1
|
Wen L, Liu Z, Zhou L, Liu Z, Li Q, Geng B, Xia Y. Bone and Extracellular Signal-Related Kinase 5 (ERK5). Biomolecules 2024; 14:556. [PMID: 38785963 PMCID: PMC11117709 DOI: 10.3390/biom14050556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/17/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Bones are vital for anchoring muscles, tendons, and ligaments, serving as a fundamental element of the human skeletal structure. However, our understanding of bone development mechanisms and the maintenance of bone homeostasis is still limited. Extracellular signal-related kinase 5 (ERK5), a recently identified member of the mitogen-activated protein kinase (MAPK) family, plays a critical role in the pathogenesis and progression of various diseases, especially neoplasms. Recent studies have highlighted ERK5's significant role in both bone development and bone-associated pathologies. This review offers a detailed examination of the latest research on ERK5 in different tissues and diseases, with a particular focus on its implications for bone health. It also examines therapeutic strategies and future research avenues targeting ERK5.
Collapse
Affiliation(s)
- Lei Wen
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- Department of Orthopedics and Trauma Surgery, Affiliated Hospital of Yunnan University, Kunming 650032, China
| | - Zirui Liu
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Libo Zhou
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Zhongcheng Liu
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Qingda Li
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Bin Geng
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Yayi Xia
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| |
Collapse
|
2
|
Wang A, Li Z, Zhuo S, Gao F, Zhang H, Zhang Z, Ren G, Ma X. Mechanisms of Cardiorenal Protection With SGLT2 Inhibitors in Patients With T2DM Based on Network Pharmacology. Front Cardiovasc Med 2022; 9:857952. [PMID: 35677689 PMCID: PMC9169967 DOI: 10.3389/fcvm.2022.857952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose Sodium-glucose cotransporter 2 (SGLT2) inhibitors have cardiorenal protective effects regardless of whether they are combined with type 2 diabetes mellitus, but their specific pharmacological mechanisms remain undetermined. Materials and Methods We used databases to obtain information on the disease targets of “Chronic Kidney Disease,” “Heart Failure,” and “Type 2 Diabetes Mellitus” as well as the targets of SGLT2 inhibitors. After screening the common targets, we used Cytoscape 3.8.2 software to construct SGLT2 inhibitors' regulatory network and protein-protein interaction network. The clusterProfiler R package was used to perform gene ontology functional analysis and Kyoto encyclopedia of genes and genomes pathway enrichment analyses on the target genes. Molecular docking was utilized to verify the relationship between SGLT2 inhibitors and core targets. Results Seven different SGLT2 inhibitors were found to have cardiorenal protective effects on 146 targets. The main mechanisms of action may be associated with lipid and atherosclerosis, MAPK signaling pathway, Rap1 signaling pathway, endocrine resistance, fluid shear stress, atherosclerosis, TNF signaling pathway, relaxin signaling pathway, neurotrophin signaling pathway, and AGEs-RAGE signaling pathway in diabetic complications were related. Docking of SGLT2 inhibitors with key targets such as GAPDH, MAPK3, MMP9, MAPK1, and NRAS revealed that these compounds bind to proteins spontaneously. Conclusion Based on pharmacological networks, this study elucidates the potential mechanisms of action of SGLT2 inhibitors from a systemic and holistic perspective. These key targets and pathways will provide new ideas for future studies on the pharmacological mechanisms of cardiorenal protection by SGLT2 inhibitors.
