1319-1327. [PMID: 35372878 PMCID: PMC8815517 DOI: 10.34067/kid.0003782020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/02/2020] [Indexed: 04/27/2023]
Abstract
The mammalian target of rapamycin (mTOR), a serine/threonine protein kinase, is crucial in regulating cell growth, metabolism, proliferation, and survival. Under physiologic conditions, mTOR signaling maintains podocyte and tubular cell homeostasis. In AKI, activation of mTOR signaling in tubular cells and interstitial fibroblasts promotes renal regeneration and repair. However, constitutive activation of mTOR signaling in kidneys results in the initiation and progression of glomerular hypertrophy, interstitial fibrosis, polycystic kidney disease, and renal cell carcinoma. Here, we summarize the recent studies about mTOR signaling in renal physiology and injury, and discuss the possibility of its use as a therapeutic target for kidney diseases.
Collapse
Affiliation(s)
- Yuan Gui
- Department of Nephrology, University of Connecticut Health Center, Farmington, Connecticut
| | - Chunsun Dai
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
30
|
Autophagy induction promotes renal cyst growth in polycystic kidney disease. EBioMedicine 2020; 60:102986. [PMID: 32949996 PMCID: PMC7501056 DOI: 10.1016/j.ebiom.2020.102986] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
Background Polycystic kidney disease (PKD) involves renal cysts arising from proliferating tubular cells. Autophagy has been recently suggested as a potential therapeutic target in PKD, and mammalian target of rapamycin (mTOR) is a key negative regulator of autophagy. However, the effect of autophagy regulation on cystogenesis has not been elucidated in PKD mice. Methods Clinical validation was performed using GEO datasets and autosomal dominant polycystic kidney disease (ADPKD) patient samples. Newly established PKD and LC3 transgenic mice were used for in vivo verifications, and additional tests were performed in vitro and in vivo using multiple autophagy drugs. Findings Neither autophagy stimulation nor LC3 overexpression alleviated PKD. Furthermore, we observed the inhibitory effect of an autophagy inhibitor on cysts, indicating its possible therapeutic use in a specific group of patients with ADPKD. Interpretation Our findings provide a novel insight into the pathogenesis related to autophagy in PKD, suggesting that drugs related to autophagy regulation should be considered with caution for treating PKD. Funding Sources This work was supported by grants from the Bio & Medical Technology Development Program; the Collaborative Genome Program for Fostering New Post-Genome Industry of the NRF; the Basic Science Program.
Collapse
|
31
|
Apostolou A, Poreau B, Delrieu L, Thévenon J, Jouk PS, Lallemand G, Emadali A, Sartelet H. High Activation of the AKT Pathway in Human Multicystic Renal Dysplasia. Pathobiology 2020; 87:302-310. [PMID: 32927453 DOI: 10.1159/000509152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/04/2020] [Indexed: 11/19/2022] Open
Abstract
Multicystic renal dysplasia is a congenital cystic anomaly of the kidney caused by abnormal metanephric differentiation with immature tubules. It is surrounded by mesenchymal collars and islands of immature mesenchyma present between the cysts. The PI3K-AKT-mTOR signaling pathway is a key regulator involved in cell growth, proliferation, motility, survival, and apoptosis. Activation of the PI3K-AKT-mTOR pathway results in the survival and proliferation of tumor cells in many cancers. The aim of this study is to analyze the topographic expression of phospho-AKT, phospho-mTOR, and phospho-70S6K in renal development and in the multicystic dysplastic kidney (MCDK). A total of 17 fetal kidneys of development age from the first to the third trimester and 13 cases of pathological kidneys with MCDK were analyzed by immunohistochemistry in order to evaluate the expression of phospho-AKT (S473), phospho-mTOR, and phospho-70S6K. Phospho-AKT and phospho-mTOR were expressed early in renal development and in an identical manner for every structure derived from the ureteric bud, such as collecting ducts and urothelium. Phospho-p70S6K was expressed early in the urothelium and in glomerular mesangial cells. Later, their expressions differed according to the needs of cell proliferation and differentiation over time by becoming more selective. In MCDK, phospho-AKT, phospho-mTOR, and phospho-70S6K have the same profile: a high cytoplasmic expression in cystic epithelium, loose mesenchyma, and primitive tubes. This study demonstrates the essential and specific role of the PI3K-AKT-mTOR pathway in the formation of cysts in multicystic renal dysplasia.
