1
|
Nicolaysen TV, Rørtveit R, Vassli AØ, Sand ES, Elgstøen KBP, Rootwelt H, Lund HS, Sævik BK, Zimmer KE. A longitudinal study of the blood and urine metabolome of Vipera berus envenomated dogs. Res Vet Sci 2024; 173:105287. [PMID: 38718545 DOI: 10.1016/j.rvsc.2024.105287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/19/2024]
Abstract
Envenomation of dogs by the common European adder (Vipera berus) is associated with high morbidity. The cytotoxic venom of Vipera berus contains enzymes with the potential to cause acute kidney injury, among other insults, however robust biomarkers for such effects are lacking. A prospective observational follow-up study of naturally envenomated dogs and controls was conducted to fill knowledge gaps regarding canine Vipera berus envenomation, attempt to identify novel biomarkers of envenomation and related kidney injury, and elucidate potential long-term effects. Blood and urine samples were analyzed with a global metabolomics approach using liquid chromatography-mass spectrometry, uncovering numerous features significantly different between cases and controls. After data processing and feature annotation, eight features in blood and 24 features in urine were investigated in order to elucidate their biological relevance. Several of these are associated with AKI, while some may also originate from disturbed fatty acid β-oxidation and soft tissue damage. A metabolite found in both blood and a venom reference sample may represent identification of a venom component in case dogs. Our findings suggest that envenomated dogs treated according to current best practice are unlikely to suffer permanent injury.
Collapse
Affiliation(s)
- Tove V Nicolaysen
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oluf Thesens vei 22, 1433 Ås, Norway.
| | - Runa Rørtveit
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oluf Thesens vei 22, 1433 Ås, Norway
| | - Anja Ø Vassli
- Department of Medical Biochemistry, Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
| | - Elise S Sand
- Department of Medical Biochemistry, Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
| | - Katja B P Elgstøen
- Department of Medical Biochemistry, Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
| | - Helge Rootwelt
- Department of Medical Biochemistry, Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
| | - Heidi S Lund
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oluf Thesens vei 22, 1433 Ås, Norway
| | - Bente K Sævik
- AniCura Jeløy Dyresykehus, Varnaveien 43d, 1526 Moss, Norway
| | - Karin E Zimmer
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oluf Thesens vei 22, 1433 Ås, Norway
| |
Collapse
|
2
|
Ying Y, Li N, Wang S, Zhang H, Zuo Y, Tang Y, Qiao P, Quan Y, Li M, Yang B. Urea Transporter Inhibitor 25a Reduces Ascites in Cirrhotic Rats. Biomedicines 2023; 11:biomedicines11020607. [PMID: 36831143 PMCID: PMC9953117 DOI: 10.3390/biomedicines11020607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/03/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Ascites is a typical symptom of liver cirrhosis that is caused by a variety of liver diseases. Ascites severely affects the life quality of patients and needs long-term treatment. 25a is a specific urea transporter inhibitor with a diuretic effect that does not disturb the electrolyte balance. In this study, we aimed to determine the therapeutic effect of 25a on ascites with a dimethylnitrosamine (DMN)-induced cirrhotic rat model. It was found that 100 mg/kg of 25a significantly increased the daily urine output by 60% to 97% and reduced the daily abdominal circumference change by 220% to 260% in cirrhotic rats with a water intake limitation. The 25a treatment kept the serum electrolyte levels within normal ranges in cirrhotic rats. The H&E and Masson staining of liver tissue showed that 25a did not change the cirrhotic degree. A serum biochemical examination showed that 25a did not improve the liver function in cirrhotic rats. A Western blot analysis showed that 25a did not change the expression of fibrosis-related marker protein α-SMA, but significantly decreased the expressions of type I collagen in the liver of cirrhotic rats, indicating that 25a did not reverse cirrhosis, but could slow the cirrhotic progression. These data indicated that 25a significantly reduced ascites via diuresis without an electrolyte imbalance in cirrhotic rats. Our study provides a proof of concept that urea transporter inhibitors might be developed as novel diuretics to treat cirrhotic ascites.