Collapse
Affiliation(s)
- Anzhu Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhendong Li
- Qingdao West Coast New Area People's Hospital, Qingdao, China
| | - Sun Zhuo
- Qingdao West Coast New Area People's Hospital, Qingdao, China
| | - Feng Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongwei Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhibo Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Gaocan Ren
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochang Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
- *Correspondence: Xiaochang Ma
| |
Collapse
|
3
|
Howell SJ, Lee CA, Batoki JC, Zapadka TE, Lindstrom SI, Taylor BE, Taylor PR. Retinal Inflammation, Oxidative Stress, and Vascular Impairment Is Ablated in Diabetic Mice Receiving XMD8-92 Treatment. Front Pharmacol 2021; 12:732630. [PMID: 34456740 PMCID: PMC8385489 DOI: 10.3389/fphar.2021.732630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
The global number of diabetics continues to rise annually. As diabetes progresses, almost all of Type I and more than half of Type II diabetics develop diabetic retinopathy. Diabetic retinopathy is a microvascular disease of the retina, and is the leading cause of blindness in the working-age population worldwide. With such a significant health impact, new drugs are required to halt the blinding threat posed by this visual disorder. The cause of diabetic retinopathy is multifactorial, and an optimal therapeutic would halt inflammation, cease photoreceptor cell dysfunction, and ablate vascular impairment. XMD8-92 is a small molecule inhibitor that blocks inflammatory activity downstream of ERK5 (extracellular signal-related kinase 5) and BRD4 (bromodomain 4). ERK5 elicits inflammation, is increased in Type II diabetics, and plays a pathologic role in diabetic nephropathy, while BRD4 induces retinal inflammation and plays a role in retinal degeneration. Further, we provide evidence that suggests both pERK5 and BRD4 expression are increased in the retinas of our STZ (streptozotocin)-induced diabetic mice. Taken together, we hypothesized that XMD8-92 would be a good therapeutic candidate for diabetic retinopathy, and tested XMD8-92 in a murine model of diabetic retinopathy. In the current study, we developed an in vivo treatment regimen by administering one 100 μL subcutaneous injection of saline containing 20 μM of XMD8-92 weekly, to STZ-induced diabetic mice. XMD8-92 treatments significantly decreased diabetes-mediated retinal inflammation, VEGF production, and oxidative stress. Further, XMD8-92 halted the degradation of ZO-1 (zonula occludens-1), which is a tight junction protein associated with vascular permeability in the retina. Finally, XMD8-92 treatment ablated diabetes-mediated vascular leakage and capillary degeneration, which are the clinical hallmarks of non-proliferative diabetic retinopathy. Taken together, this study provides strong evidence that XMD8-92 could be a potentially novel therapeutic for diabetic retinopathy.
Collapse
Affiliation(s)
- Scott J. Howell
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Louis Stokes Cleveland VA Medical Center, VA Northeast Ohio Healthcare System, Cleveland, OH, United States
| | - Chieh A. Lee
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Julia C. Batoki
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Thomas E. Zapadka
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Louis Stokes Cleveland VA Medical Center, VA Northeast Ohio Healthcare System, Cleveland, OH, United States
| | - Sarah I. Lindstrom
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Brooklyn E. Taylor
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Patricia R. Taylor
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Louis Stokes Cleveland VA Medical Center, VA Northeast Ohio Healthcare System, Cleveland, OH, United States
| |
Collapse
|
4
|
Increased transforming growth factor beta (TGF-β) and pSMAD3 signaling in a Murine Model for Contrast Induced Kidney Injury. Sci Rep 2018; 8:6630. [PMID: 29700311 PMCID: PMC5919895 DOI: 10.1038/s41598-018-24340-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/26/2018] [Indexed: 01/14/2023] Open
Abstract
We tested the hypothesis that post-contrast acute kidney injury (PC-AKI) occurs due to increase in transforming growth factor beta (Tgf-β) and pSMAD3 signaling in a murine model of PC-AKI. Mice had nephrectomy performed and twenty-eight days later, 100-μL of radio-contrast (Vispaque 320) or saline was administered via the jugular vein. Animals were sacrificed at 2, 7, and 28 days later and the serum BUN, creatinine, urine protein levels, and kidney weights were assessed. In human kidney-2 (HK-2) cells, gene and protein expression with cellular function was assessed following inhibition of TGFβR-1 plus contrast exposure. After contrast administration, the average serum creatinine is significantly elevated at all time points. The average gene expression of connective tissue growth factor (Ctgf), Tgfβ-1, matrix metalloproteinase-9 (Mmp-9), and collagen IVa (Col IVa) are significantly increased at 2 days after contrast administration (P < 0.05). Cellular proliferation is decreased and there is increased apoptosis with tubulointerstitial fibrosis. Contrast administered to HK-2 cells results in increased pSMAD3 levels and gene expression of Ctgf, Tgfβ-1, Tgfβ-2, Col IVa, Mmp-9, and caspase/7 activity with a decrease in proliferation (all, P < 0.05). TGFβR-1 inhibition decreased the expression of contrast mediated pro-fibrotic genes in HK-2 cells with no change in the proliferation and apoptosis.