Collapse
Affiliation(s)
- Alexia Apostolou
- Department of Pathology, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France.,Universite Grenoble Alpes, Grenoble, France
| | - Brice Poreau
- Department of Genetics, Couple Children's Hospital, Grenoble, France.,Universite Grenoble Alpes, Grenoble, France
| | - Loris Delrieu
- Translational Epigenetics,Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Julien Thévenon
- Department of Genetics, Couple Children's Hospital, Grenoble, France.,Universite Grenoble Alpes, Grenoble, France
| | - Pierre-Simon Jouk
- Department of Genetics, Couple Children's Hospital, Grenoble, France.,Universite Grenoble Alpes, Grenoble, France
| | - Guillaume Lallemand
- Department of Genetics, Couple Children's Hospital, Grenoble, France.,Universite Grenoble Alpes, Grenoble, France
| | - Anouk Emadali
- Translational Epigenetics,Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,Pôle Recherche, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Herve Sartelet
- Department of Pathology, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France, .,Universite Grenoble Alpes, Grenoble, France,
| |
Collapse
|
32
|
Haumann S, Müller RU, Liebau MC. Metabolic Changes in Polycystic Kidney Disease as a Potential Target for Systemic Treatment. Int J Mol Sci 2020; 21:ijms21176093. [PMID: 32847032 PMCID: PMC7503958 DOI: 10.3390/ijms21176093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/16/2022] Open
Abstract
Autosomal recessive and autosomal dominant polycystic kidney disease (ARPKD, ADPKD) are systemic disorders with pronounced hepatorenal phenotypes. While the main underlying genetic causes of both ARPKD and ADPKD have been well-known for years, the exact molecular mechanisms resulting in the observed clinical phenotypes in the different organs, remain incompletely understood. Recent research has identified cellular metabolic changes in PKD. These findings are of major relevance as there may be an immediate translation into clinical trials and potentially clinical practice. Here, we review important results in the field regarding metabolic changes in PKD and their modulation as a potential target of systemic treatment.
Collapse
Affiliation(s)
- Sophie Haumann
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany;
| | - Roman-Ulrich Müller
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany;
- CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
- Systems Biology of Ageing Cologne, University of Cologne, 50931 Cologne, Germany
| | - Max C. Liebau
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany;
- Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
- Correspondence: ; Tel.: +49-221-478-4359
| |
Collapse
|
33
|
Ikeda K, Kusaba T, Tomita A, Watanabe-Uehara N, Ida T, Kitani T, Yamashita N, Uehara M, Matoba S, Yamada T, Tamagaki K. Diverse Receptor Tyrosine Kinase Phosphorylation in Urine-Derived Tubular Epithelial Cells from Autosomal Dominant Polycystic Kidney Disease Patients. Nephron Clin Pract 2020; 144:525-536. [PMID: 32799196 DOI: 10.1159/000509419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/12/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUNDS The clinical features of autosomal dominant polycystic kidney disease (ADPKD) differ among patients even if they have the same gene mutation in PKD1 or PKD2. This suggests that there is diversity in the expression of other modifier genes or in the underlying molecular mechanisms of ADPKD, but these are not well understood. METHODS We primarily cultured solute carrier family 12 member 3 (SLC12A3)-positive urine-derived distal tubular epithelial cells from 6 ADPKD patients and 4 healthy volunteers and established immortalized cell lines. The diversity in receptor tyrosine kinase (RTK) phosphorylation by phospho-RTK array in immortalized tubular epithelial cells was analyzed. RESULTS We noted diversity in the activation of several molecules, including Met, a receptor of hepatocyte growth factor (HGF). Administration of golvatinib, a selective Met inhibitor, or transfection of small interfering RNA for Met suppressed cell proliferation and downstream signaling only in the cell lines in which hyperphosphorylation of Met was observed. In three-dimensional culture of Madin-Darby canine kidney (MDCK) cells as a cyst formation model of ADPKD, HGF activated Met, resulting in an increased total cyst number and total cyst volume. Administration of golvatinib inhibited these phenotypes in MDCK cells. CONCLUSION Analysis of urine-derived tubular epithelial cells demonstrated diverse RTK phosphorylation in ADPKD, and Met phosphorylation was noted in some patients. Considering the difference in the effects of golvatinib on immortalized tubular epithelial cells among patients, this analysis may aid in selecting suitable drugs for individual ADPKD patients.
Collapse
Affiliation(s)
- Kisho Ikeda
- Department of Nephrology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tetsuro Kusaba
- Department of Nephrology, Kyoto Prefectural University of Medicine, Kyoto, Japan,
| | - Aya Tomita
- Department of Nephrology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | - Tomoharu Ida
- Department of Nephrology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takashi Kitani
- Department of Nephrology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Noriyuki Yamashita
- Department of Nephrology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masahiro Uehara
- Department of Nephrology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tadaaki Yamada
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keiichi Tamagaki
- Department of Nephrology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
34
|
Reciprocal Regulation between Primary Cilia and mTORC1. Genes (Basel) 2020; 11:genes11060711. [PMID: 32604881 PMCID: PMC7349257 DOI: 10.3390/genes11060711] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
In quiescent cells, primary cilia function as a mechanosensor that converts mechanic signals into chemical activities. This unique organelle plays a critical role in restricting mechanistic target of rapamycin complex 1 (mTORC1) signaling, which is essential for quiescent cells to maintain their quiescence. Multiple mechanisms have been identified that mediate the inhibitory effect of primary cilia on mTORC1 signaling. These mechanisms depend on several tumor suppressor proteins localized within the ciliary compartment, including liver kinase B1 (LKB1), AMP-activated protein kinase (AMPK), polycystin-1, and polycystin-2. Conversely, changes in mTORC1 activity are able to affect ciliogenesis and stability indirectly through autophagy. In this review, we summarize recent advances in our understanding of the reciprocal regulation of mTORC1 and primary cilia.