Collapse
Affiliation(s)
- Yi Ying
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Nannan Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Shuyuan Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Hang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yinglin Zuo
- The State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Co., Ltd., Dongguan 523871, China
| | - Yiwen Tang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Panshuang Qiao
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yazhu Quan
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Min Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Baoxue Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China
- Correspondence:
| |
Collapse
|
3
|
Tomşa AM, Răchişan AL, Pandrea SL, Benea A, Uifălean A, Toma C, Popa R, Pârvu AE, Junie LM. Curcumin and Vitamin C Attenuate Gentamicin-Induced Nephrotoxicity by Modulating Distinctive Reactive Species. Metabolites 2022; 13:metabo13010049. [PMID: 36676974 PMCID: PMC9866787 DOI: 10.3390/metabo13010049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Gentamicin remains widely used in all age groups despite its well-documented nephrotoxicity; however, no adjuvant therapies have been established to counteract this side effect. Our study aimed to experimentally determine whether curcumin and vitamin C have nephroprotective effects and whether certain reactive species could be used as markers of early gentamicin nephrotoxicity. Wistar adult male rats were evenly distributed into four groups: control, gentamicin, curcumin and gentamicin, vitamin C and gentamicin (gentamicin: 60 mg/kg/day, intraperitoneally, 7 days). We determined renal function (urea, creatinine), oxidative stress (malondialdehyde, nitric oxide, 3-nitrotyrosine, total oxidative stress), and antioxidant and anti-inflammatory status (thiols, total antioxidant capacity, interleukin-10). Nephrotoxicity was successfully induced, as shown by the elevated creatinine levels in the gentamicin group. In contrast, supplementation with curcumin and vitamin C prevented an increase in urea levels while decreasing total oxidative stress levels compared to the gentamicin group. Moreover, vitamin C and curcumin distinctively modulate the levels of nitric oxide and malondialdehyde. Histological analysis showed more discrete lesions in rats that received vitamin C compared to the curcumin group.
Collapse
Affiliation(s)
- Anamaria Magdalena Tomşa
- 2nd Pediatrics Clinic, ‘Iuliu Hatieganu’ University of Medicine and Pharmacy, 400177 Cluj-Napoca, Romania
- Department of Microbiology, ‘Iuliu Hatieganu’ University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Correspondence:
| | - Andreea Liana Răchişan
- 2nd Pediatrics Clinic, ‘Iuliu Hatieganu’ University of Medicine and Pharmacy, 400177 Cluj-Napoca, Romania
| | - Stanca Lucia Pandrea
- Department of Microbiology, ‘Iuliu Hatieganu’ University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- ‘Prof. Dr. Octavian Fodor’ Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Andreea Benea
- ‘Prof. Dr. Octavian Fodor’ Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Ana Uifălean
- Department of Pathophysiology, ‘Iuliu Hatieganu’ University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Corina Toma
- Department of Veterinary Pathology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Roxana Popa
- Department of Veterinary Pathology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Alina Elena Pârvu
- Department of Pathophysiology, ‘Iuliu Hatieganu’ University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Lia Monica Junie
- Department of Microbiology, ‘Iuliu Hatieganu’ University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Zhan F, Wang X, Zhang J, Yi S, He P. Glutamine alleviates the renal dysfunction associated with gentamicin-induced acute kidney injury in Sprague-Dawley rats. Biotechnol Appl Biochem 2022; 69:323-329. [PMID: 33458886 DOI: 10.1002/bab.2111] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/10/2021] [Indexed: 01/16/2023]
Abstract
Sepsis is a clinical condition caused by an uncontrolled response to an infection, leading to acute kidney injury (AKI) and an increased risk of mortality. Although life support and antibiotic therapy are available, the mortality rate remains high in patients with sepsis. The present study investigated the therapeutic effect of glutamine on gentamicin-induced acute kidney injury in Sprague-Dawley rats. We randomly grouped 24 male rats to the normal control, AKI (control), glutamine 50 mg/kg, and glutamine 500 mg/kg groups. The dose was administered orally for 14 consecutive days. Rats treated with glutamine 500 mg/kg showed changes in systolic blood pressure. Glutamine increased renal blood flow, creatinine clearance, and the levels of potassium, creatinine, blood urea nitrogen, and urine osmolality, while reducing the relative excretion of sodium, potassium, urinary sodium, and plasma blood urea nitrogen and creatinine levels. In our study, glutamine supplementation reduced gentamicin-induced oxidative stress and increased catalase, superoxide dismutase, glutathione peroxidase, and glutathione levels in AKI rats. In addition, glutamine supplementation attenuated the severity of pathological features in this model. Collectively, our results showed that gentamicin has therapeutic potential against gentamicin-induced AKI due to its ability to mitigate the effects of oxidative stress.