Collapse
|
5
|
Abstract
Endothelin-1 (ET-1) is a 21-amino acid peptide with mitogenic and powerful vasoconstricting properties. Under healthy conditions, ET-1 is expressed constitutively in all cells of the glomerulus and participates in homeostasis of glomerular structure and filtration function. Under disease conditions, increases in ET-1 are critically involved in initiating and maintaining glomerular inflammation, glomerular basement membrane hypertrophy, and injury of podocytes (visceral epithelial cells), thereby promoting proteinuria and glomerulosclerosis. Here, we review the role of ET-1 in the function of glomerular endothelial cells, visceral (podocytes) and parietal epithelial cells, mesangial cells, the glomerular basement membrane, stromal cells, inflammatory cells, and mesenchymal stem cells. We also discuss molecular mechanisms by which ET-1, predominantly through activation of the ETA receptor, contributes to injury to glomerular cells, and review preclinical and clinical evidence supporting its pathogenic role in glomerular injury in chronic renal disease. Finally, the therapeutic rationale for endothelin antagonists as a new class of antiproteinuric drugs is discussed.
Collapse
Affiliation(s)
- Matthias Barton
- Molecular Internal Medicine, University of Zurich, Zurich, Switzerland.
| | - Andrey Sorokin
- Department of Medicine, Kidney Disease Center, Division of Nephrology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
6
|
New molecular insights in diabetic nephropathy. Int Urol Nephrol 2016; 48:373-87. [PMID: 26759327 DOI: 10.1007/s11255-015-1203-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 12/25/2015] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus represents one of the major causes of functional kidney impairment. The review highlights the most significant steps made over the last decades in understanding the molecular basis of diabetic nephropathy (DN), which may provide reliable biomarkers for early diagnosis and prognosis, along with new molecular targets for personalized medicine. There is an increased interest in developing new therapeutic strategies to slow DN progression for improving patients' quality of life and reducing all-cause morbidity and disease-associated mortality. It is highly important to have a science-based medical attitude when facing diabetic patients with associated comorbidities and risk of rapid evolution toward end-stage renal disease. The data discussed herein were mainly from MEDLINE and PubMed articles published in English from 1990 to 2015 and from up-to-date. The search term was "diabetic nephropathy and oxidative stress".
Collapse
|
7
|
Abstract
The amiloride-sensitive epithelial Na(+) channel (ENaC) is a key player in the regulation of Na(+) homeostasis. Its functional activity is under continuous control by a variety of signaling molecules, including bioactive peptides of endothelin family. Since ENaC dysfunction is causative for disturbances in total body Na(+) levels associated with the abnormal regulation of blood volume, blood pressure, and lung fluid balance, uncovering the molecular mechanisms of inhibitory modulation or inappropriate activation of ENaC is crucial for the successful treatment of a variety of human diseases including hypertension. The precise regulation of ENaC is particularly important for normal Na(+) and fluid homeostasis in organs where endothelins are known to act: the kidneys, lung, and colon. Inhibition of ENaC by endothelin-1 (ET-1) has been established in renal cells, and several molecular mechanisms of inhibition of ENaC by ET-1 are proposed and will be reviewed in this chapter.