Collapse
|
35
|
An Overview of In Vivo and In Vitro Models for Autosomal Dominant Polycystic Kidney Disease: A Journey from 3D-Cysts to Mini-Pigs. Int J Mol Sci 2020; 21:ijms21124537. [PMID: 32630605 PMCID: PMC7352572 DOI: 10.3390/ijms21124537] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/24/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inheritable cause of end stage renal disease and, as of today, only a single moderately effective treatment is available for patients. Even though ADPKD research has made huge progress over the last decades, the precise disease mechanisms remain elusive. However, a wide variety of cellular and animal models have been developed to decipher the pathophysiological mechanisms and related pathways underlying the disease. As none of these models perfectly recapitulates the complexity of the human disease, the aim of this review is to give an overview of the main tools currently available to ADPKD researchers, as well as their main advantages and limitations.
Collapse
|
36
|
Millet-Boureima C, Selber-Hnatiw S, Gamberi C. Drug discovery and chemical probing in Drosophila. Genome 2020; 64:147-159. [PMID: 32551911 DOI: 10.1139/gen-2020-0037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Flies are increasingly utilized in drug discovery and chemical probing in vivo, which are novel technologies complementary to genetic probing in fundamental biological studies. Excellent genetic conservation, small size, short generation time, and over one hundred years of genetics make Drosophila an attractive model for rapid assay readout and use of analytical amounts of compound, enabling the experimental iterations needed in early drug development at a fraction of time and costs. Here, we describe an effective drug-testing pipeline using adult flies that can be easily implemented to study several disease models and different genotypes to discover novel molecular insight, probes, quality lead compounds, and develop novel prototype drugs.
Collapse
Affiliation(s)
- Cassandra Millet-Boureima
- Biology Department, Concordia University, Montreal, QC H4B 1R6, Canada.,Biology Department, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Susannah Selber-Hnatiw
- Biology Department, Concordia University, Montreal, QC H4B 1R6, Canada.,Biology Department, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Chiara Gamberi
- Biology Department, Concordia University, Montreal, QC H4B 1R6, Canada.,Biology Department, Concordia University, Montreal, QC H4B 1R6, Canada
| |
Collapse
|
37
|
Peces R, Mena R, Martín Y, Hernández C, Peces C, Tellería D, Cuesta E, Selgas R, Lapunzina P, Nevado J. Co-occurrence of neurofibromatosis type 1 and optic nerve gliomas with autosomal dominant polycystic kidney disease type 2. Mol Genet Genomic Med 2020; 8:e1321. [PMID: 32533764 PMCID: PMC7434601 DOI: 10.1002/mgg3.1321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) and neurofibromatosis type 1 (NF1) are both autosomal dominant disorders with a high rate of novel mutations. However, the two disorders have distinct and well-delineated genetic, biochemical, and clinical findings. Only a few cases of coexistence of ADPKD and NF1 in a single individual have been reported, but the possible implications of this association are unknown. METHODS We report an ADPKD male belonging to a family of several affected members in three generations associated with NF1 and optic pathway gliomas. The clinical diagnosis of ADPKD and NF1 was performed by several image techniques. RESULTS Linkage analysis of ADPKD family was consistent to the PKD2 locus by a nonsense mutation, yielding a truncated polycystin-2 by means of next-generation sequencing. The diagnosis of NF1 was confirmed by mutational analysis of this gene showing a 4-bp deletion, resulting in a truncated neurofibromin, as well. The impact of this association was investigated by analyzing putative genetic interactions and by comparing the evolution of renal size and function in the proband with his older brother with ADPKD without NF1 and with ADPKD cohorts. CONCLUSION Despite the presence of both conditions there was not additive effect of NF1 and PKD2 in terms of the severity of tumor development and/or ADPKD progression.