Collapse
Affiliation(s)
- Feng Zhan
- Department of Emergency Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, People's Republic of China
| | - Xiang Wang
- Department of Emergency Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, People's Republic of China
| | - Jun Zhang
- Department of Emergency Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, People's Republic of China
| | - Shengyang Yi
- Department of Emergency Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, People's Republic of China
| | - Ping He
- Department of Emergency Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, People's Republic of China
| |
Collapse
|
5
|
Thymoquinone, but Not Metformin, Protects against Gentamicin-Induced Nephrotoxicity and Renal Dysfunction in Rats. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11093981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Gentamicin (GM) is an antibiotic that is widely used to treat many Gram-negative bacteria, such as those involved in urinary tract infections. However, being nephrotoxic, GM dose adjustment and reno-protective elements must be concurrently administered with GM to minimize kidney damage. Oxidative stress plays a pivotal role in the pathogenesis of GM-induced nephrotoxicity. Thymoquinone (TQ) is a promising therapeutic substance, that is being extensively studied in many diseases, such as diabetes mellitus, cancer, hypertension, and others. The powerful antioxidant properties of TQ may greatly help in minimizing GM nephrotoxicity. Metformin (MF) is a well-known, clinically approved oral hypoglycaemic drug that has many other actions, including antioxidant properties. The aim of this work was to evaluate the possible antioxidant and reno-protective effects of TQ and metformin in GM-induced nephrotoxicity in the same model (rats) at the same time. In addition, we aimed to further understand the effects underlying GM-induced nephrotoxicity. Methods: Twenty male rats were randomly divided into four equal groups: the first group (control) received distilled water; the second group received GM only; the third group received concurrent oral TQ and GM; and the fourth group received concurrent oral MF and GM. After 4 weeks, renal function and histopathology, as well as levels of the oxidative markers glutathione peroxidase-1 (GLPX1), superoxide dismutase (SOD), and malondialdehyde (MDA) in the kidney tissues, were assessed. Results: Compared with the control group, and as expected, the GM-injected rats showed significant biochemical and histological changes denoting renal damage. Compared with GM-injected rats, the concurrent administration of TQ with GM significantly reduced the levels of serum creatinine, serum urea, and tissue MDA and significantly increased the levels of GLPX1 and SOD. Concurrent metformin administration with GM significantly increased the levels of both GLPX1 and SOD and significantly decreased the levels of tissue MDA but had no significant effect on serum creatinine and urea levels. Compared with GM-injected rats, the addition of either TQ or MF resulted in a reduction in endothelial proliferation and mesangial hypercellularity. Conclusions: Both TQ and MF effectively alleviated the oxidative stress in GM-induced nephrotoxicity in rats, with TQ but not MF producing a complete reno-protective effect. Further studies for evaluation of different reno-protective mechanisms of TQ should be conducted.
Collapse
|
6
|
Yi XL, Hu J, Wu QT, Zhang YM, Hu Q, Yuan L, Miao YF, Chen H, Zhu L, Li J, Zhao XL, Yao JQ, Dai XY, Wan MH, Tang WF. Effect of Different-Volume Fluid Resuscitation on Organ Functions in Severe Acute Pancreatitis and Therapeutic Effect of Poria cocos. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:6408202. [PMID: 33628293 PMCID: PMC7895597 DOI: 10.1155/2020/6408202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/03/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To explore the effect of different-volume fluid resuscitation (FR) on organ functions in severe acute pancreatitis (SAP) and to elucidate the therapeutic effect and mechanism of Poria cocos on organ injuries caused by high-volume FR. METHODS 1. Clinical study: retrospective analysis of thirty-one patients about the effect of titrated fluid resuscitation protocol (TFR) on the occurrence of acute kidney injury (AKI) secondary to SAP. 2. Experimental study: rats (N = 30) were randomly divided into five groups: sham, model, low-volume FR (1.5 ml/kg/h), high-volume FR (10 ml/kg/h), and Poria cocos combined with high-volume FR (10 ml/kg/h + intraintestinal administration Poria cocos 5 g/kg); serum or plasma indicators and histopathologic scores were compared to explore the effect and mechanism of different fluid volumes and Poria cocos on organ function in SAP. RESULTS The occurrence of AKI, fluid volume, and fluid velocity in TFR group was lower than that in the control group. Logistic regression analysis showed that increased Marshall scores and fluid velocity were risk factors for predicting occurrence of AKI in SAP. Low-volume FR decreased the levels of blood urea nitrogen (BUN), serum creatinine (Cr), matrix metalloproteinase (MMP), and pathologic scores of the pancreas and kidney. High-volume FR increased ascites, MMPs, and kidney pathologic scores. Poria cocos decreased the levels of BUN, Cr, MMPs, and pathologic scores of the pancreas and kidney and increased the arterial oxygen saturation. CONCLUSION TFR-associated lower fluid volume and velocity reduced the occurrence of AKI secondary to SAP. High volume might aggravate AKI via increased MMP release leading to endothelial glycocalyx damage and vascular endothelial dysfunction. Poria cocos reduced MMP release, relieved glycocalyx damage, and alleviated the pancreas and kidney injury aggravated by high fluid volume in SAP. Therefore, endothelial glycocalyx protection might be a new strategy in the treatment of SAP.