Collapse
Affiliation(s)
- Andrey Sorokin
- Division of Nephrology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| | | |
Collapse
|
8
|
Badshah II, Baines DL, Dockrell ME. Erk5 is a mediator to TGFβ1-induced loss of phenotype and function in human podocytes. Front Pharmacol 2014; 5:71. [PMID: 24795631 PMCID: PMC4001011 DOI: 10.3389/fphar.2014.00071] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/26/2014] [Indexed: 11/13/2022] Open
Abstract
Background: Podocytes are highly specialized cells integral to the normal functioning kidney, however, in diabetic nephropathy injury occurs leading to a compromised phenotype and podocyte dysfunction which critically produces podocyte loss with subsequent renal impairment. TGFβ1 holds a major role in the development of diabetic nephropathy. Erk5 is an atypical mitogen-activated protein (MAP) kinase involved in pathways modulating cell survival, proliferation, differentiation, and motility. Accordingly, the role of Erk5 in mediating TGFβ1-induced podocyte damage was investigated. Methods: Conditionally immortalized human podocytes were stimulated with TGFβ1 (2.5 ng/ml); inhibition of Erk5 activation was conducted with the chemical inhibitor BIX02188 (10 μM) directed to the upstream Mek5; inhibition of Alk5 was performed with SB431542 (10 μM); Ras signaling was inhibited with farnesylthiosalicylic acid (10 μM). Intracellular signaling proteins were investigated by western blotting; phenotype was explored by immunofluorescence; proliferation was assessed with a MTS assay; motility was examined with a scratch assay; barrier function was studied using electric cell-substrate impedance sensing; apoptosis was studied with annexin V-FITC flow cytometry. Results: Podocytes expressed Erk5 which was phosphorylated by TGFβ1 via Mek5, whilst not involving Ras. TGFβ1 altered podocyte phenotype by decreasing P-cadherin staining and increasing α-SMA, as well as reducing podocyte barrier function; both were prevented by inhibiting Erk5 phosphorylation with BIX02188. TGFβ1-induced podocyte proliferation was prevented by BIX02188, whereas the induced apoptosis was not. Podocyte motility was reduced by BIX02188 alone and further diminished with TGFβ1 co-incubation. Conclusion: These results describe for the first time the expression of Erk5 in podocytes and identify it as a potential target for the treatment of diabetic renal disease.
Collapse
Affiliation(s)
- Irbaz I Badshah
- South West Thames Institute for Renal Research Surrey, UK ; St. George's, University of London London, UK
| | | | | |
Collapse
|
9
|
Fu RG, Zhang T, Wang L, Du Y, Jia LN, Hou JJ, Yao GL, Liu XD, Zhang L, Chen L, Gui BS, Xue RL. Inhibition of the K+ channel K(Ca)3.1 reduces TGF-β1-induced premature senescence, myofibroblast phenotype transition and proliferation of mesangial cells. PLoS One 2014; 9:e87410. [PMID: 24489911 PMCID: PMC3905019 DOI: 10.1371/journal.pone.0087410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 12/25/2013] [Indexed: 01/15/2023] Open
Abstract
Objective KCa3.1 channel participates in many important cellular functions. This study planned to investigate the potential involvement of KCa3.1 channel in premature senescence, myofibroblast phenotype transition and proliferation of mesangial cells. Methods & Materials Rat mesangial cells were cultured together with TGF-β1 (2 ng/ml) and TGF-β1 (2 ng/ml) + TRAM-34 (16 nM) separately for specified times from 0 min to 60 min. The cells without treatment served as controls. The location of KCa3.1 channels in mesangial cells was determined with Confocal laser microscope, the cell cycle of mesangial cells was assessed with flow cytometry, the protein and mRNA expression of KCa3.1, α-smooth muscle actin (α-SMA) and fibroblast-specific protein-1 (FSP-1) were detected with Western blot and RT-PCR. One-way analysis of variance (ANOVA) and Student-Newman-Keuls-q test (SNK-q) were used to do statistical analysis. Statistical significance was considered at P<0.05. Results Kca3.1 channels were located in the cell membranes and/or in the cytoplasm of mesangial cells. The percentage of cells in G0-G1 phase and the expression of Kca3.1, α-SMA and FSP-1 were elevated under the induction of TGF-β1 when compared to the control and decreased under the induction of TGF-β1+TRAM-34 when compared to the TGF-β1 induced (P<0.05 or P<0.01). Conclusion Targeted disruption of KCa3.1 inhibits TGF-β1-induced premature aging, myofibroblast-like phenotype transdifferentiation and proliferation of mesangial cells.