Collapse
Affiliation(s)
- Ramón Peces
- Servicio de Nefrología, Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma, Madrid, Spain
| | - Rocío Mena
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Universidad Autónoma, Madrid, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Yolanda Martín
- Servicio de Genética, Hospital Universitario Ramón y Cajal, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Concepción Hernández
- Servicio de Genética, Hospital Universitario Ramón y Cajal, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Carlos Peces
- Area de Tecnologías de la Información, SESCAM, Toledo, Spain
| | - Dolores Tellería
- Servicio de Genética, Hospital Universitario Ramón y Cajal, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Emilio Cuesta
- Servicio de Radiología, Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma, Madrid, Spain
| | - Rafael Selgas
- Servicio de Nefrología, Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma, Madrid, Spain
| | - Pablo Lapunzina
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Universidad Autónoma, Madrid, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Julián Nevado
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Universidad Autónoma, Madrid, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| |
Collapse
|
38
|
O'Brien K, Saravanabavan S, Zhang JQJ, Wong ATY, Munt A, Burgess JS, Rangan GK. Regression of Peritubular Capillaries Coincides with Angiogenesis and Renal Cyst Growth in Experimental Polycystic Kidney Disease. Int J Nephrol Renovasc Dis 2020; 13:53-64. [PMID: 32280260 PMCID: PMC7132028 DOI: 10.2147/ijnrd.s238767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/06/2020] [Indexed: 12/12/2022] Open
Abstract
Background/Aim The natural history of the renal microvasculature changes in PKD is not known. The aim of this study was to test the hypothesis that angiogenesis is coupled with kidney cyst expansion, and the loss of peritubular capillary networks precedes the onset of interstitial fibrosis. Methods The renal microvasculature (RECA-1 and CD34) was evaluated in groups of Lewis polycystic kidney (LPK) rats and juvenile cystic kidney (jck) mice during the early, mid and late stage of disease. In addition, LPK rats and jck mice received sirolimus to determine if the reduction in renal cyst growth is in part mediated by the suppression of angiogenesis. Results In LPK rats, the loss of peritubular capillaries occurred in early-stage disease and paralleled cyst formation whereas in jck mice it was delayed to the mid stage. In both models, vasa recta were displaced by growing cysts and regressed in LPK rats with disease progression but lengthened in jck mice. Cortical and medullary capillary neoangiogenesis occurred during the early stage in both models and persisted with progression. Treatment with sirolimus reduced cyst enlargement but did not alter the progression of renal microvasculature changes in either model. Conclusion Regression of peritubular capillaries and disruption of vasa recta occur in parallel with angiogenesis and the progressive enlargement of kidney cysts. These data suggest that the regrowth of peritubular capillaries together with inhibition of angiogenesis are potential strategies to be considered in the treatment of PKD.
Collapse
Affiliation(s)
- Kristal O'Brien
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia.,Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Sayanthooran Saravanabavan
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia.,Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Jennifer Q J Zhang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia.,Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Annette T Y Wong
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia.,Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Alexandra Munt
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia.,Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Jane S Burgess
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia.,Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Gopala K Rangan
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia.,Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| |
Collapse
|
39
|
Zhang ZY, Wang ZM, Huang Y. Polycystic liver disease: Classification, diagnosis, treatment process, and clinical management. World J Hepatol 2020; 12:72-83. [PMID: 32231761 PMCID: PMC7097502 DOI: 10.4254/wjh.v12.i3.72] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/06/2020] [Accepted: 03/01/2020] [Indexed: 02/06/2023] Open
Abstract
Polycystic liver disease (PLD) is a rare hereditary disease that independently exists in isolated PLD, or as an accompanying symptom of autosomal dominant polycystic kidney disease and autosomal recessive polycystic kidney disease with complicated mechanisms. PLD currently lacks a unified diagnostic standard. The diagnosis of PLD is usually made when the number of hepatic cysts is more than 20. Gigot classification and Schnelldorfer classification are now commonly used to define severity in PLD. Most PLD patients have no clinical symptoms, and minority with severe complications need treatments. Somatostatin analogues, mammalian target of rapamycin inhibitor, ursodeoxycholic acid and vasopressin-2 receptor antagonist are the potentially effective medical therapies, while cyst aspiration and sclerosis, transcatheter arterial embolization, fenestration, hepatic resection and liver transplantation are the options of invasion therapies. However, the effectiveness of these therapies except liver transplantation are still uncertain. Furthermore, there is no unified strategy to treat PLD between medical centers at present. In order to better understand recent study progresses on PLD for clinical practice and obtain potential directions for future researches, this review mainly focuses on the recent progress in PLD classification, clinical manifestation, diagnosis and treatment. For information, we also provided medical treatment processes of PLD in our medical center.
Collapse
Affiliation(s)
- Ze-Yu Zhang
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha 410000, Hunan Province, China
| | - Zhi-Ming Wang
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha 410000, Hunan Province, China
| | - Yun Huang
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha 410000, Hunan Province, China
| |
Collapse
|
40
|
Nowak KL, Edelstein CL. Apoptosis and autophagy in polycystic kidney disease (PKD). Cell Signal 2019; 68:109518. [PMID: 31881325 DOI: 10.1016/j.cellsig.2019.109518] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 02/08/2023]
Abstract
Apoptosis in the cystic epithelium is observed in most rodent models of polycystic kidney disease (PKD) and in human autosomal dominant PKD (ADPKD). Apoptosis inhibition decreases cyst growth, whereas induction of apoptosis in the kidney of Bcl-2 deficient mice increases proliferation of the tubular epithelium and subsequent cyst formation. However, alternative evidence indicates that both induction of apoptosis as well as increased overall rates of apoptosis are associated with decreased cyst growth. Autophagic flux is suppressed in cell, zebra fish and mouse models of PKD and suppressed autophagy is known to be associated with increased apoptosis. There may be a link between apoptosis and autophagy in PKD. The mammalian target of rapamycin (mTOR), B-cell lymphoma 2 (Bcl-2) and caspase pathways that are known to be dysregulated in PKD, are also known to regulate both autophagy and apoptosis. Induction of autophagy in cell and zebrafish models of PKD results in suppression of apoptosis and reduced cyst growth supporting the hypothesis autophagy induction may have a therapeutic role in decreasing cyst growth, perhaps by decreasing apoptosis and proliferation in PKD. Future research is needed to evaluate the effects of direct autophagy inducers on apoptosis in rodent PKD models, as well as the cause and effect relationship between autophagy, apoptosis and cyst growth in PKD.