Collapse
Affiliation(s)
- Xiao-Lin Yi
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Hu
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Gastroenterology, Leshan Municipal Hospital of Traditional Chinese Medicine, Leshan 614000, China
| | - Qiu-Ting Wu
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu-Mei Zhang
- Department of Traditional Chinese Medicine, Xiang'an Hospital of Xiamen University, Xiamen 361101, China
| | - Qian Hu
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ling Yuan
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi-Fan Miao
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huan Chen
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lv Zhu
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Juan Li
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xian-Lin Zhao
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jia-Qi Yao
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiao-Yu Dai
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mei-Hua Wan
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wen-Fu Tang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Mahi-birjand M, Karimzadeh I, Zarban A, Abdollahpour-Alitappeh M, Saadatjoo SA, Ziaee M. Protective Effects of Silymarin on Gentamicin-Induced Nephrotoxicity in Infectious Patients: A Randomized Double Blinded Placebo-Controlled Clinical Trial. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.33] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Motahareh Mahi-birjand
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Student Research Committee, Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran
| | - Iman Karimzadeh
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran
| | - Asghar Zarban
- Department of Clinical Biochemistry, faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | | | - Masood Ziaee
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
8
|
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are worldwide public health problems affecting millions of people and have rapidly increased in prevalence in recent years. Due to the multiple causes of renal failure, many animal models have been developed to advance our understanding of human nephropathy. Among these experimental models, rodents have been extensively used to enable mechanistic understanding of kidney disease induction and progression, as well as to identify potential targets for therapy. In this review, we discuss AKI models induced by surgical operation and drugs or toxins, as well as a variety of CKD models (mainly genetically modified mouse models). Results from recent and ongoing clinical trials and conceptual advances derived from animal models are also explored.
Collapse
Affiliation(s)
- Yin-Wu Bao
- Kidney Disease Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China. .,Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China
| | - Yuan Yuan
- Kidney Disease Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China. .,Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China
| | - Jiang-Hua Chen
- Kidney Disease Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China.
| | - Wei-Qiang Lin
- Kidney Disease Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China. .,Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China
| |
Collapse
|
9
|
Safari T, Miri S, Ghofran O, Fereidooni F, Niazi AA, Bagheri H, Nematbakhsh M. Gender differences in response to vitamin E and C in gentamicin induced nephrotoxicity in Wistar rats. J Nephropathol 2017. [DOI: 10.15171/jnp.2017.54] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
10
|
Casanova AG, Vicente-Vicente L, Hernández-Sánchez MT, Pescador M, Prieto M, Martínez-Salgado C, Morales AI, López-Hernández FJ. Key role of oxidative stress in animal models of aminoglycoside nephrotoxicity revealed by a systematic analysis of the antioxidant-to-nephroprotective correlation. Toxicology 2017; 385:10-17. [PMID: 28472626 DOI: 10.1016/j.tox.2017.04.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 04/27/2017] [Accepted: 04/30/2017] [Indexed: 12/31/2022]
Abstract
The clinical utility of aminoglycoside antibiotics is partly limited by their nephrotoxicity. Co-administration of a variety of candidate nephroprotectants has been tested at the preclinical level. According to a recent meta-analytic study, antioxidants are the only family of compounds with enough preclinical documentation to draw solid conclusions on their class nephroprotective capacity in animal models. In this study a systematic analysis of the relation between the level of antioxidation and the level of nephroprotection was performed. A regression model is presented which crosses the y-axis (i.e. the axis representing the level of nephroprotection) very nearly the zero value, meaning that maximal prevention of the oxidative stress induced by aminoglycosides results in almost maximal nephroprotection. This indicates that oxidative stress plays a central role in the hierarchy of pathophysiological mechanisms underlying aminoglycoside nephrotoxicity. In addition, this model may potentially serve: i) as a standard to evaluate the role of the antioxidant effect of candidate nephroprotectants; ii) to reveal additional, antioxidant-independent effects among those compounds providing more nephroprotection than that expected from its antioxidant activity; and thus iii) to discriminate and focus most effective nephroprotectants on clinical usage.