Collapse
Affiliation(s)
- Rong-Guo Fu
- Department of Nephrology, Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
| | - Tao Zhang
- School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
| | - Li Wang
- Department of Nephrology, Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
| | - Yan Du
- Department of Nephrology, Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
| | - Li-Ning Jia
- Department of Nephrology, Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
| | - Jing-Jing Hou
- School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
| | - Gang-Lian Yao
- Department of Nephrology, Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
| | - Xiao-Dan Liu
- Cadre's ward, Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Lei Zhang
- Medical Laboratory, Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Ling Chen
- Department of Oncology, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
| | - Bao-Song Gui
- Department of Nephrology, Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
- * E-mail: (RLX); (BSG)
| | - Rong-Liang Xue
- Department of Anesthesia, Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
- * E-mail: (RLX); (BSG)
| |
Collapse
|
10
|
Fu RG, Wu JJ, Xue RL, Zhang T, Wang L, Wu XL, Duan ZY, Jia LN, Ma LQ, Du Y, Wei LT. Premature senescence and cellular phenotype transformation of mesangial cells induced by TGF-B1. Ren Fail 2013; 35:1142-5. [PMID: 23883105 DOI: 10.3109/0886022x.2013.817279] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Transforming growth factor-β1 (TGF-β1) is a polypeptide member of the transforming growth factor β superfamily of cytokines and performs many cellular functions. Its overexpression may lead to renal fibrosis. AIM This study planed to investigate the effects of TGF-β1 on the cell cycle and phenotype of mesangial cells. METHODS Rat mesangial cells were cultured together with different concentrations (0, 1, 2, 5, and 10 ng/mL) of TGF-β1 for specified times from 0 min to 72 h. 0 ng/mL TGF-β1 and 0 min served as controls. Cell cycles were assessed by flow cytometry and α-smooth muscle actin expression (α-SMA) protein expression by western blot analysis. All data were presented as Mean ± SD. Statistical analysis was performed by using one-way analysis of variance and correlation analysis. Results were considered significant at p < 0.05. RESULTS After 15 min of co-culture with different concentrations of TGF-β1, the percentage of mesangial cells in G0/G1 phase was significantly elevated compared to the control (p < 0.05). 12 h co-culture induced cell hyperplasia, 24 h co-culture obvious up-regulation of α-SMA (p < 0.01) and one or two cells' myofibroblast phenotype transition, and 36 h co-culture several cells' phenotype transition. Correlation analysis prompted that the TGF-β1-induced premature aging was time-dependent (p < 0.01). CONCLUSION TGF-β1 may induce mesangial cells' premature senescence and myofibroblast-like phenotype transformation time-dependently, which may contribute to the development of early stage of glomerulosclerosis.
Collapse
Affiliation(s)
- Rong-Guo Fu
- Department of Nephrology, Second Affiliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi Province, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Huang H, Huang H, Li Y, Liu M, Shi Y, Chi Y, Zhang T. Gremlin induces cell proliferation and extra cellular matrix accumulation in mouse mesangial cells exposed to high glucose via the ERK1/2 pathway. BMC Nephrol 2013; 14:33. [PMID: 23394397 PMCID: PMC3572428 DOI: 10.1186/1471-2369-14-33] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 02/06/2013] [Indexed: 11/10/2022] Open
Abstract
Background Gremlin, a bone morphogenetic protein antagonist, plays an important role in the pathogenesis of diabetic nephropathy (DN). However, the specific molecular mechanism underlying Gremlin’s involvement in DN has not been fully elucidated. In the present study, we investigated the role of Gremlin on cell proliferation and accumulation of extracellular matrix (ECM) in mouse mesangial cells (MMCs), and explored the relationship between Gremlin and the ERK1/2 pathway. Methods To determine expression of Gremlin in MMCs after high glucose (HG) exposure, Gremlin mRNA and protein expression were evaluated using real-time polymerase chain reaction and western blot analysis, respectively. To determine the role of Gremlin on cell proliferation and accumulation of ECM, western blot analysis was used to assess expression of pERK1/2, transforming growth factor-β1 (TGF-β1) and connective tissue growth factor (CTGF). Cell proliferation was examined by bromodeoxyuridine (BrdU) ELISA, and accumulation of collagen IV was measured using a radioimmunoassay. This enabled the relationship between Gremlin and ERK1/2 pathway activation to be investigated. Results HG exposure induced expression of Gremlin, which peaked 12 h after HG exposure. HG exposure alone or transfection of normal-glucose (NG) exposed MMCs with Gremlin plasmid (NG + P) increased cell proliferation. Transfection with Gremlin plasmid into MMCs previously exposed to HG (HG + P) significantly increased this HG-induced phenomenon. HG and NG + P conditions up-regulated protein levels of TGF-β1, CTGF and collagen IV accumulation, while HG + P significantly increased levels of these further. Inhibition of Gremlin with Gremlin siRNA plasmid reversed the HG-induced phenomena. These data indicate that Gremlin can induce cell proliferation and accumulation of ECM in MMCs. HG also induced the activation of the ERK1/2 pathway, which peaked 24 h after HG exposure. HG and NG + P conditions induced overexpression of pERK1/2, whilst HG + P significantly induced levels further. Inhibition of Gremlin by Gremlin siRNA plasmid reversed the HG-induced phenomena. This indicates Gremlin can induce activation of the ERK1/2 pathway in MMCs. Conclusion Culture of MMCs in the presence of HG up-regulates expression of Gremlin. Gremlin induces cell proliferation and accumulation of ECM in MMCs. and enhances activation of the ERK1/2 pathway.