Collapse
Affiliation(s)
- Kristen L Nowak
- Division of Renal Diseases and Hypertension, Univ. of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Charles L Edelstein
- Division of Renal Diseases and Hypertension, Univ. of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
41
|
Testa F, Magistroni R. ADPKD current management and ongoing trials. J Nephrol 2019; 33:223-237. [PMID: 31853789 DOI: 10.1007/s40620-019-00679-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/24/2019] [Indexed: 12/14/2022]
Abstract
Among the diseases that require renal replacement therapy (RRT), ADPKD is the fourth for incidence and prevalence. In Italy, there are at least 32,000 patients affected by ADPKD, of which about 2900 in dialysis. The pure costs of dialysis treatment for the Italian National Health Service can be conservatively estimated at 87 million euros per year. Even a modest slowdown in the evolution of the disease would obtain an important result in terms of reduction of health expenditure. In recent years, many new or repurposed drugs have been evaluated in clinical trials for ADPKD. In this review we will mainly focus on advanced stage clinical trials (phase 2 and 3). We have grouped these studies according to the molecular pathway addressed by the experimental drug or the therapeutic strategy. More than 10 years after the start of the first Phase III clinical trials in ADPKD, the first drug active in slowing disease progression is finally available. It cannot be considered a goal but only the beginning of a journey because of the significant side effects and the high cost of Tolvaptan. An exuberant basic research activity in the field, together with the large number of ongoing protocols, keep the nephrologists and their patients positive with regard to the discovery of new and better therapies in a not-too-distant future.
Collapse
Affiliation(s)
- Francesca Testa
- UOC Divisione di Nefrologia Dialisi e Trapianto, AOU Policlinico di Modena, Modena, Italy
| | - Riccardo Magistroni
- UOC Divisione di Nefrologia Dialisi e Trapianto, AOU Policlinico di Modena, Modena, Italy. .,Dipartimento Chirurgico Medico Odontoiatrico e di Scienze Morfologiche con Interesse Trapiantologico, Oncologico e di Medicina Rigenerativa, Università di Modena e Reggio Emilia, Modena, Italy.
| |
Collapse
|
42
|
Tsukiyama T, Kobayashi K, Nakaya M, Iwatani C, Seita Y, Tsuchiya H, Matsushita J, Kitajima K, Kawamoto I, Nakagawa T, Fukuda K, Iwakiri T, Izumi H, Itagaki I, Kume S, Maegawa H, Nishinakamura R, Nishio S, Nakamura S, Kawauchi A, Ema M. Monkeys mutant for PKD1 recapitulate human autosomal dominant polycystic kidney disease. Nat Commun 2019; 10:5517. [PMID: 31822676 PMCID: PMC6904451 DOI: 10.1038/s41467-019-13398-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/07/2019] [Indexed: 12/16/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) caused by PKD1 mutations is one of the most common hereditary disorders. However, the key pathological processes underlying cyst development and exacerbation in pre-symptomatic stages remain unknown, because rodent models do not recapitulate critical disease phenotypes, including disease onset in heterozygotes. Here, using CRISPR/Cas9, we generate ADPKD models with PKD1 mutations in cynomolgus monkeys. As in humans and mice, near-complete PKD1 depletion induces severe cyst formation mainly in collecting ducts. Importantly, unlike in mice, PKD1 heterozygote monkeys exhibit cyst formation perinatally in distal tubules, possibly reflecting the initial pathology in humans. Many monkeys in these models survive after cyst formation, and cysts progress with age. Furthermore, we succeed in generating selective heterozygous mutations using allele-specific targeting. We propose that our models elucidate the onset and progression of ADPKD, which will serve as a critical basis for establishing new therapeutic strategies, including drug treatments.
Collapse
Affiliation(s)
- Tomoyuki Tsukiyama
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, 520-2192, Japan.
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, 606-8501, Japan.
| | - Kenichi Kobayashi
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, 520-2192, Japan
- Department of Urology, Shiga University of Medical Science, Shiga, 520-2192, Japan
| | - Masataka Nakaya
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, 520-2192, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, 606-8501, Japan
| | - Chizuru Iwatani
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, 520-2192, Japan
| | - Yasunari Seita
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, 520-2192, Japan
| | - Hideaki Tsuchiya
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, 520-2192, Japan
| | - Jun Matsushita
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, 520-2192, Japan
| | - Kahoru Kitajima
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, 520-2192, Japan
| | - Ikuo Kawamoto
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, 520-2192, Japan
| | - Takahiro Nakagawa
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, 520-2192, Japan
| | - Koji Fukuda
- Shin Nippon Biomedical Laboratories, Ltd, Kagoshima, 891-1394, Japan
| | - Teppei Iwakiri
- Shin Nippon Biomedical Laboratories, Ltd, Kagoshima, 891-1394, Japan
| | - Hiroyuki Izumi
- Shin Nippon Biomedical Laboratories, Ltd, Kagoshima, 891-1394, Japan
| | - Iori Itagaki
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, 520-2192, Japan
- The Corporation for Production and Research of Laboratory Primates, Ibaraki, 305-0003, Japan
| | - Shinji Kume
- Department of Medicine, Shiga University of Medical Science, Shiga, 520-2192, Japan
| | - Hiroshi Maegawa
- Department of Medicine, Shiga University of Medical Science, Shiga, 520-2192, Japan
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Saori Nishio
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Hokkaido, 060-8648, Japan
| | - Shinichiro Nakamura
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, 520-2192, Japan
| | - Akihiro Kawauchi
- Department of Urology, Shiga University of Medical Science, Shiga, 520-2192, Japan
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, 520-2192, Japan.