Collapse
Affiliation(s)
- Alfredo G Casanova
- Unidad de Toxicología, Departamento de Fisiología y Farmacología, University of Salamanca, 37007, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL-IESCYL), Salamanca, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain; Grupo de Investigación Biomédica en Cuidados Críticos (BioCritic), Valladolid, Spain
| | - Laura Vicente-Vicente
- Unidad de Toxicología, Departamento de Fisiología y Farmacología, University of Salamanca, 37007, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL-IESCYL), Salamanca, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain; Grupo de Investigación Biomédica en Cuidados Críticos (BioCritic), Valladolid, Spain
| | - María Teresa Hernández-Sánchez
- Unidad de Toxicología, Departamento de Fisiología y Farmacología, University of Salamanca, 37007, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL-IESCYL), Salamanca, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain; Grupo de Investigación Biomédica en Cuidados Críticos (BioCritic), Valladolid, Spain
| | - Moisés Pescador
- Unidad de Toxicología, Departamento de Fisiología y Farmacología, University of Salamanca, 37007, Salamanca, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain; Grupo de Investigación Biomédica en Cuidados Críticos (BioCritic), Valladolid, Spain
| | - Marta Prieto
- Unidad de Toxicología, Departamento de Fisiología y Farmacología, University of Salamanca, 37007, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL-IESCYL), Salamanca, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain; Grupo de Investigación Biomédica en Cuidados Críticos (BioCritic), Valladolid, Spain
| | - Carlos Martínez-Salgado
- Unidad de Toxicología, Departamento de Fisiología y Farmacología, University of Salamanca, 37007, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL-IESCYL), Salamanca, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain; Grupo de Investigación Biomédica en Cuidados Críticos (BioCritic), Valladolid, Spain
| | - Ana I Morales
- Unidad de Toxicología, Departamento de Fisiología y Farmacología, University of Salamanca, 37007, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL-IESCYL), Salamanca, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain; Grupo de Investigación Biomédica en Cuidados Críticos (BioCritic), Valladolid, Spain
| | - Francisco J López-Hernández
- Unidad de Toxicología, Departamento de Fisiología y Farmacología, University of Salamanca, 37007, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL-IESCYL), Salamanca, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain; Grupo de Investigación Biomédica en Cuidados Críticos (BioCritic), Valladolid, Spain.
| |
Collapse
|
11
|
Telbivudine attenuates gentamicin-induced kidney injury in rats. Int J Antimicrob Agents 2017; 49:595-602. [PMID: 28373116 DOI: 10.1016/j.ijantimicag.2017.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 12/26/2016] [Accepted: 01/06/2017] [Indexed: 01/10/2023]
Abstract
Nephrotoxicity has been associated with nucleos(t)ide analogues other than telbivudine (LdT). This study investigated the potential effects of LdT and lamivudine (LAM) on renal function in an experimental rat model of gentamicin-induced acute nephrotoxicity. A total of 28 healthy Wistar albino rats were randomly divided into four experimental groups: negative control; positive control (PC); LdT; and LAM. Nephrotoxicity was induced by gentamicin in the LdT, LAM and PC groups. LdT and LAM were administered to two groups for 6 weeks starting on the ninth day. Blood samples were collected weekly and cystatin C levels were measured by ELISA. Animals were sacrificed on the 50th day and the kidneys were removed for histological examination. Serum cystatin C levels differed significantly between the LdT and LAM groups (P <0.007) and between the LdT and PC groups (P <0.001). Renal function was significantly improved in the LdT group at the start of antiviral treatment on Day 8 and at the end of treatment on Day 50 (P = 0.001 and 0.007). Glomerular injury, acute tubular necrosis and total injury score were significantly reduced in the LdT group relative to the PC and LAM groups upon histopathological examination. LdT was associated with significant improvements in renal function as measured by biochemical and histopathological methods. The acute kidney injury model data should be supported by clinical studies to suggest that LdT treatment may have advantages for patients with underlying chronic kidney disease receiving chronic hepatitis B treatment.