Collapse
Affiliation(s)
- Haixia Huang
- Department of Nephropathy, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Li W, Cui M, Wei Y, Kong X, Tang L, Xu D. Inhibition of the expression of TGF-β1 and CTGF in human mesangial cells by exendin-4, a glucagon-like peptide-1 receptor agonist. Cell Physiol Biochem 2012; 30:749-57. [PMID: 22890152 DOI: 10.1159/000341454] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2012] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Despite the presence of glucagon-like peptide-1 receptor (GLP-1R) in kidney tissues, its direct effect on diabetic nephropathy remains unclear. The transforming growth factor-β(1) (TGF-β(1)) and the connective tissue growth factor (CTGF) both induce extracellular matrix accumulation and persistent fibrosis in the glomerular mesangium of patients with diabetic nephropathy. OBJECTIVE Herein, we demonstrate that a GLP-1R agonist, exendin-4, exerts renoprotective effects through its influence on TGF-β(1) and CTGF in human mesangial cells (HMCs), cultured in a high glucose medium. METHOD HMCs, cultured in a high glucose medium, were used for the current study. The direct effect of exendin-4 on TGF-β(1) and CTGF expression was confirmed in HMCs. MDL-12330A (a specific adenylate cyclase inhibitor) and PKI14-22 (a protein kinase A inhibitor) were used to examine the role of the cAMP signaling pathway in exendin's anti-fibrosis action. RESULTS The findings showed that exendin-4 inhibited the proliferation of HMCs, and upregulated the expression of TGF-β(1) and CTGF, induced by high glucose. The effect of exendin-4 is largely dependent on the activation of adenylate cyclase. CONCLUSION This study provides new evidence that GLP-1 acts as an antifibrotic agent in HMCs.
Collapse
Affiliation(s)
- Wenbin Li
- Renal Division, Department of Medicine, Shandong Provincial Qianfoshan Hospital, Jinan City
| | | | | | | | | | | |
Collapse
|
13
|
Endothelin and endothelin receptors in the renal and cardiovascular systems. Life Sci 2012; 91:490-500. [PMID: 22480517 DOI: 10.1016/j.lfs.2012.03.026] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 03/12/2012] [Accepted: 03/16/2012] [Indexed: 01/08/2023]
Abstract
Endothelin-1 (ET-1) is a multifunctional hormone which regulates the physiology of the cardiovascular and renal systems. ET-1 modulates cardiac contractility, systemic and renal vascular resistance, salt and water renal reabsorption, and glomerular function. ET-1 is responsible for a variety of cellular events: contraction, proliferation, apoptosis, etc. These effects take place after the activation of the two endothelin receptors ET(A) and ET(B), which are present - among others - on cardiomyocytes, fibroblasts, smooth muscle and endothelial cells, glomerular and tubular cells of the kidney. The complex and numerous intracellular pathways, which can be contradictory in term of functional response depending on the receptor type, cell type and physiological situation, are described in this review. Many diseases share an enhanced ET-1 expression as part of the pathophysiology. However, the use of endothelin blockers is currently restricted to pulmonary arterial hypertension, and more recently to digital ulcer. The complexity of the endothelin system does not facilitate the translation of the molecular knowledge to clinical applications. Endothelin antagonists can prevent disease development but secondary undesirable effects limit their usage. Nevertheless, the increasing understanding of the effects of ET-1 on the cardiac and renal physiology maintains the endothelin system as a promising therapeutic target.