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, 606-8501, Japan.
- PRESTO, Japan Science and Technology Agency, Saitama, 332-0012, Japan.
| |
Collapse
|
43
|
Torres JA, Kruger SL, Broderick C, Amarlkhagva T, Agrawal S, Dodam JR, Mrug M, Lyons LA, Weimbs T. Ketosis Ameliorates Renal Cyst Growth in Polycystic Kidney Disease. Cell Metab 2019; 30:1007-1023.e5. [PMID: 31631001 PMCID: PMC6904245 DOI: 10.1016/j.cmet.2019.09.012] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/22/2019] [Accepted: 09/16/2019] [Indexed: 12/21/2022]
Abstract
Mild reduction in food intake was recently shown to slow polycystic kidney disease (PKD) progression in mouse models, but whether the effect was due to solely reduced calories or some other aspect of the diet has been unclear. We now show that the benefit is due to the induction of ketosis. Time-restricted feeding, without caloric reduction, strongly inhibits mTOR signaling, proliferation, and fibrosis in the affected kidneys in a PKD rat model. A ketogenic diet had a similar effect and led to regression of renal cystic burden. Acute fasting in rat, mouse, and feline models of PKD results in rapid reduction of cyst volume, while oral administration of the ketone β-hydroxybutyrate (BHB) in rats strongly inhibits PKD progression. These results suggest that cystic cells in PKD are metabolically inflexible, which could be exploited by dietary interventions or supplementation with BHB, representing a new therapeutic avenue to treat PKD.
Collapse
Affiliation(s)
- Jacob A Torres
- Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106-9625, USA
| | - Samantha L Kruger
- Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106-9625, USA
| | - Caroline Broderick
- Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106-9625, USA
| | - Tselmeg Amarlkhagva
- Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106-9625, USA
| | - Shagun Agrawal
- Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106-9625, USA
| | - John R Dodam
- Department of Veterinary Medicine & Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Michal Mrug
- Division of Nephrology, University of Alabama and the Department of Veterans Affairs Medical Center, Birmingham, AL, USA
| | - Leslie A Lyons
- Department of Veterinary Medicine & Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Thomas Weimbs
- Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106-9625, USA.
| |
Collapse
|
44
|
Ghazi S, Polesel M, Hall AM. Targeting glycolysis in proliferative kidney diseases. Am J Physiol Renal Physiol 2019; 317:F1531-F1535. [DOI: 10.1152/ajprenal.00460.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glycolytic activity is increased in proliferating cells, leading to the concept that glycolysis could be a therapeutic target in cystic diseases and kidney cancer. Preclinical studies using the glucose analog 2-deoxy-d-glucose have shown promise; however, inhibiting glycolysis in humans is unlikely to be without risks. While proximal tubules are predominantly aerobic, later segments are more glycolytic. Understanding exactly where and why glycolysis is important in the physiology of the distal nephron is thus crucial in predicting potential adverse effects of glycolysis inhibitors. Live imaging techniques could play an important role in the process of characterizing cellular metabolism in the functioning kidney. The goal of this review is to briefly summarize recent findings on targeting glycolysis in proliferative kidney diseases and to highlight the necessity for future research focusing on glycolysis in the healthy kidney.