Collapse
|
12
|
Sayed-Ahmed MM, Darweesh AQ, Fatani AJ. Carnitine deficiency and oxidative stress provoke cardiotoxicity in an ifosfamide-induced Fanconi Syndrome rat model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 3:266-74. [PMID: 20972373 PMCID: PMC2952087 DOI: 10.4161/oxim.3.4.12859] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In addition to hemorrhagic cystitis, Fanconi Syndrome is a serious clinical side effect during ifosfamide (IFO) therapy. Fanconi syndrome is a generalized dysfunction of the proximal tubule which is characterized by excessive urinary excretion of glucose, phosphate, bicarbonate, amino acids and other solutes excreted by this segment of the nephron including L-carnitine. Carnitine is essential cofactor for β-oxidation of long-chain fatty acids in the myocardium. IFO therapy is associated with increased urinary carnitine excretion with subsequent secondary deficiency of the molecule. Cardiac abnormalities in IFO-treated cancer patients were reported as isolated clinical cases. This study examined whether carnitine deficiency and oxidative stress, secondary to Fanconi Syndrome, provoke IFO-induced cardiomyopathy as well as exploring if carnitine supplementation using Propionyl-L-carnitine (PLC) could offer protection against this toxicity. In the current study, an animal model of carnitine deficiency was developed in rats by D-carnitine-mildronate treatment Adult male Wistar albino rats were assigned to one of six treatment groups: the first three groups were injected intraperitoneally with normal saline, D-carnitine (DC, 250 mg/kg/day) combined with mildronate (MD, 200 mg/kg/day) and PLC (250 mg/kg/day), respectively, for 10 successive days. The 4th, 5th and 6th groups were injected with the same doses of normal saline, DC-MD and PLC, respectively for 5 successive days before and 5 days concomitant with IFO (50 mg/kg/day). IFO significantly increased serum creatinine, blood urea nitrogen (BUN), urinary carnitine excretion and clearance, creatine phosphokinase isoenzyme (CK-MB), lactate dehydrogenase (LDH), intramitochondrial acetyl-CoA/CoA-SH and thiobarbituric acid reactive substances (TBARS) in cardiac tissues and significantly decreased adenosine triphosphate (ATP) and total carnitine and reduced glutathione (GSH) content in cardiac tissues. In carnitine-depleted rats, IFO induced dramatic increase in serum creatinine, BUN, CK-MB, LDH, carnitine clearance and intramitochondrial acetyl-CoA/CoA-SH, as well as progressive reduction in total carnitine and ATP in cardiac tissues. Interestingly, PLC supplementation completely reversed the biochemical changes-induced by IFO to the control values. In conclusion, data from the present study suggest that: Carnitine deficiency and oxidative stress, secondary to Fanconi Syndrome, constitute risk factors and should be viewed as mechanisms during development of IFO-induced cardiotoxicity. Carnitine supplementation, using PLC, prevents the development of IFO-induced cardiotoxicity through antioxidant signalling and improving mitochondrial function.
Collapse
Affiliation(s)
- Mohamed M Sayed-Ahmed
- Department of Pharmacology; College of Pharmacy; King Saud University; Riyadh, Kingdom of Saudi Arabia.
| | - Amal Q Darweesh
- Department of Pharmacology; College of Pharmacy; King Saud University; Riyadh, Kingdom of Saudi Arabia
| | - Amal J Fatani
- Department of Pharmacology; College of Pharmacy; King Saud University; Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
13
|
Vicente-Vicente L, Casanova AG, Hernández-Sánchez MT, Pescador M, López-Hernández FJ, Morales AI. A systematic meta-analysis on the efficacy of pre-clinically tested nephroprotectants at preventing aminoglycoside nephrotoxicity. Toxicology 2016; 377:14-24. [PMID: 27940129 DOI: 10.1016/j.tox.2016.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 01/29/2023]
Abstract
Nephrotoxicity limits the use of aminoglycoside antibiotics. Kidney damage is produced mainly in the renal tubule due to an inflammatory and oxidative process. At preclinical level, many drugs and natural products have been tested as prospective protectors of aminoglycoside nephrotoxicity. The main objective of this work was to make a systematic literature review of preclinical studies about aminoglycoside nephrotoxicity protection and a statistical analysis based on the meta-analysis methodology. Studies published up to January 2016 were identified. After applying inclusion criteria, 54 studies were chosen. The size of the experimental groups, means and standard deviations of data on renal function (i.e. plasma creatinine and blood urea nitrogen [BUN] concentrations) were extracted and registered in a database. The studies were grouped according to the mechanism of nephroprotection and their route of administration. The Mean Difference (95% confidence interval) was calculated for each study and group. 40 of 54 products tested produced an amelioration of aminoglycoside nephrotoxicity based on creatinine results. Also a dose dependent protective effect was observed (both in creatinine and BUN). Products orally administered were more effective than via i.p. Products with attributed antioxidant activity were the most used and those which proved statistically significant nephroprotection as a class effect. Aminoglycoside tubular reuptake inhibitors, excretion inducers and calcium channel blockers also showed a promising and rather homogeneous class tendency towards nephroprotection, although more research is necessary to obtain solid and conclusive results, based on a larger number of studies.