Collapse
|
14
|
Kawakami T, Park SW, Kaku R, Yang J. Extracellular-regulated-kinase 5-mediated renal protection against ischemia-reperfusion injury. Biochem Biophys Res Commun 2012; 418:603-8. [PMID: 22293190 DOI: 10.1016/j.bbrc.2012.01.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 01/08/2012] [Indexed: 11/30/2022]
Abstract
ERK5, a member of the mitogen activated protein kinase, expressed in the kidneys was smaller (∼80kDa) in apparent molecular mass compared to other organs (∼120kDa). A blocking peptide experiment confirmed that the ∼80kDa detected on Western blots was a specific band detected by the anti-ERK5 antibody. Expression of the known ERK5 variants ERK5a, b, c, and T confirmed that none of the known splice variants encoded for the renal-specific ∼80kDa protein. However, RT-PCR with primers targeting the potential splice sites did not reveal a novel transcript in the kidney. The smaller molecular mass of the kidney-specific ERK5-immunoreactive protein suggested that this cyto-protective molecule may not be fully functional in the kidneys. Lentivirus-mediated in vivo overexpression of full length ERK5 in the mouse kidneys provided protection against renal IR injury. The identity of the renal-specific ∼80kDa ERK5 remains unknown but a better understanding of the ERK5 expression and post-translational processing in the kidneys may reveal a novel strategy for renal protection.
Collapse
Affiliation(s)
- Tomoko Kawakami
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | | | | | | |
Collapse
|
15
|
Role of TGF-β in chronic kidney disease: an integration of tubular, glomerular and vascular effects. Cell Tissue Res 2011; 347:141-54. [PMID: 22105921 DOI: 10.1007/s00441-011-1275-6] [Citation(s) in RCA: 215] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 10/25/2011] [Indexed: 02/07/2023]
Abstract
Transforming growth factor beta (TGF-β) has been recognized as an important mediator in the genesis of chronic kidney diseases (CKD), which are characterized by the accumulation of extracellular matrix (ECM) components in the glomeruli (glomerular fibrosis, glomerulosclerosis) and the tubular interstitium (tubulointerstitial fibrosis). Glomerulosclerosis is a major cause of glomerular filtration rate reduction in CKD and all three major glomerular cell types (podocytes or visceral epithelial cells, mesangial cells and endothelial cells) participate in the fibrotic process. TGF-β induces (1) podocytopenia caused by podocyte apoptosis and detachment from the glomerular basement membrane; (2) mesangial expansion caused by mesangial cell hypertrophy, proliferation (and eventually apoptosis) and ECM synthesis; (3) endothelial to mesenchymal transition giving rise to glomerular myofibroblasts, a major source of ECM. TGF-β has been shown to mediate several key tubular pathological events during CKD progression, namely fibroblast proliferation, epithelial to mesenchymal transition, tubular and fibroblast ECM production and epithelial cell death leading to tubular cell deletion and interstitial fibrosis. In this review, we re-examine the mechanisms involved in glomerulosclerosis and tubulointerstitial fibrosis and the way that TGF-β participates in renal fibrosis, renal parenchyma degeneration and loss of function associated with CKD.