Collapse
Affiliation(s)
- Susan Ghazi
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | | | - Andrew M. Hall
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
- Department of Nephrology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
45
|
Kou P, Wei S, Xiong F. Recent Advances of mTOR Inhibitors Use in Autosomal Dominant Polycystic Kidney Disease: Is the Road Still Open? Curr Med Chem 2019; 26:2962-2973. [PMID: 29600752 DOI: 10.2174/0929867325666180330094434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/15/2017] [Accepted: 03/21/2018] [Indexed: 12/25/2022]
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD), the most common monogenic kidney disease, is caused by mutations in the PKD1, PKD2 or, in a very limited number of families, GANAB genes. Although cellular and molecular mechanisms of this disease have been understood in the past 20 years, specific therapy approaches remain very little. Both experimental and clinical studies show that the mammalian or mechanistic target of rapamycin (mTOR) pathway plays an important role during cyst formation and enlargement in ADPKD. Studies in rodent models of ADPKD showed that mTOR inhibitors had a significant and long-lasting decrease in kidney volume and amelioration in kidney function. In the past over ten years, researchers have been devoting continuously to test mTOR inhibitors efficacy and safety in both preclinical studies and clinical trials in patients with ADPKD. In this review, we will discuss the mTOR pathway thoroughly, mainly focusing on current advances in understanding its role in ADPKD, especially the recent progress of mTOR inhibitors use in preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Pei Kou
- Department of Nephrology, Wuhan No.1 Hospital, Wuhan, China
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| | - Fei Xiong
- Department of Nephrology, Wuhan No.1 Hospital, Wuhan, China
| |
Collapse
|
46
|
Uytingco CR, Green WW, Martens JR. Olfactory Loss and Dysfunction in Ciliopathies: Molecular Mechanisms and Potential Therapies. Curr Med Chem 2019; 26:3103-3119. [PMID: 29303074 DOI: 10.2174/0929867325666180105102447] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/08/2017] [Accepted: 12/20/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Ciliopathies are a class of inherited pleiotropic genetic disorders in which alterations in cilia assembly, maintenance, and/or function exhibit penetrance in the multiple organ systems. Olfactory dysfunction is one such clinical manifestation that has been shown in both patients and model organisms. Existing therapies for ciliopathies are limited to the treatment or management of symptoms. The last decade has seen an increase in potential curative therapeutic options including small molecules and biologics. Recent work in multiciliated olfactory sensory neurons has demonstrated the capacity of targeted gene therapy to restore ciliation in terminally differentiated cells and rescue olfactory function. This review will discuss the current understanding of the penetrance of ciliopathies in the olfactory system. Importantly, it will highlight both pharmacological and biological approaches, and their potential therapeutic value in the olfactory system and other ciliated tissues. METHODS We undertook a structured and comprehensive search of peer-reviewed research literature encompassing in vitro, in vivo, model organism, and clinical studies. From these publications, we describe the olfactory system, and discuss the penetrance of ciliopathies and impact of cilia loss on olfactory function. In addition, we outlined the developing therapies for ciliopathies across different organ and cell culture systems, and discussed their potential therapeutic application to the mammalian olfactory system. RESULTS One-hundred sixty-one manuscripts were included in the review, centering on the understanding of olfactory penetrance of ciliopathies, and discussing the potential therapeutic options for ciliopathies in the context of the mammalian olfactory system. Forty-four manuscripts were used to generate a table listing the known congenital causes of olfactory dysfunction, with the first ten listed are linked to ciliopathies. Twenty-three manuscripts were used to outline the potential of small molecules for the olfactory system. Emphasis was placed on HDAC6 inhibitors and lithium, both of which were shown to stabilize microtubule structures, contributing to ciliogenesis and cilia lengthening. Seventy-five manuscripts were used to describe gene therapy and gene therapeutic strategies. Included were the implementation of adenoviral, adeno-associated virus (AAV), and lentiviral vectors to treat ciliopathies across different organ systems and application toward the olfactory system. Thus far, adenoviral and AAVmeditated ciliary restoration demonstrated successful proof-of-principle preclinical studies. In addition, gene editing, ex vivo gene therapy, and transplantation could serve as alternative therapeutic and long-term approaches. But for all approaches, additional assessment of vector immunogenicity, specificity, and efficacy need further investigation. Currently, ciliopathy treatments are limited to symptomatic management with no curative options. However, the accessibility and amenability of the olfactory system to treatment would facilitate development and advancement of a viable therapy. CONCLUSION The findings of this review highlight the contribution of ciliopathies to a growing list of congenial olfactory dysfunctions. Promising results from other organ systems imply the feasibility of biologics, with results from gene therapies proving to be a viable therapeutic option for ciliopathies and olfactory dysfunction.
Collapse
Affiliation(s)
- Cedric R Uytingco
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL 32610, United States.,University of Florida Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, United States
| | - Warren W Green
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL 32610, United States.,University of Florida Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, United States
| | - Jeffrey R Martens
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL 32610, United States.,University of Florida Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, United States
| |
Collapse
|
47
|
Stayner C, Brooke DG, Bates M, Eccles MR. Targeted Therapies for Autosomal Dominant Polycystic Kidney Disease. Curr Med Chem 2019; 26:3081-3102. [PMID: 29737248 DOI: 10.2174/0929867325666180508095654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/12/2018] [Accepted: 02/12/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is the most common life-threatening genetic disease in humans, affecting approximately 1 in 500 people. ADPKD is characterized by cyst growth in the kidney leading to progressive parenchymal damage and is the underlying pathology in approximately 10% of patients requiring hemodialysis or transplantation for end-stage kidney disease. The two proteins that are mutated in ADPKD, polycystin-1 and polycystin-2, form a complex located on the primary cilium and the plasma membrane to facilitate calcium ion release in the cell. There is currently no Food and Drug Administration (FDA)-approved therapy to cure or slow the progression of the disease. Rodent ADPKD models do not completely mimic the human disease, and therefore preclinical results have not always successfully translated to the clinic. Moreover, the toxicity of many of these potential therapies has led to patient withdrawals from clinical trials. RESULTS Here, we review compounds in clinical trial for treating ADPKD, and we examine the feasibility of using a kidney-targeted approach, with potential for broadening the therapeutic window, decreasing treatment-associated toxicity and increasing the efficacy of agents that have demonstrated activity in animal models. We make recommendations for integrating kidney- targeted therapies with current treatment regimes, to achieve a combined approach to treating ADPKD. CONCLUSION Many compounds are currently in clinical trial for ADPKD yet, to date, none are FDA-approved for treating this disease. Patients could benefit from efficacious pharmacotherapy, especially if it can be kidney-targeted, and intensive efforts continue to be focused on this goal.