Collapse
Affiliation(s)
- Laura Vicente-Vicente
- Unidad de Toxicología, Departamento de Fisiología y Farmacología, University of Salamanca, 37007, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL)-Instituto de Estudios de Ciencias de la Salud de Castilla y León (IESCYL), Salamanca, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain; Grupo de Investigación Biomédica en Cuidados Críticos (BioCritic), Valladolid, Spain
| | - Alfredo G Casanova
- Unidad de Toxicología, Departamento de Fisiología y Farmacología, University of Salamanca, 37007, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL)-Instituto de Estudios de Ciencias de la Salud de Castilla y León (IESCYL), Salamanca, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain; Grupo de Investigación Biomédica en Cuidados Críticos (BioCritic), Valladolid, Spain
| | - María Teresa Hernández-Sánchez
- Unidad de Toxicología, Departamento de Fisiología y Farmacología, University of Salamanca, 37007, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL)-Instituto de Estudios de Ciencias de la Salud de Castilla y León (IESCYL), Salamanca, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain; Grupo de Investigación Biomédica en Cuidados Críticos (BioCritic), Valladolid, Spain
| | - Moisés Pescador
- Unidad de Toxicología, Departamento de Fisiología y Farmacología, University of Salamanca, 37007, Salamanca, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain; Grupo de Investigación Biomédica en Cuidados Críticos (BioCritic), Valladolid, Spain
| | - Francisco J López-Hernández
- Unidad de Toxicología, Departamento de Fisiología y Farmacología, University of Salamanca, 37007, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL)-Instituto de Estudios de Ciencias de la Salud de Castilla y León (IESCYL), Salamanca, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain; Grupo de Investigación Biomédica en Cuidados Críticos (BioCritic), Valladolid, Spain
| | - Ana Isabel Morales
- Unidad de Toxicología, Departamento de Fisiología y Farmacología, University of Salamanca, 37007, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL)-Instituto de Estudios de Ciencias de la Salud de Castilla y León (IESCYL), Salamanca, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain; Grupo de Investigación Biomédica en Cuidados Críticos (BioCritic), Valladolid, Spain.
| |
Collapse
|
14
|
Sun Y, Liu G, Li X, Shi Y, Guan G. L-Carnitine inhibits eryptosis induced by uremic serum and the related mechanisms. Ren Fail 2015; 37:1050-6. [DOI: 10.3109/0886022x.2015.1052977] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
15
|
Jafari A, Dashti-Khavidaki S, Khalili H, Lessan-Pezeshki M. Potential nephroprotective effects of l-carnitine against drug-induced nephropathy: a review of literature. Expert Opin Drug Saf 2013; 12:523-43. [PMID: 23656498 DOI: 10.1517/14740338.2013.794217] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Drug-induced nephrotoxicity (DIN) has been reported with a great number of medications and contributes to ∼ 20% of hospital admissions. l-carnitine owing to its antioxidant, anti-inflammatory and antiapoptotic properties has been proposed as a candidate for nephroprotection against DIN. Increasing need to use nephrotoxic therapeutic agents necessitated this review. AREAS COVERED The present review covers all published clinical and animal researches on nephroprotective effects of l-carnitine against DIN. l-carnitine significantly ameliorates DIN in animal studies especially against cisplatin-induced renal damage. Inhibition of reactive oxygen species generation, lipid peroxidation, matrix remodeling and apoptosis, anti-inflammatory properties and improvement in carnitine deficiency has been suggested as probable nephroprotective mechanisms of l-carnitine. EXPERT OPINION In spite of the evidences that support the nephroprotective effect of l-carnitine, the main problems in this area are inadequacy of reliable studies in humans and difficulty of translating the experimental results into clinical practice. In most of the described studies, l-carnitine treatment is prophylactically given. Use of l-carnitine as a prophylactic agent in clinical situations with an indication for nephrotoxic therapies is rarely possible except for contrast-induced nephrotoxicity. Development of validated early biomarkers to detect DIN may provide the opportunity to use prophylactic nephroprotective agents at golden time.
Collapse
Affiliation(s)
- Atefeh Jafari
- Tehran University of Medical Science, Resident of Clinical Pharmacy, Faculty of Pharmacy, Tehran, Iran
| | | | | | | |
Collapse
|
16
|
Hur E, Garip A, Camyar A, Ilgun S, Ozisik M, Tuna S, Olukman M, Narli Ozdemir Z, Yildirim Sozmen E, Sen S, Akcicek F, Duman S. The effects of vitamin d on gentamicin-induced acute kidney injury in experimental rat model. Int J Endocrinol 2013; 2013:313528. [PMID: 23843788 PMCID: PMC3697300 DOI: 10.1155/2013/313528] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/28/2013] [Accepted: 05/30/2013] [Indexed: 12/24/2022] Open
Abstract
Introduction. Acute kidney injury (AKI) pathogenesis is complex. Findings of gentamicin nephrotoxicity are seen in 30% of the AKI patients. Vitamin D has proven to be effective on renin expression, inflammatory response, oxidative stress, apoptosis, and atherosclerosis. We aimed to investigate the effect of vitamin D in an experimental rat model of gentamicin-induced AKI. Methods. Thirty nonuremic Wistar albino rats were divided into 3 groups: Control group, 1 mL saline intramuscular (im) daily; Genta group, gentamicin 100 mg/kg/day (im); Genta + vitamin D, gentamicin 100 mg/kg/day (im) in addition to 1 α , 25 (OH)2D3 0.4 mcg/kg/day subcutaneously for 8 days. Blood pressures and 24-hour urine were measured. Blood urea and creatinine levels and urine tubular injury markers were measured. Renal histology was semiquantitatively assessed. Results. Urea, creatinine and urine neutrophil gelatinase-associated lipocalin, and kidney injury molecule-1 were all increased in Genta group indicating AKI model. Systolic blood pressure decreased, but urine volume and glutathione increased in Genta + Vit D group compared to Control group. Histological scores indicating tubular injury increased in Genta and Genta + Vit D groups. Conclusions. Vitamin D does not seem to be effective on histological findings although it has some beneficial effects via RAS system and a promising effect on antioxidant system.