Collapse
|
16
|
IFN-γ suppresses the high glucose-induced increase in TGF-β1 and CTGF synthesis in mesangial cells. Pharmacol Rep 2011; 63:1137-44. [DOI: 10.1016/s1734-1140(11)70632-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 04/14/2011] [Indexed: 12/15/2022]
|
17
|
Abstract
Since its discovery in 1988 as an endothelial cell-derived peptide that exerts the most potent vasoconstriction of any known endogenous compound, endothelin (ET) has emerged as an important regulator of renal physiology and pathophysiology. This review focuses on how the ET system impacts renal function in health; it is apparent that ET regulates multiple aspects of kidney function. These include modulation of glomerular filtration rate and renal blood flow, control of renin release, and regulation of transport of sodium, water, protons, and bicarbonate. These effects are exerted through ET interactions with almost every cell type in the kidney, including mesangial cells, podocytes, endothelium, vascular smooth muscle, every section of the nephron, and renal nerves. In addition, while not the subject of the current review, ET can also indirectly affect renal function through modulation of extrarenal systems, including the vasculature, nervous system, adrenal gland, circulating hormones, and the heart. As will become apparent, these pleiotropic effects of ET are of fundamental physiologic importance in the control of renal function in health. In addition, to help put these effects into perspective, we will also discuss, albeit to a relatively limited extent, how alterations in the ET system can contribute to hypertension and kidney disease.
Collapse
Affiliation(s)
- Donald E Kohan
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah, USA.
| | | | | | | |
Collapse
|
18
|
Kohan DE, Rossi NF, Inscho EW, Pollock DM. Regulation of blood pressure and salt homeostasis by endothelin. Physiol Rev 2011; 91:1-77. [PMID: 21248162 DOI: 10.1152/physrev.00060.2009] [Citation(s) in RCA: 301] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Endothelin (ET) peptides and their receptors are intimately involved in the physiological control of systemic blood pressure and body Na homeostasis, exerting these effects through alterations in a host of circulating and local factors. Hormonal systems affected by ET include natriuretic peptides, aldosterone, catecholamines, and angiotensin. ET also directly regulates cardiac output, central and peripheral nervous system activity, renal Na and water excretion, systemic vascular resistance, and venous capacitance. ET regulation of these systems is often complex, sometimes involving opposing actions depending on which receptor isoform is activated, which cells are affected, and what other prevailing factors exist. A detailed understanding of this system is important; disordered regulation of the ET system is strongly associated with hypertension and dysregulated extracellular fluid volume homeostasis. In addition, ET receptor antagonists are being increasingly used for the treatment of a variety of diseases; while demonstrating benefit, these agents also have adverse effects on fluid retention that may substantially limit their clinical utility. This review provides a detailed analysis of how the ET system is involved in the control of blood pressure and Na homeostasis, focusing primarily on physiological regulation with some discussion of the role of the ET system in hypertension.
Collapse
Affiliation(s)
- Donald E Kohan
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA.
| | | | | | | |
Collapse
|
19
|
Du J, Wang L, Liu X, Zhou H, Fan Q, Luo J, Yao L, Wang J, Feng J, Ma J. Janus kinase 2/signal transducers and activators of transcription signal inhibition regulates protective effects of probucol on mesangial cells treated with high glucose. Biol Pharm Bull 2010; 33:768-72. [PMID: 20460752 DOI: 10.1248/bpb.33.768] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Probucol is a cholesterol-lowering drug with an anti-proliferative effect. Excessive growth of glomerular mesangial cells and overexpression of transforming growth factor-beta1 (TGF-beta1) and connective tissue growth factor (CTGF) are the pathological features of diabetic nephropathy. In this study, human mesangial cells (HMCs) treated with high glucose showed the above-mentioned features through the activation of Janus kinase 2 (JAK2)/signal transducers and activators of transcription (STAT) pathway. Probucol can suppress cell proliferation, down-regulate mRNA and protein levels of TGF-beta1 and CTGF in HMCs treated with high glucose. Phosphorylation of JAK2, STAT1 and STAT3 caused by high glucose was obviously prevented in HMCs pretreated with probucol, indicating that the protective effect of probucol on HMCs might be through the inhibition of JAK2/STAT pathway. Therefore, probucol could be a potential therapeutic agent for diabetic nephropathy, and this paper provides new insights into the molecular mechanisms underlying probucol's effects.
Collapse
Affiliation(s)
- Juan Du
- Department of Nephrology, First Hospital of China Medical University, Shenyang 110001, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Involvement of mineralocorticoid receptor in high glucose-induced big mitogen-activated protein kinase 1 activation and mesangial cell proliferation. J Hypertens 2010; 28:536-42. [DOI: 10.1097/hjh.0b013e3283346b62] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|