Collapse
Affiliation(s)
- Cherie Stayner
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand
| | - Darby G Brooke
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand
| | - Michael Bates
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand
| |
Collapse
|
48
|
Millet-Boureima C, Chingle R, Lubell WD, Gamberi C. Cyst Reduction in a Polycystic Kidney Disease Drosophila Model Using Smac Mimics. Biomedicines 2019; 7:biomedicines7040082. [PMID: 31635379 PMCID: PMC6966561 DOI: 10.3390/biomedicines7040082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is an inherited malady affecting 12.5 million people worldwide. Therapeutic options to treat PKD are limited, due in part to lack of precise knowledge of underlying pathological mechanisms. Mimics of the second mitochondria-derived activator of caspases (Smac) have exhibited activity as antineoplastic agents and reported recently to ameliorate cysts in a murine ADPKD model, possibly by differentially targeting cystic cells and sparing the surrounding tissue. A first-in-kind Drosophila PKD model has now been employed to probe further the activity of novel Smac mimics. Substantial reduction of cystic defects was observed in the Malpighian (renal) tubules of treated flies, underscoring mechanistic conservation of the cystic pathways and potential for efficient testing of drug prototypes in this PKD model. Moreover, the observed differential rescue of the anterior and posterior tubules overall, and within their physiologically diverse intermediate and terminal regions implied a nuanced response in distinct tubular regions contingent upon the structure of the Smac mimic. Knowledge gained from studying Smac mimics reveals the capacity for the Drosophila model to precisely probe PKD pharmacology highlighting the value for such critical evaluation of factors implicated in renal function and pathology.
Collapse
Affiliation(s)
| | - Ramesh Chingle
- Département de Chimie, Université de Montréal, Montreal, QC H3T 1J4, Canada.
| | - William D Lubell
- Département de Chimie, Université de Montréal, Montreal, QC H3T 1J4, Canada.
| | - Chiara Gamberi
- Biology Department, Concordia University, Montreal, QC H4B 1R6, Canada.
| |
Collapse
|
49
|
Blagosklonny MV. Rapamycin for longevity: opinion article. Aging (Albany NY) 2019; 11:8048-8067. [PMID: 31586989 PMCID: PMC6814615 DOI: 10.18632/aging.102355] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/03/2019] [Indexed: 12/31/2022]
Abstract
From the dawn of civilization, humanity has dreamed of immortality. So why didn't the discovery of the anti-aging properties of mTOR inhibitors change the world forever? I will discuss several reasons, including fear of the actual and fictional side effects of rapamycin, everolimus and other clinically-approved drugs, arguing that no real side effects preclude their use as anti-aging drugs today. Furthermore, the alternative to the reversible (and avoidable) side effects of rapamycin/everolimus are the irreversible (and inevitable) effects of aging: cancer, stroke, infarction, blindness and premature death. I will also discuss why it is more dangerous not to use anti-aging drugs than to use them and how rapamycin-based drug combinations have already been implemented for potential life extension in humans. If you read this article from the very beginning to its end, you may realize that the time is now.
Collapse
|
50
|
Samodelov SL, Gai Z, Kullak-Ublick GA, Visentin M. Renal Reabsorption of Folates: Pharmacological and Toxicological Snapshots. Nutrients 2019; 11:nu11102353. [PMID: 31581752 PMCID: PMC6836044 DOI: 10.3390/nu11102353] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 01/16/2023] Open
Abstract
Folates are water-soluble B9 vitamins that serve as one-carbon donors in the de novo synthesis of thymidylate and purines, and in the conversion of homocysteine to methionine. Due to their key roles in nucleic acid synthesis and in DNA methylation, inhibiting the folate pathway is still one of the most efficient approaches for the treatment of several tumors. Methotrexate and pemetrexed are the most prescribed antifolates and are mainly used in the treatment of acute myeloid leukemia, osteosarcoma, and lung cancers. Normal levels of folates in the blood are maintained not only by proper dietary intake and intestinal absorption, but also by an efficient renal reabsorption that seems to be primarily mediated by the glycosylphosphatidylinositol- (GPI) anchored protein folate receptor α (FRα), which is highly expressed at the brush-border membrane of proximal tubule cells. Folate deficiency due to malnutrition, impaired intestinal absorption or increased urinary elimination is associated with severe hematological and neurological deficits. This review describes the role of the kidneys in folate homeostasis, the molecular basis of folate handling by the kidneys, and the use of high dose folic acid as a model of acute kidney injury. Finally, we provide an overview on the development of folate-based compounds and their possible therapeutic potential and toxicological ramifications.
Collapse
Affiliation(s)
- Sophia L Samodelov
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland.
| | - Zhibo Gai
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland.
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland.
- Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis Pharma, 4056 Basel, Switzerland.
| | - Michele Visentin
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland.
| |
Collapse
|