Collapse
Affiliation(s)
- Ender Hur
- Department of Nephrology, Bulent Ecevit University Medical School, Esenkoy, 67100 Zonguldak, Turkey
- *Ender Hur:
| | - Alev Garip
- Department of Internal Medicine, Ege University Medical School, 35100 Izmir, Turkey
| | - Asuman Camyar
- Department of Internal Medicine, Ege University Medical School, 35100 Izmir, Turkey
| | - Sibel Ilgun
- Department of Internal Medicine, Ege University Medical School, 35100 Izmir, Turkey
| | - Melih Ozisik
- Department of Internal Medicine, Ege University Medical School, 35100 Izmir, Turkey
| | - Sena Tuna
- Department of Internal Medicine, Ege University Medical School, 35100 Izmir, Turkey
| | - Murat Olukman
- Department of Pharmacology, Ege University Medical School, 35100 Izmir, Turkey
| | - Zehra Narli Ozdemir
- Department of Internal Medicine, Ege University Medical School, 35100 Izmir, Turkey
| | | | - Sait Sen
- Department of Pathology, Ege University Medical School, 35100 Izmir, Turkey
| | - Fehmi Akcicek
- Department of Internal Medicine, Ege University Medical School, 35100 Izmir, Turkey
| | - Soner Duman
- Department of Internal Medicine, Ege University Medical School, 35100 Izmir, Turkey
| |
Collapse
|
17
|
Sayed-Ahmed MM. Progression of cyclophosphamide-induced acute renal metabolic damage in carnitine-depleted rat model. Clin Exp Nephrol 2010; 14:418-26. [PMID: 20652348 DOI: 10.1007/s10157-010-0321-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 06/23/2010] [Indexed: 01/18/2023]
Abstract
BACKGROUND Little information is available regarding the mechanism of cyclophosphamide (CP)-induced renal damage. Therefore, this study examined whether carnitine deficiency constitutes a risk factor in and should be viewed as a mechanism during development of CP-induced nephrotoxicity and explored whether carnitine supplementation, using propionyl-L-carnitine (PLC), could offer protection against this toxicity. METHODS Experimental rats were assigned to one of six groups; the first three groups were injected intraperitoneally with normal saline, PLC (250 mg/kg/day) or D-carnitine (250 mg/kg/day) + Mildronate (200 mg/kg/day), respectively, for 10 successive days. The 4th, 5th and 6th groups received the same doses of normal saline, PLC or D-carnitine + Mildronate, respectively, for 5 successive days before and after a single dose of CP (200 mg/kg). RESULTS CP significantly increased serum creatinine, blood urea nitrogen (BUN), intramitochondrial acetyl-coenzyme A (CoA) and thiobarbituric acid reactive substances, significantly decreased total carnitine, intramitochondrial CoA-SH, adenosine triphosphate (ATP) and ATP/adenosine diphosphate (ADP) and reduced glutathione in kidney tissues. In carnitine-depleted rats, CP resulted in dramatic increase in serum nephrotoxicity indices and acetyl-CoA and induced progressive reduction in total carnitine, CoA-SH and ATP as well as severe histopathological lesions in kidney tissues. Interestingly, PLC completely reversed the biochemical and histopathological changes induced by CP to normal values. CONCLUSIONS Oxidative stress is not involved in CP-induced renal injury in this model. Carnitine deficiency and energy starvation constitute risk factors in and should be viewed as a mechanism during CP-induced nephrotoxicity. PLC prevents development of CP-induced nephrotoxicity by increasing intracellular carnitine content, intramitochondrial CoA-SH/acetyl-CoA ratio and energy production.
Collapse
Affiliation(s)
- Mohamed M Sayed-Ahmed
- Department of Pharmacology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Kingdom of Saudi Arabia.
| |
Collapse
|